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1 Introduction

Recent years have seen an increasing interest in applying the techniques of holography to

probe the rich structure of strongly coupled quantum phases of matter, and in particular

their dynamics (see e.g. [1–3] for reviews in the context of condensed matter applications).

Efforts are underway to model the transport properties of a variety of systems that exhibit

unconventional behavior — with high temperature superconductors offering a prime ex-

ample — and typically lack a well-defined quasiparticle description, due to their strongly

interacting nature. As part of this program, the breaking of translational invariance (as a

mechanism to dissipate momentum [4–7]) has been recognized as a crucial ingredient for

a realistic description of materials with impurities and an underlying lattice structure (see

e.g. [8–19]).

Indeed, when translational invariance is preserved charges are unable to dissipate their

momentum, and in the presence of non-zero charge density one encounters a delta function

in the AC conductivity at zero frequency, and a resulting infinite DC conductivity. Lattice

effects and broken translational symmetry have been modeled holographically in a vari-

ety of ways. These include constructions involving periodic potentials and inhomogeneous

lattices [9–14], realizations of homogeneous lattices [15–17] and theories without diffeomor-

phism invariance [18–20] — where the list is by no means exhaustive. The constructions

that retain homogeneity involve ordinary (as opposed to partial) differential equations and
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are therefore of a clear technical advantage, as they lead to remarkable simplifications in

the analysis.

Driven by the desire to model phases with anomalous scalings, there has been interest

in working with geometries that violate hyperscaling — describing an anomalous scaling

of the free energy parametrized by θ — and/or exhibit non-relativistic Lifshitz scaling,

characterized by a dynamical critical exponent z. Among the models that maintain ho-

mogeneity, conductivity studies for these classes of geometries have appeared in [21–24],

with [22] focusing on solutions that are asymptotically AdS.

In this paper, we extend these constructions by examining analytical black brane back-

grounds that are Lifshitz-like and hyperscaling violating (at all energy scales), and incorpo-

rate the breaking of translational invariance along the boundary directions by appropriately

adding axionic fields. The theories we consider involve two gauge fields. One is responsible

for the Lifshitz-like nature of the background solutions, while the other is analogous to a

standard Maxwell field in asymptotically-AdS charged black holes. Thus, the two vector

fields play very different roles in the construction and in the interpretation of the physics.

The solutions we work with are described in section 2 (and their generalizations in ap-

pendix A). Following the horizon method proposed by [25–28], in section 3 we compute

analytically the matrix that encodes the behavior of the DC conductivity in the system.

As we shall see, subtleties arise by taking into account the fluctuations of both fields.

Since our conductivity analysis relies on a horizon computation, it also applies to

geometries that are Lifshitz and hyperscaling violating in the IR, but approach AdS in

the UV.1 Indeed, our results complement the related work of [22, 29], which considered

{z, θ} scaling geometries with AdS UV completions. In particular, in the appropriate

single charge limit, our results provide a concrete realization of one of the IR behaviors

seen in [22]. In section 4 we comment on the different physical interpretation of the matrix

of conductivities in the asymptotically Lifshitz vs. AdS case, for specific examples. A more

detailed analysis of this question will be put forth in [36, 37].

Finally, in section 4 we shift our attention to the behavior of the DC conductivities as

a function of temperature, restricting ourselves for simplicity to the regimes that can be

treated analytically. The detailed temperature dependence of holographic conductivities

has received particular attention in the light of the potential applications to the anomalous

“strange metal” regime of the high temperature cuprate superconductors. A robust feature

of the latter is the linear scaling of the resistivity with temperature, ρ ∼ T . With this in

mind, we examine the possible temperature behaviors allowed by our model, and identify

some of the parameter choices that can lead to a linear resistivity, for both Lifshitz and

AdS asymptotics. While this analysis is by no means exhaustive, it does show that there

is a rich structure of possible temperature behaviors, which include in many instances the

desired linear resistivity regime. As a concrete example, when the charge of the second

vector field vanishes and the {z, θ} geometries are assumed to be asymptotic to AdS, we

1Clearly, to explicitly construct these geometries the scalar potential of our theory would need to be

appropriately modified, to include terms that would stabilize the dilatonic scalar in the UV. While this

does not pose any conceptual problem, by doing so we would lose the advantage of working with large

classes of analytical solutions.
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identify several cases with ρ ∼ T (interestingly, many of them associated with z = 4/3).

We find a more intricate temperature behavior when both charges are turned on and the

asymptotics are Lifshitz, again with the existence of a linear regime for appropriate values

of z and θ.

We have also examined the structure of the perturbations at the boundary, without

however taking into account holographic renormalization. Still, this analysis provides in-

tuition for how the asymptotic and horizon data are related to each other in the case of

Lifshitz asymptotics, and helps shed some light on the role of boundary conditions and on

the subtleties associated with working within a non-relativistic theory. This discussion is

relegated to appendix B.

While we were in the final stages of this work, the related article [24] appeared, in which

the authors considered the same model studied here. However, the analysis of [24] only

takes into account the fluctuations of one gauge field. As we shall explain in detail in the

main text, this is not a consistent truncation of the perturbation equations — consistency

requires both gauge fields to fluctuate. This explains the partial discrepancy between our

results and those of [24].

2 Lifshitz black holes with hyperscaling violation

In this section, we shall consider a particular case amongst the class of theories described

in appendix A, in which we specialise to four-dimensional gravity coupled to two Maxwell

fields, a dilaton and two axions. The Lagrangian is given by

e−1L = R− 1

2
(∂φ)2 − 2Λeλ0φ − 1

4
eλ1φF 2

1 −
1

4
eλ2φF 2

2 −
1

2
eλ3φ

(
(∂χ1)

2 + (∂χ2)
2
)
. (2.1)

The equations of motion following from this Lagrangian are

Rµν =
1

2
∂µφ∂νφ+

1

2
eλ3φ (∂µχ1 ∂νχ1 + ∂µχ2∂νχ2) + Λ eλ0φ gµν

+
1

2
eλ1φ (F1µρ F1 ν

ρ − 1

4
F 2
1 gµν) +

1

2
eλ2φ (F2µρ F2 ν

ρ − 1

4
F 2
2 gµν) ,

�φ =
1

2
λ3
(
(∂χ1)

2 + (∂χ2)
2
)

+
1

4
λ1 e

λ1φ F 2
1 +

1

4
λ2 e

λ2φ F 2
2 + 2λ0 Λ eλ0φ ,

∇µ
(
eλ3φ∇µχ1

)
= 0 , ∇µ

(
eλ3φ∇µχ2

)
= 0 ,

∇µ
(
eλ1φ Fµν1

)
= 0 , ∇µ

(
eλ2φ Fµν2

)
= 0 . (2.2)

The theory described by (2.1) admits Lifshitz-like, hyperscaling violating black brane

solutions, given by2

ds2 = rθ
(
− r2zfdt2 +

dr2

r2f
+ r2(dx2 + dy2)

)
,

φ = γ log r , (A1)
′
0 = Q1 r

z−3−λ1γ , (A2)
′
0 = Q2 r

z−3−λ2γ ,

χ1 = αx , χ2 = αy , (2.3)

2Our sign convention for θ is the opposite of the one commonly used in the literature.

– 3 –



J
H
E
P
0
4
(
2
0
1
7
)
0
0
9

and parametrized by

γ =
√

(θ + 2)(θ + 2z − 2) , λ0 = − θ
γ
, λ1 = −(4 + θ)

γ
,

λ2 =
(θ + 2z − 2)

γ
, λ3 = − γ

θ + 2
, Q1 =

√
2(z − 1)(θ + z + 2) ,

Λ = −1

2
(θ + z + 1)(θ + z + 2) . (2.4)

Note that the logarithmically-running scalar φ breaks the exact Lifshitz symmetry of the

metric. The blackening function f takes the form

f = 1− m

rθ+z+2
+

Q2
2

2(θ + 2)(θ + z) r2(θ+z+1)
+

α2

(θ + 2)(z − 2) rθ+2z
, (2.5)

with m the integration constant denoting the mass parameter. The solution is divergent

when z = 2, indicating logarithmic behavior. Indeed, when z = 2, the solution becomes

f = 1− 1

rθ+4

(
m+

α2

θ + 2
log r

)
+

Q2
2

2(θ + 2)2r2(θ+3)
. (2.6)

Thus the α term contributes a logarithmic divergence to the mass.

For fixed z, the solution contains three free integration constants, m, α and Q2. The

solution reduces to the Lifshitz-like vacuum when these parameters vanish. In this paper,

we are not only considering the IR region near the black hole horizon, but the entire black

hole solution (2.3) including its asymptotic properties at infinity. In order for the vacuum

to avoid a curvature singularity at the asymptotic boundary r =∞, we must require3

θ ≥ 0 . (2.7)

We must also require

(2 + θ)(2z − 2 + θ) ≥ 0 , (z − 1)(2 + z + θ) ≥ 0 , (2.8)

in order to ensure that γ and Q1 are real. These last two conditions are in fact equivalent to

the requirement that the null energy condition be satisfied. Thus, since z must necessarily

be positive, we must have z ≥ 1. This, together with (2.7), implies f(∞) = 1. Thus the

solution is asymptotically Lifshitz-like with hyperscaling violation. In fact the solution (2.3)

describes a charged black hole whose Hawking temperature is

T =
rz+1
0 f ′(r0)

4π
, (2.9)

where r0 is the radius of the horizon, located at the largest root of f(r) = 0.

It should be noted that the two Maxwell fields play very different roles in the black

hole solution. The field A1 is responsible for the Lifshitz-like nature of the vacuum. In

3If one treats the solution (2.3) as merely an approximation to the geometry in the IR region, and

assumes instead AdS asymptotics, this condition can be relaxed and negative values of θ are allowed.
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particular, its “charge” Q1 is fixed, for given Lifshitz and hyperscaling violating exponents

z and θ, and the solution becomes asymptotically AdS if Q1 = 0. By contrast, the charge

Q2 of the field A2 is a freely-specifiable parameter, analogous to the electric charge of

a Reissner-Nordström black hole. We will come back to this point when we discuss the

physical interpretation of our results for different asymptotics.

For reasons that will become apparent shortly, and to make contact with some of the

literature, we would like to parametrize the scalings of the two gauge fields in terms of two

exponents ζ1 and ζ2, the analogs of the conduction exponent ζ that controls the anomalous

scaling dimension of the charge density operator [31–33]. Letting4 ζ1 = −2− θ, the scaling

of the A1 gauge field is then of the form

A1 ∼ rz−ζ1dt . (2.10)

Similarly, introducing ζ2 = 2z + θ, the second gauge field can be written as

A2 ∼ rz−ζ2dt . (2.11)

3 DC conductivity from horizon data

By now there are several techniques available for computing holographic DC conductivities.

Using Kubo’s formula, the optical conductivity can be extracted from the current-current

propagator in the boundary,

σij(ω) =
∂

∂Ej(ω)
〈J i(ω)〉 = − 1

iω
〈J i(ω)J j(ω)〉 , (3.1)

with the current found by varying the action with respect to the external source, i.e.

schematically 〈J(ω)〉 = ∂S
∂Aext(ω)

. The DC conductivity is then simply the zero frequency

limit of the optical conductivity,

σijDC = lim
ω→0

σij(ω) . (3.2)

A great simplification in these calculations comes from the membrane paradigm approach

of [34], i.e. the realization that the currents in the boundary theory can be identified with

radially independent quantities in the bulk. In the presence of momentum dissipation, the

method of [34] was first extended by [20], who noted that one can generically identify — in

the zero frequency limit — a massless mode that does not evolve between the horizon and

the boundary. A much more general understanding of this behavior, and in particular of

the universality of the equivalence between horizon and boundary current fluxes, was later

obtained in [25–28]. Moreover, it was shown [26–28] that the field theory thermoelectric

DC conductivity can be found by solving generalized Stokes equations on the black hole

horizon.

The general procedure for computing DC conductivities entails studying time-dependent

perturbations of the relevant fields. In particular, one typically turns on an oscillating

4Note that ζ1 = −dθ, where dθ ≡ 2+θ is the effective dimensionality factor in four space-time dimensions.
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electric field with frequency ω, computes the response and then takes the ω → 0 limit

to extract σDC. However, in the newer approach developed by [25], instead of taking the

zero-frequency limit of the optical conductivity, one switches on a constant electric field

from the start5, and then computes the response. In this section we will adopt the horizon

approach of [25–28]. Appendix B includes an asymptotic analysis of the behavior of the

fluctuations, which offers an alternative way to compute the matrix of conductivities.

Following the ansatz of [25], we therefore consider the perturbations6

(δAi)x = −Eit+ ai(r) , δgtx = rθ+2 ψ(r) , δχ1 = b(r) . (3.3)

Substituting them into the equations of motion (2.2), we see that the two Maxwell equations

imply j′1 = 0 and j′2 = 0, where

j1 = −
(
Q1ψ + rz−3−θfa′1

)
, j2 = −

(
Q2ψ + r3z−1+θfa′2

)
. (3.4)

Thus j1 and j2 are constants of integration. They of course describe precisely the two

conserved currents in the system. Similarly, the axion equations imply j′0 = 0, where

j0 = r5−zf b′ , (3.5)

and hence j0 is another constant of integration. The Einstein equations then imply

E1Q1 + E2Q2 = j0α , (3.6)

and (
r5−z+θ ψ′ +Q1a1 +Q2a2

)′
=

α2

r3z−3 f
ψ . (3.7)

Using (3.4), this becomes

f (r5−z+θψ′)′ =
1

r3z−1+θ

[ (
Q2

2 + r2+θ(α2 +Q2
1r

(2z+θ))
)
ψ + j2Q2 + j1Q1r

2(z+1+θ)
]
. (3.8)

Finally, the dilaton equation gives no contribution at linear order in perturbations.

As we mentioned earlier, the field A2 is analogous to a standard Maxwell field in an

asymptotically AdS charged black hole, whereas the field A1 is responsible for modifying

the vacuum to become Lifshitz-like. It is thus tempting to think that one could consider

perturbations around the background in which only A2, but not A1, is allowed to fluctuate.

In fact, this is what was done in references [24, 35]. However, a truncation where the

perturbation of a1 is set to zero is inconsistent7 with the full set of equations of motion.

In our discussion, we shall therefore take a1, as well as a2, to be non-vanishing.

5This amounts to just considering the first two terms in the Taylor expansion of e−iωt. In fact, the only

terms where linear t dependence arises are in the perturbations of the gauge field potentials. The associated

static electric fields are described in terms of gauge potentials that depend linearly on t.
6Note that in the literature, a δgrx perturbation is sometimes included. This, however, is pure gauge, and

can be removed by an appropriate coordinate transformation x→ x+ β(r), together with a corresponding

field redefinition of b(r).
7As can be seen from eqns (3.4), turning off the perturbation a1 forces ψ to be a constant, which

from (3.8) implies that j1Q2 = j2Q1 and (if α2 6= 0) that j1 = 0. In all cases, the equation for a2 in (3.4)

then implies that a2 is a constant, which means it is pure gauge.
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The two leading-order terms in the large-r expansion of ψ at large r can be seen,

from (3.8), to be of the form

ψ = − j1
Q1

+
β1

rz+2+θ
+ β2 r

2z−2 + · · · . (3.9)

We must take β2 = 0 for regularity, and hence at the boundary we have ψ∞ ≡ ψ(∞) = − j1
Q1

.

On the other hand evaluating (3.8) on the horizon implies that

ψ0 ≡ ψ(r0) = − j2Q2 + j1Q1 r
2(z+1+θ)
0

Q2
2 + (α2 +Q2

1 r
2z+θ
0 ) r2+θ0

. (3.10)

Now, it follows from (3.3) that in order for the perturbations (δAi)x to be purely ingoing on

the horizon, we must have ai ∼ −Ei r∗ near the horizon, where the tortoise coordinate r∗ is

defined by dr∗ = dr/(rz+1 f(r)). Thus near the horizon we must have a′i = − Ei
rz+1 f(r)

+ · · ·
and so, from (3.4), we have

j1 = −Q1ψ0 +
E1

r4+θ0

, j2 = −Q2ψ0 + E2r
2z−2+θ
0 . (3.11)

Finally, combining these with (3.10) and expressing j1, j2 entirely in terms of E1 and E2,

in analogy with Ohm’s law, we find the following matrix-valued equation for the currents,(
j1
j2

)
=

(
σ11 σ12
σ21 σ22

)(
E1

E2

)
, (3.12)

with the entries of the conductivity matrix given by

σ11 =
1

r4+θ0

+
Q2

1 r
2z−4
0

α2
, σ12 =

Q1Q2r
2z−4
0

α2
,

σ21 = σ12 , σ22 = r2z−2+θ0 +
Q2

2

α2
r2z−40 . (3.13)

Recall, however, that here the two currents j1 and j2 are associated with two distinct vector

fields, which are oriented along the same spatial direction. Thus, the coefficients appearing

in the matrix σij should not be confused with those associated with different space-time

directions.

It is also worth noting that in the limit z → 1 and θ → 0, for which Q1 → 0, the

quantity σ11 goes to r−40 . On the other hand, if we had set Q1 = 0 from the outset, the

solution would have been simply the Schwarzschild-AdS black hole, and hence we would

have σ11 = 1. Thus we have a discontinuity in the Q1 → 0 limit. This discontinuity

can be understood from the fact that turning on Q1 changes the asymptotic structure

from an AdS to a Lifshitz like one. No matter how small Q1 is, the perturbation (δA1)x
of the associated gauge potential must be even smaller. Thus the perturbation we are

considering here would actually vanish in the Q1 → 0 limit, and so it could not possibly

have a continuous limit to the perturbation that is normally considered in the Q1 = 0

Schwarzschild-AdS background. This provides one explanation for why the dependence
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of the conductivity on the temperature is different from that in the RN black hole. We

come back to the issue of the different physical interpretations of the two currents in the

discussion below. In closing, we should note that although σ22 above naively agrees with

the result of [24], the latter did not take into account both gauge field fluctuations. Indeed,

setting Q1 = 0 in the equations above is not consistent with the linearized fluctuation

equations unless one also sets z = 1.

4 Interpreting the matrix of conductivities — AdS vs. Lifshitz

The matrix (3.13) encodes in a non-trivial way the conductive response to the presence of

two U(1) fields, in a system that in general is non-relativistic. Its interpretation is subtle,

and depends on the particular form of the asymptotics of the solution as well as the value

of the charges. Relativistic symmetry in this theory is recovered when Q1 = 0, which

corresponds to z = 1. While here we provide only a preliminary discussion of the physics

of (3.13), a more detailed analysis is relegated to [36, 37].

A point we would like to emphasize is that the horizon analysis of the previous section

also applies to black hole solutions that are only non-relativistic in the far IR, and become

relativistic in the UV by approaching AdS asymptotically. While geometries with AdS

asymptotics are not exact solutions to our action as it stands, they can be easily generated

by making minor modifications to the scalar potential which would only affect the UV

properties of the solutions, leaving their near-horizon behavior unchanged.8 For this reason,

we claim that it is still valuable to inspect the behavior of σij even assuming standard,

relativistic (AdS) boundary conditions, as well as for the case we are focusing on, in which

the boundary is Lifshitz and hyperscaling violating.

In this discussion we are going to focus on two cases, postponing further clarifications

to [36, 37]. First, we shall examine the single charge case Q2 = 0. Next, we will restore Q2

and consider instead j1 = 0:

1. When Q2 = 0 one can truncate out the gauge field A2 from the theory. The σij matrix

in (3.12) then becomes diagonal, and the conductivity associated with the remaining

U(1) field A1 is simply σ11. The physical interpretation of the σ11 component depends

on whether the asymptotics are Lifshitz [47–49], as in the explicit solutions used in

this paper, or AdS:

• For Lifshitz asymptotics the current associated with A1 has the interpretation

of an energy flux, in the approach of [47, 48], or a mass current in that of [49].

In either formalism, σ11 does not represent the DC conductivity in the system.

One sign of the peculiarity of this example is that the charge Q1 is not a free

parameter in the theory, but instead is fixed by z. Thus, the single charge

case Q2 = 0 for asymptotically Lifshitz geometries does not encode information

about electrical conductivities, and we will not comment on it further.

• If the near-horizon solutions studied here were embedded in a theory that allowed

for AdS asymptotics, j1 would be a genuine electrical current, and σ11 would

8That this can indeed be done has been shown explicitly in a number of examples in the literature.
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indeed be identified with the DC conductivity, σDC = σ11. Written in terms of

the scalar couplings appearing in the Lagrangian, we have

σDC = eλ1φ0 +
Q2

1

α2 r2+θ0

e−λ3φ0 . (4.1)

In this form it is apparent that the coupling between the axionic fields and the

dilatonic scalar is responsible for generating temperature dependent terms which

are sensitive to the mechanism to relax momentum. In particular, as we shall see

in section 4, the term proportional to Q2
1/α

2 can give a temperature dependence

of the form ∼ T−1, and therefore a linear behavior for the resistivity. Finally,

we should note that (4.1) is precisely of the form found in [22], whose setup falls

within the class of models we are discussing when Q2 = 0.

2. Next, we examine the special case for which j1 = 0, in which the conductivity matrix

simplifies significantly, yet the system still displays a rich behavior. Note that having

j1 = 0 does not mean that the fluctuation δ(A1)x is turned off. On the other hand,

it corresponds to the situation in which the sources E1 and E2 can not be turned on

independently,9 but rather are related via

σ11E1 + σ12E2 = 0 . (4.2)

We can use (3.12) with j1 = 0 to trade E1 for E2, and extract the DC conductivity by

reorganizing the resulting expression for the remaining current, j2 = σDC
2 E2. We find

σDC
2 = r2z−2+θ0

[
1 +

Q2
2

r2+θ0 (α2 +Q2
1 r

2z+θ
0 )

]
. (4.3)

We emphasize that this is not the same as the original σ22. Indeed, this expression

is sensitive to the presence of both charges. In particular, the contribution from Q1

introduces additional temperature dependence, which is absent in σ22 and would also

not be present in the single charge case above (for which Q2 = 0). This additional

dependence was also missed by [24], as we emphasized earlier.

Recall that when Q1 = 0 we lose the Lifshitz scaling of the background (z = 1). When

both charges vanish, the DC conductivity (4.3) becomes

σDC
2 = rθ0 , (4.4)

corresponding to a geometry that is conformal to AdS, and reduces to the well-known

result of [40], σDC
2 = 1, when the background respects hyperscaling, θ = 0. Thus we see

that the gauge field A2 and its charge Q2 can be viewed as generalizations of the gauge

9A preliminary asymptotic analysis seems to indicate that in the range 1 ≤ z ≤ 4
3

only the linear

combination of E1 and E2 which doesn’t source j1 can be turned on while keeping the geometry regular.

We refer the reader to appendix B for further details, but stress that a proper asymptotic analysis should

take into account holographic renormalization.

– 9 –



J
H
E
P
0
4
(
2
0
1
7
)
0
0
9

field in the Reissner-Nordström black hole. To examine the structure of the conductivity

matrix more generally, one needs to have a better understanding of how to extract sources

and VEVs in the case of Lifshitz and hyperscaling violating asymptotics, in the presence

of momentum dissipation [36].

Finally, it is worth remarking that the conductivities we obtained in this section were

solely obtained from the horizon data. The requirement that the perturbations be well

behaved at infinity may give further constraints on the parameters in the solution. Since

the solutions (2.3) we are considering allow us to study the perturbations in the entire

region exterior to the black hole, we have indeed obtained such constraints from inspecting

the asymptotic behaviour of the fluctuations. This analysis is relegated to appendix B.

5 Temperature dependence

We are now ready to discuss the issue of the temperature dependence of the conductivities.

Our main interest is in identifying parameter choices for which one can find a linear regime

for the resistivity, ρ(T ) ∼ T . More generally, we want to display the rich structure of

temperature behaviors that are available in these systems, in the presence of two charges. In

terms of the horizon radius r0 and the parameters α and Q2, the Hawking temperature (2.9)

is given by

T =
z + 2 + θ

4π
rz0 −

Q2
2

8π(2 + θ)

1

rz+2+2θ
0

− α2

4π(2 + θ)

1

rz+θ0

. (5.1)

When r2z+θ0 � α2 and r2z+2+2θ
0 � Q2

2, we recover the well known Lifshitz scaling

T ∼ rz0 . (5.2)

Thus, this approximation corresponds to “large temperatures,” in the sense of10

T � α
2z

2z+θ and T � Q
z

z+1+θ

2 . (5.3)

As the temperature is lowered sufficiently, the α2 term in (5.1), which always dominates over

the Q2
2 term provided that θ > −2, has to be taken into account. The simple scaling (5.2)

is then modified to11

T ∼ z + 2 + θ

4π
rz0 −

α2

4π(2 + θ)

1

rz+θ0

, (5.4)

and can be inverted (in the large temperature, or small α limit) to obtain an expansion for

r0 as a function of T ,

r0 =
( 4πT

z + 2 + θ

) 1
z

+
α2

4πz(2 + θ)

1

T

(z + 2 + θ

4πT

)1+ θ−1
z

+ · · · . (5.5)

We shall return to the opposite, low temperature regime at the end of this section.

10Note that the temperatures satisfying these ranges can be decreased/increased by tuning α and Q2.
11This holds under the condition α2 T

2+θ
z � Q2

2, and is clearly exact when Q2 = 0.
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Using the large T approximation (5.5), the conductivity matrix σij given in (3.13)

becomes

σ11 ∼
Q2

1

α2
T

2z−4
z + T−

(4+θ)
z + . . . ,

σ12 ∼ Q1Q2

(
1

α2
T

2z−4
z + (z − 2)T−

(4+θ)
z

)
+ . . . ,

σ22 ∼ T
2z−2+θ

z +
Q2

2

α2
T

2z−4
z +Q2

2 (z − 2)T−
(4+θ)
z + . . . , (5.6)

where each term in each component is smaller than the preceding one (we dropped all

strictly positive numerical factors that don’t involve the parameters {Q1, Q2, α}). In order

to understand the temperature behavior over a wider range one must invert (5.1) for generic

values of the scaling exponents. Finally, note that while the Q1 charge naively sets a scale

that is different from those controlling the temperature, which are Q2 and α, it is fully

determined by the background, i.e. it is fixed in terms of z and θ, as given in (2.4). Next,

we are now going to examine the same two cases that were singled out in section 4.

5.1 Single charge case (Q2 = 0), AdS asymptotics

Recall that when Q2 = 0 the conductivity matrix σij reduces to σ11. We explained in

section 4 that for Lifshitz asymptotics the component σ11 does not represent the electrical

DC conductivity in the system. Thus, we will discuss instead its behavior assuming that

the solutions can be embedded in AdS. This can be achieved by slightly modifying the

model, in the manner described in section 4, and without affecting the horizon properties

of the geometry. One then has the usual interpretation σDC = σ11.

Written in terms of the conduction exponent ζ1 = −2− θ defined in (2.10) and the pa-

rameters (2.4) describing our solution, the temperature dependence of the DC conductivity

read off from (5.6) is then

σDC ∼ T
ζ1−2
z +

Q2
1

α2
T
ζ1−λ3γ

z + . . . = T
ζ1−2
z

(
1 +

Q2
1

α2
T

2z+θ
z

)
+ . . . . (5.7)

The two terms in this expression generically compete with each other. However, when the

“large temperature” condition (5.3) holds, the first term dominates12 for (2z + θ)/z < 0,

while the second one is the dominant one when (2z+θ)/z > 0. We emphasize that negative

values of θ are allowed for AdS asymptotics (while they are excluded in the asymptotically

Lifshitz case to avoid curvature singularities in the UV).

We have inspected (5.7) more carefully in a number of cases of particular interest. We

focus on the ones that allow for σDC ∼ T−1, so that the resistivity scales like ρ ∼ T :

• When z = 4 + θ and −4 < θ < −8/3 the first term ∼ T
ζ1−2
z dominates, yielding the

scaling σDC ∼ T−1 in the regime (5.3).

• Again in the regime (5.3), the choice z = 4/3 yields

σDC ∼
Q2

1

α2

1

T
+

1

T 3+3θ/4
⇒ ρ ∼ T 3+ 3θ

4

1 +
Q2

1
α2 T

2+ 3θ
4

. (5.8)

At leading order and assuming θ > 0, this is associated with a linear resistivity ρ ∼ T .

12Since Q1 ∼ O(1), it doesn’t affect this argument.
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• When θ = −2z the relation (5.1) yields the exact expression

T =

[
z + 2 + θ

4π
− α2

4π(2 + θ)

]
rz0 , (5.9)

and the temperature scaling is precisely T ∼ rz0. Indeed in this case the conductivity

scales as T 2− 4
z , and when z = 4/3 and θ = −8/3 one has σDC ∼ T−1 and ρ ∼ T .

• Another interesting choice is that of z = 4/3 and θ = −z, which yields

σDC
1 ∼ α2 +Q2

1T

α2T 2
, (5.10)

and therefore a quadratic regime for the resistivity below the linear one.

In full generality one should solve for the temperature dependence numerically, since sub-

leading effects will become crucial when going to even smaller temperatures.

Intriguingly, the cases with z = 4/3 are partially reminiscent of that singled out by [41],

whose analysis relied on purely field-theoretic arguments. Naively, the set of values identi-

fied by [41], z = 4/3, θ = 0 and Φ = −2/3 (with Φ related to the conduction exponent in

the theory) are not consistent with each other in our model.13 One should keep in mind,

however, that a direct comparison between our model and the setup of [41] can be quite

subtle. In particular, the identification of the conduction exponent in our setup depends

on the asymptotics and on the physical interpretation of each vector field.

Still, we find it interesting that the linear resistivity regimes which arise from the

Q2
1/α

2 terms in (5.7) are all associated with z = 4/3. This value also plays a special role

in the asymptotic analysis in the case of Lifshitz asymptotics, as discussed in appendix B.

That the choices {z = 4/3, θ = −8/3} as well as {z = 4/3, θ = −4/3} are allowed by

all energy and stability conditions, provided one has AdS asymptotics, can be seen from

the parameter ranges summarized e.g. in [42]. Finally, we note that (5.7) matches14 the

generic behavior observed in [22]. More specifically, when z > 1 our expression for σ11 falls

into Class III of [22], with our near-horizon solutions providing an explicit example of the

type of behavior considered there.

5.2 j1 = 0 case

We now return to the case of Lifshitz asymptotics, and examine the special choice j1 = 0,

for which the two sources E1, E2 are not independent of each other, but rather obey (4.2).

Examining the structure of σDC
2 given by (4.3), we find a rich behavior for σDC , depending

on the range of temperature and the choice of scaling exponents, as well as the interplay

between the strength α of the axionic sources and the tunable charge Q2. In particular,

recall that the exponents z and θ are constrained by the conditions described in section 2.

Below we examine a few representative cases, again with a focus on selecting scaling

choices that yield a linear ρ ∼ T regime:

13For our gravitational solutions the values Φ = −2/3 and θ = 0 are not compatible with each other.
14Note that our θ is opposite to that of [22].
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• Working in the large T approximation (5.2), we have

σDC
2 ∼ T

2z−2+θ
z

1 +
Q2

2

T
2+θ
z

(
α2 +Q2

1 T
2z+θ
z

)
 . (5.11)

Since in the range (5.3) the contribution from the α term in the denominator is always

subleading compared to that of Q1, the leading terms in the expansion of σDC
2 are

given by

σDC
2 ∼ T

2z−2+θ
z +

Q2
2

Q2
1

T
−θ−4
z + . . . = T

ζ2−2
z +

Q2
2

Q2
1

T
ζ1−2
z + . . . , (5.12)

and are therefore insensitive to the magnitude α of the axionic sources. When

z = θ + 4 a linear regime ρ ∼ T arises from the Q2 dependent term at interme-

diate temperatures, since the first term dominates the large T behavior (its power is

constrained to be positive by the null energy conditions).

• The contribution encoded by α comes into play when we consider subleading terms.

As an example, we examine the form of σDC
2 in the small α approximation (5.4).

Starting from the expression (4.3) and expanding to linear order in α2, we find

σDC
2 ∼ T

2z−2+θ
z +

Q2
2

Q2
1

T
−θ−4
z + α2T−

2
z − α2Q2

2

Q2
1

T−
2
z
(2+z+θ) . . . , (5.13)

where we are suppressing positive coefficients that depend on (z, θ). The competition

between the different terms in the expansion will then be sensitive to the size of Q2

and α as well as the particular values of the scaling exponents. When z = 2 we see a

contribution to the DC conductivity of the form α2T−2/z ∼ α2T−1, again compatible

with a linear resistivity in an appropriate intermediate temperature regime.

Whether σDC
2 can give rise to a linear DC resistivity in other regimes entails a detailed

study of the relation (5.1). Inspecting the behavior of σDC
2 for generic temperatures, we see

that it differs in a crucial way from the result of [24]. The Q2
1 term in the denominator of

our expression (5.11), which is temperature dependent, does not appear in [24], precisely

because both gauge fields were not allowed to fluctuate in their analysis. One cannot

merely set Q1 = 0 in this expression, without also setting z = 1. Furthermore, by naively

suppressing the Q1 term and incorrectly identifying σDC
2 with

σ22 ∼ T
2z−2+θ

z +
Q2

2

α2
T

2z−4
z + . . . , (5.14)

one is in fact turning off a contribution that is more important — in the large temperature

regime (5.2) used to arrive at this expression — than that coming from the α term. More-

over, notice that the z = 1 and θ = −1 case considered in [24], which naively yields a linear

temperature dependence for the resistivity, σ22(z = 1, θ = −1) ∼ 1
T +

Q2
2

α2
1
T 2 , violates the

null energy conditions and is therefore problematic.
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5.2.1 A numerical example

The cases considered above relied on simple analytical estimates. Here we examine numer-

ically the temperature dependence of σDC
2 for specific scaling exponents, using the exact

expressions (4.3) and (5.1), to confirm some of the conclusions we reached with our rough

temperature approximations. We will choose parameters to obtain a linear regime for the

resistivity, as a proof of principle that it can indeed be realized. A more extensive numerical

analysis is beyond the scope of this paper.

As a concrete example, we consider the case z = 4
3 and θ = 0, which is reminiscent

of the scalings singled out in [41], and choose the parameters Q2 = 1000 and α = 10. For

T ≤ T0 ∼ 17.5, the resistivity can be approximated by a linear function with

ρ = 0.0222(1 + 0.283T ) , (5.15)

and at T = T0 it turns around,15

∂ρ

∂T

∣∣∣
T=T0

= 0 . (5.16)

For T > T0 we find it convenient to approximate it using the Steinhart-Hart equation [30],

1

T
= A+B log(ρ) + C(log(ρ))3 +D(log(ρ))2 , (5.17)

with coefficients

A = 0.818 , B = 0.702 , C = 0.0202 , D = 0.205 . (5.18)

We plot ρ(T ) and the two approximate functions in figure 1.

As we can see in figure 2 where the low temperature region is magnified, the linear

regime described by the straight line (5.15) appearing in figure 1 matches with the resistivity

roughly between T ∈ (4.0, 10). As smaller temperatures we have instead an expansion of

the form ρ ∼ 0.03(1+0.1T +0.01T 2 +0.00006T 3) and the third-order term can be ignored.

In the higher-temperature phase the approximation to (5.17) is accurate over a wider range.

In this example we have chosen Q2 = 1000 and α = 10, with a large ratio Q2/α = 100.

If we consider a smaller value Q2 = 10, so that Q2/α = 1 instead, the nearly linear small

T region disappears and once finds the decaying behavior seen in figure 3. Note that for

the case with α = 0, corresponding to an infinite ratio of Q2/α, we get the ρ temperature

dependence shown in figure 1.

We close this section with a few comments on the extremal limit for which T = 0. Let

us denote the horizon radius by r0 = r̄0. We have (for T ∼ 0) that

z + 2 + θ

4π
r̄z0 =

Q2
2

8π(2 + θ) r̄z+2+2θ
0

+
α2

4π(2 + θ) r̄z+θ0

. (5.19)

We can solve for Q2 in terms of r̄0 and α2. It is then easy to establish that for small T ,

we have

r0 = r̄0 +
4πr̄z+1+θ

0

[−α2 + 2(z + 1 + θ)(z + 2 + θ) r̄2z+θ0 ]
T . (5.20)

15Similar transitions were seen in massive gravity in [44].
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Figure 1. Plot of resistivity versus temperature for z = 4/3, θ = 0, Q2 = 1000 and α = 10, showing

a transition from a linear regime to a decaying region. The resistivity ρ2(T ) is plotted as a solid

thin line. The straight dashed line on the left represents (5.15), while the curved dashed line on

the right represents (5.17).
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0.08

0.10

0.12

Ρ

Figure 2. Plot of resistivity versus low temperature for z = 4/3, θ = 0, Q2 = 1000 and α = 10,

The longer straight dashed line represents (5.15).

Thus, perhaps not surprisingly, we have

σij ∼ σ̄ij +O(T ) . (5.21)

This linear dependence can be seen as the shorter dashed line in figure 2.

While we have seen a number of cases for which one can find σDC ∼ T−1, it would

be useful to have a deeper understanding of which features, if any, are robust to changes

in z and θ. Moreover, while the latter exponents control the possible scaling behaviors of

the resistivity, the question of the temperature range in which a given scaling is possible
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Figure 3. Plot of resistivity versus temperature for z = 4/3, θ = 0, Q2 = 10 and α = 10. For these

parameters the linear regime is no longer present. The dashed curved line represents the fit (5.17)

with coefficients A = 2.29, B = 2.67, C = 0.145, D = 1.07.

is more complicated. In the two-charge case, enough parameters can be tuned that a wide

array of scalings are possible, in different temperature regimes. While we have seen that a

linear regime is possible, this is far by being able to explain the universality of ρ ∼ T .

6 Conclusions and summary of results

In an attempt to gain insight into strongly coupled phases with anomalous scalings, we

have chosen to work with an holographic model that gives rise to non-relativistic geometries

that violate hyperscaling. These provide a fruitful laboratory for realizing geometrically a

variety of scalings, and insights into the potential mechanisms behind them. The solutions

we have examined are supported by a running dilatonic scalar and two gauge fields, with

the latter playing very different roles. One gauge field is responsible for generating the

Lifshitz-like nature of the background, with its charge Q1 entirely fixed in terms of the

scaling exponents. The other one plays a role analogous to that of a standard Maxwell

field in asymptotically AdS space, and its charge Q2 is a free parameter. Since our interest

here is in the computation of DC conductivities, we have included two spatially dependent

axionic fields which encode the physics of momentum dissipation in the dual theory, without

spoiling the homogeneity of the background. Consistency of the resulting perturbation

equations requires both gauge fields to fluctuate, which leads to some subtleties in the

analysis.

As we have seen in section 3, the conductive response of the system is characterized

by a matrix σij whose components are

σ11 =
1

r4+θ0

+
Q2

1 r
2z−4
0

α2
, σ12 = σ21 =

Q1Q2r
2z−4
0

α2
, σ22 = r2z−2+θ0 +

Q2
2

α2
r2z−40 , (6.1)
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Q2 = 0, AdS asymptotics

z = 4 + θ, −4 < θ < −8
3 ρ ∼ T at large T

z = 4
3 , θ > 0 ρ ∼ T at large T

z = 4
3 , θ = −4

3 ρ ∼ T at large T and

ρ ∼ T 2 at intermediate T

z = 4
3 , θ = −8

3 ρ ∼ T for all T

Table 1. Single charge case, AdS asymptotics. A few representative cases (examined in 5.1), which

yield a linear regime for the resistivity. These correspond to geometries that exhibit scaling behavior

characterized by (z, θ) in the IR, but approach AdS in the UV.

with α the magnitude of the axionic scalars. The temperature dependence is therefore

controlled by the interplay between the horizon size r0 and the three quantities Q1 (fixed by

the background), Q2 and α. In particular, in the “large temperature” regime r2z+θ0 � α2

and r2z+2+2θ
0 � Q2

2 we recover the standard Lifshitz scaling T ∼ rz0, while subleading

temperature effects are encoded by (5.4). A detailed study of the temperature dependence

can be performed numerically by inverting expression (5.1) once the scaling exponents are

specified, as done in 5.2.1, but is not feasible analytically in full generality. Here we have

only considered a few special cases, relying mostly on simple estimates.

Since the result (6.1) was obtained from a horizon computation, it is only sensitive

to the IR behavior of the geometry. Thus, it also describes systems in which the IR is

Lifshitz-like, while the UV is relativistic. The main difference between our explicit setup,

in which the solutions are everywhere Lifshitz-like, and the more standard relativistic case

with AdS asymptotics comes from examining the boundary behavior of the perturbations.

Indeed, the physical interpretation of the components of σij is very different depending on

the UV symmetries and asymptotic behavior of the geometry, as discussed in section 4.

For example, in the single charge case Q2 = 0 with Lifshitz asymptotics (in which the

second gauge field is truncated out from the theory), the current associated with the first

gauge field is not an electrical current. Rather, it has the interpretation of an energy flux,

and the component σ11 does not represent the DC conductivity in the system. However, if

the theory is modified slightly, so that the same IR geometries can be embedded in AdS,

we recover the standard interpretation, σDC = σ11. We have examined the temperature

dependence in the Q2 = 0 case, under the assumption of AdS asymptotics, in section 5.1,

obtaining at large T

σDC = σ11 ∼
Q2

1

α2
T

2z−4
z + T−

4+θ
z , (6.2)

in agreement with the IR analysis of [22]. Some of the cases in which this expression yields

a linear resistivity ρ ∼ T are summarized in table 1.

While in this paper we have done a preliminary analysis of the fluctuations at the

boundary, contained in appendix B, we haven’t taken into account holographic renor-

malization, which is expected to play an important role. Still, according to our analysis

ensuring a well-behaved asymptotic expansion in the non-relativistic case requires taking

the current associated with the Lifshitz gauge field to vanish, j1 = 0, when the dynamical
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j1 = 0, Lifshitz asymptotics

z = 4 + θ ρ ∼ T at intermediate T

from Q2 dependent terms

z = 2, α small ρ ∼ T at intermediate T

from α dependent terms

z = 4
3 , θ = 0 and Q2

α large ρ ∼ T for small T

Table 2. Lifshitz asymptotics, linearly dependent sources. A few representative cases (examined

in 5.2) which yield a linear regime for the resistivity. These correspond to geometries that are

asymptotically Lifshitz and hyperscaling violating.

critical exponent is in the range 1 ≤ z ≤ 4/3. The condition j1 = 0 implies that the two

sources E1 and E2 can not be turned on independently, a feature that is absent in AdS and

which we would like to understand better. In particular, it could very well be an artifact

of not having performed holographic renormalization.

In section 4 we have analyzed in some detail the behavior of σij when j1 = 0 (with the

sources constrained through σ11E1 + σ12E2 = 0), for solutions with Lifshitz asymptotics.

The DC conductivity in the temperature regime T ∼ rz0 is then given by

σDC
2 ∼ T

2z−2+θ
z

1 +
Q2

2

T
2+θ
z

(
α2 +Q2

1 T
2z+θ
z

)
 , (6.3)

and is controlled by the interplay between the two charges and the size of the axionic fields.

Again, we summarize some of the cases corresponding to linear resistivities in table 2.

Even though the physical interpretation of the matrix (6.1) in full generality is not yet

clear for Lifshitz asymptotics (and some of these issues will be addressed in [36]), what is

apparent from our analysis is that the temperature behavior is quite rich, and moreover that

a linear temperature dependence for the resistivity is not difficult to find, as exemplified

by tables 1 and 2. An important point to keep in mind is that the range of temperatures

for which results like (6.3) apply can be tuned by adjusting the two parameters α and Q2

as desired. Indeed, “large” temperatures are only large compared to appropriate powers

of α and Q2, and therefore one can push the linear resistivity regime to smaller or larger

temperatures by simply changing the size of these two tunable parameters. The existence of

the additional scale set by Q2 is one of the advantages of working with a model that involves

two gauge fields. An additional feature to note is that since our {z, θ} scaling solutions

occupy the entire geometry and not just its IR portion, they can in principle describe

intermediate scalings (much as in [43], where the focus however was on the behavior of the

optical conductivity).

We emphasize once again here, as we did in section 4, that by neglecting the fluc-

tuations of both gauge fields one obtains an incorrect result for σDC
2 , which ignores an

important temperature dependent term controlled by Q1. We leave a more detailed anal-

ysis of the temperature dependence of the DC conductivities and a study of the thermal

conductivity (along the lines of [27, 45]) to future work. Another question is whether there
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are any mechanisms in our model analogous to those of [46], who also examined transport

in a gravitational theory with two bulk gauge fields and a dilatonic scalar. One of the

interesting features of the construction of [46] is the presence of a finite conductivity —

specifically, the DC transconductance — without the need to break translational invariance.

Perhaps the most important point to stress is that a more general understanding of

the transport properties in theories such as ours must take into account extensions of

the holographic dictionary to non-relativistic spacetimes (see e.g. [47, 48] in the presence

of hyperscaling violation). Insights from non-relativistic hydrodynamics might help us

understand the role of momentum dissipation in determining the final form of σDC. For

instance, an analysis along the lines of [49] may shed light on the relation between horizon

and boundary data, and on the interpretation of the latter in our model.

Before closing we should mention that another interesting question in these holographic

models is that of the scaling of the Hall angle, as compared to that of the DC conductivity.

Although here we have not included a magnetic field, by inspecting the structure of the

matrix σij in (3.13) we expect a behavior similar to that observed in [39], due to the

presence of two scales in our system. In particular, in analogy with what was seen in [39]

in a different context, σ12 scales just like the α-dependent parts of σ11 and σ22. Finally, we

find it intriguing that in many cases the special choice z = 4/3 discussed by [41] also leads

to a linear resistivity in our model. Perhaps more interestingly, in our construction z = 4/3

is the edge of the range seemingly associated with perturbations that diverge at the non-

relativistic boundary. While the special role played by z = 4/3 may just be a coincidence

— and the boundary analysis is only preliminary — it deserves further attention, as it is

of interest to find explicit gravitational realizations of the scalings singled out in [41], and

gain insight into their origin. We leave these questions to future work.
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A A general class of hyperscaling-violating solutions

In this appendix, we present a class of electrically-charged Lifshitz-Like black branes with

hyperscaling violations, carrying magnetic p-form fluxes along the brane space. The La-

grangian consists of the metric, a dilaton, two Maxwell fields and N p-form field strengths.
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The Lagrangian in general n dimensions is given by

L =
√
g
(
R− 1

2
(∂φ)2 − 2Λeλ0φ − 1

4
eλ1φF 2

1(2) −
1

4
eλ2φF 2

2(2) −
N∑
i=1

eλ3φ

2p!
F2
i (p)

)
. (A.1)

We consider the ansatz

ds2 = r2θ
(
− r2z f dt2 +

dr2

r2 f
+ r2dxidxi

)
,

φ = γ log r , A1 = Φ1dt , A2 = Φ2dt ,

F i(p) = αdx
(i)
j1
∧ . . . ∧ dx(i)jp , (A.2)

where x
(i)
j , 1 ≤ j ≤ p, denote disjoint sets of transverse-space coordinates spanning the

total (n− 2)-dimensional transverse space, and so we shall have

Np = n− 2 . (A.3)

The equation of motion for the electric field gives

Φ′1 = Q1 r
z+1−n−λ1γ−(n−4)θ , Φ′2 = Q2 r

z+1−n−λ2γ−(n−4)θ . (A.4)

The solution is

f = 1 +
α2r−2(θp+p+z−1)

2p(θ + 1)(2θ − (n− 2p)(θ + 1) + z)

+
Q2

2 r
−2(−2θ+θn+n+z−3)

2(θ + 1)(n− 2)((n− 2)(θ + 1) + z − 2)
−mr2θ−(θ+1)n−z+2 , (A.5)

with parameters satisfying the relations

γ =
√

2(θ + 1)(n− 2)(θ + z − 1) , λ0 = −
√

2θ√
(θ + 1)(n− 2)(θ + z − 1)

,

λ1 = −
√

2((n− 3)θ + n− 2)√
(θ + 1)(n− 2)(θ + z − 1)

, λ2 = −λ3 =

√
2(θ + z − 1)

(θ + 1)(n− 2)
,

Q1 =
√

2(z − 1)((n− 2)(θ + 1) + z) ,

Λ = −1

2
((n− 2)(θ + 1) + z − 1)((n− 2)(θ + 1) + z) . (A.6)

B Asymptotic analysis

This appendix gives a self-contained discussion of some of the asymptotic properties of

the solutions, including an explicit demonstration of the way in which the DC ansatz of

section 3 emerges as an ω → 0 limit of a small-ω AC calculation. The presence of multiple

gauge fields in our model substantially complicates the analysis. We will highlight some
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of the subtleties which arise from allowing each gauge field to fluctuate, and comment on

how this method relates to the one of section 3. However, we have not taken into account

holographic renormalization, which is expected to play an important role in clarifying the

interpretation of our results, given Lifshitz asymptotics. A more thorough discussion will

appear in [36]. The reader should also be aware that the perturbations in this section are

not the same as those of the horizon analysis done there. In particular, to avoid confusion

we will use hatted quantities to refer to the perturbations of section 3.

In contrast to the analysis of section 3 — in which the electric fields were taken to be

constant — we will now allow the fluctuations of all the fields to have monochromatic time

dependence e−iωt. To this end, we consider the following perturbations:

(δAi)x1 = ai(r)e
−iωt , δχ1 = b(r)e−iωt , δgtx = rθ+2 ψ(r)e−iωt , (B.1)

where it is to be understood that the physical perturbations are given by taking the real

parts of these expressions. At the linear level, the equations of motion then imply

(rz−3−θfa′1)
′ +

ω2a1
rz+5+θf

+Q1ψ
′ = 0 ,

(r3z−1+θfa′2)
′ +

ω2a2
r3−z−θf

+Q2ψ
′ = 0 ,

ψ′ = − 1

r5−z+θ

(
Q1a1 +Q2a2 −

r5−zαfb′

iω

)
,

ψ = − iω b

α
+
f (r5−zfb′)′

iω αr3(1−z)
. (B.2)

We can eliminate ψ, and obtain

(rz−3−θfa′1)
′ +

ω2

rz+5+θf
a1 =

Q1

r5−z+θ

(
Q1a1 +Q2a2 − αb̃

)
,

(r3z−1+θfa′2)
′ +

ω2

r3−z−θf
a2 =

Q2

r5−z+θ

(
Q1a1 +Q2a2 − αb̃

)
,(

r3(z−1)f b̃′
)′

+
ω2

r5−zf
b̃ = − α

r5−z+θ

(
Q1a1 +Q2a2 − αb̃

)
, (B.3)

where b̃ = r5−zfb′/(iω). Note that one can again see from (B.3) that, as remarked pre-

viously, it would be inconsistent to set the perturbation a1 to zero, since it would imply

b̃ = Q2 a2/α, and hence the last two equations in (B.3) would be incompatible.

For later purposes, it is useful, as in [20], to introduce the two independent quantities

Π1 = −rz−3−θfa′1 −
Q1

α
r3(z−1)f b̃′ ,

Π2 = −r3z−1+θfa′2 −
Q2

α
r3(z−1)f b̃′ , (B.4)

which are radially conserved up to (and including) O(iω).16 In other words, we must have

Πi = iω ji +O(ω2) , i = 1, 2. (B.5)

16Note that the functions Πi are essentially the same as the currents 〈Ji〉 in the Kubo formula (3.1), since

they arise as the surface terms in the variation of the quadratic action for the fluctuations with respect to

the external sources.
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where ji are constants. In fact, they are the same as the conserved currents ji introduced

in (3.4). These two conserved quantities are associated with the two zero-eigenvalue modes

of the mass matrix for the perturbations, which can be read off from (B.3).

Next, we define the two quantities

H1(ω) = lim
r→∞

rz−3−θa′1
a1

, H2(ω) = lim
r→∞

r3z−1+θa′2
a2

, (B.6)

which we associate with the following large-r asymptotic behavior for ai:

a1 = a10

(
1 +

H1(ω)

(z − 4− θ)rz−4−θ
+ · · ·

)
,

a2 = a20

(
1 +

H2(ω)

(3z − 2 + θ)r3z−2+θ
+ · · ·

)
. (B.7)

Notice that in order for a1 to be regular asymptotically, one must have H1(ω) = 0 when

z − 4 − θ < 0. On the other hand, the regularity of a2 is guaranteed by the null energy

condition and having taken z ≥ 1. We will return to the vanishing of H1 in more detail

shortly. In the ω → 0 limit, we can then define

γi = − lim
ω→0

Hi(ω)

iω
, i = 1, 2. (B.8)

The quantities γi are the asymptotic data, and later, we shall examine their relation to the

conductivity matrix σij .

Next, let us consider the ansatz for perturbations that are purely ingoing on the hori-

zon, valid for small ω:

a1 =
E1

iω
e−

iω
4πT

log f
(
1 + iωU1(r) +O(ω2)

)
,

a2 =
E2

iω
e−

iω
4πT

log f
(
1 + iωU2(r) +O(ω2)

)
,

b̃ =
ν

iω
e−

iω
4πT

log f
(
1 + iωV (r) +O(ω2)

)
, (B.9)

where the Hawking temperature T is given by (2.9). We require (E1, E2, ν) to be real

constants, and the Ui to be real functions that are regular both on the horizon and at

asymptotic infinity. Note that the iω denominators on the right-hand sides of eqns (B.9)

are included for convenience, in order to facilitate the comparison with the DC ansatz

approach that we described in section 3. In particular, the constants E1 and E2 in (B.9)

will turn out to be the same, in the ω → 0 limit, as the constants we introduced in the DC

ansatz in (3.3). To see this, we recall that the physical fluctuations of the various fields

are obtained from the complex expressions (B.1) and (B.9) by taking the real parts of the

right-hand sides in (B.1). Thus, for example, the physical fluctuations (δAi)x are given by

(δAi)x = <
[
Ei
iω

(
1− iω log f

4πT
+ iωUi − iωt+O(ω2)

)]
,

= −Eit− Ei
(

log f

4πT
− Ui

)
+O(ω) . (B.10)

– 22 –



J
H
E
P
0
4
(
2
0
1
7
)
0
0
9

Taking the DC limit ω → 0, we reproduce the expressions for (δAi)x given in (3.3), with

âi = −Ei
(

log f

4πT
− Ui

)
, (B.11)

and we are using hatted quantities to refer to the perturbations of section 3. In an analogous

manner we can confirm that, as mentioned earlier, the constants ji appearing in (3.4) are

indeed the same as the ones arising in (B.5).

Returning to the complex expressions (B.9), we now substitute these into the pertur-

bation equations (B.3). At the leading order in ω, i.e. at order ω−1, we find

E1Q1 + E2Q2 − να = 0 . (B.12)

At the next order, i.e. ω0, we have(
E1r

z−3−θfU ′1

)′
− Q1

r5−z+θ
(E1Q1U1 + E2Q2U2 − ναV )−

(
E1r

z−3−θf ′

4πT

)′
= 0 ,

(
E2r

3z−1+θfU ′2

)′
− Q2

r5−z−θ
(E1Q1U1 + E2Q2U2 − ναV )−

(
E2r

3z−1+θf ′

4πT

)′
= 0 ,

(
νr3(z−1)fV ′

)′
+

α

r5−z+θ
(E1Q1U1 + E2Q2U2 − ναV ) +

(
νr3(z−1)f ′

4πT

)′
= 0 . (B.13)

It follows from (B.5) that the first two integrals are

rz−3−θ

α

((
E1αU

′
1 + νQ1r

2z+θV ′
)
f −

(
E1α+ νQ1r

2z+θ
)
f ′

4πT

)
= −j1 ,

r3(z−1)

α

((
E2αr

2+θU ′2 + νQ2V
′
)
f − (E2αr

2+θ + νQ2)f
′

4πT

)
= −j2 . (B.14)

Evaluating the above equations on the horizon, we find

j1 =
αE1 + ν Q1 r

2z+θ
0

αr4+θ0

, j2 =
1

α
(ν Q2 + αE2 r

2+θ
0 ) r2z−40 . (B.15)

Using (B.12) to substitute for ν in these equations, we obtain expressions for the ji in

terms of the Ei which are precisely those given by eqns (3.12) and (3.13).

The calculation above shows how the conductivities are read off from the horizon data.

We next turn to a discussion of how they are related to data on the boundary at infinity. In

particular, we shall see that regularity requirements at the boundary can provide additional

constraints on the currents j1 and j2, and hence modify the conductivity matrix.

To calculate the quantities γi defined in (B.8) and (B.6), we first take the ω = 0 limit,

and define the functions W1 and W2 by

lim
ω→0

rz−3−θa′1
(−iω a1)

= rz−3−θ
( f ′

4πT f
− U ′1

)
≡ r2(z−1)W1 ,

lim
ω→0

r3z−1+θa′2
(−iω a2)

= r3z−1+θ
( f ′

4πT f
− U ′2

)
≡ r2(z−1)W2 . (B.16)
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It turns out that W1 and W2 satisfy

(r3z+1+θf2W ′1)
′ =

j1 (Q2
2 + α2 r2+θ)− j2Q1Q2

E1 rz+1+2θ
,

(r3z+1+θf2W ′2)
′ = −j2 α

2 +Q1 (j2Q1 − j1Q2) r
2z+θ

E2 rz−1
, (B.17)

which in turn imply that

r3z+1+θf2W ′1 = d1 −
1

E1 rz+θ

(
Q2 (j1Q2 − j2Q1)

z + θ
+
α2 j1 r

2+θ

z − 2

)
≡ ξ1 ,

r3z+1+θf2W ′2 = d2 −
r2

E2

(
Q1 (j2Q1 − j1Q2) r

z+θ

z + 2 + θ
− α2 j2

(z − 2) rz

)
≡ ξ2 , (B.18)

where d1 and d2 are integration constants. Together with (B.16), we have(
U ′1

rz+1+θ

)′
= ζ̃1 ≡

(
f ′

4πT rz+1+θf

)′
− ξ1
r3z+1+θf2

,(
rz+1+θU ′2

)′
= ζ̃2 ≡

(
rz+1+θf ′

4πT f

)′
− ξ2
r3z+1+θf2

. (B.19)

It turns out that by choosing the integration constants appropriately, the singularity at

r = r0 in the function ζ̃i can be avoided. This ensures that U1 and U2 are regular on the

horizon. The leading-order large-r expansions for ζ̃1 and ζ̃2 depend upon the interval in

which the Lifshitz exponent z lies. We find

ζ̃1 =


− j1α2

(z−2)E1

(
1
r

)4z−1+θ
+ · · · , 1 ≤ z < 2;

− d1
r3z+1+θ + · · · , 2 < z ≤ 4;

const.
r2z+5+θ + · · · , z > 4;

(B.20)

ζ̃2 =

−
2(z−1)(E1Q2−E2Q1r

2z+2+2θ
0 )

E2Q1r
4+θ
0

1
r2z−1 + · · · , z < 2

const.
r3

+ · · · , z > 2
(B.21)

which imply that for z > 1 and θ > 0, ζ̃i can be integrated out to infinity without diver-

gence. Thus the general solutions for U ′i are given by

U ′1 = rz+1+θ

(
β1 +

∫ r

∞
ζ̃1

)
, U ′2 =

1

rz+1+θ

(
β2 +

∫ r

∞
ζ̃2

)
, (B.22)

where the βi’s are two integration constants. It is clear that the regularity of U1 at asymp-

totic infinity requires that β1 = 0.

We are now in a position to obtain the two quantities

γ1 =
r→∞
lim
ω→0

rz−3−θa′1
(−iω a1)

= 0 ,

γ2 =
r→∞
lim
ω→0

r3z−1+θa′2
(−iω a2)

=
j2Q1 − j1Q2

E2Q1
= r

(2z−2+θ)
0

(
1− E1Q2

E2Q1

1

r
2(z+1+θ)
0

)
, (B.23)
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working under the assumption that z > 4
3 . Indeed, for 1 ≤ z ≤ 4

3 , we find that the the

leading falloff of U1 becomes divergent. Specifically, for 1 ≤ z < 4
3 we find

U1 = − α2j1
(z − 2)(4z − 2 + θ)(3z − 4)

r4−3z + · · · , (B.24)

whilst for z = 4
3 we find

U1 = − 9α2 j1
2(10 + 3θ)

log r + · · · . (B.25)

The convergence of U1 at large r for 1 ≤ z ≤ 4
3 requires either α = 0 or j1 = 0 (we

should mention, however, that properly taking into account holographic renormalization

may change this naive picture). Since we are interested in the effect of a nonzero α, for

now we consider j1 = 0. It follows from (B.15) that

γ2 = r2z−2+θ0

(
1 +

Q2
2

r2+θ0 (α2 +Q2
1 r

2z+θ
0 )

)
, 1 ≤ z ≤ 4

3
. (B.26)

Note that in the AdS limit where z = 1 and θ = 0, and hence Q1 = 0, we successfully

reproduce the previous known result in the literature.

On the other hand if we have α = 0, then we can have all z ≥ 1, including z = 2. It

follows from (B.12) and (B.23) that

γ2 = r2z−2+θ0

(
1− Q2

2

Q2
1 r

2z+2+θ
0

)
. (B.27)

This result is applicable for all z ≥ 1. It coincides with (B.26) when 1 ≤ z ≤ 4/3.

It is interesting to examine how the two asymptotically-defined quantities γi and ψ∞
are related to the currents ji. It follows from (B.6), (B.8) and (B.16) that

γ1 = lim
r→∞

rz−3−θ
(

f ′

4πT f
− U ′1

)
, γ2 = lim

r→∞
r3z−1+θ

(
f ′

4πT f
− U ′2

)
. (B.28)

We can then use (B.11) to obtain

γ1 = − lim
r→∞

rz−3−θ
â′1
E1

, γ2 = − lim
r→∞

r3z−1+θ
â′2
E2

. (B.29)

It now follows from (3.4) that

γ1 = lim
r→∞

j1 +Q1 ψ̂(r)

E1f(r)
, γ2 = lim

r→∞

j2 +Q2 ψ̂(r)

E2f(r)
. (B.30)

Since f(∞) = 1, we find the following relation between the boundary quantities γi and the

conserved currents j1 and j2:

γ1 =
j1
E1

+
Q1 ψ̂∞
E1

, γ2 =
j2
E2

+
Q2 ψ̂∞
E2

. (B.31)

Recalling that ψ̂∞ = − j1
Q1

, it is now clear that γ1 = 0, regardless of whether j1 = 0 or not.

Moreover, when j1 = 0 we recover the result γ2 = j2/E2, from which we can immediately

conclude that in this case γ2 is precisely the one we found in eqn (4.3).
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[44] M. Baggioli and O. Pujolàs, Electron-Phonon Interactions, Metal-Insulator Transitions and

Holographic Massive Gravity, Phys. Rev. Lett. 114 (2015) 251602 [arXiv:1411.1003]

[INSPIRE].

[45] A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons,

JHEP 11 (2014) 081 [arXiv:1406.4742] [INSPIRE].

[46] J. Sonner, On universality of charge transport in AdS/CFT, JHEP 07 (2013) 145

[arXiv:1304.7774] [INSPIRE].

[47] W. Chemissany and I. Papadimitriou, Lifshitz holography: The whole shebang, JHEP 01

(2015) 052 [arXiv:1408.0795] [INSPIRE].

[48] I. Papadimitriou, Hyperscaling violating Lifshitz holography, Nucl. Part. Phys. Proc.

273-275 (2016) 1487 [arXiv:1411.0312] [INSPIRE].

[49] E. Kiritsis and Y. Matsuo, Charge-hyperscaling violating Lifshitz hydrodynamics from

black-holes, JHEP 12 (2015) 076 [arXiv:1508.02494] [INSPIRE].

– 28 –

http://dx.doi.org/10.1103/PhysRevD.75.085020
https://arxiv.org/abs/hep-th/0701036
http://inspirehep.net/search?p=find+EPRINT+hep-th/0701036
http://dx.doi.org/10.1103/PhysRevB.91.155126
http://dx.doi.org/10.1103/PhysRevB.91.155126
https://arxiv.org/abs/1501.03165
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.03165
http://dx.doi.org/10.1007/JHEP11(2016)137
https://arxiv.org/abs/1606.02745
http://inspirehep.net/search?p=find+EPRINT+arXiv:1606.02745
http://dx.doi.org/10.1007/JHEP02(2015)035
https://arxiv.org/abs/1409.4797
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.4797
http://dx.doi.org/10.1103/PhysRevLett.114.251602
https://arxiv.org/abs/1411.1003
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.1003
http://dx.doi.org/10.1007/JHEP11(2014)081
https://arxiv.org/abs/1406.4742
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4742
http://dx.doi.org/10.1007/JHEP07(2013)145
https://arxiv.org/abs/1304.7774
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7774
http://dx.doi.org/10.1007/JHEP01(2015)052
http://dx.doi.org/10.1007/JHEP01(2015)052
https://arxiv.org/abs/1408.0795
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.0795
http://dx.doi.org/10.1016/j.nuclphysBPS.2015.09.240
http://dx.doi.org/10.1016/j.nuclphysBPS.2015.09.240
https://arxiv.org/abs/1411.0312
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.0312
http://dx.doi.org/10.1007/JHEP12(2015)076
https://arxiv.org/abs/1508.02494
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.02494

	Introduction
	Lifshitz black holes with hyperscaling violation
	DC conductivity from horizon data
	Interpreting the matrix of conductivities — AdS vs. Lifshitz
	Temperature dependence
	Single charge case (Q(2)=0), AdS asymptotics
	j(1)=0 case
	A numerical example


	Conclusions and summary of results
	A general class of hyperscaling-violating solutions
	Asymptotic analysis

