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1 Introduction

The AdS/CFT correspondence, also known as Maldacena’s duality, states the duality be-

tween gravitational theories, as string or M-theory, on a bulk space (usually a product

of the Anti-de Sitter spacetime with spheres or other compact sets) and conformal field

theories defined on the boundary of the bulk space which behaves as a hologram of infe-

rior dimension (see [1]). As it is apparent, the conjecture relies strongly in the notion of

boundary of Lorentz manifolds. However, the problem to attach a natural boundary for

any Lorentz manifold encoding relevant information on it, as its conformal structure and

related elements (event horizons, singularities, etc.) has been a long standing issue along

the last four decades.

Among the several constructions proposed (see [2–4] for nice reviews on the classical

elements and [5, 6] for updated progress), two approaches have had a specially important

role in general relativity, the conformal and the causal boundaries.

The conformal boundary is the most applied one in mathematical relativity and sev-

eral notions, as asymptotic flatness or tools as Penrose-Carter diagrams rely on it. Even in

the original approach of the AdS/CFT correspondence, it is the conformal boundary the
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chosen as the holographic one. In fact, the Anti-de Sitter spacetime can be conformally

embedded in the Lorentz-Minkowski model, obtaining a simple (and non-compact) con-

formal boundary. However, it has important limitations as it is an ad hoc construction:

no general formalism determines when the boundary of a reasonably general spacetime is

definable, intrinsic, unique and contain useful information of the spacetime (see [7] and [5,

section 4] for studies regarding the uniqueness of the conformal boundary). In fact, as it

was putted forward by Bernstein, Maldacena and Nastase [8]), there seems to be problems

when the conformal boundary is considered on plane waves. Indeed, Marolf and Ross [9]

realized that the conformal boundary is not available for non-conformally flat plane waves.

So, they proposed a redefinition of the c-boundary applicable to such waves [10] which was

refined and systematically studied by Flores and Sánchez in [11].

This motivated a reconsideration of such constructions by substituting the confor-

mal boundary by the causal one, which is intrinsic, conformally invariant and it can be

computed systematically, as it was carried out in [5]. It is worth emphasizing that both

the conformal and causal boundaries are shown to coincide in most relevant classes (so,

previous results based on the conformal case are not required to be re-obtained for the

causal one).

Returning to the problem of AdS/CFT correspondence, it is our aim to present the

causal boundary of different classes of Lorentz manifolds, allowing the study of such a

correspondence with different bulk spaces. In this sense let M be, for instance, a Lorentz

manifold with constant negative curvature, and so, a spacetime that can be locally modelled

by the Anti-de Sitter spacetime. Recalling that the universal covering ˜AdS is maximal,

simply-connected and with constant negative curvature, it is expectable that M can be de-

scribed as a quotient space of ˜AdS by an appropriate group of isometries (in fact, for certain

spacetime topologies, the existence of such an appropriate group was proved by Mess [12]).

This is the particular case of the BTZ blackholes, the (2+1)-model of spacetime first intro-

duced by Bañados, Teitelboim and Zanelli [13]; and the Hawking-Page reference space [14],

whose representations as a quotient of the Anti-de Sitter model are well known [15? , 16].

Due the fact that the causal boundary is well known for ˜AdS (see [17, section 4.1]), the

following question, particularly natural from the mathematical viewpoint, arises: given two

(general) Lorentz manifolds M and V where M is constructed as the quotient of V by some

group of isometries, what is the relation between the causal boundaries and completions

of M and V? An adequate answer for this question will give us tools to easily compute

the causal completion of M once we know the corresponding on V. For instance, such a

result will be applicable to models like the BTZ blackholes or the Hawking-Page reference

model, besides other models constructed in a similar way (as the case of Cosmic Strings,

see [18]). It will also give us relevant information of the c-completion on V whenever the

c-completion in M is known.

The first studies in this direction are due to Harris [19]. In his work, he studied how

isometrical actions affect the causal structures of the spacetimes, with special attention

to the future causal boundary and related concepts (as strong causality). Concretely, he

considers a projection π : V → M given by a discrete subgroup G of isometries acting

freely and properly discontinuously in V, i.e., where M = V/G and the elements on M
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represents G-orbits in V. In this settings, Harris characterizes the strong causality and

global hyperbolicity of M in terms of the global causal structure of V. Moreover, and

under the assumption of M being distinguishing (which implies, in particular, that V also

is), he presents necessary conditions in order to ensure when the future causal completion

of M is homeomorphic to an appropiatre quotient of the future causal completion of V.

Our aim in this work is to extend the results obtained by Harris for the future causal

completion to the c-completion. However, several problems have to be addressed first. On

the one hand, the main result in [19] imposes that both, the future causal boundary of M

and V have only spacelike future boundaries. This condition, even if reasonable (specially

recalling the final example of his paper), is too strong for the c-completion context, where

particularly timelike boundary points are specially relevant. On the other hand, and in

spite with the partial case, the c-completion requires the study of the so-called S-relation

between future and past sets, as well as some “compatibility” between the topology of the

future and past completions.

The contents of the paper are organized as follow. In section 2 we will give the prelim-

inaries that we are going to need along the rest of the paper. Most of them are well known

(for instance, the construction of the c-completion was developed in [5]), but we have also

introduced concepts (as first order UTS, definition 2.1) and results (lemmas 2.2 and 2.4;

and some of the assertions in Theorem 2.10) that, as far as we know, are new.

Section 3 is devoted to the study of the future (and, by analogy, past) causal boundary.

Here, at the point set level, we will recall the bijection ̂ defined by Harris between a suitable

quotient of V̂ (the future completion of V) and M̂ (the future completion of M). Then,

we will perform a detailed comparison between the topologies in both spaces (the first one

with the induced quotient topology). The results of this section are summarized as follow:

Theorem 1.1. Let π : V → M be a spacetime covering projection (see section 2.3) and

denote by π̂ the extension to future c-completions (3.1). Let V̂/Ĝ be the quotient space

defined by the following relation: two points P, P ′ ∈ V̂ are ∼
Ĝ

-related if they project onto

the same point in M̂. Then, we obtain the following commutative diagram:

V̂

V̂/Ĝ M̂

ı̂

̂

π̂

where ı̂ is the natural quotient projection. From construction, the map ̂ is bijective. At

the topological level,

(i) The map ̂ is open.

(ii) If M does not admit sequences with future divergent lifts (definition 3.6), the map π̂

(and so, ̂) is continuous. The converse also follows if we have that L̂M is of first

order UTS (definition 2.1).
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In particular, if M has only spatial future boundary points, ̂ is a homeomorphism

between V̂/Ĝ and M̂. The same result follows if G is finite and V̂ is Hausdorff.

As we can see on previous (ii), we have obtained almost a characterization of the

continuity of ̂, up to the first order UTS property. In fact, such a result generalizes [19,

theorem 3.4], as the last assertion of theorem 1.1 shows.

Section 4 is focused on the study of the (total) c-completion at all possible levels,

namely at the point set, at the chronological and at the topological level. In section 4.1 are

given simple and general sufficient conditions to ensure the definition of the map  between

a reasonable quotient of V (the c-completion of V) and M (the c-completion on M). Then,

it is shown in section 4.2 that previous map is well behaved respect to the chronological

relation, whenever an appropriate chronological relation is defined on the quotient space.

Finally, in sections 4.3 and 4.4, it is studied the conditions to ensure that the map  is both,

continuous and open respectively. Now the latter becomes subtler and a simple condition

(to be finitely chronological) is introduced. This property also simplifies the conditions to

ensure the well posedness and continuity of .

Concretely, the results of such a section are summarized in the following:

Theorem 1.2. Let π : V → M be a spacetime covering projection and consider π : V →
M̂∅ × M̌∅ one extension map as defined on definition 4.4 (see also remark 4.5). Then:

(PS1) If M does not admit an inextensible sequence {xn}n ⊂M which is either past-directed

chronological with future divergent lifts nor future-directed chronological with past

divergent lifts; and any (P, F) ∈ M with P 6= ∅ 6= F admits a lift on V (in particular

if (V,G) is finitely chronological, see definition 4.14), then the projection restricts

properly to M and it is surjective.

(PS2) If, in addition, the projection π is tame (recall definition 3.2) or (V,G) is finite

chronological (see definition 4.14), π is univocally determined (see remark 4.5) and

just reads as

π((P, F)) = (π̂(P), π̌(F))

where π̂(∅) = π̌(∅) = ∅.

(PS3) Finally, if (V,G) is finitely chronological and both V̂, V̌ are Hausdorff then the pro-

jection π restricts properly to M, it is surjective and univocally determined.

Moreover, when the map π restricts properly to M and it is surjective, it defines the fol-

lowing relation between points in V: two points are ∼G-related if they project onto the

same point in M. Then, denoting by V/G the quotient space, we obtain the following

commutative diagram:

V

V/G M

ı



π

where ı is the natural projection to the quotient and  is the induced bijection.
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At the chronological level, and once an appropriate chronological relation is defined on

V/G (see section 4.2), it follows that:

(CH) the map  is a chronological isomorphism.

Finally, at the topological level,  satisfies the following properties:

(TP1) The map  is continuous if one of the following hypotheses hold:

(i) π satisfies that π((P, ∅)) = (P, ∅) and π((∅, F)) = (∅, F) (this follows if, for

instance, π is tame or (V,G) is finite chronological); and M has no sequence

with (future or past) divergent lifts.

(ii) π((P, ∅)) = (P, ∅), π((∅, F)) = (∅, F) and M has no lightlike boundary points (see

definition 2.5).

(TP2) If (V,G) is finite chronological, the map  is open.

In particular, π restricts properly to M, it is surjective, univocally determined and

induces a homeomorphism and chronological isomorphism between V/G and M if it is

satisfied one of the following assertions:

(a) (V,G) is finite chronological and M admits no sequence with (future or past) diver-

gent lifts.

(b) (V,G) is finitely chronological, both V̂, V̌ are Hausdorff and M has no lightlike bound-

ary points.

(c) (V,G) is finitely chronological, V has no lightlike boundary points, and both V̂, V̌ are

Hausdorff and have closed G-orbits. In particular, if π is (future and past) tame and

there are no constant sequences with divergent lifts in M, then the G-orbits in V̂ and

V̌ will be closed.

In section 5 we include several technical examples showing the optimality of our re-

sults, that is, we show that if we remove any of our sufficient conditions (tameness, no

existence of sequences with divergent lifts or finite chronology), the results are, in general,

false. Finally in section 6, and as a physically relevant application of our result, we use

the developed theory to compute the causal boundary of quotients of Robertson Walker

spacetimes, including quotients of the AdS Spacetime.

2 Preliminaries

2.1 Sequential topologies and limit operators

Along this section we will include all the basic facts about sequential topologies and limit

operators that we will require for the rest of the paper. Most of the results are known

(see [6, 20]), but we present the concept of first order UTS along some associated results

that, as far as we known, are new.
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Let X be an arbitrary space with a limit operator L defined on it, that is, an operator

L : S(X)→ P(X), where S(X) is the space of sequences in X and P(X) is the space of parts of

X. We will always assume that the limit operator is: (a) coherent, and so, that L(σ) ⊂ L(κ)
where κ, σ ∈ S(X) and κ is a subsequence of σ (this will be denoted by κ ⊂ σ); and (b)

finite-invariant ensuring that L(σ) = L(κ) if a common subsequence is obtained by deleting

a finite number of terms in both sequences.

Any (coherent and finite-invariant) limit operator defines naturally a topology τL on

X on the following way: a set C is closed for τL if and only if L(σ) ⊂ C for all sequence

σ ⊂ C. Such a topology is sequential, i.e., it is completely determined by the convergence

of its sequences (a subset is closed if and only if it contains all its convergent sequences);

this happens even if L(σ) only determines some of the possible limits of σ. Reciprocally,

any sequential topology τ has associated a limit operator Lτ (its usual convergence) such

that τ = τLτ (see [6, proposition 2.6]). Observe however that the previous limit operator

is not the unique limit operator which determines the same topology τ. Among the limits

defining a concrete sequential topology τ, it is always possible to choose one satisfying that

p ∈ L({p}n) for all p ∈M, where {p}n denotes the constant sequence p. In the particular

case when {p} = L({p}n), we will say that the limit operator is idempotent. Finally, the

pair (X, L) will also represent the sequential topological space (X, τL).

In general, the limit operator L does not determine the complete set of convergence

points of a sequence σ with the topology τL. In fact, the only implication which is always

true is that:

p ∈ L(σ) =⇒ σ converges to p with the topology τL. (2.1)

When the other implication is satisfied for all sequences, we will say that the limit operator

is of first order. In general, there are not many results determining when a limit operator

is of first order. In fact, in practical cases, the proof is done case by case, taking special

care of “problematic” sequences. However, if we relax slightly the first order condition on

L, we can obtain simply-to-check conditions which will be enough for our purposes. In this

sense, let us introduce some definitions.

Definition 2.1. Let X be a space and L a limit operator defined on X. Let us denote by

τL the associated sequential topology and let σ ⊂ X be a sequence. We will say that L is of

first order for σ if

p ∈ L(σ) ⇐⇒ σ converges to p with the topology τL.

Additionally, we will say that L is of first order up to a subsequence for σ (or first order

UTS for short), if σ has a subsequence κ ⊂ σ such that L is of first order for κ. Finally,

we will say that L is of first order UTS if it is of first order UTS for all sequence σ ⊂ X.

The following result give us a sufficient condition to ensure when a limit operator is of

first order for a given sequence.

Lemma 2.2. Consider (X, L) a sequential space with L idempotent. Let σ be a sequence

on X such that, for all subsequence κ ⊂ σ, L(κ) = L(σ). Assume additionally that L(σ)
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only contains a finite number of elements. Then, cl(σ) = σ ∪ L(σ), where cl(σ) denotes

the topological closure of σ. In particular, L is of first order for σ.

Proof. The proof is quite straightforward and we include it here for the sake of complete-

ness. Observe that the set C = σ ∪ L(σ) ⊂ cl(σ) from (2.1), so the first assertion follows

if we prove that C is closed. For this, let κ ⊂ C and let us prove that L(κ) ⊂ C. Recall

that, due the finite number of elements in L(σ), we have have two possibilities (up to a

subsequence) for κ ⊂ C: or the sequence κ is a subsequence of σ, and so, L(κ) = L(σ) ⊂ C;

or κ is constantly an element p ∈ C, and so, L(κ) = {p} ⊂ C. In both cases, L(κ) ⊂ C and

hence C is closed.

For the last assertion, that is, the first order character of L on σ, let us assume that

σ→ p. Again, we distinguish two cases:

• We can exclude a finite number of elements in σ such that the refined sequence σ ′ does

not contain p. As we are removing only a finite number of elements, L(σ ′) = L(σ)

and it follows from the first assertion that cl(σ ′) = σ ′ ∪ L(σ ′). As σ ′ → p, we have

that p ∈ σ ′ ∪ L(σ ′). From construction σ ′ does not contain p, so p ∈ L(σ ′) = L(σ).

• Otherwise, we can construct a subsequence κ of σ with κ = {p}n. In particular,

p ∈ L({p}n) = L(κ) = L(σ) (recall that the last equality follows by hypothesis).

In conclusion, p ∈ L(σ) and L is of first order for σ.

Previous result give us a relatively simple way to determine when L is of first order

for a given sequence σ (and so, to determine when L is of first order) and it is usually

enough in particular cases. However, we can go a step further on the search of a easily

verifiable condition. For this, let us note that most of the results we will present on this

paper require, not a complete control of the convergence of sequences, but the existence

for any sequence of a subsequence sufficiently well behaved. This is make apparent in the

following result which ensures continuity of a map between sequential spaces:

Proposition 2.3. Let f : (M,L)→ (N, L ′) be a map between sequential spaces (M,L) and

(N, L ′). The map f is continuous if for any sequence {pn}n ⊂ M and p ∈ L({pn}n) there

exists a subsequence {pnk}k of {pn}n such that f(p) ∈ L ′({f(pnk)}k).

Proof. Let C be a closed set in (N, L ′), and let us show that f−1(C) is closed on (M,L).

Assume by contradiction that f−1(C) is not closed and so, from definition, that there exists

a sequence σ ⊂ f−1(C) and a point p ∈M with p ∈ L(σ) \ f−1(C). From hypothesis, there

exists a subsequence κ ⊂ σ such that f(p) ∈ L ′(f(κ)). But f(κ) ⊂ C, which is closed for

the topology τL ′ . Therefore f(p) ∈ C, and so, p ∈ f−1(C), a contradiction.

This is one of the reasons why the condition of L being of first order UTS is specially

interesting for us. Moreover, as we can see on the following result, it is possible to obtain

the following sufficient conditions for the first order UTS, which is particularly simple to

verify in practical cases:
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Lemma 2.4. Let X be any space with an idempotent limit operator L defined on it. Assume

that #L(σ̄) <∞ for all sequence σ̄ ⊂ X. Then, L is of first order UTS.1

Proof. Let σ ⊂ X be an arbitrary sequence. Observe that there are two (exclusive) possi-

bilities for the sequence:

(a) for all subsequence κ ⊂ σ, L(κ) = L(σ) or

(b) there exists κ1 ⊂ σ with L(σ) ( L(κ1). In particular, #L(κ1) > #L(σ) + 1.

In the first case, L is of first order for σ according to lemma 2.2 and we are done. In

the second case, we can repeat the same argument with κ1 on the role of σ. Again there

are two possibilities: either it ends in a finite number of iterations with a sequence κn0
satisfying previous (a), hence, with L being of first order for κn0 ; or we obtain a chain of

subsequences

κ1 ⊃ κ2 ⊃ · · · ⊃ κn ⊃ . . .

with #L(κi+1) > #L(κi) + 1. However, this second posibility will lead us to the existence

of a sequence with infinite limits, a contradiction. In fact, if κi = {xin}n then the diagonal

sequence {xnn}n satisfies:

∪iL(κi) ⊂ L({xnn}n),

which implies that #L({xnn}n) =∞ due the increasing character of #L(κi). In conclusion,

previous inductive process should end in a finite number of steps, obtaining a subsequence

of σ where L is of first order.

Finally, let us review how sequential topologies behaves under a quotient. As it was

proved on [20, remark 5.12], given a sequential space (X, L) and an equivalence relation

∼ defined on it, the quotient topological space X/ ∼ (with the induced topology) is again

a sequential space. In fact, it is possible to give explicitly a limit operator LQ whose

associated topology coincides with the quotient topology in X/ ∼ in the following way:

[x] ∈ LQ({[xn]}n) ⇐⇒ ∃ x ′ ∈ i−1([x]), x ′n ∈ i−1([xn]) ∀n ∈ N : x ′ ∈ L({x ′n}n). (2.2)

where i : X → X/ ∼ is the natural quotient projection and [x], [xn] ∈ X/ ∼. As it happens

in the general case of topological spaces, the quotient topology of sequential spaces could

not preserve the separability conditions of the original topological space. This is particu-

larly interesting regarding the T1 condition, which is translated on limit operators by the

idempotent property (so points are closed with the associated sequential topology). As we

will see on example 5.1, we can obtain a non idempotent limit operator LQ even when L is.

1We would like to thanks Prof. S. Harris who make us aware of this improvement for a previous version

of the result.
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2.2 C-boundary construction

The causal completion was firstly introduced by Geroch, Kronheimer and Penrose in their

seminal work [21]. The main idea for such a construction is to attach for any future-past

inextensible timelike curve an ideal point characterized by the past-future of the curve. The

original construction presents several problems mainly related with the topology considered.

However, the notion of causal boundary and completion have been widely developed [22–

27] (see also the reviews in [2, 4]), reaching a definition for the causal completion (named

c-completion) fully satisfactory on [5].

Let us review some classical concepts of causal theory, referring the reader to [28] for

further details and classical notation. Let (V, g) be a connected, time-oriented Lorentz

manifold. Denote by � the chronological relation (respectively 6 the causal relation),

that is, p � q (p 6 q) iff there exists a future-directed timelike (causal) curve from p

to q. In what follows, the spacetime V will be considered strongly causal, and so, the

intersections between the chronological future and past of points generate the topology in

V. In particular, strong causality ensures also that V is distinguishing, hence two different

points p, q ∈ V have different future I+(p) 6= I+(q) and past I−(p) 6= I−(q).
A non-empty subset P ⊂ V is called a past set if it coincides with its past, i.e.,

P = I−(P) := {p ∈ V : p � q for some q ∈ P}. Let S ⊂ V and define the common past of

S as ↓ S := I−({p ∈ V : p � q ∀q ∈ S}). Observe that, from definition, the past and

common past sets are open. A past set that cannot be written as the union of two proper

past sets is called indecomposable past set, IP for short. An indecomposable past set P

belongs to one of the following two categories: P can be expressed as the past of a point

of the spacetime, i.e., P = I−(p) for some p ∈ V, and so, P is called proper indecomposable

past set, PIP ; or P = I−({xn}n) for some inextensible future-directed chronological sequence

{xn}n,2 and then P is called terminal indecomposable past set, TIP. The dual notions of

future set, common future, IF, PIF and TIF, are defined just by interchanging the roles of

past and future in previous definitions.

The future causal completion is defined as the set of all indecomposable past sets

IPs. As the manifold V is distinguishing, the original manifold points p ∈ V are naturally

identified with their past p ≡ I−(p), and so, V is identified with the set of PIPs. Therefore,

the future causal boundary ∂̂V is defined as the set of all TIPs in V, obtaining the following

identifications:

V ≡ PIPs, ∂̂V ≡ TIPs, V̂ ≡ IPs.

The future causal completion will be endowed with the future chronological topology τ̂chr,

a sequential topology defined by the following limit operator: for σ = {Pn}n ⊂ V̂,

P ∈ L̂chr({Pn}n) ⇐⇒ P ⊂ LI({Pn}n) and it is maximal in LS({Pn}n). (2.3)

Here by maximal we mean that no other P ′ ∈ V̂ satisfies the stated property and includes

strictly P. The symbols LS and LI denotes superior and inferior limits for sets respectively,

2Here, by a future-directed chronological sequence {xn}n we mean that xn � xn+1 for all n, see [29] for

details on this approach of the causal boundary.
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which are defined in the following way: given a sequence {An}n of sets,

LI({An}n) = ∪∞m=1 ∩∞n=m An LS({An}n) = ∩∞m=1 ∪∞n=m An
An analogous definition follows for the past causal completion by interchanging the

roles of future and past sets. Hence,

V ≡ PIFs, ∂̌V ≡ TIFs, V̌ ≡ IFs,

and V̌ is endowed with the past chronological topology τ̌chr defined by a limit operator Ľchr.

For the (total) c-boundary, we need to recall that some IPs and IFs represent naturally

the same point of the completion. This is quite evident for PIPs and PIFs, where future

and past sets can be identified if they are future and past of the same point respectively.

However, previous identification is insufficient, as other indecomposable sets have to be

identified. For this, let us define the so-called S-relation (introduced on [26]). Denote by

V̂∅ = V̂ ∪ {∅} and by V̌∅ = V̌ ∪ {∅}. The S-relation ∼S is defined in V̂∅ × V̌∅ as follows. A

pair (P, F) ∈ V̂ × V̌ is S-related if

P ∼S F⇐⇒

{
P is included and is a maximal IP into ↓ F
F is included and is a maximal IF into ↑ P.

(2.4)

As proved by Szabados [26], the past and future of a point p ∈ V are S-related, I−(p) ∼S
I+(p), and these are the unique S-relations (according to our definition (2.4)) involving

proper indecomposable sets. We also define that P ∼S ∅ (respectively ∅ ∼S F) if P (respec-

tively F) is a non-empty, necessarily terminal indecomposable past (respectively future)

set that is not S-related by (2.4) to any other indecomposable set (note that ∅ is never

S-related to itself).

Now, we can introduce the notion of c-completion. At the point set level, and fol-

lowing the idea of Marolf and Ross [10], the c-completion is formed by S-related pairs of

indecomposable sets

V := {(P, F) ∈ V̂∅ × V̌∅ : P ∼S F}. (2.5)

Every point p ∈ V of the manifold is naturally identified with its corresponding pair

(I−(p), I+(p)), so V can be (and will be) considered a subset of V. The c-boundary is then

defined as ∂V = V\V. The boundary points can be classified in three different classes, that

we will define now for future reference.

Definition 2.5. Let (P, F) ∈ ∂V be an arbitrary point on the c-boundary. We will say that

(P, F) is a timelike boundary point if both components are non empty P 6= ∅ 6= F. The point

is a lightlike boundary point if one of the components is empty and, in the case P 6= ∅
(respectively F 6= ∅) there exists P ′ (respectively F ′) a proper indecomposable set such that

P ( P ′ (respectively F ( F ′). Finally, in the remainder case, a terminal set P (respectively

F) not contained in any other IP (respectively IF), is a spatial boundary point.3

3Observe that the definition of spatial point has also sense for partial boundaries.
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The chronological relation on V is also extended to the c-completion in the following

way (by abuse of notation, we denote the chronological relation on V with the same symbol):

given two points (P, F), (P ′, F ′) ∈ V

(P, F)� (P ′, F ′) ⇐⇒ F ∩ P ′ 6= ∅. (2.6)

It is not possible to obtain in general a explicit expression for the causal relation, as

we have done for the chronological relation. However, it is known that any chronological

relation has naturally associated a causal relation 6 (see [30, definition 2.22] for details).

Remark 2.6. Now that we have defined the chronological relation in V, we can understand

better the terminology introduced in definition 2.5. As it is clear, if a boundary point

(P, F) is timelike (and so, with both components non empty), then (P, F) lies in the past

(respectively future) of any point y ∈ F (respectively y ∈ P). Otherwise, we know that P

or F should be empty. Let us assume that F = ∅ (the other case will be analogous). Now

observe that if (P, ∅) is lightlike, then there exists another point (P ′, F ′) ∈ V with P ( P ′.

It is clear that previous points cannot be timelike related according to (2.6), however it

follows that (P, ∅) 6 (P ′, F ′) according to [31, section 6.4], being natural to assume that

both points are horismotically related. Finally, if (P, ∅) is a spatial boundary point, then

no pair (P ′, F ′) ∈ V will satisfy that (P, ∅) 6 (P ′, F ′).

Finally, V is endowed with the chronological topology τchr, a sequential topology as-

sociated to the following limit operator (known as the chronological limit): for a sequence

σ = {(Pn, Fn)}n ⊂ V, define

Lchr(σ) :=

{
(P, F) ∈ V :

P ∈ L̂chr({Pn}n) if P 6= ∅
F ∈ Ľchr({Fn}n) if F 6= ∅

}
. (2.7)

It is important to recall, as it will be used later, that due the definition of the S-relation

between terminal sets, the definition of the chronological limit is simplified when both

terminal sets on the limit are non empty (see [5, lemma 3.15]). Concretely:

Proposition 2.7. Let {(Pn, Fn)}n be a sequence of pairs in V and assume that P ∼S F with

P 6= ∅ 6= F. If P ⊂ LI({Pn}n) and F ⊂ LI({Fn}n) then (P, F) ∈ Lchr({(Pn, Fn)}n).

The following result will summarize the main properties of the c-completion endowed

with the chronological relation and topology (see [5, theorem 3.27] and its proof).

Theorem 2.8. Let (V, g) be a strongly causal Lorentzian manifold and V its causal com-

pletion endowed with the chronological structure induced by (2.6) and the topology induced

from the chronological limit (2.7). Then:

(i) The inclusion V ↪→ V is continuous. Moreover, the restriction of the chronological

limit on V is a first order limit operator.

(ii) Let {xn}n ⊂ V be a future (respectively past) chronological sequence Then,

Lchr({xn}n) = {(P, F) ∈ V : P = I−({xn}n) (respectively F = I+({xn}n))}

– 11 –



J
H
E
P
0
4
(
2
0
1
7
)
0
5
1

(iii) The c-completion is complete: for any past terminal set P (respectively future terminal

set F) there exists F (respectively P) such that (P, F) ∈ V. In particular, any inex-

tensible timelike curve γ on V (respectively any inextensible chronological sequence

{xn}n on V) has an endpoint in V.

(iv) The sets I±((P, F)) are open for all (P, F) ∈ V.

(v) V is a T1 topological space.

2.3 Spacetime covering projections: the causal ladder and main properties

Let us consider that we have an action on V given by a group G of isometric maps.4

G× V → V

(g, p)→ gp.

We will always assume that the action preserves time-orientation, and acts freely and

properly discontinuously, where the latter means: (a) for each p ∈ V, there exists a neigh-

borhood U such that gU ∩ U = ∅ for all g ∈ G \ {e} and; (b) for p1, p2 ∈ V there are

neighbourhoods U1 and U2 such that gU1 ∩U2 = ∅ for all g ∈ G.

Previous conditions over the action let us ensure that the quotient space M = V/G is

also a Lorentzian manifold with the induced metric (which will be denoted by an abuse of

notation as g). The canonical projection to the quotient space, denoted by π : V →M, will

be called a spacetime covering projection. The following result let us understand clearly

the relation between the chronological relation on M and V (the same result follows for

causal relations, see [19, proposition 1.1]).

Proposition 2.9. Let us consider π : V →M a spacetime covering projection. Then:

• If p, q ∈ V satisfy that p� q, then π(p)� π(q).

• If x, y ∈ M satisfy that x � y, then for any p, q ∈ V with π(p) = x and π(q) = y,

there exists an element g ∈ G such that p� gq.

As it is clear, previous result is key to understanding the relation between the causal

structures of both, V and M. From a global viewpoint, it is possible to characterize all

the stages of the well known causal ladder on M (see [30]) in terms of the global causal

structure of V. We will summarize in the following result some of such characterizations,

which proofs can be found on [19, Props. 1.2, 1.3 and 1.4].

Theorem 2.10. Let π : V →M be a spacetime covering projection with group G. Then:

(CL1) M is non-totally vicious if, and only if, there exists p, q ∈ V with π(p) = π(q) and

p 6� q.

4The results of this paper can be obtained considering a group G of conformal maps, but we will consider

isometric actions for simplicity.
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(CL2) M is chronological if, and only if, for all p, q ∈ V with π(p) = π(q), p 6� q.

(CL3) M is causal if, and only if, for all p, q ∈ V with π(p) = π(q), p 66 q.

(CL4) M is strongly causal if, and only if, for all p ∈ V there is a fundamental neighbourhood

system {Un} for p such that for each n, no causal curve can have one endpoint in

Un and another endpoint in a component U ′n of π−1(π(Un)) unless U ′n = Un and

the curve remains wholly within Un.

(CL5) M is globally hyperbolic if, and only if,

(CL5-1) V is globally hyperbolic,

(CL5-2) every point p ∈ V has a fundamental neighbourhood system as in (CL4) and

(CL5-3) for any p ∈ V, for all p� q, J+(p) ∩ π−1(π(q)) is finite.

Let us remark that in all previous cases, a global causal condition on M (i.e., the

assumption of a stage in the causal ladder) implies a stronger global condition on V.

However at this point, it is not clear for us at what extent the same property follows for

the rest of the causal ladder (particularly with causally continuous and causally simple),

being necessary a detailed study on such cases. However, that study is out the scope of

this paper.

3 Partial Boundaries under the action of the group

In this section, we will study the behaviour of the future causal completion under the action

of an isometry group G, being the past case completely analogous. Let us begin with a point

in the future completion of V, that is, an indecomposable set P = I−({pn}n), where {pn}n

is a future-directed chronological sequence. As the group G acts by isometries in V, the

sequence {xn}n with π(pn) = xn is also future-directed and chronological (proposition 2.9),

hence, it defines the indecomposable set P = I−({xn}n) in M. Therefore, the projection π

extends naturally to the corresponding partial completions on the following way:

π̂ : V̂ → M̂

P = I−({pn}n)→ P = I−({xn}n).
(3.1)

We will say that an indecomposable set P ∈ V̂ is a lift of P if π̂(P) = P.

Previous map is always surjective, as any future-directed chronological sequence {xn}n

in M can be lifted to a future-directed chronological sequence {pn}n in V (by proposi-

tion 2.9). However, the map is not injective in general, as previous lift is not unique. For

instance, if {pn}n is a lift of {xn}n, {gpn}n (for any g ∈ G) is also a lift of the same

sequence. Even more, the pre-image of a terminal set P can be easily characterized. Let

us denote by P = I−({pn}n), where {pn}n denotes one fixed lift of {xn}n. It follows that

π̂−1(P) = ∪g∈GgP,
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i.e., the pre-image of P is the union of what we are going to call the G-orbit of P in V̂,

which is the set {gP}g∈G. The left inclusion is straightforward, as π̂(gP) = P for all g ∈ G.

For the right one, take a point x ∈ P and let p ∈ V be a point such that π(p) = x. As

x ∈ P, there exists n big enough such that x � xn. Hence, proposition 2.9 ensures that

p� gpn ∈ gP for some g ∈ G.

Convention 3.1. From this point, there are some useful conventions that we will use along

the paper. For instance, the points on M will be denoted by x, y, z, while the points on V

will be denoted by p, q, r. Moreover, unless stated otherwise, we will always assume that

π(p) = x, π(q) = y and π(r) = z.

For any chronological sequence {xn}n in M (respectively, an indecomposable set P), we

will consider a fixed lift on V denoted by {pn}n (respectively P). As an abuse of notation,

we will use the same symbol I± for future/past of sets when there is no confusion if we are

in M or V.

Finally, and in order to compute both, partial and c-boundary, we will assume from

this point that M is strongly causal and so that V satisfies the condition described on

theorem 2.10 (CL4).

The projection π̂ let us define an equivalence relation on V̂: two indecomposable sets

P1, P2 ∈ V̂ are Ĝ-related, P1 ∼Ĝ P2, if and only if both terminal sets projects onto the same

P ∈ M̂, i.e., π̂(P1) = π̂(P2). Of course, previous relation lead us to a bijection between

the quotient space V̂/Ĝ(≡ V̂/ ∼
Ĝ
) and M̂. However, the following two observations are

in order: on the one hand, one could expect naively that for any two terminal sets with

P1 ∼
Ĝ
P2, there exists g ∈ G such that P1 = gP2. Nonetheless, the following simple

example shows that such a property is not true: consider the two-dimensional Minkowski

spacetime, L2, with the action

Z× L2 → L2

(z, (x, t))→ (x+ z, t)

defined on it. The lightlike line γ(t) = (t, t) defines naturally a terminal set P 6= V. The

Z-orbit of P is the complete spacetime L2, so both L2 and P will be Ẑ-related, but no

element of the group send one to the other.

In any case, there are several examples where previous property is naturally satisfied.

For instance, the same previous group action will satisfy the property if it is restricted to

V = R×(a, b) ⊂ L2. In fact, we can construct even more physically appealing examples for

Robertson Walker spacetimes satisfying the integral conditions (6.2) (recall that, in terms

of causality, Robertson Walker models satisfying such a integral conditions behave like

Lorentzian product spaces with finite time interval, see [17]). This motivates the following

definition:

Definition 3.2. A spacetime covering projection π : V → M is future tame if given two

terminal sets P1, P2 with P1 ∼Ĝ P2 there exists g ∈ G such that P1 = gP2.
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On the other hand, the induced map is not well behaved at the topological level. In

fact, Harris shows in the last example of [19] that π̂ is not, in general, continuous (see also

example 5.1 for details).

The rest of this section is devoted to make a deep comparison between the topologies

of M̂ and V̂/Ĝ, where the latter has the induced quotient topology. Let us first fix some

notation. As we have mention on section 2.2, M̂ and V̂ will be endowed with the future

chronological topology, which is defined by a limit operator (2.3). In order to differentiate

both limits, we will denote by L̂M the future chronological limit on M̂ and, accordingly, L̂V
the limit on V̂. The quotient topology on V̂/Ĝ is also a sequential topology (see section 2.1)

and it is defined from a limit operator (2.2) which will be denoted here by L̂
Ĝ

. Finally,

recall that the map π̂ induces a bijective map ̂ between V̂/Ĝ and M̂ which makes the

following diagram commutative:

V̂

V̂/Ĝ M̂

ı̂

̂

π̂

being ı̂ : V̂ → V̂/Ĝ is the usual projection.

Previous ̂ map is always open. In order to prove this, we require the following tech-

nical lemma.

Lemma 3.3. Consider a sequence σ = {Pn}n ⊂ M̂ and a point P ∈ M̂ such that P ⊂
LI({Pn}n). For P a fixed lift of P, there exist lifts Pn of Pn such that P ⊂ LI({Pn}n).

Proof. Let us begin by taking {Pn}n some fixed lifts of {Pn}n. Denote also by {pn}n

and {xn}n future chronological chains defining P and P respectively and satisfying that

π(pn) = xn (as stated in Convention 3.1). As P ⊂ LI({Pn}n), for any element xn there

exists mn ∈ N (that we can consider strictly increasing on n) such that, for all m > mn,

xn ∈ Pm. In particular, and due to proposition 2.9, we can ensure the existence of g ∈ G
in such a way that pn ∈ gPm. Then, for m > mn, let us denote by G(n,m) ⊂ G the

non-empty subset defined in the following way:

G(n,m) := {g ∈ G : pn ∈ gPm} (3.2)

Let us make a straightforward (but necessary) observation about previous sets. As

pn � pn+1, for m > mn+1(> mn + 1),

G(n+ 1,m) ⊂ G(n,m). (3.3)

Now, for each mn 6 m < mn+1, let us consider a group element gm ∈ G(n,m) and

consider the sequence {gm Pm}m (for m < m1, just consider gm = e, the identity). Now,

let us show that previous sequence is the desired, that is, P ⊂ LI({gm Pm}m). In fact,
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for any n ∈ N, consider m > mn and denote by k ∈ N ∪ {0} the natural ensuring that

mn+k+1 > m > mn+k. Then, from the choice of {gm}m and (3.3), we have that:

gm ∈ G(n+ k,m) ⊂ G(n+ k− 1,m) ⊂ · · · ⊂ G(n,m).

In conclusion, from (3.2) we deduce that pn ∈ gm Pm for all m > mn, and the result

follows.

Proposition 3.4. Let π : V → M be a spacetime covering projection and π̂ : V̂ → M̂ the

extended map on the corresponding partial completions. The induced map ̂ : V̂/Ĝ → M̂

is open.

Proof. Let us prove that the map ̂−1 is continuous by using proposition 2.3. For this,

consider a sequence σ = {Pn}n ⊂ M̂ and a point P ∈ L̂M(σ), and let us show that

̂−1(P) ∈ L̂
Ĝ
(̂−1(κ)) for some subsequence κ ⊂ σ. Recall that, from the definitions of L̂

Ĝ

and ̂−1, this is the same that show the existence of lifts Pn and P of Pn and P respectively

such that P ∈ L̂V({Pnk}k) for some subsequence {Pnk}k ⊂ {Pn}n.

First observe that, by using previous lemma, we can find lifts Pn and P of Pn and P

respectively such that P ⊂ LI({Pn}n). If P is maximal in LS({Pn}n), then we have that

P ∈ L̂V({Pn}n), and we are done.

Otherwise, take P ′ a maximal set in LS({Pn}n) containing P, and let {p ′n}n be a future

chronological sequence generating P ′ . As P ′ ⊂ LS({Pn}n), it is possible to find a strictly

increasing subsequence {kn}n such that p ′n ∈ Pkn for all n. Then, it follows readily that

P ′ ∈ L̂V({Pnk}k). Now observe that the sets P ′ = π̂(P ′) and Pnk = π̂(Pnk) satisfy the

following chain (π̂ preserves contentions)

P ⊂ P ′ ⊂ LI({Pnk}k).

But as P ∈ L̂M({Pnk}k), it follows that P = P ′ (recall the maximal character on (2.3)) and

so that P ′ is also a lift of P.

In both cases, and up to a subsequence, we show the existence of lifts {Pn}n and P

with P ∈ L̂V({Pn}n), and then the continuity of ̂−1 follows from proposition 2.3.

Remark 3.5. Previous proof shows in particular that for all P ∈ L̂M({Pn}n), there exist

lifts P and Pn of P and Pn respectively with P ∈ L̂V({Pnk}k) for some subsequence {Pnk}k

of {Pn}n.

As we have already pointed out, the map ̂ is not continuous in general. If we look

into the details of example 5.1, we see that the non-continuity is related with the following

situation: there exists a (non-necessarily chronological) sequence {Pn}n ⊂ M̂ admitting

two different lifts such that (i) both lifted sequences are convergent and (ii) the projection

of one limit point contains strictly the other. As we will see, such a situation represent,

essentially, the only cases where continuity of π̂ can fail, so it is convenient to give a proper

name for it:
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Definition 3.6. Let π : V →M a spacetime covering projection and V̂, M̂ the correspond-

ing future causal completions of V and M. We will say that a sequence σ = {Pn}n ⊂ M̂
has future divergent lifts if there exist two lifts {Pn}n, {P ′n}n ⊂ V̂ of σ and two points

P, P ′ ∈ V̂ such that:

(i) P ∈ L̂V({Pn}n) and P ′ ∈ L̂V({P ′n}n).

(ii) π̂(P) ( π̂(P ′).

If there exists no such a sequence on M̂, we will just say that M does not admit

sequences with future divergent lifts.

As a side remark, observe that the concept of divergent lifts is quite related with the

topological structure of the G-orbits in V̂. In fact, we can prove the following result:

Proposition 3.7. Let π be future tame. Then, the G-orbits of V̂ are closed if and only if

M does not admit constant sequences with divergent lifts.

Proof. For the right implication let P ∈ M̂ and P ∈ V̂ with π̂(P) = P. Observe that by the

tame condition every lift of the constant sequence {P}n has the form {gn P}n where gn ∈ G.

So, if P ′ ∈ V̂ is such that P ′ ∈ L̂V({gn P}n) then the closedness of the G-orbit ensures that

P ′ = g0 P for some g0 ∈ G. Therefore, {P}n admits no divergent lifts as condition (ii) in

definition 3.6 cannot be fulfilled.

For the left one, assume that M admits no constant sequence with divergent lifts

and let us prove that the G-orbits in V̂ are closed. Let P, P, P ′ and {gn}n as in previous

implication. As M admits no constant sequence with divergent lifts, then necessarily it

follows that π̂(P ′) = P. Moreover, as π is future tame, then there exists g0 ∈ G such that

P ′ = g0 P, and so, P ′ belongs to the G-orbit {gP}g∈G and the G-orbit is closed.

The optimality of previous result follows from example 5.5 where it is shown a case

where M admits no constant sequence with divergent lifts but the G-orbits are not closed.

Our main technical result on this section is the following characterization of the con-

tinuity of π̂ (up to the first order UTS condition):

Proposition 3.8. Let {Pn}n be a sequence whose projection {Pn}n does not admit divergent

lifts. Then,

P ∈ L̂V({Pn}n)⇒ P := π̂(P) ∈ L̂M({Pn}n).

In particular, if M does not admit sequences with future divergent lifts, the map π̂ is

continuous. Conversely, if the map π̂ is continuous and additionally the future chronological

limit L̂M on M̂ is of first order UTS, then there are no sequences with divergent lifts.

Proof. Let σ = {Pn}n be a sequence as in the first statement of the proposition, and consider

P ∈ L̂V(σ). By recalling that π̂ preserves contentions, we deduce that P ⊂ LI({Pn}n). If P

is maximal among the IPs in LS({Pn}n), then P ∈ L̂M({Pn}n) and we are done.

So, let us assume by contradiction that P is not maximal on the LS({Pn}n). Consider P ′

a maximal IP on LS({Pn}n) containing strictly P. From the definition of the superior limit,
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and up to a subsequence, we can assume that P ′ ⊂ LI({Pn}n), and so, that P ′ ∈ L̂M({Pn}n).

Now, recalling remark 3.5, we ensure that Pn and P ′ admit lifts P ′n and P ′ such that

P ′ ∈ L̂V({P ′nk}k). Summarizing, the sequence {Pnk}k admits two lifts {Pnk}k and {P ′nk}k
converging to P and P ′ respectively, where P = π̂(P) ( π̂(P ′) = P ′. That is to say, {Pnk}k
admits future divergent lifts, a contradiction. In conclusion, P ∈ L̂M({Pn}n). Moreover, if

M does not admit sequences with divergent lifts, π̂ is continuous (recall proposition 2.3).

For the final assertion, assume that L̂M is of first order UTS and that there exists

a sequence σ = {Pn}n ⊂ M̂ with divergent lifts. Let {Pn}n, {P ′n}n be two sequences

in V̂ and P, P ′ two terminal sets as in definition 3.6. Assume by contradiction that π̂ is

continuous. In particular, we have that {Pn}n (the projection by π̂ of both sequences {Pn}n
and {P ′n}n) converges to P and P ′. As L̂M is of first order UTS, we can assume that (up

to a subsequence) L̂M is of first order for {Pn}n, and so, that P, P ′ ∈ L̂M({Pn}n). But this

is a contradiction with the definition of L̂M (2.3) (concretely the maximal character of the

limit points) and the fact that P ( P ′ (definition 3.6 (ii)). Therefore, the map π̂ cannot be

continuous.

There are several ways to prove the non-existence of sequences with divergent lifts.

For instance, we can impose conditions on the causality of the boundary (re-obtaining [19,

theorem 3.4])

Corollary 3.9. If M̂ has only spatial future boundary points (see definition 2.5 and Foot-

note 3), then π̂ is continuous, and so, ̂ is a homeomorphism between M̂ and V̂/Ĝ.

Proof. Assume by contradiction that π̂ is not continuous and so, from previous result, that

there exists a sequence σ ⊂ M̂ admitting divergent lifts. Let σ, σ ′ be two sequences in V̂ and

P, P ′ be two points in V̂ as in definition 3.6. As M̂ only contains spatial future boundary

points, no IP can contain a TIP. Hence, from (ii) in definition 3.6, we deduce that P = I−(x)

for some x ∈M, and then, P = I−(p) for some point p ∈ V. As π : V →M is continuous

and the future chronological topology preserves the manifold topology (which follows from

theorem 2.8, (i)), we have that P ∈ L̂M({Pn}n). Finally from (i) and (ii) in definition 3.6

we have that P ( P ′ ⊂ LI({Pn}n), in contradiction with the maximality on (2.3).

Another possibility is to impose conditions over the topology of the future causal

completion. In this case, we have also need to impose the finiteness of the group G:

Corollary 3.10. Consider π : V → M a spacetime covering with associated group G.

Assume that G is finite and that V̂ is Hausdorff. Then, π̂ is continuous, and so, ̂ is a

homeomorphism.

Proof. As we will see in the forthcoming sections, if G is finite then π is future tame (see

lemma 4.18). Hence, let us consider two sequences {Pn}n, {P ′n}n ⊂ V̂ and two points

P, P ′ ∈ V̂ with P ∈ L̂V({Pn}n) and P ′ ∈ L̂V({P ′n}n) and such that π̂(Pn) = π̂(P ′n). Our

aim is to prove that π̂(P) = π̂(P ′) as then no sequence with divergent lifts can exists.

Recalling the tameness of π, there exists a sequence {gn}n ⊂ G such that P ′n = gn Pn.

Due the assumption that G is finite, we can assume (up to a subsequence) that gn ≡ g0 for
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all n and some constant g0 ∈ G. Therefore, P ∈ L̂V({Pn}n) and P ′ ∈ L̂V({g0 Pn}n). From

the first inclusion and the fact that G acts by isometries, we deduce that g0 P also belongs

to L̂V({g0 Pn}n) and recalling that V̂ is Hausdorff (and so, for any sequence σ, L̂V(σ) can

contain at most one element, recall (2.1)), it follows that g0 P = P ′ , as desired.

3.1 Proof of theorem 1.1

Assertion (i) follows from proposition 3.4, while (ii) from proposition 3.8. The last assertion

is proved in corollaries 3.9 and 3.10.

4 The C-completion under the action of the group

Once we have determined the requirements to ensure the well behaviour of the partial

boundaries, we are in conditions to study the (total) c-completion. As a first step, we will

deal with the projection and lift of points of the corresponding c-completions, in order to

define an extension π : V →M. Later, we will study the properties of such a map at both,

the chronological and the topological level.

4.1 Point set level

Let us begin by considering P ∈ V̂ and F ∈ V̌ two non empty indecomposable sets which are

S-related, so (P, F) ∈ V; and let us study when the projections of each component of the pair

of such terminal sets are S-related. Of course, if these sets correspond to the past and future

of a point p ∈ V, their projections will correspond to the past and future of the projection

x = π(p) ∈ M (and so, they are S-related). Therefore, we can assume that P and F are

terminal sets. Let us denote by {pn}n and {qn}n the corresponding inextensible (future

and past respectively) chronological sequences defining them. From the definition of the

S-relation and the chronological limits, it follows that P ∈ L̂V({I−(qn)}n) (see Thm 2.8

(ii)). If the past chronological sequence {yn}n (projection of {qn}n) does not admit future

divergent lifts, then proposition 3.8 ensures that P := π̂(P) ∈ L̂M({I−(yn)}n). Then, taking

into account that the past chronological sequence {yn}n determines F := π̌(F), we obtain

that P ⊂↓ F and it is maximal inside such a subset (see (2.3)). Analogously, assuming that

the future chronological chain {xn}n does not admit past divergent lifts, we can prove that

F ⊂↑ P and it is maximal, so we have that:

Proposition 4.1. Let π : V →M be a spacetime covering projection. Assume that M does

not admit an inextensible sequence {xn}n ⊂ M which is either past-directed chronological

with future divergent lifts or future-directed chronological with past divergent lifts. If (P, F) ∈
V with P 6= ∅ 6= F, then (P, F) ∈M, where P = π̂(P) and F = π̌(F).

Previous condition for the future and past sequences is fulfilled in strongly regular

cases as globally hyperbolic models, where inextesible past- (respectively future-)directed

chronological sequences has no future (respectively past) limit. But of course, there will

be other (not so regular) cases, as the one showed in corollary 4.23 (including for instance

some Robertson-Walker models with an appropriate group action, see section 6) or the one

in example 5.4, where the condition is naturally fulfilled.
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At the point set level, previous proposition is the only case where points are well

projected in general. In fact, examples 5.2 and 5.3 show cases of points in V with no

natural projection in M. Moreover, these examples also show that the lifts of points from

M are not, in general, well behaved either. Concretely, as we can see in example 5.3, the

point (P2, ∅) has no natural lift in V. The only possible candidate is the point (P2, F), but

(P2, ∅) 6= (π̂(P2), π̌(F)), evenmore this last point does not belong to M.

However, if we characterize the conditions under which the lift of points (P, F) ∈ M
with both components non empty are well defined, then we will be in conditions to define

the projection between V and M.

Proposition 4.2. Consider a point (P, F) ∈M with P 6= ∅ 6= F. The point (P, F) has a lift

in V, i.e., a pair (P, F) ∈ V with P = π̂(P) and F = π̌(F) if and only if there exist lifts P ′

and F ′ of P and F respectively such that P ′ ⊂↓ F ′ (or, equivalently, F ′ ⊂↑ P ′).

Proof. The right implication is trivial, so we only need to focus on the left one, that is,

consider a point (P, F) ∈M and suppose that there exist lifts P ′ and F ′ such that P ′ ⊂↓ F ′
(and so, with F ′ ⊂↑ P ′). We can ensure then the existence of an IP P with P ′ ⊂ P and

maximal among the indecomposable sets contained in ↓ F ′ . Recalling that the projection

is well behaved with contentions, we deduce that P ⊂ π̂(P) ⊂↓ F. However P ∼S F, so the

maximality on (2.4) implies that P = π̂(P).

Reasoning in the same way with F ′ ⊂↑ P, we can prove that there exists F with

π̌(F) = F and being a maximal IP contained in ↑ P. In conclusion, P ∼S F and the pair

(P, F) belongs to V. Moreover, from construction π̂(P) = P and π̌(F) = F, as desired.

Remark 4.3. Recall that previous proof does not imply that the initial P ′ and F ′ are

S-related, but that there exist others indecomposable sets S-related P and F such that: (a)

P ′ ⊂ P, F ′ ⊂ F and (b) π̂(P) = π̂(P ′) and π̌(F) = π̌(F ′).

Now, we are ready to extend the projection to the c-completions. However, the defini-

tion of the projection is far more technical than the partial cases. The main problem here

is the existence of different candidates for the projection of pairs (P, ∅) and (∅, F), and no

reason to prioritize one of the candidates over the other. This will be reflected on the exis-

tence of different extensions of π (depending on the choice we made for the projection) for

the general case. Nonetheless, as we will see along this section, all the possible definitions

will share the same properties. Moreover, all the ambiguity in the choice of an extension

will disappear under some additional properties such as tameness or finite chronology (see

section 4.4).

Let (P, ∅) ∈ ∂V be a point in the c-boundary and let us analyse the possible projections

that such a point can have on ∂M (an analogous study can be made for (∅, F)). The first

natural candidate to consider (taking the corresponding projection of each component) is

the pair (P, ∅) with P = π̂(P). However, as shown by example 5.5, it is not necessarily true

that P ∼S ∅. In fact, another pair (P ′ , F ′) with P ′ 6= ∅ 6= F ′ and with π̂(P) = π̂(P ′) can

exist. If the projection of the components is well behaved under the S-relation (for example,

as in proposition 4.1), then P = π̂(P ′) ∼S π̌(F ′). Therefore, it seems more natural to define

the projection of (P, ∅) as the projection (by components) of (P ′ , F ′) instead of (P, ∅).
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Nonetheless, previous process does not give an unique way to define such a projection.

This is shown in example 5.6, where we have three points (P, ∅), (P ′ , F ′), (P ′′ , F ′′) ∈ ∂V
with P = π̂(P) = π̂(P ′) = π̂(P ′′) but also satisfying that π̌(F ′) 6= π̌(F ′′). Both points

(P ′ , F ′), (P ′′ , F ′′) share the same properties, having no argument to prioritize one over the

other. So, a choice has to be made and different projections between V and M appear.

In order to formalize previous process for the definition of the extended projection, let

us define ∼G0 as a relation between pairs satisfying that (P, ∅) ∼G0 (P ′ , F ′) (respectively

(∅, F)) ∼G0 (P ′ , F ′)) if π̂(P) = π̂(P ′) (respectively π̌(F) = π̌(F ′)). Then, define a map

α : V → V as

α((P, F)) =


if some component is empty and there is some (P ′ , F ′) ∼G0 (P, F),

a choice of one of this (P ′ , F ′);

otherwise (P, F).

(4.1)

The existence of such a map is always ensured, but it is not in general unique as it depends

on the selected element (P ′ , F ′). Once a map α is chosen, we are in conditions to define

the extended projection.

Definition 4.4. Consider π : V → M be a spacetime covering projection induced by an

action of a group G and let α be a choice as defined on previous paragraph. Then we define

πα : V → M̂∅ × M̌∅ given by πα = π ◦ α, where

π : V → M̂∅ × M̌∅, π((P, F)) = (π̂(P), π̌(F)) (4.2)

and we are defining π̂(∅) = ∅ and π̌(∅) = ∅.

Remark 4.5. (a) Let us emphasize that the definition of α is nothing but a technical

requirement in order to define the extension of the projection, and its concrete definition

and properties will not affect the results from this point (see for instance the discussion in

example 5.6). Therefore, and in order to simplify the notation, we will drop the subindex α

on the definition of πα, always assuming that a map α has been fixed from the beginning.

(b) It is also worth mentioning at this point that, in our main results, we have to include

additional hypothesis as tameness or finite chronology (see definition 4.14), which will imply

that there are no pairs (P, ∅) and (P ′ , F ′) in V with P ′ 6= ∅ 6= F ′ and (P, ∅) ∼G0 (P ′ , F ′)

(with analogous version for the future, see lemma 4.7 and proposition 4.21). In these cases,

α becomes the identity and so πα = π. Along the paper we will emphasize these situations

by saying that the extended projection π is univocally determined.

Previous construction give us a reasonable way to define an extension for the spacetime

covering projection π. However, as shown in example 5.3, such a map does not restrict

properly to M because π((P, F)) could not belong to M. Yet, we can overcome this problem

under the assumptions of Props. 4.1 and 4.2.

Proposition 4.6. If we assume that the points (P, F) ∈ M with P 6= ∅ 6= F have lifts

in V (see proposition 4.2) and that M does not admit an inextensible sequence {xn}n ⊂
M which is either past-directed chronological with future divergent lifts or future-directed

chronological with past divergent lifts, then π restricts properly to M and it is surjective.
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Proof. Let us begin by showing that π restricts properly toM. Take (P, F) ∈ V an arbitrary

point and let us consider π((P, F)). Observe that there are essentially two possibilities for

the projection: or it has both components non empty, or has one empty component. The

former case follows if the initial point (P, F) has both components non empty or if one

component is empty (without loss of generalization F = ∅) but there exists (P ′ , F ′) with

both components non empty G0 related to (P, ∅). In any such cases proposition 4.1 ensures

that π((P, F)) ∈M
In the latter, no point (P ′ , F ′) with both components non empty can be ∼G0 related

with (P, F). In particular, one of the components of the point should be empty, say F = ∅
(the other case is analogous). In this case, π((P, ∅)) = (P, ∅), and so, we have to prove

that P ∼S ∅. If not, from the completeness of the c-completion (recall theorem 2.8 (iii)),

the terminal set P should be S-related with a terminal set F 6= ∅, determining the point

(P, F) ∈ M. From the hypothesis, there are non empty lifts P ′ and F ′ of P and F such

that (P ′ , F ′) ∈ V. However, we have that π̂(P) = π̂(P ′), and so, that (P, ∅) ∼G0 (P ′ , F ′), a

contradiction. In conclusion, P ∼S ∅ and the projection restricts properly to M.

For the surjectivity, consider (P, F) ∈ M. If (P, F) has both components non empty,

then by hypothesis admits a lift on V which projects on it. Otherwise, assume without loss

of generality that F = ∅ and take P any lift of P. From completeness of the c-completion,

there exists F such that (P, F) ∈ V. Moreover F has to be empty as, otherwise, recalling

that π restricts properly to M, P ∼S π̌(F) (which is not possible as P ∼S ∅). Hence, any

point (P, F) ∈ V with π̂(P) = P has F = ∅ and, from the definition of π, we deduce that

π((P, ∅)) = (P, ∅), as desired.

Let us remark that the hypothesis of non existence of future sequences with past

divergent lifts nor past sequences with future divergent lifts in M, even if it appears to be

quite strong, it is easily verifiable. In fact, example 5.4 illustrates how to verify the absence

of such sequences, while corollary 4.23 gives hypothesis that guarantees such absence.

In any case, whenever π restricts properly to M and it is surjective, we can proceed in

complete analogy with the partial cases and obtain the following diagram:

V

V/G M

ı



π

where two points in V are G-related if they project by π into the same point of M; and

V/G denotes the related quotient space. From its definition,  defines a bijection between

V/G and M.

As a final remark in this section, simple cases where the map π is univocally determined

are pointed out now.

Lemma 4.7. Assume that the projection π : V → M is tame. If (P,∅) ∼G0 (P ′ , F ′), then

F ′ = ∅ (and analogously for the case (∅, F)). In particular, the extended map π is univocally

determined (see remark 4.5).
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Proof. The result is straightforward, once we recall that in tame projections, if π̂(P) =

π̂(P ′), then there exists g ∈ G such that P ′ = gP. Therefore, if F ′ 6= ∅ and P ′ ∼S F ′ , it

follows that P = g−1 P ′ ∼S g
−1 F ′ , in contradiction with P ∼S ∅.

Proposition 4.8. Assume that the points (P, F) ∈ M with P 6= ∅ 6= F have lifts in V (see

proposition 4.2), M does not admit an inextensible sequence {xn}n ⊂ M which is either

past-directed chronological with future divergent lifts or future-directed chronological with

past divergent lifts, and M is Hausdorff. Then, π restricts properly to M, it is surjective

and univocally determined.

Proof. By proposition 4.6 we have that π restricts properly to M and it is surjective, so

we only have to show that π is univocally determined. Having different possible defini-

tions for π is only possible under the following situation (or its analogous for the future):

there exist three points (P, ∅), (P1, F1), (P2, F2) ∈ V with π̂(P) = π̂(P1) = π̂(P2) = P

but with F1 = π̌(F1) 6= π̌(F2) = F2. However, from proposition 4.1 we know that both

(P, F1), (P, F2) belong to M, which is not possible from the Hausdorffness of the latter (ob-

serve that any future chronological sequence {xn}n defining P will converge to both points,

see theorem 2.8 (ii)).

4.2 At the chronological level

Let us now study how is the behaviour of  regarding the causal structure. As a first step,

we need to define first a chronological relation on V/G. For this, we will follow an approach

inspired from [20, section 6.2], where two equivalence classes ı((P, F)), ı((P ′ , F ′)) ∈ V/G
(being (P, F), (P ′ , F ′) ∈ V two arbitrary points) are chronologically related, ı((P, F)) �
ı((P ′ , F ′)) if there exist (P0, F0) ∈ ı((P, F)) and (P ′0, F ′0) ∈ ı((P ′ , F ′)) with (P0, F0) �
(P ′0, F ′0) in V.

In general, and under the hypothesis that π restricts properly to M and it is surjective,

we can obtain that both spaces inherits the same causal structure.

Proposition 4.9. Let π : V → M a spacetime covering projection and assume that π

restricts properly to M and it is surjective. Denote by  the corresponding map between

V/G and M. Then, the bijection  is a chronological isomorphism, that is,

(P, F)� (P ′, F ′) ⇐⇒ −1((P, F))� −1((P ′, F ′))

Proof. Let us start by fixing some notation. Consider (P, F), (P ′, F ′) ∈ M and denote

by (P, F), (P ′ , F ′) ∈ V two corresponding lifts. It follows that −1((P, F)) = ı((P, F)) and

−1((P ′, F ′)) = ı((P ′ , F ′)).

Assume that ı((P, F)) � ı((P ′ , F ′)) and, without loss of generality, that (P, F) �
(P ′ , F ′). Then, F∩P ′ 6= ∅ and from the first bullet point of proposition 2.9, that F∩P ′ 6= ∅.
Therefore, (P, F)� (P ′, F ′) and the left implication follows.

For the other implication, assume that (P, F)� (P ′, F ′), i.e., F∩P ′ 6= ∅ and let x ∈ F∩P ′.
As x ∈ F and π̌(F) = F, proposition 2.9 ensures that there exists a point p ∈ V with

π(p) = x such that p ∈ F. Reasoning in the same way but fixing this lifted p ∈ V of x, we

can show that there exists g ∈ G such that p ∈ gP ′ (recall that π̂(P ′) = P ′). In conclusion,
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p ∈ F ∩ gP ′ and so (P, F) � (gP ′ , g F ′). Hence, ı((P, F)) � ı((P ′ , F ′))(= ı((gP ′ , g F ′)))

and the right implication follows.

4.3 At the topological level

Finally, in this section we will compare the topological structures of both, V/G and M.

Let us start by fixing some notation. M and V will be endowed with the corresponding

chronological topology, while V/G will be with the induced quotient topology from V. In

concordance with section 3, we will denote by LM the chronological limit on M, by LV the

chronological limit on V and by LG the quotient limit operator on V/G induced from LV

(recall equation (2.2)).

In spite of the partial cases where the openness of the map ̂ is always ensured, in

general the map  is neither continuous nor open. In fact, the following result summarizes

the only cases where  is well behaved with respect the limit operator.

Proposition 4.10. Let π : V → M be a spacetime covering and assume that π restricts

properly to M and it is surjective. Then

(a) If (P, F) ∈ LV(σ) for some sequence σ ⊂ V with P 6= ∅ 6= F, then (P, F) ∈ LM(σ),

where (P, F) = π((P, F)) and σ = π(σ).

(b) If (P, ∅) ∈ LM(σ) (analogously for (∅, F) ∈ LM(σ)) for some sequence σ ⊂ M, then

there exist a subsequence κ ⊂ σ and lifts (P, ∅) and κ of (P, ∅) and κ respectively such

that (P, ∅) ∈ LV(κ).

Proof. Assertion (b) is a direct consequence of (2.7), remark 3.5 and the fact that any lift

(P, F) ∈ π−1((P, ∅)) should have F = ∅, so let us focus on assertion (a). For this, recall that

from the definition of the chronological limit, P ⊂ LI({Pn}n) and F ⊂ LI({Fn}n). As the

projection is well behaved with contentions, we have that P ⊂ LI({Pn}n) and F ⊂ LI({Fn}n),

which is enough to ensure that (P, F) ∈ LM({(Pn, Fn)}n) (see proposition 2.7).

The other cases (that is, when (P, F) has one empty component or when P 6= ∅ 6= F)

are false in general, as it is proved by examples 5.1 and 5.7. On the first one there exists a

sequence {qn}n ⊂ V converging to a point of the form (P, ∅), while its projection converges

to a point (P ′, ∅) with π̂(P) = P ( P ′. On the second example, the sequence {xn}n

converges to (P, F) in M, however {xn}n has no convergent lift on the corresponding V.

The first case is directly related with the non continuity of ̂. In fact, we can easily

prove that:

Proposition 4.11. Let π : V → M a spacetime covering with π restricting properly to

M and surjective. If π((P, ∅)) = (P, ∅), π((∅, F)) = (∅, F) for any IP P and IF F (so that,

in particular, π is univocally determined, see remark 4.5); and M has no sequence with

divergent lifts, the map π (and so, ) is continuous.

Proof. For the continuity of π is enough to show that, given a point (P, F) ∈ V and a

sequence {(Pn, Fn)}n ⊂ V with (P, F) ∈ LV({(Pn, Fn)}n), then (P, F) ∈ LM({(Pn, Fn)}n),

where (P, F) = π((P, F)) and (Pn, Fn) = π((Pn, Fn)). If P 6= ∅ 6= F, the result follows from
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proposition 4.10 (a). If F = ∅ (the other case is analogous) we have that P ∈ L̂V({Pn}n)
and so, from proposition 3.8, that P ∈ L̂M({Pn}n). Finally, from hypothesis, π((P, ∅)) =
(P, ∅) ∈M, so (P, ∅) ∈ LM({(Pn, Fn)}n).

Let us give a closer look to previous proof. Observe that the non existence of divergent

lifts is used precisely when we deal with limit points of the form (P, ∅) or (∅, F). In this

case, π̂(P) := P does not belong to L̂M({Pn}n) if it is not a maximal IP in LS({Pn}n)

and then, necessarily, it should exists another IP P ′ with P ( P ′ ∈ L̂M({Pn}n) (up to

a subsequence). Therefore, if we assume that M has no lightlike boundary points (and

conditions ensuring that (P, ∅) ∈M), such a situation is not possible and the continuity of

π follows. In conclusion we have:

Proposition 4.12. Let π : V → M be a projection satisfying: (i) π restricts properly to

M and it is surjective, (ii) π((P, ∅)) = (P, ∅) and π((∅, F)) = (∅, F) for any IP P and IF

F (hence π is univocally determined, see remark 4.5); and (iii) M has no lightlike boundary

points. Then, the map π (and so, ) is continuous.

Remark 4.13. Observe that, in spite of corollary 3.9, here we do not need to impose that

the boundaryM has only spatial boundary points; indeed, we can also include timelike ones.

The reason is simple: unlike partial boundaries, the total c-completion takes into account

more information for each point in the boundary, specially with timelike boundary points

where both, the future and past components, are non empty. In fact, such an additional

information let us simplify the definition of the limit operator (see proposition 2.7), as we

have used on the proof of proposition 4.11.

As we have mention at the beginning of the section, and in spite of the continuity, the

openness of the partial maps ̂ and ̌ is not enough to ensure the openness of , as we can

see on example 5.7. This means that an additional condition has to be imposed to obtain

such an openness. In this sense, we will consider the condition of finite chronology whose

properties will be studied in the following section.

4.4 Group actions with the finite chronology property

First of all, let us introduce the definition of finite chronology.

Definition 4.14. Let V be a spacetime and G a group of isometries. We will say that the

pair (V,G) is finitely chronological if given two points p, q ∈ V with p � q, there exists

only a finite number of elements g ∈ G such that p� gq.

The finite chronology property will be enough to ensure the openness of  and it will also

simplify the conditions to ensure when the map π restricts properly to M, it is univocally

determined and surjective. However, such a condition will not be enough to prove the

continuity of ̂ or ̌, as it is showed by example 5.3. Let us begin with a crucial lemma:

Lemma 4.15. Assume that (V,G) is finitely chronological and consider a point p ∈ V, a

past-directed (respectively future-directed) chronological chain {pn}n ⊂ V and a sequence

{gn}n ⊂ G. If for all n ∈ N, p � gn pn (respectively gn pn � p), then there exists
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n0 ∈ N and a finite family {h1, . . . , hr} ⊂ G such that for n > n0, gn = hi for some

i = 1, . . . , r. In fact, n0 can be taken in such a way that each hi occurs infinitely often,

and so, {h1, . . . , hr} ⊂ G(p, {pn}n) (respectively {h1, . . . , hr} ⊂ G({pn}n, p), where

G(p, {pn}n) := {g ∈ G : p� gpn for all n}(
G({pn}n, p) := {g ∈ G : gpn � p for all n}

)
is a non empty finite set.

Proof. The proof follows essentially by recalling that, for a fixed k0 ∈ N and n > k0,

p� gn pn � gn pk0 . (4.3)

In particular, as there exist a finite number of elements g ∈ G such that p� gpk0 , gn
should belong to a finite family of elements in G for n big enough. Moreover, we can take

{h1 . . . , hr} ⊂ G such that, for all hi, there exists a subsequence {gnik
}k with gnik

= hi. In

particular, there exists n0 such that for each n > n0 there exists i(≡ i(n)) with gn = hi.

For the second assertion, recall that the set G(p, {pn}n) is finite by the finitely chrono-

logical property. Now, we will show that {h1, . . . , hr} ⊂ G(p, {pn}n). As we have stated

before, for each hi there exists a subsequence {gnik
}k ⊂ {gn}n such that gnik

= hi, and

therefore satisfying p � gnik
pnik

= hipnik
for all k. Now observe that, for any m ∈ N, we

can take k ∈ N such that m < nik, and it follows that p � hipnik
� hipm (as {pn}n is

past-directed chronological chain); concluding then that hi ∈ G(p, {pn}n).

If we consider two points p, p ′ ∈ V with p � p ′, then it follows that G(p ′, {pn}n) ⊆
G(p, {pn}n). This relation allow us to prove that the lifts of terminal sets are well behaved,

at least when (V,G) is finitely chronological, with respect to the future and common pasts.

Concretely,

Lemma 4.16. Consider an IP P and an IF F on M satisfying that P ⊂↓ F; and take P, F

the corresponding lifts. If (V,G) is finitely chronological then the set G(P, F) defined by

G(P, F) = {g ∈ G : P ⊂↓ g F} (4.4)

is non empty and finite.

Proof. As a first step, we are going to characterize the set G(P, F) in terms of the sequences

defining P and F. In this sense, let {xn}n and {yn}n be chronological sequences defining P

and F respectively, and {pn}n, {qn}n the corresponding chronological lifts defining P and

F. Observe that the following chain of equivalences follow

g ∈ G(P, F) ⇐⇒ P ⊂↓ g F
⇐⇒ pn ∈ g F for all n ∈ N
⇐⇒ pn � gqm for all n,m ∈ N
⇐⇒ g ∈ G(pn, {qm}m) for all n ∈ N

In particular,

G(P, F) = ∩n∈NG(pn, {qm}m). (4.5)
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As a second step, recall that from hypothesis P ⊂↓ F, and so, xn � ym for all

n,m ∈ N. Hence, proposition 2.9 ensures that there exists a sequence {gm}m ⊂ G such

that pn � gm qm and so, from lemma 4.15, G(pn, {qm}m) is non empty and finite for all n.

Then, G(P, F) is the intersection of a numerable family of non empty and finite sets

ordered by G(pn+1, {qm}m) ⊂ G(pn, {qm}m). Therefore, it is a non empty and finite set.

In particular, and as a consequence of previous lemma and Props. 4.2 and 4.6, we

have that:

Corollary 4.17. Let π : V →M be a spacetime covering with (V,G) finitely chronological

and assume that M does not admit an inextensible sequence {xn}n ⊂ M which is either

past-directed chronological with future divergent lifts or future-directed chronological with

past divergent lifts. Then, the map π : V →M restricts properly to M and it is surjective.

At this point a natural question arise at the point set level: is there any relation

between π−1((P, F)) and the set G(P, F)? Intuitively, one can expect that for a fixed lift

P, the set G(P, F) determines all the pairs of the form (P, g F) ∈ V with projection (P, F).

However, as we recall in remark 4.3, it is not clear that, in general, all the lifts preserving

the relation with the common future (or past) are S-related. Again, the finite chronology

condition will be enough for this, as we will see on lemma 4.20. In order to prove such a

lemma, we need first the following technical result:

Lemma 4.18. Let P, P ′ ∈ V̂ (respectively F, F ′ ∈ V̌) be two points of the future (past)

causal completion projecting to the same set P ∈ M̂ (F ∈ M̌). Suppose one of the following

situations:

(H1) (V,G) is finitely chronological and there exists p ∈ V such that P ′ ⊂ I−(p) (F ′ ⊂
I+(p)).

(H2) G is finite.

Then there exists h ′ ∈ G such that P = h ′ P ′ (F = h ′ F ′). In particular, it follows that if

G is finite the projection π is future (past) tame.

Proof. Let {pn}n, {p
′
n}n be future chronological chains defining P and P ′ respectively.

As both sets project onto the same P, it follows that the projection of such sequences

{xn}n, {x
′
n}n generate P. In particular, for each n there exists m(n) big enough such that

xn � x ′m(n). We will consider {m(n)}n a strictly increasing sequence, so {x ′m(n)}n is

a subsequence of {x ′n}n and generates the same P (and, accordingly, {p ′m(n)}n generates

P ′). From proposition 2.9 it follows that there exists a sequence {gn}n ⊂ G such that

gn pn � p ′m(n) for all n.

Now observe that, in either situation (H1) nor (H2), and up to a subsequence, {gn}n
can be considered a constant sequence (say gn = h ∈ G for all n). In the case that

G is finite the argument is straightforward. In the other case, recall that from (H1) we

have that gn pn � p ′m(n) � p, and so the assertion follows from lemma 4.15. Therefore,
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hpn � p ′m(n) for all n, and hence, hP ⊂ P ′ . By interchanging the roles of P ′ and hP

(recall that, now, hP ⊂ P ′ ⊂ I−(p)), we find another h̃ such that h̃ P ′ ⊂ hP or, by

considering h ′ = h−1h̃, that h ′ P ′ ⊂ P.

Now, we can join both contentions hP ⊂ P ′ and h ′ P ′ ⊂ P together in the following way

gP ⊂ h ′ P ′ ⊂ P (4.6)

for g = h ′h; and then construct the chain:

P ⊃ gP ⊃ (g)2 P ⊃ · · · ⊃ (g)n P ⊃ . . .

where (g)i denotes the iteration of the action by g i-times. Now observe that under the

hypothesis of the lemma, there exists i0 such that (g)i0 = e. This assertion is again

straightforward under the assumption of G finite, so let us focus on the hypothesis (H1).

If by contradiction (g)i 6= (g)j for all i 6= j, and recalling that P ⊂ I−(p), we deduce that

(g)i P ⊂ I−(p) for all i. which contradicts that (V,G) is finitely chronological (the point p

will be chronologically related with (g)i q for any q ∈ P and i ∈ N).

Summarizing we deduce that gP = P and from (4.6) we obtain that P = h ′ P ′ , as

desired.

Remark 4.19. Observe that we have also proved in previous lemma that if gP ⊂ P for

some g and, or G is finite, or (V,G) is finitely chronological and there exists p ∈ V with

P ⊂ I−(p), then gP = P (an analogous result for past sets follows).

Lemma 4.20. Assume that (V,G) is finitely chronological. If P and F are terminal sets

with π̂(P) = P ∼S F = π̌(F), then P ∼S g F for all g ∈ G(P, F).

Proof. Assume without loss of generality that e ∈ G(P, F), and so, that P ⊂↓ F. By

contradiction, let us assume that P is not S-related with F. Recalling remark 4.3, we ensure

the existence of a terminal set P ′ with P ( P ′ ⊂↓ F and satisfying that π̂(P) = π̂(P ′). As

(V,G) is finite chronological and there exists p ∈ V such that P ′ , P ⊂ I−(p) (take any

p ∈ F), lemma 4.18 ensures that there exists h ∈ G such that P ′ = hP. But then, recalling

remark 4.19, we arrive to a contradiction with P ( P ′ = hP.

The technical lemma 4.18 allow us to prove that π is univocally determined, as it

follows from the following result (recall also remark 4.5):

Proposition 4.21. Assume that (V,G) is finitely chronological. If (P, ∅) ∼G0 (P ′ , F ′), then

F ′ = ∅ (an analogous result follow for a pair (∅, F)).

Proof. Assume by contradiction that (P, ∅) ∼G0 (P ′ , F ′) with F ′ 6= ∅. By recalling that

both sets P and P ′ projects onto the same set P in M̂, and that for any p ∈ F ′ , P ′ ⊂ I−(p);
we can apply lemma 4.18 (H1) deduce the existence of h ′ ∈ G such that P = h ′ P ′ . Since

G acts by isometries, it follows that P = h ′ P ′ ∼S h
′ F ′ , which is a contradiction to P ∼S ∅.

In conclusion, F ′ = ∅.

With all previous machinery set, we are now in conditions to prove the openness of 

under the assumption of finite chronology:
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Proposition 4.22. Let π : V → M be spacetime covering projection with (V,G) finitely

chronological and assume that π restricts properly to M and it is surjective. Then, the

univocally determined map π induces an open map  from V/G to M.

Proof. Let {(Pn, Fn)}n ⊂ M be a sequence and (P, F) ∈ M a point such that (P, F) ∈
LM({(Pn, Fn)}n). Our aim is to show that, up to a subsequence, (Pn, Fn) and (P, F) admit

lifts (P ′n, F ′n) and (P ′ , F ′) with (P ′ , F ′) ∈ LV({(P ′n, F ′n)}n), and hence, that −1((P, F)) ∈
LG({

−1(Pn, Fn)}n) (recall (2.2)). Observe that the case where F or P is empty follows from

proposition 4.10 (b), so we only need to focus on the case where both sets are non empty.

Assume that P 6= ∅ 6= F and let P, F, Pn, Fn be some fixed lifts of P, F, Pn, Fn respectively.

Consider {xn}n and {yn}n chronological sequences defining P and F and, as usual, denote

by {pn}n and {qn}n the corresponding lifts defining P and F. Let us denote by {m(n)}n a

sequence in N with m(n+ 1) > m(n) + 1 and satisfying that xn ∈ Pm(n) and yn ∈ Fm(n).

Now, as xn ∈ Pm(n), proposition 2.9 ensures that pn ∈ gn Pm(n) for some gn ∈ G.

From lemma 4.16, we know that the set G(gn Pm(n), Fm(n)) is non empty and, from

lemma 4.20, that for any g ′n ∈ G(gn Pm(n), Fm(n)), gn Pm(n) ∼S g
′
n Fm(n). Finally, again

from proposition 2.9 and yn ∈ Fm(n), there exists hn ∈ G such that hn qn ∈ g ′n Fm(n).

Now, let us observe that from gn Pm(n) ⊂↓ g ′n Fm(n), it follows that pn � hn qn. In

particular, we have the chain

p1 � pn � hnqn

and then, from lemma 4.15, we can ensure that, up to a subsequence, {hn}n is constant,

say hn = h ∈ G for all n. In particular, for any i and all n > i, it follows that

pi � pn � hqn.

In particular, P ⊂↓ hF and so h ∈ G(P, F). Hence, lemma 4.20 ensures that both sets

P and hF are S-related.

Summarizing:

• The pairs (P, h F) and (gn Pm(n), g
′
n Fm(n)) belongs to V.

• P ⊂ LI({gnPm(n)}n) and hF ⊂ LI({g ′n Fm(n)}n), thus (see proposition 2.7)

(P, h F) ∈ LV({(gnPm(n), g
′
nFm(n))}n).

In conclusion, and always up to a subsequence, if (P, F) ∈ LM({(Pn, Fn)}n) we

can always obtain appropriate lifts (P ′ , F ′) and {(P ′n, F ′n)}n such that (P ′ , F ′) ∈
LV({(P ′n, F ′n)}n). The result follows then as a consequence of proposition 2.3 ap-

plied to −1.

As a final remark of this section, we will show how finite chronology let us simplify

some of our previous hypothesis for the definition and continuity of . In fact, the condition

of M having no sequence with divergent lifts (which is almost equivalent to the continuity

of π̂ and π̌, recall proposition 3.8) imposed in proposition 4.6 can be substituted by a

topological requirement on V̂ and V̌ respectively:
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Corollary 4.23. Assume that (V,G) is finitely chronological and that both V̂, V̌ are Haus-

dorff. Then, π restricts properly to M, it is surjective and univocally determined.

Proof. We only need to show, according to corollary 4.17, that any past-directed chronolog-

ical chain on M has no future divergent lifts (the other case will be completely analogous).

Let {yn}n be a past-directed chronological chain and consider {qn}n a past chronological se-

quence in V with π(qn) = yn and defining a IF F. Suppose that there exist {hn}n, {gn}n ⊂
G and P, P ′ ∈ V̂ such that P ∈ L̂V({I−(hn qn)}n) and P ′ ∈ L̂V({I−(gn qn)}n).

Take p ∈ P. From P ∈ L̂V({I−(hn qn)}n) we have that p � hn qn for n big enough.

As (V,G) is finitely chronological, lemma 4.15 ensures that, up to a subsequence, hn = h0
for some fixed h0 ∈ G. Reasoning in the same way with P ′ and {gn}n, we can ensure that,

up to subsequence, gn = g0 for some fixed g0 ∈ G.

Hence, we have that P ∈ L̂V({I−(h0 qn)}n) and P ′ ∈ L̂V({I−(g0 qn)}n) and, from the

first inclusion, we deduce that (g0h
−1
0 )P ∈ L̂V({I−(g0 qn)}n). As V̂ is Hausdorff, then

(g0h
−1
0 )P = P ′ and both sets projects into the same set in M̂. In conclusion, {yn}n

cannot admit future divergent lists. Finally, π is univocally determined as it follows from

proposition 4.21.

At the topological level, we also have to impose some conditions on M, obtaining:

Corollary 4.24. Assume that (V,G) is finitely chronological, V̂ and V̌ are Hausdorff

and M has no lightlike boundary points. Then, V/G ≡ M, i.e., both V/G and M are

homeomorphic and chronologically isomorphic.

Proof. From corollary 4.23 follows that π restricts properly to M, it is surjective and

univocally determined. Then, Props. 4.9 and 4.22 ensure both, that  is a chronological

isomorphism and an open map.

Hence, it only rest to show that  is continuous. But this follows from proposition 4.12,

recalling that proposition 4.21 ensures that π((P, ∅)) = (P, ∅) and π((∅, F)) = (∅, F).

Ideally, one would like to impose conditions only on V in order to ensure that V/G and

M have the same structures. For example, and in the spirit of corollary 4.24, we would like

to impose on V the non-existence of lightlike boundary points to obtain the non-existence

of lightlike boundary points on M, and therefore the continuity of . However, the lack

of lightlike boundary points in V is not enough to ensure the same property on M (see

example 5.8). Nevertheless the situation is very controlled and it is related again with

the existence of very particular divergent lifts. In fact, we can prove that (compare with

proposition 3.7):

Corollary 4.25. Let π : V → M be a spacetime projection. Assume that π restricts

properly to M, it is surjective and it satisfies that π((P, ∅)) = (P, ∅) and π((∅, F)) = (∅, F)
(hence univocally determined, see remark 4.5) for any IP P and IF F. If V has no lightlike

boundary points and the G-orbits for both V̂ and V̌ are closed (with the corresponding

topologies), then M has no lightlike boundary points.
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Proof. Assume by contradiction that M has lightlike boundary points, that is, that there

exists (P, ∅) ∈ M and P ′ ∈ M̂ such that P ( P ′ (the case with past sets will be analo-

gous). Let {xn}n and {x ′n}n be chronological chains generating P and P ′ respectively and

consider P, P ′ , {pn}n and {p ′n}n the corresponding lifts on V̂. From hypothesis, it follows

that (P, ∅) ∈ V.

As P ⊂ P ′ we deduce that, for all n, xn � x ′n ′ with n ′ big enough, so proposition 2.9

ensures that there exists gn such that pn � gn p
′
n ∈ gn P ′ . It follows then that P ⊂

LI({gn P ′}n). Moreover, it also follows that P ∈ L̂V({gn P ′}n) as, otherwise, there exists

P ′′ such that P ( P ′′ and this is not possible as V has no lightlike boundary points.

Finally, and from the hypothesis that the G-orbits are closed on V̂ with the future

chronological topology, it follows that P ∈ {gP ′}g∈G, i.e., there exists g0 ∈ G such that P =

g0 P ′ . In conclusion, and taking projections, we obtain that P = P ′, a contradiction.

As a consequence of corollaries 4.23, 4.24 and 4.25, we obtain the following result:

Corollary 4.26. Assume that (V,G) is finitely chronological, V has no lightlike boundary

points and V̂ and V̌ are Hausdorff and have closed G-orbits. Then, V/G ≡ M, i.e., both

V/G and M are homeomorphic and chronologically isomorphic.

4.5 Proof of theorem 1.2

At the point set level, the first assertion on (PS1) is proved on proposition 4.6 and the sec-

ond one follows from proposition 4.2 and lemma 4.16. (PS2) is a consequence of remark 4.5,

lemma 4.7 and proposition 4.21; while (PS3) is proved in corollary 4.23.

At the chronological level, assertion (CH) is proved on proposition 4.9.

At the topological level, (TP1) (i) is proved in proposition 4.11, (TP1) (ii) is proposi-

tion 4.12. The conditions over the projection of pairs (P, ∅) and (∅, F) remarked in (TP1) are

proved when π is tame or (V,G) finitely chronological by lemma 4.7 or by proposition 4.21

respectively. Finally, (TP2) follows from proposition 4.22.

For the last assertions, π being univocally determined is a consequence of the finite

chronology and (PS2). (a) follows from (PS1), (CH), (TP1) (i) and (TP2), while for (b) we

have to consider (PS3) and (TP1) (ii) instead of (PS1) and (TP1) (i). The last assertion

(c) is proved in corollary 4.26, recalling that the closedness of the G-orbits under π tame

is proved in proposition 3.7.

5 On the optimality of the results: some examples

Along this section, we will include some examples showing that our main results are op-

timal. It is worth pointing out that in all the examples #LM(σ) will be bounded, and

so, according to lemma 2.4, that LM will be of first order UTS. This is specially relevant

recalling proposition 3.8, as it means that in all our examples the non existence of divergent

lifts characterize the continuity of π̂ and π̌.

Let us start with the example due to Harris where ̂ is not continuous. Here, we will

include only the main properties of his example, referring the reader to [19] for details.
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Figure 1. The space M is constructed in the following way: consider in L2 two timelike curves σ−
and σ+ approaching two parallel lightlike lines, as we can see in (A). M is obtained by removing from

L2 the segments Sn obtained by joining vertically the points σ−(n) and σ+(n). The universal cover

V of M contains then a numerable family of copies of M glued along the segments Hi coherently

(see details on example 5.1 and [19]).

Example 5.1. (Behaviour of the universal cover and non-continuity of π̂) In this ex-

ample we will see: first, the main properties about the universal cover of a spacetime M

where we have removed a numerable family of compact segments (these properties will be

used frequently on the forthcoming examples). Second, a case where π̂ (and so, ̂) is non-

continuous. Finally, that V̂/Ĝ is not a T1-topological space.

Let us consider a spacetime M as in the figure 1, and let V denote its universal cover.

As it is described in the last example of [19], V contains a numerable family of copies of

M, that we will denote by {n} ×M with n ∈ Z, glued coherently along the segments Hn.

For a given element x ∈M, let us denote by p its lift in V living in the fibre {0}×M. We

will also denote by n · p the lift of x in the fibre {n}×M (i.e., p ≡ 0 · p).

In order to understand how the fibres are glued along Hn, let us show how the lifts of

curves behave. Consider γ a curve on M as it is showed in figure 1 (A), which is a timelike

curve joining two points x and y. Let p and q be the corresponding lifts in the fibre {0}×M
and consider γ a lift of γ on V with start point m · p. The fibres are glued in such a way

that, as γ intersects the segment Hn, the lifted curve γ moves from the fibre {m} ×M to

{m+ n}×M, being (m+ n) · q its final point.

Once we have pointed out this behaviour, let us observe the particularities of the exam-

ple regarding the continuity of π̂. Let us observe now figure 1 (B), where we have two TIPs
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P ( P ′ defined by the sequences {xn}n and {yn}n (P is filled in dark grey, while P ′ has a

lighter grey). Consider pn and qn lifts of xn and yn respectively living in the fibre {0}×M.

It is not difficult to observe, due to the behaviour described before, that m · pn 6� m · qn
for any m ∈ N. In fact, it follows that

m · pn � (m+ n) · qn for all n ∈ N

as we can consider timelike curves on M joining xn with yn and intersecting Hn. From

this, we can prove that: (a) the sequence σ = {I−(qn)}n has P ′ (the lift of P ′ on the fibre

{0} ×M) on its limit, (b) the sequence {I−(n · qn)}n has P on its limit (the inclusion on

the inferior limit is straightforward, while the proof of the maximal character is detailed

in [19]) and (c) π̂(P) = P ( P ′ = π̂(P ′). In conclusion, and recalling proposition 3.8, π̂ is

not continuous.

As a final observation, let us consider the future causal completion of the universal

cover V (which is a T1 topological space) and its quotient space V̂/Ĝ, where G = π1(M)

is the fundamental group of M acting on V. Consider P ′ ∈ V̂ and its corresponding class

[P ′ ] in the quotient space V̂/Ĝ. It is now straightforward to see that P ′ ∈ L̂V({P ′}n) and

P ∈ L̂V({n · P ′}n). Hence, recalling the definition of LQ (see (2.2)), it follows that both [P]

and [P ′ ] belong to LQ({[P ′ ]}n), making V̂/Ĝ a non T1 topological space.

Example 5.2. (Optimality of proposition 4.6) The following example shows that a point

(P, ∅) ∈ V (respectively (∅, F)) is not well projected (recall proposition 4.1), even when π̂

and π̌ are continuous. With this aim, a point (P, F) ∈M with no natural lift on V will be

exhibited.

Let us consider M a spacetime as described in figure 2 and V its universal cover. As

it is pointed out in [5, figure 11], both sets P ∼S F are S-related. Now, let us fix P and F

lifts of the corresponding terminal sets on {0} ×M ⊂ V as we have done on example 5.1;

and denote by {pn}n ⊂ {0}×M a future chronological sequence which is lift of the sequence

{xn}n showed in figure 2. Recall that the lifts on V of timelike curves of M moving between

Sn and Sn+1 behave essentially as described in example 5.1. Hence, it follows that

∩n∈NI+(pn) = ∅.

In fact, for a given point y ∈ F (and so, with xn � y for all n) with fixed lift q ∈ {0}×M ⊂
V, there is no constant element g ∈ G such that (p1 �)pn � gq for all n big enough (since

pn � mqn for m > n). This shows in particular that (V,G) is not finitely chronological

(hence theorem 1.2 (PS3) is not applicable) and that the set ↑ P is empty, so P ∼S ∅.
However, it is not difficult to see that both π̂ and π̌ are continuous. Recall that the

non-continuity of such maps can only follow by the existence of a sequence {yn}n ⊂ M

admitting divergent lifts.

The only case we have to be concerned is when {yn}n converges on R2, or to the point

(0, 1) or to (0, 0) (in the other cases, the convergence is essentially the usual one in R2).

Assume for instance that the sequence {yn}n converges to the point (0, 1) (the other case is

completely analogous). It is straightforward to check that any convergent lift with the past

chronological topology of {yn}n in V are, up to a subsequence, of the form {m · qn}n, with
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P (0, 0)

(0, 1)

F

xn

Sn

M

Figure 2. M is constructed by removing from L2 the black square and the vertical segments Sn.

As it was pointed out in [5, figure 11], the terminal sets P and F are S-related, and so, they form a

pair (P, F) ∈M. However, if P is a lift of P to the universal cover V, it follows that ↑ P = ∅.

m ∈ Z constant and qn ∈ {0}×M ⊂ V a fixed lift of {yn}n. In particular, their limits are

of the form m · F. This is due the fact that the IFs involved will not have points between

the segments Sn, and so, we do not have to move between different fibres of V. Therefore,

any convergent lift of {yn}n with the past topology converges to a terminal set on π̌−1(F),

and so, {yn}n does not have past divergent lifts (condition (ii) in definition 3.6 cannot be

fulfilled).

For the future topology however the situation is a little more technical, as the involved

IPs contain these points between segments Sn. With some effort, it can be proved that

if LI({I−(gn qn)}n) 6= ∅ for some {gn}n ⊂ Z, then LI({I−(gn qn)}n) = mP for some

m ∈ Z. In particular, any convergent lift with the future topology of {yn}n will converge to

some TIP on π̂−1(P), and so, reasoning as in previous case, {yn}n does not admits future

divergent lifts.

In conclusion, M does not admit (future or past) divergent lifts, and so, both π̂ and π̌

are continuous.

Example 5.3. (Optimality of several previous results) Let us see: (i) sequences with di-

vergent lifts can be obtained by a constant sequence {gn}n (see definition 3.6 and theo-

rem 3.8), (ii) if a past chronological sequence has future divergent lifts, then the thesis of

proposition 4.1 can fail and (iii) the finite chronology property is not enough to ensure the

continuity of the partial maps π̂ and π̌, being necessary to include them additionally.
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pn

1pn

P1
P2

1P1

P1
P2

xn

r10

r20

(0,0)

(1,1)

F F

(0,0)

(1,1)

Figure 3. The space V (on the left) is L2 with two families of lines {r1n}n and {r2n}n removed, where

r1n = {(1/3+n, t) : t > 1/3+n} and r2n = {(2/3+n, t) : t 6 2/3+n}. The action of an element g of

the group Z is just a translation of g-times the vector (1, 1), being the region between the striped

lines in the left figure a fundamental region for the action. The quotient space M = V/Z (on the

right) is the space (0, 1)× R with the points (0, t) and (1, t+ 1) identified.

Let us consider a space V ⊂ R2 as showed in figure 3. On such a space, consider

G ≡ Z an isometry group given by the following action:

Z× V → V

(g, p)→ g · p := p+ g(1, 1).

The quotient M = V/Z can be seen as a cylinder with some cuts on it (see figure 3 (B)).

Let us summarize the properties of the spacetime covering projection π : V → M. On the

one hand, and observing figure 3 (B), it follows easily that M contains the pairs (P1, F)

and (P2, ∅). Indeed, both sets P1, P2 are contained in ↓ F, but thanks to the identification

of both lateral sides, it follows that P2 ( P1, so only P1 is maximal on the common past of

F. However, on V we have both pairs (P1, F) and (P2, F), so the thesis on proposition 4.1

is false on this case.

On the other hand, the non continuity of π̂ can be deduced from the fact that P2 ∈
L̂V({pn}n) while P2 = π̂(P2) /∈ L̂M({xn}n), as P1 breaks the maximality of P2 in the

superior limit. Finally, it is quite straightforward to see that (V,G) is finitely chronological.

If p� q in V, it could exists (at most) one element in g ∈ Z such that p� gq (specifically,

g = ±1). However, we cannot apply theorem 1.2 to ensure that π restricts properly to M

as V̂ is not Hausdorff (recall that P1, P2 ∈ L̂V({pn}n)).

Example 5.4. (π restricts properly even when π is non tame) Let us consider the spacetime

V = R× (−1, 1)×R with the 3-dimensional Minkowski metric

g = dx2 + dy2 − dt2.
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Figure 4. On the left figure is represented the c-boundary of V, which is formed by two copies of

the c-completion of the 2-dimensional Minkowski spacetime glued by the corresponding edges (the

identified edges are denoted equally). On the right figure it is represented the c-boundary of ∂M,

formed by two copies of R× S1 and the points i+ and i− (again identified).

As the spacetime (V, g) is, in fact, a static spacetime, we can calculate directly its c-

boundary which structure is given by:

∂V =
(
(ξ+R ∪ ξ

+
L ) t (ξ−R ∪ ξ

−
L )
)
∪
(
L2 × {−1, 1}

)
∪ {i+, i−}

(see figure 4). Concretely, recall that the structure of the c-boundary for static models

depends essentially on the so-called Busemann completion of its spatial fibre (see for in-

stance [17, theorem 3.10] as well as section 6 for details). In this case, it follows that

the associated Busemann completion for
(
R× (−1, 1), dx2 + dy2

)
is formed by the Cauchy

boundary (R× {−1})∪ (R× {1}) and two additional points, each determined by inextensible

curves whose x-component diverge (one point when the x-component diverges to +∞ and

the other to −∞). The Cauchy boundary points generate in the c-boundary two copies

of L2 (denoted in figure 4 by L2 × {−1} and L2 × {1}) formed by timelike points, and so,

with both components non empty; while the two points in the proper Busemann boundary

generates four lightlike lines, two for the future and two for the past boundary, denoted by

ξ+R , ξ
+
L , ξ

−
R and ξ−L respectively From the topological viewpoint, and due the simplicity of the

example, it follows that the chronological topology works as expected in this c-completion,

being the convergence with the chronological topology the same as the usual convergence in

figure 4 (after the appropriate identifications).

In previous space we define the following group action

Z× V → V

(z, (x, y, t))→ (x+ z, y, t)

so M = V/Z is, in fact, M = S1 × (−1, 1) × R with the induced metric. Again, the

c-boundary is computable by previous methods, obtaining

∂M =
((
R× S1

)
× {−1, 1}

)
∪ {i+, i−}
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(here, the proper Busemann boundary is empty while the Cauchy boundary is formed by

two copies of R× S1).

Let us describe briefly how π works: it takes all the lightlike points of ∂̂V and ∂̌V to i+

and i− respectively; and it mods out by a properly discontinuous Z-action on each L2×{±1}.
In particular, observe that any boundary point in

(
ξ+R \ {i+}

)
⊂ ∂V and i+ ∈ ∂V are both

projected to i+ ∈ ∂M, but no element on Z send an element in the former to the latter

(this can be seen as no translation in L2 sends a terminal set P ∈ ξ+R \ {i+} to i+); proving

that π̂ is not (future) tame. In order to show that proposition 4.6 is applicable, we have to

show that any inextensible past chronological sequence on M has no future divergent lifts

(being the future case completely analogous).

Let σ = {(xn, yn, tn)}n be a past inextensible chronological sequence on M, and let σ =

{(xn+zn, yn, tn)}n an σ ′ = {(xn+zn+z
′
n, yn, tn)}n be two lifts on V. The inextensibility

of σ determines two possibilities: or {tn}n ↘ −∞, or {tn}n ↘ Ω and {yn}n converges to

some point in {−1, 1}. Observe that in the first case there is nothing to do as L̂chr(σ) =

L̂chr(σ ′) = ∅. Hence we can assume that we are in the second case and, without loss of

generality, that {yn}n → 1. Recalling the (well) behaviour of the topology in the future

completion, if L̂(σ) 6= ∅ 6= L̂(σ ′) then {(xn + zn, yn, tn)}n → (x0, 1,Ω) and {(xn + zn +

z ′n, yn, tn)}n → (x ′0, 1,Ω) for some x0, x
′
0 ∈ R. In particular, and given that {xn+zn}n →

x0, {xn+ zn+ z
′
n}n → x ′0 and z ′n ∈ Z, we conclude that for n big enough z ′n = z ′0 for some

fixed z ′0. It follows then that x ′0 = x0 + z
′
0 and, therefore, that if σ and σ ′ have both limit

points, such limits points are unique and project into the same point in M̂. In conclusion,

the sequence σ has no future divergent lifts.

Example 5.5. (Optimality of several results) In this example we will show: (i) a case of

a non tame spacetime covering projection, where (and unlike example 5.4) two terminal

sets P, P ′ ∈ V̂ project into the same set on M̂ with no element in the group G sending one

to the other but with P ′ S-related to a non empty set, (ii) that even if M does not admit

constant sequences with future divergent lifts, the G-orbits can be non closed and (iii) a

spacetime covering projection with a sequence {qn}n ⊂ V and a TIP P ∈ V̂ with P ∼S ∅
and such that P ∈ L̂V({I−(qn)}n), P ∈ L̂M({I−(yn)}n) but P ∼S F with F 6= ∅ (showing the

optimality of proposition 4.11).

Let us consider the Lorentz manifold

M = L2 \
(
{[0,∞)× 0} ∪ ∪n{(0,−

1

n
)}

)
(see figure 5), and take V its universal cover. The behaviour of the lifts of curves in M to

V behaves essentially in the same manner described in example 5.1, that is, it contains a

numerable family of copies of M (which will be denoted again by {n} ×M) glued together

accordingly; and whenever a curve γ ⊂ M pass between two holes of M, the initial point

and the endpoint of the lifted curve γ live in two different fibres of such a numerable family.

It follows that the point (0, 0) ∈ R2 has associated in M a singular point (P, F) ∈ M.

However, the lift of the terminal set P in a concrete fibre, say {0} ×M, determines two

different terminal sets P, P ′. The reason is simple, any timelike curve joining a point of
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Figure 5. The space M (on the right) is L2 with the line r = {(x, 0) : x > 0} and the sequence of

points {(0,− 1
n
)}n removed, while V is the universal cover of M. On the first one, associated to the

point (0, 0) we have the point (P, F) ∈ ∂M. However, the set P lifts to a fixed fibre {0} ×M ⊂ V
as two different terminal past sets P and P ′ , creating two different points (P ′ , F), (P, ∅) ∈ ∂V. In

particular, it follows that the sequence {yn}n depicted on the right is not convergent, while its lifts

{qn}n converges to (P, ∅).

the sequence {xn}n with {x ′n}n should pass between two holes of M, and so, its lift moves

along different fibres. Moreover, from construction, we have that for each pn there exists

gn ensuring that pn ∈ gn P ′. However, the sequence {gn}n cannot be considered constant

(not even up to a subsequence), so there is no g ∈ G such that P ⊂ gP ′ and the projection

cannot be tame. Moreover, it follows from the construction that P ⊂ LI({gn P ′}n) and it is

maximal on the superior limit, i.e., P ∈ L̂V({gn P ′}n). Therefore, the G-orbit {gP ′}g∈G is

not closed as P is an element not belonging to the G-orbit of P ′ but which is in its closure.

Let us now show the existence of a sequence {qn}n as described in the first paragraph

of the example. Consider a sequence {yn}n as in figure 5 and {qn}n its lift in the fibre

{0} ×M ⊂ V. As we can see in the figure, P ∈ L̂M({I−(yn)}n) and P ∈ L̂V({I−(qn)}n).
Moreover, as we have mention before, P ∼S F with F 6= ∅. So, it only rest to show that

P ∼S ∅. But this follows from the fact that ↑ P = ∅ (recall that whenever a timelike curve

moves through the space between two holes, it pass to another fibre in V). Summarizing, we

have shown in particular that the map π is not continuous. The sequence {qn}n converges

to the point (P, ∅) ∈ V, while its projection {yn}n does not converge to (P, F) ∈ M (note

that LI({I+(yn)}n) = ∅).

Example 5.6. (Several candidates for the projection of a pair) The following exam-

ple is a three dimensional version of the previous one, and aims to show three points

(P, ∅), (P ′ , F1), (P ′ , F2) ∈ V with π̂(P) = π̂(P ′) but with π̌(F1) 6= π̌(F2).
Let us consider the following open set M of the three-dimensional Minkowski spacetime

(with the induced metric):

M = L3 \ (C1 ∪ C2 ∪ ∪nln)
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F1

(0, 0, 0)

F2

P

ln

C1

C2

Figure 6. The space M is an open set of the three-dimensional Minkowski spacetime with the sets

C1, C2 and the sequence of lines {ln} removed. The point (0, 0, 0) is represented on the c-boundary

of M as two points (P, F1) and (P, F2). As happen in figure 5, the lift of P to a fixed fibre of the

universal cover of M give us two terminal sets P and P ′ . In particular, and recalling again that

↑ P = ∅, we deduce that the pairs (P ′ , F1), (P ′ , F2) and (P, ∅) belong to ∂V, the c-boundary of the

universal cover of M.

where C1 = {(x, y, t) ∈ R3 : y 6 0, t > 0}, C2 = {(0, y, t) ∈ R3 : 0 6 t 6 1} and for n ∈ N,

ln = {(x, 0,−1/n) : x ∈ R} (see figure 6); and consider V its universal covering.

The behaviour of the lifts/projections in this case works essentially as in previous ex-

ample. In fact, if we project the figure into the plane y, z we will obtain almost the same

setting as in figure 5, with the first quadrant removed (and so, sharing the same proper-

ties). Hence, the set P is naturally lifted as two different terminal sets P and P ′ living in

the same fibre of V. The main difference between this case and previous example is that,

even if P is still S-related with the empty set, the set P ′ is S-related with two sets, F1 and

F2 corresponding to the lifts of F1 and F2. Therefore, the points (P ′ , F1) and (P ′ , F2) are

both ∼G0-related with the pair (P, ∅), while π̌(F1) = F1 6= F2 = π̌(F2).
This suggests two different possible definitions for the function α, regarding the image

of the point (P, ∅). In fact, we can consider:

α1((P, ∅)) = (P ′ , F1) and α2((P, ∅)) = (P ′ , F2)

making (P, ∅) projects to (P, F1) in the first case, or to (P, F2) on the second one. In
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Figure 7. Let M be L2 with the segments Sn removed. On this example, the sets P and F are

S-related and the sequence {xn}n has (P, F) on its limit. However, for n big enough, the timelike

curves from xn to points in F should pass between Sn and Sn+1. In particular, if {pn}n ⊂ {0}×M is

a lift of {xn}n, and F is the corresponding lift of F in {0}×M, then g F 6⊂ LI({I+(pn)}n) for any g ∈ G.

both cases, the corresponding extended projections share the same properties: both restrict

properly to M, are surjective and non-continuous (as in previous example, it is possible

to construct a sequence {qn}n converging to the pair (P, ∅) whose projection {yn} does not

converge to either (P, F1) nor (P, F2)). So, as we pointed out in remark 4.5, there are no

actual differences between πα1 and πα2 regarding the satisfied properties.

Example 5.7. (Non open ) Let us consider M a spacetime as in figure 7 and V the

universal cover of M. On M, both sets P and F are S-related and the sequence {xn}n

converges to the point (P, F). On V, and thanks that we can take curves joining points from

P to F without moving between any Sn and Sn+1, we can obtain lifts P and F with P ∼S F

(we can assume that both sets live in the fibre {0}×M).

However, no lift of the sequence {xn}n converges to (P, F). In fact, let us take {pn}n a

fixed lift of {xn}n contained in {0}×M. It is not difficult to observe that this lift is the only

one satisfying that P ∈ L̂V({I−(pn)}n). Even so, it is not true that F ∈ ĽV({I+(pn)}n),
as any timelike curve joining a point xn with points on F should pass through two lines

Sn, hence its lift moves between two different fibres. Therefore, the sequence {xn}n has no

natural convergent lift and the map  is not open.

Finally, let us observe that ̂ and ̌ are continuous. This follows by reasoning as in

example 5.2, recalling that the only cases where the continuity could fail is considering

sequences {yn}n converging to (0, 0).

Example 5.8. (V with no lightlike boundary points while M has them) Let

M =
(
{(x, t) ∈ R2 : 0 < x < 1,−1 < t 6 x} ∪ ([1, 2)× (−1, 1))

)
\ ∪nSn
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Figure 8. Let M be an open set of L2 with the segments Sn removed as in the left. Even if the

segments are spacelike, the terminal set P ′0 (the past of the boundary point (1, 1)) contains P0 (the

past of (0, 0)).

The c-boundary of M is represented on the right of the figure. Observe that, in the c-boundary,

each segment Sn is represented by a thin ellipse. This is due the fact that any non-extremal point

of the segment is reachable by a future and past inextensible timelike curve, but the corresponding

terminal sets are not S-related. So, such points are represented in the c-boundary as two points

of the form (P, ∅) and (∅, F). Only on the extremal points the corresponding TIP and TIF are

S-related, and so, they determine only one point in the c-boundary.

be a manifold as in figure 8 endowed with the induced Minkowski metric, where each Sn
is a spacelike segment obtained from a small variation of the lightlike segment joining

(1/n,−1/n) and (1, 1 − 2/n). Due the fact that (1/n,−1/n) � (1, 1 − 2/(n + 1)), such

a variation can be taken in such a way that the past of the upper-right extreme of Sn+1
contains the down-left extreme of Sn. Let V be the universal cover of M.

The c-boundary (and so, the c-completion) of M is represented on the right of figure 8

and it is formed almost entirely by spatial and timelike boundary points. However, the points

(0, 0) and (1, 1) are represented on the boundary by pairs of the form (P0, ∅) and (P ′0, ∅)
with P0 ( P ′0,5 hence M has lightlike boundary points. Topologically the c-completion M

is Hausdorff, as it has the induced topology from R2.

Now, if we look into the lifts of boundary points from M to V, we observe that timelike

and spatial boundary points are lifted to timelike and spatial boundary points respectively.

However, there exist no lifts (P0, ∅) and (P ′0, ∅) of (P0, ∅) and (P ′0, ∅) respectively such that

P0 ( P ′0, as any timelike curve moving from a point close to (1, 1) to a point close to (0, 0)

should move between two segments Sm and Sm+1, and so, it will move between different

fibres of V (recall again the behaviour of the universal covering described on example 5.1).

Therefore, V will have no lightlike boundary points. Finally, and due the fact that the

topology around a point of V coincides again with the induced topology from R2, we have

that V is also Hausdorff.

5Observe that (1/n,−1/n)� (1, 1−2/(n+1)), so it is possible to obtain timelike curves passing between

Sn and Sn+1.
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6 A physical application: quotients on Robertson-Walker spacetimes

As a final section of this paper, we will show how our results are applicable to concrete and

physically relevant models of spacetimes. Our main aim will be to apply corollaries 4.24

and 4.26 where, in addition to the finite chronology, we need Hausdorffness on both V̂ and

V̌ and the non existence of lightlike boundary points on M (recall also corollary 4.25).

We will focus on the case of Robertson Walker models, even if our results are extensible

to other more general ones (see remark 6.4). The c-completion of such a models is well

known [17, section 4.2], but we include here the details for completeness. Observe that we

are not going to follow the original approach proposed in [17], but the approach introduced

in [20, section 3].

Let (Σ, gΣ) be a Riemannian manifold. Denote by t : R× Σ→ R and πΣ : R× Σ→ Σ

the corresponding projections; and consider a smooth positive function α : R → (0,∞).

A Robertson Walker model with base Σ and warping function α is given then by the pair

(V, g), where

V = R× Σ, and g = −dt2 + (α ◦ t)π∗Σ(gΣ). (6.1)

For simplicity, α ◦ t will be denoted just by α(t) and, whenever there is no confusion, we

will omit the pullback π∗Σ. The chronological relation on these models is characterized as

(see [20, proposition 3.1]):

(t0, x0)� (t1, x1) ⇐⇒ d(x0, x1) <

∫t1
t0

1√
α(s)

ds

where d denotes the distance on Σ defined by gΣ. Thanks to previous characterization, it

follows that any future terminal set P is determined by the so-called Busemann functions.

Such functions are defined in the following way: given a curve c : [a,Ω) → Σ satisfying

that gΣ(ċ, ċ) < 1, we define the associated Busemann function as:

bc(·) = lim
t→Ω

(∫t
0

1√
α(s)

ds− d(·, c(t))

)

Then, for any indecomposable past set P, it follows that P = P(bc) for some curve c with

gΣ(ċ, ċ) < 1, where

P(bc) =

{
(t, x) ∈ V :

∫t
0

1√
α(s)

ds < bc(x)

}

(see [20, Equation (3.3)]). If we have either Ω < ∞; or Ω = ∞ and
∫∞
0

1√
α(s)

ds < ∞;

it follows that c(t) → x∗ ∈ ΣC, where ΣC denotes the Cauchy completion associated to

(Σ, gΣ). Moreover, bc(·) = d(Ω,x∗)(·) :=
∫Ω
0

1√
α(s)

ds − d(·, x∗) (see [20, Equations (3.7)

and (3.8)]. In this way, and under the assumption of previous integral condition, we have

that the future causal completion has the following point set structure:

V̂ ≡ ΣC × {R ∪ {∞}}
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The study is completely analogous for the past orientation, where if we assume the integral

condition
∫0
−∞ 1√

α(s)
ds <∞, the past causal completion is identified with:

V̌ ≡ ΣC × {R ∪ {−∞}}.

Finally, for the (total) c-completion, we only need to observe that past and future

indecomposable past sets are S-related if they are associated to the same pair (Ω, x∗) ∈
R× ΣC (see [20, Equation (3.14)] and the paragraph above). In conclusion, the following

result follows:

Proposition 6.1. Let (V, g) be a Robertson Walker model as in (6.1), and assume the

following integral conditions∫∞
0

1√
α(s)

ds <∞, ∫0
−∞

1√
α(s)

ds <∞. (6.2)

Then, the c-completion, as point set, becomes

V ≡ ΣC × {{−∞} ∪ R ∪ {∞}}.

Chronologically, the c-boundary has two copies, one for the future and one for the past, of

the Cauchy completion ΣC formed by spatial boundary points; and timelike lines over each

point of the Cauchy boundary of Σ. Topologically, and assuming that ΣC is locally compact,

the chronological topology on V coincides with the product topology in ΣC×{{−∞}∪R∪{∞}}.

Morever, both V̂ and V̌ are Hausdorff.

Proof. The pointset and causal structure can be deduced from previous comments (see

also [17, theorem 4.2]). For the topological structure, we only need to recall that [31,

proposition 5.24] is also applicable to this approach and, moreover, it is also true when

Ω =∞ if the integral condition holds.

Therefore, when the integral conditions are satisfied and the associated Cauchy com-

pletion ΣC is locally compact, both V̂ and V̌ are Hausdorff and V has no lightlike boundary

points. Therefore, and as a consequence of corollary 4.26:

Theorem 6.2. Let (V, g) be a Robertson Walker model as in (6.1) and assume both,

the integral conditions in (6.2) and that ΣC is locally compact. Then, if π : V → M is

a spacetime covering projection with associated group G, (V,G) is finitely chronological

and the G-orbits are closed for both V̂ and V̌, then V/G and M are both, chronologically

isomorphic and homeomorphic.

Obviously, our results are applicable in other Robertson Walker models without the

integral conditions (6.2). For instance, the Anti-de Sitter model also satisfy both, it

has Hausdorff partial completions and has no lightlike boundary points (see [17, section

4.1]). Moreover, the only pairs in V with an empty component are of the form (V, ∅) and

(∅, V), corresponding to i+ and i−, so it follows readily that M has no lightlike boundary

points. Hence:
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Theorem 6.3. Let (V, g) be the Anti-de Sitter model with a timelike line for the origin

removed, that is, V = R× (0,∞)× S2 and

g = −cosh2(r)dt2 + dr2 + sinh2(r)(dθ2 + sin2θdφ2).

Assume that we have a spacetime covering projection π : V →M with associated group G

in such a way that (V,G) is finitely chronological. Then, V/G ≡M.

Previous result can be used, for instance, to calculate the c-completion of the BTZ

blackhole models [13] and the Hawking-Page reference model [14], which are obtained as

suitable quotients of the 3-dimensional Anti-de Sitter model [15? , 16].

Remark 6.4. We would like to note finally that theorem 6.2 is generalizable to other, more

general, models of spacetimes. For instance, a similar result follows for Lorentz manifolds

(R× Σ, g) with

g = −dt2 +
√
α ◦ t π∗Σ(ω)⊗ dt+

√
α ◦ t dt⊗ π∗Σ(ω) + (α ◦ t)π∗Σ(gΣ) (6.3)

where ω is a one-form of Σ. Observe that such metrics are generalizations of Robertson-

Walker models to the standard stationary settings. In fact, the theory developed in [31]

for the stationary case is enough to study their c-completion (see [20, section 3]).

The c-completion of the standard stationary case presents remarkable differences with

respect to the Static one, mainly because its causality is no longer determined by a (regular)

distance but by a (non-symmetric) generalized distance. That lack of symmetry is reflected

on different structures for the future and past c-completions. For instance, future and past

completions depends on different Cauchy completions (named by forward and backward

Cauchy completions and denoted by Σ±C respectively, see [31, section 6]). However, an

under some mild hypotheses (the local compactness of Σ±C and the well behaviour of the

extended distance to such spaces, see [31, theorem 1.2]), it follows analogous versions of

proposition 6.1 and theorem 6.2 for the model (6.3).
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[15] M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole,

Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012]

[INSPIRE].

[16] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories,

Int. J. Mod. Phys. A 16 (2001) 2747.

[17] V. Alana and J.L. Flores, The Causal boundary of product spacetimes, Gen. Rel. Grav. 39

(2007) 1697 [arXiv:0704.3148] [INSPIRE].

– 45 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1088/0264-9381/22/9/R01
http://dx.doi.org/10.1088/0264-9381/22/9/R01
https://arxiv.org/abs/gr-qc/0501069
http://inspirehep.net/search?p=find+J+%22ClassicalQuantumGravity,22,R1%22
http://dx.doi.org/10.1007/s10711-007-9168-2
http://dx.doi.org/10.1007/s10711-007-9168-2
http://dx.doi.org/10.1016/j.na.2009.02.101
http://dx.doi.org/10.1016/j.na.2009.02.101
http://dx.doi.org/10.4310/ATMP.2011.v15.n4.a3
https://arxiv.org/abs/1001.3270
http://inspirehep.net/search?p=find+J+%22Adv.Theor.Math.Phys.,15,991%22
http://dx.doi.org/10.1063/1.4939485
https://arxiv.org/abs/gr-qc/0606101
http://inspirehep.net/search?p=find+J+%22J.DifferentialGeom.,84,19%22
http://dx.doi.org/10.1088/1126-6708/2002/04/013
http://dx.doi.org/10.1088/0264-9381/19/24/302
http://dx.doi.org/10.1088/0264-9381/19/24/302
https://arxiv.org/abs/hep-th/0208197
http://inspirehep.net/search?p=find+J+%22ClassicalQuantumGravity,19,6289%22
http://dx.doi.org/10.1088/0264-9381/20/18/314
http://dx.doi.org/10.1088/0264-9381/20/18/314
https://arxiv.org/abs/gr-qc/0303025
http://inspirehep.net/search?p=find+J+%22ClassicalQuantumGravity,20,4085%22
http://dx.doi.org/10.1088/1126-6708/2008/03/036
http://dx.doi.org/10.1088/1126-6708/2008/03/036
http://dx.doi.org/10.1007/s10711-007-9155-7
http://dx.doi.org/10.1103/PhysRevLett.69.1849
https://arxiv.org/abs/hep-th/9204099
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,69,1849%22
http://dx.doi.org/10.1103/PhysRevD.48.1506
https://arxiv.org/abs/gr-qc/9302012
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D48,1506%22
http://dx.doi.org/10.1142/S0217751X01004451
http://dx.doi.org/10.1007/s10714-007-0492-5
http://dx.doi.org/10.1007/s10714-007-0492-5
https://arxiv.org/abs/0704.3148
http://inspirehep.net/search?p=find+J+%22Gen.RelativityGravitation,39,1697%22


J
H
E
P
0
4
(
2
0
1
7
)
0
5
1

[18] J.R. Gott, III, Closed timelike curves produced by pairs of moving cosmic strings: Exact

solutions, Phys. Rev. Lett. 66 (1991) 1126 [INSPIRE].

[19] S.G. Harris, Discrete group actions on space-times: Causality conditions and the causal

boundary, Class. Quant. Grav. 21 (2004) 1209 [gr-qc/0310071] [INSPIRE].

[20] J. Flores, J. Herrera and M. Sánchez, Computability of the causal boundary by using

isocausality, Classical Quant. Grav. 30 (2013) 075009.

[21] R. Geroch, E.H. Kronheimer and R. Penrose, Ideal points in space-time, Proc. Roy. Lond.

Soc. A 327 (1972) 545.

[22] R. Budic and R.K. Sachs, Causal boundaries for general relativistic space times, J. Math.

Phys. 15 (1974) 1302.

[23] S.G. Harris, Universality of the Future Chronological Boundary, J. Math. Phys. 39 (1998)

5427 [gr-qc/9704011] [INSPIRE].

[24] S.G. Harris, Topology of the future chronological boundary: Universality for space-like

boundaries, Class. Quant. Grav. 17 (2000) 551 [gr-qc/9907062] [INSPIRE].

[25] I. Racz, Causal boundary of space-times, Phys. Rev. D 36 (1987) 1673 [INSPIRE].

[26] L.B. Szabados, Causal Boundary for Strongly Causal Space-time, Class. Quant. Grav. 5

(1988) 121 [INSPIRE].

[27] L.B. Szabados, Causal boundary for strongly causal spacetimes. II, Classical Quant. Grav. 6

(1989) 77

[28] R. Wald, General Relativity. University of Chicago Press, Chicago, U.S.A. (1984).

[29] J.L. Flores, The Causal Boundary of spacetimes revisited, Commun. Math. Phys. 276 (2007)

611 [gr-qc/0608063] [INSPIRE].

[30] E. Minguzzi and M. Sánchez, The causal hierarchy of spacetimes, in Recent developments in

pseudo-Riemannian geometry, ESI Lect. Math. Phys. (2008) 299.

[31] J.L. Flores, J. Herrera and M. Sánchez, Gromov, Cauchy and causal boundaries for

Riemannian, Finslerian and Lorentzian manifolds, Mem. Am. Math. Soc. 226 (2013) vi+76.

– 46 –

http://dx.doi.org/10.1103/PhysRevLett.66.1126
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,66,1126%22
http://dx.doi.org/10.1088/0264-9381/21/4/032
https://arxiv.org/abs/gr-qc/0310071
http://inspirehep.net/search?p=find+J+%22ClassicalQuantumGravity,21,1209%22
http://dx.doi.org/10.1098/rspa.1972.0062
http://dx.doi.org/10.1098/rspa.1972.0062
http://dx.doi.org/http://dx.doi.org/10.1063/1.1666812
http://dx.doi.org/http://dx.doi.org/10.1063/1.1666812
http://dx.doi.org/10.1063/1.532582
http://dx.doi.org/10.1063/1.532582
https://arxiv.org/abs/gr-qc/9704011
http://inspirehep.net/search?p=find+J+%22J.Math.Phys.,39,5427%22
http://dx.doi.org/10.1088/0264-9381/17/3/303
https://arxiv.org/abs/gr-qc/9907062
http://inspirehep.net/search?p=find+J+%22ClassicalQuantumGravity,17,551%22
http://dx.doi.org/10.1103/PhysRevD.36.1673
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D36,1673%22
http://dx.doi.org/10.1088/0264-9381/5/1/017
http://dx.doi.org/10.1088/0264-9381/5/1/017
http://inspirehep.net/search?p=find+J+%22ClassicalQuantumGravity,5,121%22
http://dx.doi.org/10.1007/s00220-007-0345-9
http://dx.doi.org/10.1007/s00220-007-0345-9
https://arxiv.org/abs/gr-qc/0608063
http://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,276,611%22
http://dx.doi.org/10.4171/051-1/9
http://dx.doi.org/10.1090/S0065-9266-2013-00680-6

	Introduction
	Preliminaries
	Sequential topologies and limit operators
	C-boundary construction
	Spacetime covering projections: the causal ladder and main properties

	Partial Boundaries under the action of the group
	Proof of theorem 1.1

	The C-completion under the action of the group
	Point set level
	At the chronological level
	At the topological level
	Group actions with the finite chronology property
	Proof of theorem 1.2

	On the optimality of the results: some examples
	A physical application: quotients on Robertson-Walker spacetimes

