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1 Introduction

The fog surrounding Large Field Inflation is rapidly dissolving. On the one hand, if exper-

iments are going to detect primordial gravitational waves in the very near future, then we

will know that trans-Planckian field displacements are required. On the other hand, ongo-

ing theoretical effort may rule out large field inflation in effective field theory coupled to

gravity before the observational verdict. In particular, recent constraints focus on models

where the inflaton is an axion with a super-Planckian decay constant.

Axions with large periodicities also occur in a different setting: they are a crucial

ingredient of the proposed relaxion solution to the hierarchy problem [1] (see also [2–9]).

However, trans-Planckian values of decay constants are problematic [10].1 Never-

theless, there exist several proposals to implement large-field axion inflation in effective

field theory with sub-Planckian decay constants. They include decay constant alignment

(KNP) [13] and N-flation [14] (see also [15]). For a biased collection of recent implemen-

tations in string theory see [16–25]. Another proposal, which is the focus of this paper, is

axion monodromy [26] (see also [27–35] for realisations in string theory).

Recently, important quantum gravity arguments have been used to constrain, and in

some cases even rule out, many of these models (see [36–53]). A first criticism to large field

displacements is based on gravitational instantons [42]. A second one is based on the Weak

Gravity Conjecture (WGC) [36]. The latter has been successfully used to constrain models

of N -flation and decay constant alignment à la KNP . The implications of the WGC for

1See [11] for very recent work and [12] for a recent discussion of the underlying shift symmetries beyond

tree level.
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axion monodromy are less clear (see however [43]). A third criticism is based on entropy

arguments ([37], see however [53]).

Very recently, developing an idea of [43], the authors of [54] have applied the WGC for

domain walls to axion monodromy, albeit mainly in the different context of the relaxion

proposal. Their analysis rests on interpreting the monodromy as being due to the gauging of

the discrete shift symmetry of an axion by a 3-form potential à la Kaloper-Sorbo (KS) [55,

56] (see also [57]). The WGC for the original 3-form gauge theory says that this system

comes with light domain walls which, in turn, threaten the slow-roll field evolution in the

resulting monodromy model.

The WGC is a statement which connects low energy effective field theories and their

UV completion (which we assume to be string theory). In the very same spirit, this paper

follows two different, but related, directions: the first one is more phenomenological and

relevant both to inflation and relaxation, while the second one is more conceptual and deals

with string compactifications. The link is provided by the WGC.

Concerning the first direction, we advocate a different point of view on constraints

coming from 4d membranes in models of axion monodromy (inflation and relaxation). In

particular, we take a minimalist effective field theory perspective: a generic realisation

of monodromy is characterised by ‘wiggles’ in the axion potential (see figures 1, 2). The

latter define a four-form flux and associated domain walls. Those differ from the membranes

analysed in [43, 54], as they do not arise from a gauging procedure: they originate purely

from the oscillatory axion potential. In particular, their tension can be made lighter without

spoiling slow-roll. In fact, the lower the ‘wiggles’, the easier it is to slow-roll. Therefore the

electric WGC does not constrain generic realisations of axion monodromy (inflation and

relaxation).

We then seek for constraints arising from the magnetic WGC. It is generically expected

that axion monodromy models cannot allow for a parametrically large field range when

correctly implemented in a setup of string compactifications. Our claim is that the magnetic

WGC describes precisely such a limitation to the field range (see also [58] for general

constraints in setups of string compactifications). It does so by bounding the cutoff of the

effective theory of an axion with periodicity 2πf and monodromy-induced potential m2φ2:

Λ3 . mfMpl. Our point of view is relevant not only for models where monodromy is

used to realise inflation, but also for relaxation models, where the low energy barriers are

a fundamental ingredient of the mechanism. Applied to inflation, this condition allows in

principle for large field displacements, but forbids models with a too small decay constant.

Our constraint may be considered as a positive statement about the feasibility of Axion

Monodromy Inflation. In addition, this drives limits on the amount of resonant non-

Gaussianity [59, 60] from the ‘wiggles’, and on the possibility of slow-roll eternal inflation.

We then justify our extension of the magnetic side of the WGC to domain walls.

In assuming that the electric WGC can be extended to any p-dimensional object in d

dimensions, we are motivated purely by the fact that string theory always fulfils the WGC.

We argue that, adopting this point of view, the extension of the magnetic part is equally

well motivated. In fact, we show that string theory fulfils the WGC precisely by lowering

the cutoff of the 4d description, i.e. the KK scale, rather than by providing objects which are

light enough. The electric side is therefore satisfied as a consequence of the magnetic WGC.
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The second aim of this paper is to describe some insight concerning extensions of the

WGC to generic p-dimensional object in d-dimensions. This has been already the focus

of recent activity [43, 48, 50, 54]. We make progress by showing that, in a setup of string

compactifications, the WGC can be phrased as a purely geometric constraint. In particular,

it translates into a requirement on the size and intersections of the q-cycles wrapped by

the p-dimensional objects. Explicitly:

V
1/2
X |qΣ|
V Σ

≥ Ad, (1.1)

where VX is the volume of the compactification manifold, V Σ is the volume of the q-

dimensional cycle Σ, |qΣ| is the norm of the harmonic form related to Σ using the metric

X, and Ad is a O(1) number given below. Once assumed for one particular configuration

(e.g. one leading to 4d particles), this constraint is valid for any other s-dimensional object,

with s 6= p, wrapped on the same cycles of the same CY. Therefore, our strategy shows

that string dualities are not needed to generalise the WGC: one can separately constrain

theories with different brane configurations compactified on the same CY. In this sense our

approach improves on the existing literature.

This paper is structured as follows. Section 2 is devoted to phenomenological consider-

ations. In particular, in section 2.1 we describe the presence of domain walls in 4d effective

field theory models of axion monodromy and deduce the constraints coming from the elec-

tric WGC. In section 2.2 we assume the magnetic WGC for domain walls and extract the

consequences for Axion Monodromy Inflation. In section 2.3 we motivate the extension of

the magnetic WGC to domain walls and in section 2.4 we comment on the relation to KS

membranes. Section 3 is devoted to a geometric interpretation of the WGC. Finally, we

offer our conclusions in section 4.

2 Axion monodromy and Domain Walls

In this section we aim at obtaining constraints on models based on axion monodromy

(inflation or relaxation). We begin by pointing out the existence of light domain walls in

those models. Interestingly, these are different from the membranes inherent to the KS

approach to axion monodromy. They belong purely to the effective field theory regime

and do not descend from a higher dimensional gauge theory. We apply the WGC to these

low energy domain walls and then discuss the relation of our result to the recent analysis

of [54].

2.1 Light domain walls

We start by adopting a naive 4d effective field theory point of view of axion monodromy

models. The Lagrangian of such a model is given by:

L = (∂φ)2 − V (φ/f), (2.1)

– 3 –
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and the inflationary (or relaxion) potential generically consists of a polynomial part and

an oscillatory term, e.g.:

V (φ) =
1

2
m2φ2 + α cos

(
φ

f

)
(2.2)

In writing a cosine term in (2.2), we are assuming that the axion φ couples to instantons.2

The results that we will derive in the following subsections rely on the presence of this

oscillatory term. Let us remark that, in models of cosmological relaxation, such a contri-

bution is crucial. Furthermore, in models of axion monodromy and relaxation one typically

has (and for relaxation actually needs) α ≡ α(φ), see e.g. [60–62].

The cosine term generates ‘wiggles’ on top of the quadratic potential. For suitable

values of m,α and f , namely for α/(m2f2) > 1, the potential is characterised by the

presence of local minima, see figure 1. In this paper we focus precisely on this case.

Slow-roll inflation starts at large values of φ, where the quadratic potential is dominant

and there are no local minima. Eventually, the field reaches the region where the wells

become relevant and minima appear. We wish to constrain the model with potential (2.2)

by focusing on this latter region. ‘Wiggles’ are related to the existence of domain walls:

once the inflaton (relaxion) gets stuck in one of the cosine wells, there is a nonvanishing

probability to tunnel to the next well, which is characterised by a smaller value of the

potential. This happens by the nucleation of a cosmic bubble created by a Coleman-De

Luccia instanton, containing the state of lower energy and its rapid expansion.

In order to understand this point, let us adopt a coarse-grained approach: namely, let

us consider a model with V (φ) as in figure 1 at spatial distances which are larger than

the inverse “mass” V
′′
(φ)−1. At these distances, φ is non-dynamical. The “wiggles” are

therefore invisible, and what remains is a set of points, corresponding to the local minima of

the original potential. These points are naturally labelled by an integer index n. Therefore

the energy of the corresponding configurations is just:

E ' (1/2)m2φ2
min '

1

2
m2(2πf)2n2, n ∈ Z. (2.3)

Such a discrete set of vacua can be described in terms of a four-form field strength F4 =

dA3.3 Indeed, due to gauge symmetry, the theory of a free 3-form potential in 4d has no

dynamics (as e.g. in [63–66]). The points corresponding to the local minima of the original

potential for φ are separated by domain walls. Therefore, the 3-form lagrangian which

provides an effective description of the axion system is:

L =
1

2e2

∫
F 2

4 +

∫
DW

A3, (2.4)

where we have included a phenomenological coupling of A3 to domain walls. It is easy

to see that F4 changes by e2 across a membrane, such that F 2
4 /(2e

2) ≡ (1/2)e2n2. By

comparison with (2.3), we find: e = 2πmf .

2Even if axions without coupling to gauge theory or stringy instantons exist, the presence of gravitational

instantons (see [42] and references therein) appears unavoidable.
3Jumping ahead, we note that our use of a four-form flux is therefore different from the approach

of [55, 57], where F4 is introduced as the field strength of a 3-form which gauges the shift symmetry of the

4d dual of φ. This will be discussed in section 2.4.
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Φ

V

Figure 1. Monodromy potential, as in (2.2).

Here α/(m2f2) ' 50.

Φ

V

Figure 2. Monodromy potential, as in (2.2).

Here α/(m2f2) ' 25.

The tension of the domain wall, i.e. the surface tension of the bubble containing the

state of lower energy, can be estimated as the product of the characteristic thickness b ∼
∆φ/
√
V and height of the domain wall V ∼ α (see e.g. [67]). One obtains: TDW ∼

√
V∆φ ∼

α1/2f . As we make the domain walls lighter, i.e. as we lower the value of α, the wiggles

become less pronounced, see figure 2.

In order to ensure that the inflaton (or relaxion) can slowly-roll for a sufficiently large

distance, one needs to make sure that the height of the wiggles, i.e. the tension of the

domain walls, is small enough.4

The crucial point is that lowering the tension of these domain walls goes precisely in

the same direction as required by the WGC. Let us recall that, in its original form [36], the

conjecture concerns 4d U(1) gauge theories with coupling e and gravity. The electric side

of the conjecture requires that a particle of mass me exists such that: eMpl/me & 1. The

statement can in principle be extended to any (p+ 1)-form gauge theory in d dimensions,

with p-dimensional electrically charged objects. The generalisation to domain walls, i.e.

p = 2 in 4d, is actually not straightforward and may present subtleties (see [50, 54]). For

the moment, we assume that the conjecture is valid for domain walls; we motivate our

assumption in detail in section (3). Therefore, we have the following constraint on the

tension and coupling of the domain wall:

WGC: T . eMpl. (2.5)

Applied to inflationary (relaxion) models, this condition leads to T . mfMpl. The con-

jecture requires a small tension, which is what is needed to have slow-roll inflation (or

relaxation).

Therefore, we are unable to constrain Inflation/Relaxation models by this logic.

2.2 Constraints from the magnetic WGC

In the previous subsection we have seen that the electric side of the WGC, as applied

to light domain walls, does not constrain models based on axion monodromy. However,

4Nevertheless, the last stages of inflation (or relaxation) may arise as continuous nucleation of cosmic

bubbles.

– 5 –



J
H
E
P
0
4
(
2
0
1
6
)
1
5
7

there exist two versions of the conjecture.5 The aim of this subsection is to show that

the magnetic side imposes a non-trivial constraint on the field range in models of Axion

Monodromy (inflation or relaxation).

We start by providing a statement of the magnetic WGC in the form of a constraint

on the cutoff Λ of a gauge theory. To this aim, let us proceed by dimensional analysis. We

consider a (p + 1)-form gauge theory with coupling ep,d in d dimensions with electrically

charged Dp-branes and magnetically charged D(d− (p+ 4)) branes. The magnetic WGC

simply states that the minimally charged magnetic brane should not be a black brane. The

tension of a black brane is TBH
d−(p+4) ∼ Md−2

d Rp+1, where R is the Schwarzschild radius of

the black brane and Md is the Planck scale in d dimensions. The tension of a magnetically

charged brane can be estimated by integrating the field strength outside the core, as in the

familiar case of the magnetic monopole. In d dimensions and for a p+ 1-form, the coupling

has dimensions [E](p+2)−d/2. Therefore:

Td−(p+4) ∼
Λp+1

e2
p,d

. (2.6)

The magnetic WGC then requires:

magnetic WGC: T . TBH ⇒ Λ2(p+1) . e2
p,dM

d−2
d . (2.7)

Although this derivation does not go through in 4d for p = 2 (since we cannot make sense

of D(−2) branes), we conjecture “by analytical continuation” in (p, d) that the constraint

applies. We therefore obtain:

Λ . e1/3M
1/3
pl . (2.8)

This is the constraint we were after. We will provide more support for it later on.

We now apply (2.8) to axion monodromy models. As we have seen in the previous

subsection, the coupling e is related to the axion parameters by: e = 2πmf . Therefore, we

get the condition Λ . (2πmfMpl)
1/3. The relevant constraint is now obtained by requiring

that the Hubble scale is below the EFT cutoff, i.e. H = (V/3M2
pl)

1/2 = 1/
√

6 · (m/Mpl)φ .
Λ. This gives an upper bound on the field range:

φ

Mpl
.

(
Mpl

m

)2/3(2πf

Mpl

)1/3

. (2.9)

As it stands, the constraint (2.9), although non-trivial, represent only a mild bound on the

field range. With m/Mpl ∼ 10−5, and 2πf/Mpl ' 1 one gets φ/Mpl . 103, which safely

allows large field inflation. We expect that our dimensional analysis estimate is modified

only by O(1) factors (see section 3). However for models with small f the constraint (2.9)

may become relevant.

5There exists yet another version of the conjecture, demanding that the states satisfying the WGC are

within the validity range of the effective field theory [48]. In this paper, we do not consider it, since, in

string models, this appears not to hold if one identifies the KK scale with the cutoff. Also, there are further

variants of the electric version (“strong”,“mild”,“lattice”), which we do not discuss.
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It is a generic expectation that, in models of large field inflation, the field range cannot

be parametrically large. The discussion of this section confirms this expectation: in the case

of axion monodromy, the magnetic side of the WGC limits the field excursions. However,

phenomenologically relevant field ranges are allowed.

Let us now very briefly discuss the corresponding constraint for models of cosmological

relaxation [1] based on monodromy [54]. In this case, we take our axion φ to be the relaxion,

and couple it to the Higgs field of the standard model. Therefore, the relaxion potential is:

Vφ =
1

2
m2φ2 + αv cos

(
φ

f

)
+ (−M2 + gφ)|h|2, (2.10)

where M is the cutoff scale and αv ≡ α(h = v). As discussed in [1], the following constraints

apply to this class of models:

∆φ &M2/g to scan the entire range of values of the higgs mass. (2.11)

H . α1/4
v to form the low energy barriers. (2.12)

H > M2/Mpl for the energy density to be inflaton dominated. (2.13)

Furthermore, the slow roll of φ ends when the slopes of the perturbative and non-

perturbative potential terms are equal, i.e.: m2φ ∼ αv/f . This should happen at a generic

point in the range of φ. Hence, from (2.11), φ ∼M2/g and thus:

m2M2

g
∼ αv

f
. (2.14)

We can now find the consequences of the magnetic WGC for this class of models. We

apply (2.8) and require, as in the inflationary case, H . Λ . (2πmf)1/3M
1/3
pl . We express

f in terms of αv by means of (2.14). By also imposing (2.13), we are able to constrain the

cutoff M as follows:

M .

(
2πg

m

)1/8

α1/8
v M

1/2
pl . (2.15)

A similar constraint was given in [54] (we review this approach in section 2.4), where a

more detailed discussion can also be found. Even if αv is as low as f2
πm

2
π this constraint is

not fatal.

Before moving on to the next subsection, we would like to remark on a well-known

problem of all the axion models, which also affects our setup. In these models there are

always instantons associated to the slowly-rolling axion. If they all contribute to the axion

potential, there is no flat direction on which to inflate (relax). It is a non-trivial task to

suppress the higher order instantons (our ‘wiggles’), and strategies to do so and evade the

WGC have been an important focus of recent work (see [45] for a proposal which realises

a loophole of the WGC [41, 43]).

Let us now motivate, as promised, our extension of the magnetic WGC to generic

p-dimensional objects.

– 7 –
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2.3 String Theory and the WGC

It has been suggested in [54] that there is no magnetic side of the conjecture for domain

walls, a statement which conflicts with our previous discussion. Here we would therefore like

to motivate our use of the magnetic WGC. From now on, we work in units where Mpl ≡ 1.

From the point of view of string theory, there are two possible ways of satisfying the

electric WGC. On the one hand, string compactifications may provide light objects whose

tension and coupling satisfy the inequality T . e. However, Dp-branes in 10D are extremal,

i.e. they marginally fulfil the WGC. Under compactifications, the resulting objects are not

guaranteed to be extremal, unless SUSY is preserved. Therefore, it is not clear whether

objects arising from string compactifications could violate the WGC.

On the other hand, there exists another mechanism by which the conjecture can be

satisfied in string compactifications: it is the presence of a maximal scale up to which a

4d effective field theory description is valid. In many cases such a cutoff is set by the KK

scale MKK ∼ 1/R, where R is the typical length scale of the compactification manifold.

Above MKK , one has to work with the full 10D theory. In particular, if the tension of the

objects descending from string theory is larger than MKK , then these objects simply do

not exist in the low energy effective field theory. Therefore, by lowering the KK scale, one

can ensure that the WGC is not violated, by simply removing the dangerous objects from

the spectrum of the low energy theory. A low cutoff is precisely what is required by the

magnetic side of the WGC for a weakly coupled theory.

Explicitly, consider a q-dimensional object descending upon compactification from a

p-dimensional brane in 10D. The ratio between its tension and the appropriate power of

the KK scale is given by: τq/M
q+1
KK ∼ Mp+1

s Rp+1/gs. We are assuming that we are in

a controlled regime, i.e. either gs < 1 or R > 1 or both. Therefore as R increases the

corresponding object simply disappears from the 4d theory.

The bottomline of this discussion is that, in many cases, string theory satisfies the

WGC by imposing a low cutoff to the 4d effective field theory, not by providing objects

which are light enough. In other words, setups of string compactifications satisfy the

magnetic side of the WGC and, as a consequence, the electric side as well.

This is the reason why we think that the magnetic constraint is the more fundamental

conjecture among the two version of the WGC. Therefore, we assume that the magnetic

WGC is valid for any p-form, and in particular for domain walls.

Recently, the electric WGC has been applied to another class of membranes in the

context of realisations of axion monodromy models à la Kaloper-Sorbo (KS) (see [55] for

the KS proposal, [54] for the recent developments) . In the next subsection we describe the

relation of this work to our findings.

2.4 Relation to domain walls à la Kaloper-Sorbo

We begin by reviewing the strategy of [43, 54] to constrain nucleation rates in models based

on axion monodromy. In this subsection, we follow the notation of [54], which differs from

the one used in the previous subsections.

– 8 –
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The KS proposal [55] to implement monodromy models in a 4d setup is to introduce

a 3-form gauge potential A3 and to couple the corresponding 4-form field strength to the

axion:

L = −1

2
(∂µφ)2 − 1

2
|F4|2 + gφF4, (2.16)

where |Fp|2 ≡ 1
p!Fµ1...µpF

µ1...µp . Notice that this setup is different from the dual picture that

we have described in section (2.1). We used just one scalar field theory with a discretuum

of vacua, which corresponds to a gauge theory with the same discretuum of vacua. By

contrast, the lagrangian in (2.16) consists of a scalar field theory (first term) and a gauge

theory (second term), each with its own set of vacua. The third term couples these two

theories. The potential A3 couples to fundamental 4d domain walls via S ∼ q
∫

2−branesA3.

The field strength F4 varies across the membranes and is quantised in units of the membrane

charge, i.e. F4 = nq (?1). A shift in the value of F4 is a part of the residual gauge symmetry

of the KS lagrangian. Under this symmetry, also the scalar field shifts:

φ→ φ+ 2πf, nq → (n− k)q, n, k ∈ Z, (2.17)

with the consistency condition 2πfg = kq, and f being the axion periodicity. Due to this

residual gauge symmetry, we are left with only one set of vacua, labeled by one integer.

The quadratic potential for φ arises from integrating out the field strength F4:

VKS =
1

2
(nq + gφ)2. (2.18)

The crucial point is that each value of n corresponds to a different branch of the potential.

The gauge symmetry (2.17) provides a way to identify these branches. In this sense,

crossing a membrane corresponds to an alternative way to move one step down in the

potential. This is different from rolling over or tunneling through a “wiggle” of figure 1.

The KS membranes can potentially spoil the slow-roll behavior allowed by small “instanton-

induced wiggles”. As usual, the probability for such tunneling events is described in terms

of a nucleation rate for the corresponding bubbles.

Since this probability is exponentially suppressed, one might wonder whether this

effect represents a concern for Axion Inflation. The nucleation rate Γ is given by e−B,

where B ∼ T/H3 in the relaxion regime (see [68]).

In [43], the authors show that a strong suppression of the nucleation rate requires a

violation of the WGC. More recently, in [54], the authors follow the same direction to

constrain models of relaxion monodromy. In this case, the WGC requires T . 2πfg. By

requiring B > 1, the authors obtain a constraint which is similar to (2.15). In particular,

the parametric dependence on αv is the same. Furthermore, the authors of [54] obtain

a stronger constraint by requiring that B > N , where N is the number of e-folds. This

requirement arises from demanding that there are no domain walls in the part of the

universe created during the above N e-folds. Such a constraint cannot be obtained by

using our low energy wiggles, because the latter arise only much later, when inflation is in

its last stages.

Applied to inflationary models, T . eMpl and T � H3 lead to the same constraint

that we have found in (2.9). However, we have obtained it by using a different, arguably

– 9 –
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simpler, effective field theory point of view, based on the magnetic, rather than the electric

WGC. Notice also that the objects that we have described in section (2.1) can be naturally

lighter than the KS membranes.

We have seen that the Kaloper-Sorbo procedure consists in gauging an axionic theory

by a 3-form potential. The original theory of a free 3-form potential has domain walls

to which the WGC can be applied. However, gauging corresponds to a discontinuous,

qualitative change of the model.6

It is hence not clear whether the relevant parameters, i.e. the tension and the coupling,

and therefore the consequences of the WGC, remain unchanged. In particular, it may be

hard to check the changes of the coupling and tension of the domain walls, since the

dualisation procedure described in [57] does not always lead to an explicit determination of

the F4 lagrangian. Therefore, it is desirable to work with constraints which do not appeal

to the situation before gauging. Crucially, after the gauging both the fundamental KS

domain walls and the ‘wiggle-induced’ effective domain walls are present.

We are then left with two possibilities: the first is that the electric WGC has to be

separately satisfied by both the KS and by the effective domain walls described in this

paper. In this case the constraint given in [54] and based on the electric WGC for the

(heavier) KS domain walls applies. The same constraint arises as a consequence of the

magnetic WGC. Everything is consistent and the present paper provides an alternative

derivation of the same constraint.

The other possibility is that the electric WGC needs to be satisfied only by the lightest

domain walls. These are the effective domain walls, but due to their lightness no interesting

constraint arises. The heavier KS domain walls provide no further constraints. Thus, the

magnetic WGC provides the only useful constraint, as described in this paper.

Our conclusion is that in both cases the field range is constrained according to (2.9). In

the first case the latter comes from the electric side applied to KS membranes, as explained

in [43, 54], and from the magnetic side applied to “wiggles” membranes. In the second

point of view, which we adopt in this paper, no UV information on the origin of the gauge

theory is required and (2.9) follows only from the magnetic WGC.

3 The WGC as a geometric constraint

In this section we want to address the extension of the WGC to domain walls. We will do

so in the framework of 10D string theory compactified on a CY manifold.

3.1 Previous approaches and our perspective

In [50], the authors provide the following statement of the WGC for any p-form in d

dimensions: [
α2

2
+
p(d− p− 2)

d− 2

]
T 2
p ≤ e2

p:dq
2Md−2

d . (3.1)

6In particular, the conceivable limiting procedure of taking the gauge coupling to zero and hence going

from the gauged to the ungauged case is forbidden by the WGC itself. Also, in string constructions gauging

often corresponds to (necessarily discrete) changes in the flux configuration or even in the geometry of the

compact space.
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In the absence of a dilaton background, the inequality is degenerate for p = 0 (axions) and

p = d − 2 (strings). Moreover, for p = d − 1, i.e. for domain walls, the inequality cannot

be satisfied, as already pointed out in [50]. Therefore, one may worry that there is no

statement of the electric WGC for domain walls.

An idea to extend the WGC to generic p-dimensional objects, as noticed in [54], is to

use string dualities. This follows very closely the strategy of [43], where the conjecture is

extended to axions and instantons. In that case, the authors consider type IIB on a CY

3-fold with D1 branes and their associated C2 gauge potential. Wrapping the branes on

2-cycles and compactifying to 4d, one obtains a theory of C2 axions and D1 instantons.

This type IIB theory is then T-dualised to type IIA with D2 branes and their associated

C3 potential. Since this theory is strongly coupled, one actually uses the M -theory picture,

introducing a further compact dimension. Again, by wrapping the branes around 2-cycles

and compactifying, one obtains a 5d theory with a U(1) gauge field and M2 particles. This

is the original content of the WGC, which can therefore be applied to this particular 5D

setting. Finally, one can translate the constraints obtained on the particles/vector fields

side to the axion/instanton side, by using the T-duality relations between IIA and IIB

couplings and mass scales.

In [54], the authors propose to implement the very same idea to constrain domain

walls. Starting with a 10D theory with p = d− 1 objects, they propose to T-dualise twice

along directions transverse to the branes, so that the dual theory is of the same type but

with p = d − 3 branes. One can then apply (3.1) to the latter setup, then translate the

constraints to the domain walls side.

We agree with the authors of [54] that the apparent problems of the WGC for domain

walls disappear when considering them in a string theory setup. Notice that the dualisation

procedure works for any p-dimensional object in 10 dimensions reduced to a q dimensional

object in d dimensions. Indeed the moduli of the theory, i.e. the compactification radius

and the string coupling, disappear from the charge-to-tension ratio on both sides of the

duality. Were this not the case, we would not be able to extract a sensible constraint on

the objects in the 4d theory.

This property suggests that the WGC in 10D string theory can be phrased as a con-

straint on some geometrical data of the particular compactification manifold, indepen-

dently of the specific p-dimensional object. Once the geometry of the compactification

manifold is constrained, one can extract the consequences for any other q-dimensional ob-

ject in the theory. This is the novel point of this section. Our focus in this section is the

electric statement.

Our approach implies that there is no need of T-dualising in order to extend the WGC

to objects other than 4d particles. In the next subsection, we will verify this statement

focusing on the case of domain walls. Let us therefore outline the strategy to extend

the conjecture to any p-dimensional object, without using dualities. One starts with a

type IIB setting with Dp branes wrapped on p-cycles of the internal manifold X. Upon

compactification, this leads to a 4d theory of particles and gauge fields. One then applies

the standard WGC to this setting: the result is a constraint on the metric on the space of

p-cycles in X. For example, in [43] the authors obtain a constraint on Kab ∼
∫
wa ∧ ?wb,
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where wa is a basis of H2(X,Z). Once this constraint is obtained, it is valid for any brane

setup on the same CY. One can then consider Dq branes, with p 6= q wrapped on the same

p cycles and obtain inequalities for the tension and couplings of the 4d theory derived by

compactification on X.

3.2 Computation

Following our discussion, we now perform an explicit computation to prove our claim. We

first focus on obtaining particles in d = 4. As a starting configuration we choose type IIB

with D3 branes compactified on a CY 3-fold X. Other choices are equally valid. We work

in the conventions of [69]. The relevant 10d action reads:

S10 ⊃
1

2κ2
10

∫
M10

[
1

g2
s

R10 ? 1− 1

4
F5 ∧ ?F5

]
+ µ3

∫
D3
C4 (3.2)

where κ2
10 = (1/2)(2π)7α′4 and µ3 = 2π(4π2α′)−2. Now let us perform dimensional re-

duction, by wrapping the D3 on 3-cycles of X. We focus on the gauge kinetic term. We

consider a symplectic basis wi = (αa, β
b) of H3(X,Z), i.e. s.t.:∫
X
αa ∧ βb = δba, (3.3)

and the other intersection numbers vanish. By Poincaré duality, one can define the integral

charges:

qki =

∫
Σk

wi =

∫
X
wi ∧ wk, (3.4)

where Σk is a 3-cycle in X and wk is its dual form. By (3.3), these charges are either

vanishing or unit.

The 4d action is obtained by expanding the five-form flux and the four-form potential

in terms of the symplectic basis of H3(X,Z):

F5 =

N∑
i=1

F i2(x) ∧ wi(y), C4 =

N∑
i=1

Ai1(x) ∧ wi(y), (3.5)

then integrating over X. Here N is the number of 3 cycles of X. D3-branes wrapping a

3-cycle Σ generate particles in the 4d theory. For the moment being, let us focus on one

such cycle. We will later extend our results to particles descending from different cycles.

Let us introduce the metric on the space of 3-forms:

Kij ≡
∫
X
wi ∧ ?wj . (3.6)

The 4d action reads:

S4 ⊃
M2

pl

4

∫
M4

g2
s

VX
KijF

i
2 ∧ ?F

j
2 + qΣ

i µ3

∫
0−brane

Ai1, (3.7)

where M2
pl = VX/κ

2
10g

2
s is the 4d Planck mass. The equations of motion arising

from (3.7) read:

d ? F iKij =
2VX
M2

plg
2
s

µ3q
Σ
i dj0−brane. (3.8)
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From the latter, it is clear that only a certain linear combination of gauge fields is sourced

by the particle with charge qΣ
i . To make this visible in the 4d action, we define the field

A1 and its field strength F2 = dA1 by:

Ai1 ≡ A1K
ijqΣ

j . (3.9)

In terms of A1 and F2 the 4d action reads:

S4 ⊃
M2

pl

4
|qΣ|2 g

2
s

VX

∫
M4

F2 ∧ ?F2 + |qΣ|2µ3

∫
0−brane

A1, (3.10)

where |qΣ|2 ≡ KijqΣ
i q

Σ
j . In order to extract the 4d gauge coupling, we normalise the gauge

potential. Finally, we obtain:

S4 ⊃
1

2e2

∫
M4

F2 ∧ ?F2 +

∫
0−brane

A1, (3.11)

where we have kept the same notation for the normalised fields and the 4d gauge coupling

is defined as:

e2 =
2VXµ

2
3|qΣ|2

M2
plg

2
s

. (3.12)

The result of this procedure is therefore a 4d theory of a U(1) gauge field with cou-

pling (3.12). The particle descending from the D3 brane wrapped on Σ has mass

MΣ = (T3/gs)
∫

Σ ?1 = (T3/gs)V
Σ, and T3 = µ3.

We are now ready to apply the WGC to the 4d theory defined by (3.11) with particles

of mass MΣ:
eMpl

MΣ
≥
√

2

2
⇒

V
1/2
X |qΣ|
V Σ

≥ 1

2
. (3.13)

Before moving to the case of domain walls, let us pause to extract the full meaning of (3.13).

The WGC for particles arising from a string compactification translates into a purely

geometric constraint on the size and intersections of the cycles of the manifold, in this case

3-cycles. Crucially, all couplings and 4d scales have disappeared from the final statement.

Despite the presence of volume factors, the charge-to-mass ratio is independent on any

rescaling of the 6d metric g̃mn. This statement is actually true for any p-cycle: indeed the

metric Kij on the dual space of p-forms contains (3 − p) powers of the 6d metric, so the

numerator scales as g̃
p/2
mn , but so does the denominator.

The conclusion is as follows: the procedure that we have followed works for any p-

dimensional object and associated field strength defined on a chosen manifold X and di-

mensionally reduced to a q dimensional object in 4d. In particular, (3.13) is a constraint

on the 3-cycles of X. As such, it can be applied applied to any other 4d object descending

from any p-brane on X wrapped on the same 3-cycles.

We are particularly interested in constraining 4d domain walls. In order to apply our

previous result, we study the case in which the membranes arise from compactifications

of type IIB string theory with D5 branes wrapped on 3-cycles. The action is obtained by

simply replacing the D3 branes with D5 branes in (3.2):

S10 ⊃
1

2κ2
10

∫
M10

[
−1

2
F7 ∧ ?F7

]
+ µ5

∫
D5
C6 + SDBI , (3.14)
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with µ5 = µ3/(2πα
′). Dimensional reduction to 4d goes as in the previous case, therefore

we do not repeat the computation. The 4d action reads:

S4 ⊃
1

2e2
DW

∫
M4

F4 ∧ ?F4 +

∫
D2
A3 (3.15)

with:

e2
DW =

2VXµ
2
5|qΣ|2

M2
plg

2
s

. (3.16)

The tension of the 4d domain wall is: TDW = T5/gsV
Σ. The charge-to-tension ratio is:

eDWMpl

TDW
=

(2VX)1/2|qΣ|
V Σ

. (3.17)

As expected, (3.17) is the same as (3.13). Therefore the WGC constraint on particles

translates into the following inequality for the charge-to-tension ratio of domain walls:

WGC:
eDWMpl

TDW
≥
√

2

2
. (3.18)

This is the result we were after, namely a WGC for domain walls.

One can give a general inequality for a (q + 1)-dimensional object in d dimensions

descending from a s-brane wrapped on a (s − q) cycle of a CY X, by relating its charge-

to-mass ratio to that of particle descending from a p-brane wrapped on the same (s − q)
cycle. For consistency s− q = p. The WGC then states that the charge-to-tension ratio of

the D(q)-brane must satisfy the condition:

epMpl

Tp
≥
√
d− 3

d− 2
. (3.19)

Finally, let us generalise our results to the case of N cycles Σk, k = 1, . . . , N . Corre-

spondingly, we have a set of charge vectors qΣk . These vectors belong to RN equipped

with metric Kij defined as in (3.6). With the same notation as above, consider Dp-branes

wrapped on p-cycles of a CY manifold. These lead to particles in d dimensions with mass

Mk. The Convex Hull Condition (CHC) for the p-cycles reads:

The convex hull spanned by the vectors zk ≡ V
1/2
X qΣk

V Σk
, must contain the

ball of radius r =
√

d−3
d−2 .

Now consider a q-brane in d dimensions obtained by wrapping a D(s)-brane on p-cycles

of the same CY. The tension and the charge vectors of the (q+ 1)-dimensional objects are

respectively T kq and eqq
Σk , where eq is the prefactor in (1/2)(1/e2

q)
∫
KijF

i
q+2 ∧ ?F

j
q+2 +

qΣ
i

∫
Σk
Aiq+1 in the effective theory. Assuming the CHC for particles, we obtain the following

statement for the q-branes:

The convex hull spanned by the vectors Zk ≡ eqqΣkMd

Tk
q

must contain the

ball of radius rq =
√

d−3
d−2 .
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It is important to remark that (3.18) has been obtained without using any string

duality: the WGC for particles imposes a constraint on the geometry of CY three cycles.

This constraint, applied to objects derived from any p-brane in the 10d setup, translates to

a corresponding WGC for these particular objects. This line of reasoning can be applied

also to the case of axions and instantons. In that case one starts from a Dp brane wrapped

on p cycles, then considers D(p − 1) branes wrapped on the same cycles. Obviously this

requires a change in the theory, e.g. from type IIB to type IIA/M-theory on the same CY.

However, the constraints obtained in the IIB setting are still just geometric constraints

on p-cycles of the CY, therefore there is no need of performing a duality between the

two theories. It is sufficient to consider a type IIA/M-theory setup with the appropriate

branes, and impose on this setup the previously determined geometric constraint. It would

be interesting to think about manifolds with backreaction and fluxes. In this case, the

transition from IIA and IIB (or other setups) would not be so straightforward.

4 Conclusions

In this paper we have investigated two different aspects of the Weak Gravity Conjecture.

Firstly, we have discussed its consequences for models based on Axion Monodromy (In-

flation and Relaxation). Secondly, we have provided a geometric interpretation of the

conjecture in the framework of string compactification. We now provide a detailed sum-

mary of our results.

In the first part of this paper, we have adopted an effective field theory point of view.

Namely, given a certain scalar potential, we have tried to constrain its use in models

of monodromy inflation. In particular, inflaton (relaxion) potentials in models of Axion

Monodromy are characterised by the presence of ‘wiggles’ on top of a polynomial potential.

The resulting local minima imply the existence of 4d domain walls. This is more evident

by using an effective description in terms of a four-form flux, whose value changes across

these membranes.

We assumed that the WGC can be extended to domain walls. In our setup, its electric

version gives an upper bound on the tension of the 4d membranes. Crucially, this condition

agrees with what is required to realise slow-roll: as the tension decreases, the height of the

‘wiggles’ decreases and slow roll can be seen as a continuous nucleation of cosmic bubbles.

Therefore, we conclude that, in this logic, the electric WGC does not constrain models of

axion monodromy (Inflation and Relaxation).

For this reason, we focused on the constraints imposed by the magnetic side of the

WGC, which we stated as an upper bound on the cutoff of a generic (p + 1)-form gauge

theory (in the spirit of [36]). We then applied the condition to inflationary models, i.e. we re-

quired H � Λ. This gives a non-trivial constraint on the field range: φ . m−2/3f1/3M
4/3
pl .

The latter however allows for large field displacements, but forbids models with a small

decay constant.

We then discussed our extension of the magnetic WGC. We argued that string theory

lowers the KK scale to fulfil the WGC for objects which descend from compactifications of

string theory with Dp-branes, rather than making them light enough. As a consequence,
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heavy “stringy” objects, which could potentially violate the WGC are confined above the

cutoff MKK . Therefore they do not exist from an effective field theory point of view. Of

course, low energy light objects are allowed, as is the case for our domain walls. Conse-

quently, the electric side is automatically satisfied. We suggest that the magnetic WGC

should be seen as the fundamental constraint among the different versions of the WGC.

Recently, the electric WGC has been applied to membranes arising from the realisation

of Axion Monodromy á la Kaloper-Sorbo (KS), in the context of new realisations of relaxion

models [54]. When the tension of these membranes decreases, the probability of tunneling

to another branch of the potential increases. Such a transition can spoil slow-roll, as it

corresponds to discrete “jumps” in the axion trajectory. The requirement that the tunneling

rate is suppressed parametrically leads to the same constraint on the field range that we

obtained by studying the domain walls arising from ‘wiggles’ in the axion potential.

However, KS membranes are different from the low energy domain walls described in

this paper. This may have implications for the various constraints.

There are, in fact, two possibilities. On the one hand, one could impose the WGC

separately on the two classes of membranes. In this case, the constraints given in [54] for

relaxion models apply and can be extended to inflationary models. The magnetic WGC

applied to the low energy domain walls gives the same constraint.

On the other hand, it is possible that only the lightest domain walls have to satisfy

the WGC. In this case, the electric WGC applied to the low energy domain walls does

not give any constraint. By contrast, the magnetic side gives a bound on the field range,

hence playing a central role. As discussed in this paper, there are reasons related to the

KS gauging which make this second possibility relevant.

In the second part of this paper, we worked in the framework of string compactifica-

tions. We started with 10D type IIB with D3 branes and compactified to 4d by wrapping

the branes around 3-cycles of a CY manifold. Therefore, we obtained particles and gauge

fields in 4d. We applied the original WGC to this setup. Very interestingly, the final con-

straint does not depend on the couplings and moduli of the 10D setup. The electric WGC

translates into a purely geometric constraint on the size and intersection of the 3-cycles of

the CY. The same happens for any p-dimensional object wrapped on the same 3-cycles.

Therefore, by constraining the geometry of those cycles through the D3/particles case, we

obtain a WGC for any p−3-dimensional object in 4d arising from compactification of type

IIB with Dp-branes wrapped on 3-cycles. In particular, by taking p = 5 we obtain the

WGC for 4d domain walls. Crucially, we do so without the use of string dualities.

The same procedure applies to any p-dimensional object wrapped on some q-cycle of

a CY, to obtain a p − q-dimensional object in 4d. Therefore, our approach provides a

simple strategy to extend the electric WGC to any q-dimensional object, without the use

of string dualities.

Let us close our discussion with observing two further consequences implied by the

constraint on the tension of the low-energy domain walls from the WGC. We note firstly,

that we get a fundamental upper bound on the size of resonant oscillating non-Gaussianity

induced by the ‘wiggles’ in the scalar potential. Following the analyses of [59, 60], the

magnitude f res.
NL of this type of non-Gaussianity with an oscillating shape in k-space is ap-
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proximately given by f res.
NL ∼ bM3

pl/(fφ)3/2. Here, b = α/(m2fφ) denotes the ‘monotonicity’

parameter of the scalar potential with ‘wiggles’ (b < 1 corresponds to V ′ > 0 for φ > 0). We

can rewrite this as b = αf2/(m2f3φ) ∼ T 2
DW/(m

2f3φ) < m2f2M2
pl/(m

2f3φ) = M2
pl/(fφ)

where the inequality arises from the WGC TDW < eMpl = mfMpl. Hence, we get a bound

f res.
NL . M5

pl/(fφ)5/2, to be evaluated at φ = φ60 ∼ 10Mpl for the observable CMB scales.

The bound thus finally reads f res.
NL . 3× 10−3 (Mpl/f)5/2. The typical range for the axion

decay constant is 10−4Mpl . f . 0.1Mpl (see e.g. [60]). Consequently, for f & 5×10−2Mpl

this fundamental upper bound on f res.
NL becomes stronger, f res.

NL . O(1) for f & 5×10−2Mpl,

than the current observational bounds [70].

Secondly, we observe that in a quadratic potential the boundary to slow-roll eternal

inflation (defined as the value of φ = φ? where ε ∼ V ) φ? ∼ M
3/2
pl m−1/2 can be higher

than our magnetic WGC field range bound φ < m−2/3f1/3M
4/3
pl for values of f . 10−3Mpl,

because COBE normalization of the CMB fluctuations fixes m ∼ 10−5Mpl. Intriguingly,

recent analyses such as [62, 71] (see also e.g. [72] for earlier work on the WMAP 9-year

data) of the PLANCK data searching for oscillating contributions to the CMB power

spectrum and the 3-point-function hint with the highest significance at very-high-frequency

oscillating patterns with f ∼ 10−4Mpl. If this were corroborated in the future, then jointly

with the magnetic WGC this would rule out slow-roll eternal inflation in quadratic axion

monodromy inflation potentials in the past of our part of the universe.

We leave the generalization of both of these observations to more general axion mon-

odromy potentials V ∼ φp with ‘wiggles’ as an interesting problem for the future.
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