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1 Introduction

The study of large N relativistic Chern-Simons theories at rank k has attracted a great

deal of attention in recent years. These theories have proven to be an exceptionally rich,

exhibiting a great deal of non-trivial physics, yet still permit exact computations of many

relevant quantities at arbitrarily strong coupling. This was initially demonstrated in [1],

which performed an exact analysis of the self-energy and spectrum of higher spin currents in

the pure fermionic theory. Later, results were generalized to finite chemical potential in [2].1

Later, the exact equation of state was computed as a function of T and µ in both the bosonic

and fermionic cases [3]. A number of multi-point functions of currents have also borne exact

analysis using these techniques [4, 5]. Recently, the 2 to 2 S-matrices have been solved for

in the purely bosonic, purely fermionic, and N = 1 supersymmetric cases [6, 7] assuming

the theory satisfies an interesting modification of naive crossing symmetry required by the

presence of a Chern-Simons gauge field.

The models in question are conjectured to be subject to a number of interesting dual-

ities. In the conformal case at zero ’t Hooft coupling λ = N/k, one is merely left with the

singlet sector of the critical U(N) vector model, dual to Vasiliev gravity [8]. It has been

argued that this duality survives at finite λ to a parity violating interpolation between the

A-type and B-type Vasiliev theories [1, 9].

Furthermore, these are theories of anyons that permit both bosonic and fermionic

descriptions. One may pass from one description to the other via a strong-weak coupling

duality.

The exact solvability of large N Chern-Simons theory makes it an ideal playground

for the investigation of strongly interacting phases of matter, especially the compressible

phases [13]. In this work we focus on the low-temperature (µ/T � 1) phase of the mas-

sive fermionic theory at finite chemical potential. Standard fermionic systems typically

condense to one of two phases in this limit, a BCS condensate or a Landau Fermi liquid

(LFL) [14] (though more exotic states are known to occur in holographic theories [15, 16]).

In our case, the second option seems a likely candidate. A calculation of the entropy density

at low T (equation (3.18)) yields

s =
π

6
N(1− λ2)µT +O(T 2), (1.1)

that of a quantum liquid of interacting fermions. The minimally coupled large N fermionic

theory then offers the tantalizing possibility of realizing a Fermi liquid state whose prop-

erties may be exactly computed from microscopics, even at strong coupling. (A notable

example of a Fermi liquid with strong coupling is liquid helium-3, where the Landau pa-

rameters F0 and F1 can be numerically much larger than one [17].)

Motivated by this prospect we demonstrate via an exact computation in the large N

limit that the low-temperature state of fermions minimally coupled to a Chern-Simons

gauge field is a stable Landau Fermi liquid for all values of the coupling constant λ. We

1The finite temperature calculations in both these works do not account for holonomies. The necessary

corrections may be found in [3].
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begin with a brief review of Landau Fermi liquid theory in section 2. In section 3 we

introduce large N Chern-Simons theory with fermions and then turn to thermodynamics.

We investigate the low temperature limit of the known equation of state for later comparison

with the results of Landau Fermi liquid theory. To perform this matching, one must take

into account the effect of holonomies, which we find suppress the low temperature heat

capacity of this model in comparison with a standard Fermi-liquid. In section 3.4 we

consider the quantum and classical limits of this system and demonstrate the existence of

a novel intermediate regime that only exists at strong coupling. This region appears to

exibit a linear specific heat with a slope differing from the predictions of LFL theory. As

λ approaches 1 this behavior is valid over an ever wider range and the ideal gas regime is

pushed to infintely high temperatures at fixed particle-number density. In section 4, we

provide an exact computation of the Landau parameters and demonstrate consistency with

the thermodynamic results.

We also take the opportunity to furnish examples of the behavior of linear response

coefficients that are usually not accessible at strong coupling. In section 5 we perform

an exact computation of the conductivity tensor. The result for the Hall conductivity

in particular indicates the need to augment LFL theory to properly capture parity odd

transport, a problem that has only started to be addressed [18].

Finally, in section 6 we undertake a linear response analysis of the viscosities, obtaining

the bulk, shear and Hall viscosities at leading order in N . We take the non-relativistic limit

of the Hall viscosity and find that it takes the form of a gas of anyons with statistics induced

by the Chern-simons interaction

ηH = ∓~
4

(1∓ λ)n. (1.2)

Here the sign denotes the relative sign of the ’t Hooft coupling and the fermion mass. Note

that ±~
2(1 ∓ λ) is the angular momentum of an anyon with statistics θ = ±π(1 ∓ λ) [19],

this formula is consistent with the linear relationship between the Hall viscosity and the

angular momentum density, which has been previously demonstrated by adiabatic methods

and confirmed in various non-relativistic gapped states of matter [20, 21]. It also holds for

the chiral superfluids [22]. Whether the relationship continues to hold for general ungapped

systems requires further study.

2 Review of Landau Fermi liquid theory

In this section we review the fundamentals of Landau Fermi liquid theory to set the stage

and establish notation. LFL theory is a phenomenological theory of finite density fermions

at ultra-low temperatures, motivated by the intuition that the only relevant exciations in

this regime are those of the quasiparticles in the immediate vicinity of the Fermi surface.

For a systematic introduction to the subject we refer the reader to [23–26].2 Relativistic

aspects of Landau Fermi liquid theory were considered in [27].

2We will focus on the relativistic, N species, 2 + 1 dimensional case relevant to us and so our formulas

will occasionally differ from those found in these texts. In all cases however they may be obtained by the

techniques explained therein.
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Traditionally, the theory is characterized by the so-called Landau parameters. These

parameters in hand, one can calculate various thermodynamic observables and long-wave-

length modes.3 We study the thermodynamics of the large-N Chern-Simons theory with

fermions in section 3. We will see that the thermodynamic results of section 3 and the

microscopically derived Landau parameters found in section 4 are consistent once the effect

of holonomies on thermodynamics is taken into account.

2.1 Quasiparticle interaction and the Landau parameters

Consider a system of interacting fermions in 2 + 1 dimensions at finite chemical potential

µ and temperature T in the low-temperature limit T/µ � 1. LFL theory assumes this

system may be described in terms of interacting quasiparticles labeled by their momentum

p where |p| ∼ pF.4 The quasiparticle occupation number in momentum space n(p) is a

perturbation about the zero temperature distribution n0(p) with Fermi surface at |p| = pF,

n(p) = n0(p) + δn(p). (2.1)

The low-lying spectrum of excitations consists of individual quasiparticles and quasiholes,

as well as possible collective modes involving long wavelength deformations of the Fermi

surface.

Denote the energy cost of adding a single quasiparticle with momentum p by ε(p).

Due to interactions, ε(p) will in general depend on the occupation number n(p). To first

order we then have

ε(p) = ε0(p) +

∫
d2p′

(2π)2
f(p,p′)δn(p′) (2.2)

for some function f(p,p′) that parameterizes the strength of interactions between quasi-

particles at different points in momentum space. We can now identify the Fermi velocity

and effective mass of single particle excitations in the vicinity of the Fermi surface

vF =
∂ε0(p)

∂|p|

∣∣∣∣
|p|=pF

, m? =
pF

vF
. (2.3)

When multiple species of fermions are present, the quasiparticle energy and occupation

number are Hermitian operators in the internal space and (2.2) becomes

εij(p) = εi0j(p) +

∫
d2p′

(2π)2
f ij ,

l
k(p,p

′)δnkl(p
′) . (2.4)

For us, there is only a single on-shell spin degree of freedom to keep track of and the

internal space is simply color space.5

3As expected, since these identities are given rigorous microscopic justification on general grounds in [23–

26]. However it is worth to point out that it has been argued that a single additional parameter, the Berry

flux through the Fermi surface, is required to account for Hall conductivity [28]. We study partity-odd

transport in section 5.
4In 3+1 dimensions quasiparticles are also labeled by their spin.
5We hope that context will be sufficient to distinguish between color indices and spatial coordinate

indices, both of which we shall denote with lower case Latin letters.
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For us, there is only a single on-shell spin degree of freedom to keep track of and

the internal space is simply color space. We then decompose the interaction strength into

direct and exchange channels

f ij ,
l
k(p,p

′) = f (d)(p,p′)δijδ
l
k + f (e)(p,p′)δikδ

l
j . (2.5)

This must be symmetric under the exchange p↔ p′, i↔ l, j ↔ k and so

f (d)(p,p′) = f (d)(p′,p), f (e)(p,p′) = f (e)(p′,p). (2.6)

We will assume that the U(N) symmetry that acts on the “color” index i is unbroken. In

this case εi0j is proportional to the identity matrix and the definitions (2.3) are applicable.

In what follows we will often suppress color indices when their placement is obvious.

In the low-temperature limit, we expect excitations to be localized near the Fermi

surface, so that we are free to take |p| = |p′| = pF. The quasi-particle interaction function

f then depends only on the angle θ between p and p′. It is convenient to parameterize

this function by introducing the Landau parameters F
(d)
n , F

(e)
n

f (d)(θ) =
2π

Nm?

(
F

(d)
0 + 2

∞∑
n=0

F (d)
n cosnθ

)
,

f (e)(θ) =
2π

Nm?

(
F

(e)
0 + 2

∞∑
n=0

F (e)
n cosnθ

)
. (2.7)

Normalization by the density of states at the Fermi surface

ν(εF) =

∫
|p|=pF

d2p

(2π)2
=
Nm?

2π
(2.8)

is conventional.

2.2 Common observables in Landau Fermi liquid theory

In this section, we briefly touch on several observables that may be computed within LFL

theory. These observables will be the basis for comparison with field theoretic results

found in section 4.3. Consider first the total energy flux carried by some near-equilibrium

distribution of quasi-particles

V

2

∫
d2p

(2π)2
Tr

((
ε(p)

∂ε(p)

∂pi
+
∂ε(p)

∂pi
ε(p)

)
n(p)

)
. (2.9)

By Lorentz invariance, the energy is merely the time component of an energy-momentum

four-vector, so the energy flux must be equal to the total momentum flux

V

∫
d2p

(2π)2
pi Tr (n(p)) . (2.10)

Expanding to first order in δn(p) then yields a simple equation determining the effective

mass induced by interactions

m? = µ

(
1 + F

(d)
1 +

1

N
F

(e)
1

)
, (2.11)

where we have evaluated at the Fermi surface and used µ = εF.
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We now turn to the isothermal inverse compressibility κ−1 = n2
(
∂µ
∂n

)
T

. This is deter-

mined by both the zeroth and first Landau parameters. To obtain
(
∂µ
∂n

)
T

, one introduces

a small perturbation in the total density δn =
∫ d2p

(2π)2 δn(p). We can then calculate the

shift in the chemical potential arising from the shift in the location of the Fermi surface

and from interactions between the perturbation and the Fermi sea. Using (2.11) one finds

the isothermal inverse compressibility to be given by

κ−1 =
2πn2

Nm?

(
1 + F

(d)
0 +

1

N
F

(e)
0

)
. (2.12)

Finally, it was pointed out in [28] that the Landau parameters are not sufficient to

describe parity odd-transport in 2 + 1 dimensions. In this case, the Hall conductivity picks

up an essential contribution from the Berry flux through the Fermi ball

σH =

∫
d2p

(2π)2
Tr(F(p)n(p)) =

1

4π2

∮
pF

Tr A, (2.13)

where A = −iψ†dψ is the Berry connection and F = dA is the associated flux density.

2.3 Microscopics

The Landau parameters may be calculated directly within quantum field theory [27], the

fundamental object of interest being the on-shell four-point function

V i
l,
k
j(p, k, q) =

1

(u†u)2
uα(p+ q)uγ(k)V α

δ,
γ
β ;i l,

k
j(p, k, q)ū

β(k + q)ūδ(p). (2.14)

Here uα(p) are the on-shell quasiparticle spinors.

V α
δ,
γ
β ;i l,

k
j(p, k, q) =

〈
ψ̄αi(−p− q)ψ̄γk(−k)ψδl(p)ψβj(k + q)

〉
1PI

(2.15)

is the 1PI four point function, represented by the diagram6

p+ q k + q

p k

α i β j

δ l γ k

1 PI

The interaction function is then obtained by taking the scattered particles to lie on the

Fermi surface |p| = |k| = pF and the exchange momentum q to zero in the “rapid” limit

f ij ;
k
l(θ) = Z2 lim

q0→0
lim
q→0

V i
j ;
k
l(p, k, q). (2.16)

6Our conventions for spinors are as follows. On Feynman diagrams an outgoing line corresponds to

spinor ψαi with lower indices, and incoming line corresponds to Dirac-conjugate spinor ψ̄αi with upper

indices.
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Here θ is the angle between the scattered quasiparticles and Z the wavefunction renormal-

ization. The latter is defined by the quasiparticle propagator

G(p) αβ =
Z

ω − vF(|p| − pF) + i ε sgn (|p| − pF)

ūα uβ
u†u

∣∣∣∣
|p|=pF

, (2.17)

expanded in the vicinity of the Fermi surface, ω = 0, |p| = pF. Expanding the propaga-

tor (3.7) and using the exact wavefunctions (4.9) we find that in large N CS theory with

fundamental fermions, the quasiparticle propagator takes precisely this form with Z = 1.

3 Thermodynamics of large N Chern-Simons systems with fermions

We now turn to the theory which interests us in this paper, namely, large N Chern-Simons

theory coupled to massive fundamental fermions. As reviewed in the introduction, this

is a remarkable model insofar as it exhibits a great deal of non-trivial physics that may

be extracted exactly at arbitrary values of the coupling. We introduce this theory in

section 3.1 and review several key results, including the known exact equation of state at

finite temperature and density. In section 3.2 we set the stage for our later examination of

the LFL state by considering the low temperature limit.

The Fermi liquid state is a strongly quantum regime where the specific heat is linear

in the temperature cv ∼ T and the slope is determined by the effective mass. It was

demonstrated in [3] that holonomies about the thermal circle need to be accounted for to

correctly capture the thermodynamics. We observe in section 3.3 that at low temperatures

the effect of holonomies is to dampen the specific heat of the system.

In section 3.4 we demonstrate that the transition temperature above which the gas ef-

fectively becomes classical diverges as the coupling is increased, while the quantum degen-

eracy temperature remains fixed. At strong coupling then a new extended region emerges

which is neither quantum nor classical in nature. We observe this regime numerically and

find that it is also characterized by a linear specific heat, but with a slope differing from

that of the Large N CS Fermi-liquid.

3.1 A review of large N Chern-Simons theory with fundamental fermions

The theory we will concern ourselves with for the duration of this paper is that of N species

of fermions in the fundamental of SU(N), coupled to Chern-Simons theory at level k and

rank N . In the ’t Hooft limit

k,N →∞ , λ =
N

k
fixed, (3.1)

this theory becomes exactly solvable.

The Lagrangian density at finite chemical potential is given by

L = N

(
i

4πλ
εµνλ Tr

(
Aµ∂νAλ −

2i

3
AµAνAλ

)
+ ψ̄γµDµψ +mψ̄ψ − µψ̄γ3ψ

)
. (3.2)

Here we work in Euclidean space, ψ̄α = (ψα)∗, Dµψ = (∂µ − iAµ)ψ, µ is the chemical

potential and m the bare mass of the fermion. The coupling constant λ is a continuous

– 7 –
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parameter in the ’t Hooft limit and can take any value |λ| < 1. Near |λ| = 1 the theory

approaches infinite coupling. We shall find it convenient to fix λ and µ to be positive

by application of C and P . The mass may then have any sign. When results depend on

the sign of the mass, we will indicate the positive mass result by the upper sign and the

negative mass result with the lower sign.7

Following [1] we shall represent the gamma matrices as

γµ =
(
σ1 σ2 σ3

)
, (3.3)

work in light-cone coordinates x± = 1√
2
(x1± ix2), and set light-cone gauge A− = 0. In this

gauge, the non-vanishing components of the gauge field propagator Gµν(p) are given by

G+3(p) = −G3+(p) =
4πiλ

p−
, (3.4)

which is exact in the large N limit. Here and in what follows we will often suppress factors

of N when their placement is obvious.

The full fermionic propagator is

G(p) =
1

ip̃µγµ + Σ(p)
, (3.5)

where we have denoted p̃µ = pµ + iµδµ 3 and G(p)αβ =
〈
ψβ(p)ψ̄α(−p)

〉
. In the large N

limit, the self-energy Σ(p) satisfies a recursion relation which has been solved at finite

temperature and chemical potential [3, 10–12]. One finds that in the light-cone gauge,

Σ(p) is of the form

Σ(p) = ΣI(p)I + Σ+(p)γ+, where Σ+(p) =
c2

0 − Σ2
I(p)

p2
s

ip+. (3.6)

Given this, one may rewrite the propagator as

G(p) =
ΣI − iγ+(p+ Σ)+ − iγ−p− − iγ3p̃3

p̃2 + c2
0

, (3.7)

from which we see that c0 is the pole mass, determined [10] by the gap equations,8

ĉ0 = m̂+ 2λC,

C =
1

2

∫
dαρ(α)

(
ln 2 cosh

|ĉ0|+ µ̂+ iα

2
+ ln 2 cosh

|ĉ0| − µ̂− iα
2

)
. (3.8)

Any quantity bearing a hat denotes that quantity in units of the temperature, for instance,

µ̂ = µ/T . The gap equations (3.8) always have a unique real solution, so that quasi-

particles are perfectly stable. This is to be expected in the large N limit, which suppresses

internal fermion loops that would lead to decay. We anticipate that finite N effects would

introduce a nonzero decay rate.

7If one does not fix the sign of λ this difference is in the relative sign of m0 and λ.
8Note we have made a choice of sign in (2.12) of [10].
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We use α to denote holonomy eigenvalues about the thermal circle. These have density

ρ(α) which approaches the universal form [3]

ρ(α) =

{
1

2πλ , α ∈ (−πλ, πλ),

0, otherwise,
(3.9)

in the thermodynamic limit V T 2

N � 1, which we shall adopt here. Finally, having solved

for c0, we may find ΣI(p), which is a function of only ps

ΣI(p) = m+ λ

∫
dαρ(α)

(
log 2 cosh

Êp + µ̂+ iα

2
+ log 2 cosh

Êp − µ̂− iα
2

)
(3.10)

where Ep =
√
p2
s + c2

0 and p2
s = 2p+p− = p2

1 + p2
2 is the square of the spatial momentum.

The exact free energy is also known at finite temperature and chemical potential and

is given by [3, 10]

F =
NV T 3

6π

(
|ĉ0|3 − 2(|ĉ0|2 − m̂2)C + 2λm̂C2 − f0

−3

∫
dαρ(α)

∫ ∞
|ĉ0|

dyy
(

log(1 + e−y−µ̂−iα) + log(1 + e−y+µ̂+iα)
))

. (3.11)

Here

f0 = |m̂|3 2∓ λ
(1∓ λ)2

(3.12)

is introduced as a counter-term in the action to subtract off the vacuum energy density.

3.2 The low temperature limit

In this section we shall derive the low temperature (µ̂� 1) limit of the expressions found

in section 3.1. In this limit, up to corrections that are exponentially suppressed in µ̂, the

gap equations (3.8) reduce to

ĉ0 = m̂+ λmax(|ĉ0|, µ̂). (3.13)

The self-energy (3.10) exhibits discontinuous behavior, indicating the presence of a Fermi

surface at pF =
√
µ2 − c2

0 (see also (2.27) of [2])

ΣI(p) = m+ λEp θ(Ep − µ) + λµ θ(µ− Ep). (3.14)

The solution to the gap equation depends on the location of the chemical potential.

Below the gap we shall denote c0 as m0 and one finds

m0 =
m

1∓ λ
, (3.15)

while for µ greater than |m0|, one has

c0 = m+ λµ = m0 + λ∆µ, (3.16)

– 9 –



J
H
E
P
0
4
(
2
0
1
6
)
1
0
3

where ∆µ = µ− |m0|. Recall that the upper sign indicates the result for positive fermion

mass. Equation (3.15) is then the single particle mass at zero temperature and zero density.

When the system is at finite density, self-interactions induce a mass (3.16).

The Free energy may also be expanded and the holonomy integrals are easily performed

in this limit. One finds for µ > |m0|, again up to exponentially suppressed corrections,

F =
NV

12π

(
3m2µ+ 3λmµ2 + (λ2 − 1)µ3 + π2(λ2 − 1)µT 2 − f0 +O(e−µ̂)

)
. (3.17)

It is then a simple matter to evaluate the number density, entropy density and specific heat

n =
Np2

F

4π
+
Nπ

12
(1− λ2)T 2, s =

N

6
π(1− λ2)µT, cV =

N

6
π(1− λ2)µT. (3.18)

Note that at zero temperature the number density obeys Luttinger’s theorem [29]

n = N

∫
ps≤pF

d2p

(2π)2
. (3.19)

From the nonrelativistic limit (B.12) we can also easily find the ground state energy

of the non-relativistic Chern-Simons Fermi-liquid at finite density.

EGS =
NV

4π
|m0|(1∓ λ)∆µ2. (3.20)

We can then extract the Bertsch parameter [30], important in the study of the unitary

Fermi gas, and find that for mass the same sign as λ, it vanishes as the coupling is tuned

to infinity

EGS = ξBEFG, ξB = 1∓ λ. (3.21)

Here EFG =
NV p4

F
16π = NV

4π |m0|∆µ2 is the ground state energy of the free Fermi gas in two

spatial dimensions.

The vanishing of the Bertsch parameter as λ→ 1 for positive mass can be understood

easily if one recall that in this limit the system allows a dual description in terms of weakly

coupled bosons. The bosons are not subject to the Pauli exclusion principle and the ground

state energy is zero when the bosons are not interacting.

3.3 Holonomies and statistics

In this section we discuss an effect of holonomies that will be essential in our verification of

the Fermi-liquid state. Namely, that fermions no longer obey a Fermi-Dirac distribution,

resulting in a suppression of the specific heat in the quantum regime. To see this, we

directly evaluate the mean occupation number from the Green’s function

n(ps) = −
∫
dαρ(α)

1

β

∞∑
n=−∞

Tr
(
G(p)γ3

)
, (3.22)

where p̃3/T = 2π (n+ 1/2) + iµ̂ − α. The sum is over Matsubara frequencies, shifted by

holonomies. At weak coupling λ → 0, one obtains the standard momentum distribution
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Figure 1. The distribution function (3.23) at

T/µ = .1 for several different values of λ. At

λ = 0 we have the Fermi-Dirac distribution.
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Figure 2. Distribution functions for several

values of T/µ at λ = .7. The Fermi-Dirac dis-

tribution is displayed in solid lines while (3.23)

is displayed in dashed lines.

for relativistic fermions at nonzero temperature and chemical potential [2]. Restoring the

holonomies by the shift µ̂→ µ̂+ iα one finds

n(ps) =
N

2

∫
dαρ(α)

(
tanh

Êp + µ̂+ iα

2
− tanh

Êp − µ̂− iα
2

)
. (3.23)

As seen in figures 1 and 2, the holonomies make the fermion system “seem colder”

than a standard Fermi gas at the same temperature, enhancing the tendency of electrons to

accumulate below the Fermi momentum. With fewer fermions excited by heating, we would

expect a corresponding suppression in the specific heat of the quantum liquid. Indeed,

evaluating the entropy density (see appendix A for details)

s = −
∫

d2p

(2π)2

(
n(ps) log n(ps) + (1− n(ps)) log(1− n(ps))

)
, (3.24)

one finds

cv =
N

6
π(1− λ2)m?T, (3.25)

compared to π
6Nm

?T for a standard Fermi liquid. We stress that this discrepancy does not

invalidate the Landau Fermi liquid expression for the effective mass m? of quasiparticles,

but rather is a consequence of a peculiar quasiparticle distribution function due to the

holonomies.

3.4 A novel regime at strong coupling

In the previous section we discussed some peculiar properties of the large N CS Fermi-

liquid state. In this section we investigate the opposing, high temperature limit, in which

the gas becomes ideal. As we shall see, as the coupling is tuned to 1, the ideal gas becomes

increasingly inaccesible. There is then an extended intermediate regime that exists only at

strong coupling for which neither the classical nor quantum descriptions is valid.
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To see this we examine the non-relativistic gas at constant density (throughout this

section we refer the reader to appendix B for details). In the non-relativistic limit, the

temperature and chemical potential are small compared to the gap energy

T,∆µ� |c0|, ξ =
∆µ

T
arbitrary. (3.26)

In this limit the equation of state (3.11) becomes

F = −NV |m0|
12π

T 2

(
π2(1−λ2)+3ξ2±3λf(ξ)(f(ξ)−2ξ)+6

∫
dαρ(α)Li2

(
−e−ξ−iα±λf(ξ)

))
,

(3.27)

where f(ξ) determines the pole mass

c0 = m0 + λTf(ξ) (3.28)

and solves the trancendental equation

f(ξ) = ξ +
1

πλ
Im Li2

(
−e−ξ−iπλ±λf(ξ)

)
. (3.29)

Heating this system at fixed particle density n, one will eventually enter the classical

regime and the specific heat saturates to a constant. To find the range over which this

description is valid, we perform a virial expansion of (3.27). We state our results in terms

of the pressure p = −F/V .

p

nT
= 1 + v2

n

N |m0|T
+O

((
n

N |m0|T

)2
)
, (3.30)

where v2 is the second virial coefficient

v2 =
πλ

±1− λ
+

1

2
π2λ cotπλ

→ ∓π
2

1

1− λ
as λ→ 1. (3.31)

Note that v2 diverges when λ → 1. At strong coupling then, corrections to the ideal gas

law p = nT are numerically small only when

T � 2π

1− λ
n

N |m0|
, (3.32)

which diverges as λ→ 1.

On the other hand, a similar expansion in the low temperature limit shows that cor-

rections to the Fermi-liquid specific heat (3.25) are exponentially suppressed and their

importance does not depend strongly on the coupling. The system then forms a degener-

ate liquid when

π
n

N |m0|T
� 1, i.e. T � Tq, where Tq = π

n

N |m0|
. (3.33)
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Figure 3. The specific heat for m0 > 0 at

various values of λ. The transition to the in-

termediate regime occurs at order T ≈ n
N |m0| .

Figure 4. The slopes of cV in units ofN |m0| of

the LFL and intermediate regions as a function

of λ. The linear fits are π
6 (1−λ2) and π

6 (1−λ)

respectively.

Tq is simply the degeneracy temperature. This behavior is denomstrated in the plots above.

In figure 3 we plot the specific heat at constant density. The emergence of a second linear

regime when Tq � T � Tq/(1 − λ) is clear as the coupling is increased. The slopes of

the quantum and intermediate regimes are graphed as a function of λ in figure 4. The

numerical evidence indicates that the slope of the intermediate regime is half that of the

LFL regime as one approaches infinite coupling.

3.5 Bose-Fermi duality in thermodynamics

What is the nature of the temperature scale Tq/(1 − λ) and of the intermediate regime

Tq � T � Tq/(1−λ), in which neither the Fermi liquid nor the classical gas picture work?

A hint can be obtained from the boson-fermion duality, which maps strongly coupled

fermions into weakly coupled bosons. Under this duality, the number of colors of the boson

is Nboson = k −N ≈ (1− λ)N , and when fermions are at strong coupling, 1 − λ� 1, the

number of bosonic colors is much smaller than the number of fermionic colors: Nboson � N .

In the bosonic picture, the number density per color is much larger than the density per

color for fermions: n/Nboson � n/N , and subsequently the degeneracy temperature of the

boson is also much larger:

Tbos.deg. =
n

Nbosonm
≈ n

(1− λ)Nm
=

Tq
1− λ

. (3.34)

Thus the temperature scale Tq/(1−λ), mysterious from the fermionic viewpoint, is simply

the degeneracy temperature of the bosons. The deviation of cv from the classical gas value

below Tq/(1 − λ) is thus the manifestation of the fact that the bosons behave quantum

mechanically below their degeneracy temperature.

This interpretation of the temperature scale Tq/(1 − λ) is supported by the virial

coefficient at high temperatures. Using standard statistical mechanics, one finds that the

virial coefficient of an ideal gas, as defined in eq. (3.30), is equal to +π/2 for fermions and

−π/2 for bosons. When λ→ 0, the virial coefficient, computed in eq. (3.31), tends to π/2

(for positive mass) as expected. When λ → 1, on the other hands, with the asymptotics
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of v2 found in eq. (3.31), eq. (3.30) can be rewritten as

p

nT
= n− π

2

n

Nbosonm0T
, (3.35)

in complete agreement with the interpretation of the system as an almost ideal Nboson-

component Bose gas.

We now take the bosons to temperatures below the boson degeneracy temperature

Tbos.deg. Recall that in two spatial dimensions, noninteracting bosons do not form Bose-

Einstein condensate: as one lowers the temperature the chemical potential approaches 0

from below, but never reaches 0. For T � Tbos.deg., when µ is close to 0, the energy density

of a free Bose gas is

ε = Nboson

∫
d2k

(2π)2

εk
eεk/T − 1

= Nboson
π

12
mT 2 (3.36)

(here εk = k2

2m), and hence the specific heat in the boson degeneracy regime is

cv = Nboson
π

6
mT = (1− λ)N

π

6
mT , (3.37)

which matches exactly the linear slope found numerically in the previous section.

When T . Tq = (1− λ)Tbos.deg. our calculations indicate that the system is no longer

an ideal Bose gas. Presumably, at these low temperatures the interactions between the

bosons can no longer be ignored. That the bosonic system turns into a Fermi liquid at

very low temperature is a miracle of Bose-Fermi duality.

4 The Landau parameters

In this section we argue that a large-N Chern-Simons system with finite density fermi-

ons (3.2) behaves as a Landau Fermi liquid at low temperatures. To support this state-

ment we calculate the Landau parameters of the theory (3.2) by two different methods,

thermodynamic and microscopic, and demonstrate that in both cases we obtain the same

result, describing a stable, interacting Fermi liquid. The thermodynamic method relies on

the equation of state (3.17) derived in section 3. We use the free energy (3.17) to work

out quasiparticle effective mass and compressibility of the system. Matching these to the

predictions of LFL theory, we can derive the values of the Landau parameters.

Then we work out the Landau parameters directly using the microscopic formula (2.16).

This is made possible by the large N limit and our gauge choice, which restricts the type

of diagrams that contribute at leading order in N and allow one to write down an exact

Schwinger-Dyson equation for scattering amplitudes. The integral equations we shall need

for the vertex function were first given in section 5.2 of [1] and latter solved in [6, 7] at

zero chemical potential. Prior to this, similar calculations of two point correlators were

performed in [4, 5] and our analysis in sections 5 and 6 will closely follow these references.

To calculate the Landau parameters we shall need the solution for nonzero µ, evaluated at

the Fermi surface. The calculation proceeds essentially as those found in these references

and is not particularly instructive. The interested reader may find the details in appendix C.
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4.1 Thermodynamic calculation of the Landau parameters

In section 3 we found the low temperature equation of state (3.17), and used it to derive the

entropy density and heat capacity (3.18). We also worked out the expression for entropy

density by a direct statistical calculation in (3.25) for a system of quasiparticles with the

effective mass m?. Comparing these two results for the heat capacity we see that the

effective mass is simply given by

m? = µ . (4.1)

Also note that this formula may also be extracted from the low temperature limit of the

Green’s function (3.5) expanded near the Fermi surface and matched against the LFL

quasiparticle propagator (2.17). From the expression (2.11) we see that the exchange

channel makes a subleading contribution in the large N limit, while the Landau parameter

in the direct channel vanishes

F
(d)
1 = 0 . (4.2)

Now let us turn to the zeroth Landau parameters, related to the compressibility

by (2.12). The isothermal inverse compressibility is simply calculated from the low tem-

perature equation of state (3.17)

κ−1 = n2

(
∂µ

∂n

)
T

=
2πn2

N(µ− λc0)
. (4.3)

Again the exchange channel does not contribute in the large N limit and comparing

to (2.12), we have

F
(d)
0 =

λ c0

µ− λ c0
. (4.4)

This result can also be obtained in the massless case m = 0 by demanding the speed of

zero sound take the conformal value s = 1/
√

2.

4.2 The four-point vertex function

We now turn to a direct calculation of the Landau parameters from the definition (2.16).

We begin by evaluating the 1PI four-point function. In the large N limit, the four-point

vertex function (2.14) is a sum of ladder diagrams and so obeys a Schwinger-Dyson integral

equation. In the direct channel this is9

V (d)(p, k, q)αδ,
γ
β = −1

2
Gµν(p− k)(γµ)αβ(γν)γδ (4.5)

− 1

2

∫
d3r

(2π)3
Gµν(p− r)

(
γµG(r + q)V (d)(r, k, q), γβG(r)γν

)α
δ

9The factors of 1/2 in front of both terms in the r.h.s. originate from the normalization convention of

the gauge propagator (3.4), chosen to match [1].
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or, diagrammatically (in the second diagram in the r.h.s. the internal fermionic lines with

momenta r and r+ q are the full fermionic propagators, which we draw as simple lines not

to clutter the picture)

= +

α i

p+ q k + q
β j

δ l
p k

γ k

α i

p+ q k + q
β j

δ l
kp

γ k

p− k

α i

p+ q r + q

δ l
p r

p− r

k + q
β j

k
γ k

In equation (4.5) we have suppressed color indices as their placement is encoded in

’t Hooft’s double line notation. The notation in the integrand indicates that spinor indices

are contracted as if matrices are being multiplied in the indicated order. Note that in (4.5)

we have organized the spin indices on the vertex function into two factors, separated

by a comma. This is convenient since only the first factor participates in the matrix

multiplication of the final term. The second factor is then simply along for the ride.

Setting qs = 0, this integral equation can be solved for any value of the incoming

momenta p and k. For our purposes however, we only require the solution on the Fermi

surface, where ps = ks = pF. The particles with momenta p and k are incident with angles

θp and θk respectively (by rotational invariance our answer can depend only on θ = θp−θk).
We have also checked up to one-loop order that the perturbative calculation agrees with

an expansion of the full answer around λ = 0. Here we simply state the result

V (d)(θp, θk) =
2πλ2

µ− λc0
I ⊗ I +

2
√

2πiλ

pF(eiθk − eiθp)
(
I ⊗ γ+ − γ+ ⊗ I

)
, (4.6)

where we have taken the exchange momentum q → 0 in the rapid limit: first qs → 0,

second q3 → 0. The product decomposition of matrices corresponds to our organization of

spin indices in V (d)α
δ,
γ
β . That is, the first matrix corresponds to indices to the left of the

comma and the second matrix to those on the right.

4.3 Microscopic calculation of the Landau parameters

To complete our calculation of the Landau parameters we need to work out the quasiparticle

spinor u(p) and wave function renormalization Z. As reviewed in section 3.1, the large N

fermionic propagator is known and is given by equations (3.5), (3.6) and (3.14). The full

dressed quasi-particle spinor then satisfies

(iγµp̃µ + Σ(p))α
βuβ(p) = 0. (4.7)

We solve this on the Fermi surface. Here the self-energy (3.14) is simply Σ = c0I, and

the momentum components on Fermi surface are p± = 1√
2
pFe
∓iθ and p̃3 = iµ. The Dirac

equation then assumes the form(
c0 − µ ipFe

−iθ

ipFe
iθ c0 + µ

)(
u1

u2

)
= 0. (4.8)
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The solution describing quasiparticles is

uα =

( √
µ+ c0 e

−iθ/2

−i
√
µ− c0 e

iθ/2

)
(4.9)

where we have imposed the normalization u†u = 2µ. Expanding the Green’s function (3.5)

about the Fermi-surface and matching with the Landau Fermi liquid expression (2.17)

we find that Z = 1. Assembling this all together we may finally compute the Landau

parameters using (2.14) and (2.16).10 Remarkably, all angular dependence drops out and

the interaction strength is constant along the Fermi surface. There is then only the single

non-zero parameter in the direct channel

F
(d)
0 =

λ c0

µ− λ c0
, (4.10)

which in agreement with (4.4).

We do not calculate the Landau parameters in the exchange channel since this requires

solving the recursion relation at all values of q±. This can be easily seen from the recursion

relation in the exchange channel, in which q does not simply appear as a parameter

V (e)(p; k; q) = −1

2
G+3(q)

(
γ+ ⊗ I − I ⊗ γ+

)
− 1

2

∫
d3r

(2π)3
G+3(r − q)H+

(
G(p+ q)V (e)(p, k; r)G(k + r)

)
. (4.11)

A similar difficulty prevents a direct evaluation of the S matrix in the S-channel in [6].

One can obtain the vertex function in the exchange channel from the direct channel by

use of Fermi statistics, but this requires knowledge of V (d)(p, k; q) at finite q±. Since we

lack Lorentz invariance in the presence of a Fermi surface we cannot infer this from our

results above. Although we cannot compute the exchange Landau parameters directly, we

can still perform the comparison above since the contribution of the exchange channel is

subleading in N for the observables (2.11) and (2.12) we have considered.

5 The conductivity tensor

In this section we evaluate the conductivity tensor at large N for any frequency ω; to our

knowledge, the first exact evaluation within an interacting field theory for all values of the

coupling constant. We draw particular attention to the zero frequency Hall conductivity,

which is not simply the proportional to the total Berry flux (2.13). In future work we

will pursue what is needed to completely capture the Hall conductivity within Fermi liquid

theory [18].

We calculate the conductivity tensor by its Kubo formula

σij(ω) =
1

iω+
Gi,jR (ω), (5.1)

10This formula was written in Lorentzian signature, while this section has been in Euclidean signature.

To use (4.9) in (2.16) one must recall that ū = σ3u∗ in Lorentzian space.
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where Gi,jR (ω) is the Fourier transformed retarded Green’s function11

Gi,jR (ω) = i

∫ ∞
−∞

d3xeiω+x0
Θ(x0)

〈
[ji(x), jj(0)]

〉
. (5.2)

and

jµ = i ψ̄γµψ (5.3)

is the U(1) current. The frequency is always evaluated with a small, positive imaginary part

ω+ = ω + i0+ which we will simply denote as ω from this point forward. This calculation

was performed at zero density and zero mass in [5]. We will first calculate the Euclidean

time ordered correlators and obtain the retarted Green’s functions by Wick rotating back

to Minkowski space q3 → iω.

Let’s start by evaluating the three-point vertex function involving the current and two

fermions

1 PI
V µ,α

β(p; q) =

p+ q

p

β

α

q

µ

from which we then find the current-current correlator

〈

ji(q)jj(−q)
〉

= = iN
∫

d3p

The vertex V µ,α
β in the large N limit obeys the recursion relation

V µ(p; q) = iγµ − 1

2

∫
d3r

(2π)3
Gρσ(p− r)γρG(r + q)V µ(r; q)G(r)γσ, (5.4)

which diagramatically may be expressed as

p+ q

= +

α

β

p+ q

p

q

µ

α

β

p

α

β

p+ q

p

p− r

r + q

r

q

µ

11We have set the contact term to zero since (5.3) has no Aµ dependence.
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Figure 5. Longitudinal conductivity σ at m0/µ = .1 and several values of λ.
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Figure 6. Hall conductivity σH at m0/µ = 1 and several values of λ.

As before, solving (5.4) is rather cumbersome. The details are collected in appendix D.

In the end, the only independent nonzero correlator is〈
j+(ω)j−(−ω)

〉
= − N

16πλω

(
(ω − 2c0)2

(
1− e2λarctanh ω

2µ

)
+ 4λµω

)
, (5.5)

where we have introduced counterterms to subtract out a linear divergence. The correlation

function 〈j−(ω)j+(−ω)〉 is obtained from (5.5) by the replacing ω → −ω.

The longitudinal and Hall conductivities are then simply

σ(ω) =
1

2
δijσ

ij(ω) =
1

2
(σ+−(ω) + σ+−(−ω)),

σH(ω) =
1

2
εijσ

ij =
i

2
(σ+−(ω)− σ+−(−ω)). (5.6)

Altogether then, we have

σ(ω) = − Ni

32πλω2

(
8ω(c0 − λµ) + (ω − 2c0)2e

2λ arctanh ω
2µ − (ω + 2c0)2e

−2λ arctanh ω
2µ

)
,

σH(ω) = − N

32πλω2

(
−2(ω2 + 4c2

0) + (ω − 2c0)2e
2λ arctanh ω

2µ + (ω + 2c0)2e
−2λ arctanh ω

2µ

)
.

(5.7)

These may be found plotted in figures 5, 6. The discontinuous feature at ω = 2µ arises

from a branch cut in the Green’s function signifying a continuum of multi-particle states

beginning at the pair-production threshold. The real part of the dissipative conductivity

is zero below this threshold, while its imaginary part diverges as 1/ω in accordance with

the Drude formula (5.9).
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It is instructive to consider conductivity in several different regimes. At frequencies

much larger than any other scales, we retrieve the results of [5]

σ(ω) =
N sinπλ

16πλ
+O(ω−1), σH(ω) = −

N sin2 πλ
2

8πλ
+O(ω−1). (5.8)

The Fermi liquid description on the other hand is valid at low frequencies ω → 0

σ =
Np2

F

4πµ

1

−iω
+O(ω), σH = − Nc0

4πµ2

(
µ− 1

2
λc0

)
+O(ω2). (5.9)

The longitudinal conductivity simply reduces to the Drude formula. Recall that since ω has

a small, positive imaginary part, the real part of the dissipative conductivity also includes

a delta function at zero frequency σ = πn
µ δ(ω) + · · · that is implicit in our formulas above.

We expect that this would be broadened at finite N by quasi-particle decay (see comments

below (3.8)).

It is easy to see that the Hall conductivity does not match our expectations from (2.13).

Using the wavefunctions at the Fermi surface (4.9), the enclosed Berry flux is simply

1

4π2

∮
pF

Tr A = −Nc0

4πµ
(5.10)

and so does not entirely account for the Hall conductivity of the Fermi liquid state when

interactions are present.

6 The viscosity tensor

We now undertake a similar analysis of the viscosity tensor. The viscosity encodes the

stress induced by shearing within linear response theory〈
T ij
〉

= −pδij + ηijklτij + · · · , where τij = ∂iuj + ∂jui (6.1)

and ui is the local fluid velocity. After a time-dependent diffeomorphism to the fluid

Lagrangian coordinates, this appears as the response of the stress tensor to deformations

of the fluid internal metric τij = iω+gij , and so may be captured by a stress-tensor Kubo

formula. For a comprehensive treatment of viscosity within linear response theory we refer

the reader to [31]. In 2+1 dimensions, ηijkl has three independent components, the bulk,

shear and Hall viscosities respectively [32]

ηijkl = ζδijδkl + ηΠijkl + η̃Π̃ijkl. (6.2)

where we have introduced the even and odd projectors

Πijkl = δi(kδl)j − 1

2
δijδkl, Π̃ijkl =

1

2

(
δi(kεl)j + δj(kεl)i

)
. (6.3)
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Their Kubo formulas are then

ζ(ω) = − 1

4iω+
δijδklG

ij,kl
R (ω) +

p+ κ−1

2iω+
,

η(ω) = − 1

2iω+
ΠijklG

ij,kl
R (ω) +

p

iω+
, (6.4)

ηH(ω) = − 1

2iω+
Π̃ijklG

ij,kl
R (ω),

where we have denoted the Fourier transformed retarded Green’s function, including con-

tact terms, as

Gij,klR (ω) =

∫ ∞
−∞

d3xeiω+x0

(〈
δT ij(x)

δgkl(0)

〉
+
i

2
Θ(x0)

〈
[T ij(x), T kl(0)]

〉)
. (6.5)

As pointed out in [31], the thermodynamic terms appearing in (6.4) are necessary to sub-

tract off contributions from the first term of (6.1) under metric perturbations.

The stress tensor of our theory is given by

Tµν = −1

2
ψ̄γ(µ

↔
Dν)ψ +

(
1

2
ψ̄γλ

↔
Dλψ +mψ̄ψ

)
ηµν . (6.6)

The cosmological constant introduced to cancel the vacuum energy density in (3.11) should

also appear here and is necessary to get the correct pressure in (6.1). However, we can

safely ignore this in a viscosity computation as the pressure and compressibility terms in

the Kubo formulas (6.4) are introduced so as to make the viscosities independent of the

equation of state, and one can easily verify that a cosmological constant in particular does

not affect them.

As before, the first step is to calculate the vertex function with a single stress insertion

1 PI
NUµν,α

β(p; q) =

p+ q

p

β

α

q

µν

which is a three-point function

(Uµν)α β(p, q) =
〈
Tµν(q)ψβ(p)ψ̄α(−p− q)

〉
1PI

. (6.7)

In the large N limit it obeys the recursion relation

Uµν(p, q) = Uµν0 −
1

2

∫
d3r

(2π)3
Gρσ(p− r)γρG(r + q)Uµν(r; q)G(r)γσ, (6.8)
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Figure 7. Shear viscosity η at m0/µ = .3 and several values of λ.

which is represented diagramaticaly as

p+ q

= +

α

β

p+ q

p

q

µν

α

β

p

α

β

p+ q

p

p− r

r + q

r

q

µν

This recursion relation is very similar to the one satisfied by the current vertex, the only

difference being in the inhomogeneous term Uµν0 , which we draw on the diagram as a larger

black dot in the vertex. Their form and all other details relevant to the computation of

the Kubo formulas are collected in appendix E. At the end of the day we find

ζ(ω) =
Ni(c0−λµ)2

32πλω(λc0−µ)
(

(ω+2c0)+(ω−2c0)e
2λarctanh ω

2µ

)(−(ω+2c0)(µ(ω−2c0)−λc0ω)

+(ω−2c0)(µ(ω+2c0)−λc0ω)e
2λarctanh ω

2µ

)
,

η(ω) =
Ni

1536πλω2

(
−24ω(c0−λµ)(ω2−4c2

0+4λµ(c0−λµ)−8λ2µ2)−160λ(1−λ2)µ3ω

−3(ω−2c0)3(ω+2c0)e
2λarctanh ω

2µ+3(ω−2c0)(ω+2c0)3e
−2λarctanh ω

2µ

)
,

ηH(ω) = − N

512πλω2

(
−2(ω4+8c2

0ω
2−16c4

0)+16(c0−λµ)2ω2

+(ω−2c0)3(ω+2c0)e
2λarctanh ω

2µ+(ω−2c0)(ω+2c0)3e
−2λarctanh ω

2µ

)
. (6.9)

See figures 7, 8, 9 for illustration. As with the conductivity, these exhibit a discontinuity

as one crosses the pair-production threshold. Imaginary part of the shear viscosity has a

pole at zero frequency, which agrees with the LFL theory prediction, stating that ηDC ∼ τ ,

where quasiparticle life-time, τ ∼ 1/T 2, is infinite at zero temperature, see, e.g., [24]. We
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Figure 8. Hall viscosity ηH at m0/µ = .7 and several values of λ.
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Figure 9. Bulk viscosity ζ at m0/µ = .8 and several values of λ.

also note that unlike the shear viscosity, the bulk viscosity approaches a finite limit at

low frequencies (in fact, it goes to zero), a general feature of the bulk viscosity within any

quantum field theory, proven by Bradlyn, Goldstein and Read in [31].

In the high frequency limit these simplify to,

ζ(ω) = −Nm
2
0

32πλ
(1∓ λ)2 tan

πλ

2
,

η(ω) = −N sinπλ

256πλ
ω2 +

i(λ− c0) sin2
(
πλ
2

)
ω

32πλ
, (6.10)

ηH(ω) =
N sin2 πλ

2

128πλ
ω2 +

i(λ− c0) sin (πλ)

64πλ
.

The nonrelativistic limit ∆µ, ω � |m0| limit of the Hall viscosity is particularly note-

worthy. Momentarily restoring SI units, we have

ηH(ω) = ∓~
4

(1∓ λ)n+O(c−2), (6.11)

which is Read’s formula for the Hall viscosity of a non-relativistic fluid of anyons with spin
1
2(1 ∓ λ) [20]. Though this has been proven via adiabatic arguments for non-relativistic

gaped states [21] and demonstrated in some examples in [22]. this is the first known

example to our knowledge of a gapless system exhibiting this behavior and suggests the

relation may be more general than the current literature indicates. It would be interesting

to investigate precisely how general this relation is.
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7 Discussion

In this paper we performed an investigation of the large N limit of Chern-Simons theory

coupled to a massive fundamental fermions. Broadly stated, our goal was to analyze this

system from a condensed matter physics point of view, matching it against the phenomeno-

logical Landau Fermi liquid framework, as well as to calculate various thermodynamic and

transport observables.

An important question is how well the Chern-Simons-Fermion system agrees at low

temperatures (T/µ � 1) with the Landau Fermi liquid theory. The properties of an LFL

system are encoded in the Landau parameters, which represent the strength of quasiparticle

interaction on the Fermi surface. The Landau parameters can be calculated microscopically

by evaluating quasiparticle scattering amplitudes. Knowing the Landau parameters, one

can in particular describe a low-temperature thermodynamics of the Fermi liquid.

In this paper we found that this logic is correct for the large N Chern-Simons-Fermion

theory. However, we identified a few subtleties and interesting properties, not covered by

the Landau Fermi-liquid theory, or lying outside of its regime of applicability.

An explicit calculation of the quasiparticle scattering amplitude showed that the only

non-vanishing Landau parameter of the system is F0. Assuming LFL theory to be correct,

and using the calculated Landau parameters, we then found various quantities, such as

quasiparticle effective mass, compressibility and entropy density. On the other hand, all

these quantities can be independently found if one knows the equation of state of the system.

This has already been calculated exactly in the literature for largeN Chern-Simons-matter

systems. Using these results, we performed some consistency checks for LFL theory.

One notable difference from a standard Landau Fermi liquid appears in the calculation

of entropy density. A general LFL theory implies that the low-temperature entropy is

characterized by the law s ' m∗T , which exhibits two important features. The first is a

linear dependence of entropy on temperature. The second is that all the dependence on

interaction strength sits in the quasiparticle effective mass m∗, which in the LFL theory is

determined by the Landau parameters. Derivation of this expression for the entropy relies

on the Fermi-Dirac distribution for the quasiparticles.

We found that in the Chern-Simons-Fermion system the latter assumption is incorrect.

Knowing the fermionic two-point function one can explicitly calculate the occupation num-

ber and in the Chern-Simons-Fermion system it turns out that the effect of the holonomies

of the gauge field along the thermal circle modifies the quasiparticle distribution function.

Accounting for this, we found that s ∼ (1−λ2)m∗T , where m∗ is still the LFL quasiparticle

effective mass, and the factor of 1 − λ2 is due to holonomies.

In the non-relativistic limit T, µ − |m0| � |m0|, where |m0| is the gap energy, it is

technically convenient to study thermodynamic properties of the system for a wide range

of temperatures. We used this to numerically calculate the temperature dependence of the

heat capacity in the non-relativistic theory. We found an intermediate temperature range,
n

N |m0| � T � n
N(1−λ)|m0| , between the low-temperature Fermi-liquid state, and the high-

temperature ideal-gas state, which opens up as the ’t Hooft coupling λ approaches 1. The

heat capacity also appears to be linear in this regime, with the slope equal to (π/6)(1−λ).
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Taking large N techniques, we calculated the zero-temperature two-point functions

for the U(1) charge current and the stress tensor and obtained the the conductivities and

viscosities. The longitudinal conductivity at low frequencies ω/µ � 1 agrees with the

Drude model, with quasiparticle density consistent with our thermodynamic result (and

Luttinger’s theorem), and quasiparticle life-time being infinite. A zero-frequency pole in the

imaginary part of the shear viscosity also agrees with the zero-temperature LFL prediction.

Our results also allowed us to test various statements existing in the literature. It

was pointed out [28] that Landau Fermi-liquid theory is not sufficient to calculate the

Hall conductivity, and that the latter receives an extra contribution from the Berry flux

through the Fermi surface. We have found that the Berry flux expression of [28] does not

fully describe Hall conductivity of an interacting Chern-Simons-Fermion system.

As opposed to the shear viscosity, the bulk viscosity does not diverge at zero fre-

quency [31]. We have verified that this general statement is indeed correct for the Chern-

Simons-Fermion system. One technical subtlety which we encountered in derivation of

the bulk viscosity involves a regularization of the two-point function for the T+− compo-

nent of the stress tensor. We argued that the correct way to regularize expressions like

Λne2λ arctanh ω
Λ , n = 1, 2, 3, where Λ is a UV cutoff, is to first set the exponent to one, and

then remove all the polynomially divergent term. This issue only arises in calculation of

the bulk viscosity. It would be good to achieve a better understanding of this subtlety.
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A Specific heat from statistics

In this appendix we investigate the effect of holonomies on the low temperature thermo-

dynamics of our theory. At low temperatures, the entropy density of a fermionic system

vanishes linearly with T . In a standard 2 + 1 dimensional Fermi liquid, the slope is related

to the effective mass m? as

s =
N

6
πm?T . (A.1)

This follows directly from the low temperature form of the Fermi-Dirac distribution as may

be seen in detail in section 1.1.3 of [24]. In this section we carry out the same analysis in

the presence of holonomies.

In our case, due to the Chern-Simons gauge field, the electrons do not obey standard

Fermi statistics and this needs to be modified. It is easy to see this from a direct evaluation
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of the occupation number from the Green’s function Gαβ(p) =
〈
ψβ(p)ψ̄α(−p)

〉
〈n(ps)〉 = − 1

β

∫
dαρ(α)

∑
n

Tr
(
G(p̃)γ3

)
. (A.2)

Here the sum is over Matsubara frequencies, shifted by the holonomies

p̃3 =
2π
(
n+ 1

2

)
+ iµ̂− α

β
. (A.3)

Taking, µ̂→ µ̂+ iα in (3.17) of [2] we find equation (3.23) which we reproduce here

n(ps) =
N

2

∫
dαρ(α)

(
tanh

1

2
(β(Ep + µ) + iα)− tanh

1

2
(β(Ep − µ)− iα)

)
. (A.4)

We only need this in the low temperature limit, in which case we have a Fermi-Dirac

distribution, modified in the appropriate manner by the holonomies

n(ps) = N

∫
dαρ(α)

1

1 + eβ(Ep−µ)−iα . (A.5)

Now we simply follow the steps of [24]. In terms of the occupation number, the entropy

density is12

s = −
∫

dps
(2π)2

(n(ps) lnn(ps) + (1− n(ps)) ln(1− n(ps))) . (A.6)

We evaluate its variation with respect to the temperature at small T

δs = −
∫

d2p

(2π)2
δn(ps) ln

n(ps)

1− n(ps)
, (A.7)

where

δn(ps) =
∂n(p)

∂Ep

(
−Ep − µ

T
δT + δEp − δµ

)
. (A.8)

The term δEp − δµ is higher order in T and will be dropped.

The argument of the log in (A.7) depends on the holonomies, but the contribution is

subleading at low temperatures

ln
n(ps)

1− n(ps)
= ln

(∫
dαρ(α)e−β(Ep−µ)+iα

)
= ln

(
sinπλ

πλ
e−β(Ep−µ)

)
≈ −Ep − µ

T
. (A.9)

Plugging this all into δs we find that (1.1.37-38) of [24] survives, only the distribution

function is modified by holonomies

δs = −
∫

d2p

(2π)2

∂n(ps)

∂E(ps)

(
E(ps)− µ

T

)2

δT

= −ν(EF)

∫
dαρ(α)

∫ ∞
−∞

dx
∂

∂x

(
1

1 + ex−iα

)
x2T . (A.10)

Here ν(EF) = Nm?

2π is the density of states at the Fermi surface.

12This assumes the states are in one-to-one correspondence with the free Fermi gas. This may fail, in

which case Fermi Liquid theory is not expected to hold. However, it is certainly true in our case.
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For ease of integration we shift x → x + iα and then deform the contour back to the

real axis (there are no poles on the Riemann sphere to get in the way)

s = −ν(EF)

∫
dαρ(α)

∫ ∞
−∞

dx
∂

∂x

(
1

1 + ex

)
(x+ iα)2T . (A.11)

Evaluating, we find

s = ν(EF)

∫
dαρ(α)

(
π2

3
− α2

)
T =

N

6
π(1− λ2)m?T , (A.12)

which implies (3.25).

B Non-relativistic thermodynamics

In this section we present the details of the various limits performed in section 3.4. We

begin by taking the non-relativistic limit of the gap equations (3.8). Denote the zero

density, zero temperature pole mass by m0. The theory then has a gap |m0| and we define

∆µ to be the location of the chemical potential relative to the gap: µ = |m0| + ∆µ. The

non-relativistic limit is achieved by taking T and ∆µ to be small compared to the gap

T̃ ,∆µ̃� 1, ξ =
∆µ

T
arbitrary. (B.1)

Here and in what follows, the tilde denotes that a quantity is measured in units of the gap

energy, for instance, T̃ = T/|m0|.
In terms of these variables the gap equations read

c̃0 = m̃+ 2λT̃C,

C =
1

2

∫
dαρ(α)

(
ln 2 cosh

1

2

(
|c̃0|+ 1

T̃
+ ξ + iα

)
+ ln 2 cosh

1

2

(
|c̃0| − 1

T̃
− ξ − iα

))
,

(B.2)

and the equation of state is

F =
NV2|m0|3

6π

(
|c̃0|3 − 2(|c̃0|2 − m̃2)T̃C + 2λm̃T̃ 2C2 − f0

−3T̃

∫
dαρ(α)

∫ ∞
|c̃0|

dzz
(

ln
(

1 + e−
z+1
T̃
−ξ−iα

)
+ ln

(
1 + e−

z−1
T̃

+ξ+iα
)))
(B.3)

where z = T̃ y .

If c0 passes through zero for some range of ξ, the temperature and chemical potential

will be large in comparison to the rest energy of the quasi-particles. In this case the non-

relativistic limit is not sensible. When using the results of this section one should keep this

in mind.

– 27 –



J
H
E
P
0
4
(
2
0
1
6
)
1
0
3

B.1 Solving the gap equations

We first work on solving the gap equations perturbatively in T̃ . Expand c̃0 about the zero

temperature answer c0 = m0

c̃0 = ±1 + a1T̃ + a2T̃
2 · · · , so that |c̃0| = 1± a1T̃ ± a2T̃

2 + · · · . (B.4)

Here, as in the main text we have fixed λ > 0 while m0 may have either sign. Recall that

the upper sign will refer to m0 > 0 and the lower sign to m0 < 0.

Plugging this expansion into C we find

C =
1

2T̃
+
ξ

2
+

1

2πλ
Im Li2

(
−e−ξ±a1−iπλ

)
+O(T̃ ).

Feeding this back into c̃0 = m̃+ 2λT̃C we find

± 1 + a1T̃ + · · · = m̃+ λ+

(
λξ +

1

π
Im Li2

(
−e−ξ±a1−iπλ

))
T̃ + · · · , (B.5)

which implies

a1 = λξ +
1

π
Im Li2

(
−e−ξ±a1−iπλ

)
, (B.6)

while the Õ(T̃ 0) equation is trivial. This is a trancendental equation that determines a1

as a function of ξ. A similar analysis at the next order shows that a2 = 0. Redefining

a1 → λf for simplicity, we have

c̃0 = ±1 + λf(ξ)T̃ +O(T̃ 3), C =
1

2T̃
+

1

2
f(ξ) +O(T̃ 2), (B.7)

where f(ξ) solves

f(ξ) = ξ +
1

πλ
Im Li2

(
−e−ξ±λf(ξ)−iπλ

)
. (B.8)

B.2 Equation of state

Now that we have |c̃0| and T̃C to second order in T̃ , we may determine the equation of

state to the same order. Restoring SI units, we find that terms of higher order are 1/c2

suppressed and so are negligible in the non-relativistic limit.

The z integral in (B.3) may be computed exactly. This gives to our order

F =
NV2|m0|3

6π

∫
dαρ(α)

(
− |c̃0|3 − 2(|c̃0|2 − m̃2)T̃C + 2λm̃T̃ 2C2 − f0

−3T̃ 2|c̃0|Li2

(
−e

|c̃0|−1

T̃
−ξ−iα

)
− 3T̃ 2|c̃0|Li2

(
−e

|c̃0|+1

T̃
+ξ+iα

))
.

(B.9)

Plugging in the perturbative solution to the gap equations13 we find

F=−NV2|m0|
12π

T 2

((
π2(1−λ2)+3(ξ2±λf(ξ)(f(ξ)−2ξ))

)
+6

∫
dαρ(α)Li2

(
−e−ξ+iα±λf(ξ)

))
,

(B.10)

demonstrating equation (3.27).

13The expansion (B.18) is helpful here for asymptotics.
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B.3 Low temperatures

Here we analyze the low temperature regime ξ � 1. Beginning with the gap equation, it’s

easy to see from (B.8) that in this regime f is approximately linear and corrections are

exponentially suppressed

f(ξ) = ξ + b1e
−(1∓λ)ξ + b2e

−2(1∓λ)ξ + · · · . (B.11)

These corrections do not enter the equation of state to first order in e−(1∓λ)ξ. The pressure

p = −F/V in this limit is

p =
N

12π
|m0|T 2

(
π(1− λ2) + 3(1∓ λ)ξ2 +O

(
e−2(1∓λ)ξ

)
+6

∫
dαρ(α) Li2

(
−e−(1∓λ)ξ+iα +O

(
e−2(1∓λ)ξ

)))
=

N

12π
|m0|T 2

(
π(1− λ2) + 3(1∓ λ)ξ2 − 6

sinπλ

πλ
e−(1∓λ)ξ +O

(
e−2(1∓λ)ξ

))
. (B.12)

In section (3.4) we require the pressure as a function of temperature and density. For

this we need

n =

(
∂p

∂∆µ

)
T

=
N

2π
|m0|(1∓ λ)T

(
ξ +

sinπλ

πλ
e−(1∓λ)ξ +O

(
e−2(1∓λ)ξ

))
. (B.13)

Inverting for ξ we find

ξ =
2π

1∓ λ
n

N |m0|T
− sinπλ

πλ
e
−2π n

N|m0|T +O
(
e
−4π n

N|m0|T
)
. (B.14)

Bringing this all together, we find the equation of state as a function of temperature and

density

12π

N |m0|T 2
p = π2(1− λ2) +

12π2

|m̃|

(
n

N |m0|T

)2

− 12π
sinπλ

πλ

n

N |m0|T
e
−2π n

N|m0|T +O
(
e
−4π n

N|m0|T
)
. (B.15)

The first two terms give a linear specific heat of slope π
6N(1−λ2)|m0|. Corrections to this

behavior then begin at O
(
e
−2π n

N|m0|T
)

and are numerically small when

2π
n

N |m0|T
� 1, i.e. T � Tq, where Tq = 2π

n

N |m0|
, (B.16)

independent of coupling.

B.4 Virial expansion of the non-relativistic equation of state

In this section we provide the details of the virial expansion used in section 3.4 to investigate

the classical limit. This is an expansion in small fugacity z = eξ, the opposing limit to the

one considered above. Here we have

f(ξ) = a0 + a1e
ξ + · · · , (B.17)
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which, after plugging in to the gap equation gives

a0+a1e
ξ+a2e

2ξ+··· = ξ+
1

πλ
Im Li2

(
−e−ξ±λa0−iπλ

(
1±λa1e

ξ+

(
±λa2+

1

2
λ2a2

1

)
e2ξ+···

))
.

Using the expansion

Lin(z) = (−1)n−1
∞∑
k=1

1

knzk
− (2πi)n

n!
Bn

(
ln(−z) +

1

2

)
, (B.18)

we find that to lowest order

a0 = ξ +
1

πλ
Im

(
ξ(±λa0 − iπλ)− 1

2
(±λa0 − iπλ)2

)
= − 1

2πλ
Im(±λa0 − iπλ)2 = ±λa0

=⇒ a0 = 0. (B.19)

While to first order (B.18) gives

a1 =
1

πλ
Im
(
eiπλ ± λa1(ξ + iπλ)

)
=⇒ a1 =

1

1∓ λ
sinπλ

πλ
. (B.20)

Plugging this back into (B.10) we find the equation of state is

p =
N

2π

sinπλ

πλ
|m0|T 2eξ

(
1− 2 sinπλ+ π(±1− λ) cosπλ

4π(±1− λ)
eξ
)

+O(e3ξ). (B.21)

We need this as a function of temperature and density. The density is

n =
N

2π

sinπλ

πλ
|m0|Teξ

(
1− 2 sinπλ+ πm̃ cosπλ

2πm̃
eξ
)

+O(e3ξ). (B.22)

Inverting this and we can rearrange the equation of state into a virial expansion

p

nT
= 1 + v2

n

N |m0|T
+ · · · , where v2 =

πλ

±1− λ
+

1

2
π2λ cotπλ. (B.23)

v2 is the second virial coefficient and determines the size of deviations from the ideal gas

law to lowest order in the classical limit.

C Details of the four-point vertex calculation

In this appendix we present the calculation of the four point vertex function (4.6). This

calculation proceeds essentially along the lines of appendix F of [6], with the presence of a

Fermi surface being the only new feature. Although this adds an extra layer of complication,

the problem is simpler insofar as we only require the answer at the Fermi surface.
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As explained in seciton 4.2, V satisfies a Schwinger-Dyson equation (4.5). Since the

gluon propagator has only “+3” components, this reads

V (p, k, q) = −1

2
(I ⊗ γ+ − γ+ ⊗ I)G+3(p− k)

− 1

2

∫
d3r

(2π)3
G+3(r − p)H+ (G(r + q)V (r, k, q)G(r)) , (C.1)

where we have used the identity

(γ+)αβ(γ3)γδ − (γ3)αβ(γ+)γδ = δαδ(γ
+)γβ − (γ+)αδδ

γ
β . (C.2)

H+ denotes the operator on matrices

H+(A) = γ3Aγ+ − γ+Aγ3. (C.3)

Expanding A in the basis A = AII +A+γ
+ +A−γ

− +A3γ
3, this acts as

H+(A) = 2AIγ
+ − 2A−I. (C.4)

Hence the Schwinger-Dyson equation implies an expansion in the product basis of the form

V (p, k, q) = g(p, k, q)I ⊗ I + g1(p, k, q)I ⊗ γ+ + f(p, k, q)γ+ ⊗ I + f1(p, k, q)γ+ ⊗ γ+.

(C.5)

Plugging this into (C.1), we find the following integral equations for f , g, f1, g1

g(p, k, q3) = −4πiλ

∫
d2r

(2π)2

r−
(r − p)−

θ(rs − pF)

4E3
r

(2f(r, k, q3)r− + g(r, k, q3)(2iΣI(r)− q3)) ,

g1(p, k, q3) = − 2πiλ

(p− k)−
− 4πiλ

∫
d2r

(2π)2

r−
(r − p)−

θ(rs − pF)

4E3
r

(2f1(r, k, q3)r− + g1(r, k, q3)(2iΣI(r))− q3) , (C.6)

f(p, k, q3) =
2πiλ

(p− k)−
− 4πiλ

∫
d2r

(2π)2

1

(r − p)−
θ(rs − pF)

4E3
r(

−f(r, k, q3)r−(2iΣI(r) + q3) + 2g(r, k, q3)(Σ2
I(r)− E2

r )
)
,

f1(p, k, q3) = −4πiλ

∫
d2r

(2π)2

1

(r − p)−
θ(rs − pF)

4E3
r(

−f1(r, k, q3)r−(2iΣI(r) + q3) + 2g1(r, k, q3)(Σ2
I(r)− E2

r )
)
.

where Er =
√
r2
s + c2

0 and we have already evaluated the r3 integral.

In the above we have taken q± = 0 followed by q3 = 0, in accordance with the order

of limits needed in (2.16). As is well known in LFL theory, the double pole singularity in

the product G(r + q)G(r) as q → 0 depends essentially on the order in which this limit is
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taken (see for instance section 18 of [23]). For now we work in Minkowski signature. In

the “rapid” limit we are considering, a singular term

2πiZ2r̂ · q
q0 − vFr̂ · q

δ(r0 − µ)δ(rs − pF) (C.7)

peaked at the Fermi surface drops out and we are left with only the poles

1

(r0 + Er − iε)(r0 + q0 + Er − iε)

× 1

(r0 − Er + iε sgn(rs − pF))(r0 + q0 − Er + iε sgn(rs − pF))
(C.8)

in the product of two propagators.

The placement of iε’s in this equation is essential: we have +iε for poles above the

Fermi surface and −iε for those below. This is simply a generalization of the Feynman

prescription in the presence of a Fermi surface and can be confirmed to be the correct

prescription in the same way. We then have that when rs < pF all poles lie above the real

axis. The contour may then be closed below and the r0 integration yields zero. When

rs > pF the two poles on the left hand side are above the axis while the two on the right

hand side are below. We may then Wick rotate to Euclidean space and perform the r3

integrals to obtain (C.6). This is why the integrals over spatial momentum are restricted

to be above the Fermi surface. At this point we may safely take q3 → 0.

The equations (C.6) are a bit of a mess, but are luckily very similar in form to those

of [6]. In particular the angular dependence is identical. We then use the same ansatz

present in their work,

g(p, k) = −1

2

p−
(p− k)−

W0(x, y) +
1

2
W1(x, y),

f(p, k) =
1

2

1

(p− k)−
W3(x, y)− p+

p2
s

W2(x, y),

g1(p, k) =
1

2

k+p−
(p− k)−

B2(x, y) +
1

2

1

(p− k)−
B3(x, y),

f1(p, k) = − 1

p2
s

p+

(p− k)−
B0(x, y)− 1

2

k+

(p− k)−
B1(x, y), (C.9)

where x = 2E′p and y = 2E′k.This completely fixes the angular dependence of the solution.

Plugging this in and performing the angular integrals we obtain a system of ordinary

integral equations

W0 = − iλ
µ

∫ x

y
dx′

XW0 + 2W3

x′2
, (C.10)

W1 = − iλ
µ

∫ ∞
y

dx′
XW0 + 2W3

x′2
+
iλ

µ

∫ ∞
x

dx′
XW1 + 2W2

x′2
, (C.11)

W2 = − iλ
µ

∫ x

2
dx′

Y1W1 + YW2

x′2
, (C.12)
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W3 = 4πiλ+
iλ

µ

∫ y

x
dx′

Y1W0 + YW3

x′2
, (C.13)

B0 = − iλ
µ

∫ x

2
dx′

Y B0 + Y1B3

x′2
, (C.14)

B1 = −8iλ

µ3

1

4λ2 − y2

∫ y

2
dx′

Y B0 + Y1B3

x′2
− iλ

µ

∫ x

y
dx′

Y B1 + Y1B2

x′2
, (C.15)

B2 =
iλ

µ

∫ ∞
x

dx′
2B1 +XB2

x′2
, (C.16)

B3 = −4πiλ+
iλ

µ

∫ y

x
dx′

2B0 +XB3

x′2
− iλµ

8
(y2 − 4λ2)

∫ ∞
y

2B1 +XB2

x′2
, (C.17)

where we have denoted

X = q3 − 2iΣI , Y = q3 + 2iΣI , Y1 = 2Σ2
I −

µ2

2
x2 . (C.18)

Of course, all integrals are understood to terminate once one of the limits dips below the

Fermi surface at x′ = 2. For x > 2 we have

X(x) = −2im− iλµx, Y (x) = 2im+ iλµx,

Y1(x) =
1

2
µ2x2(λ2 − 1) + 2m(λµx+m). (C.19)

If we seek only the solution at the Fermi surface, some of the W ’s and B’s may be

simply read off from the above equations

W0 = W2 = 0, W3 = 4πiλ, B0 = B1 = 0, at x = y = 2. (C.20)

Unfortunately, the solutions for W1, B2 and B3 require knowledge of all functions in our

decomposition away from the Fermi surface and we are forced to solve all the equations

for arbitrary x > 2, y > 2. These equations are not difficult to solve. To proceed,

first differentiate the integral equations with respect to x to obtain ordinary differential

equations. Solving the differential equations produces constants of integration which are

functions of y. These are fixed by plugging the solution back in to the integral equations

and demanding consistency. All these steps are straightforward to perform in Mathematica.

After the dust settles we obtain

W0 = 0 , W1 =
4πλ2

µ− λc0
, W2 = 0 , W3 = 4πiλ, (C.21)

B0 = 0 , B1 = 0 , B2 = 0 , B3 = −4πiλ , (C.22)

which gives the result (4.6).

D Details of the current vertex calculation

In this appendix we provide details for the calculation of the current-current correlation

function. Let us begin by solving the recursion relation (5.4) for the current vertex. Us-
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ing (C.3) this reads

V µ(p; q) = iγµ − 2πiλ

∫
d3r

(2π)3

1

(r − p)−
H+ (G(r + q)V µ(r; q)G(r)) , (D.1)

where we have dropped the spin indices. The three-point vertex function then must take

the form

V +(p; q) = γ+F1(x, z)− I p′−G1(x, z), (D.2)

V −(p; q) = iγ− + γ+ 2
p′2+
p′4s

F2(x, z)− I
p′+
p′2s

G2(x, z). (D.3)

where we denoted z = q′3, and x = 2E′p is as before.

Plugging these into the recursion relation, taking q± = 0, and performing the r3

integration we find

G1 = iλ

∫ 2Λ′

x
dx′

XG1 + 2F1

z2 + (x′)2
, (D.4)

F1 = i+ iλ

∫ 2Λ′

x
dx′

Y1G1 + Y F1

z2 + (x′)2
, (D.5)

G2 = −iλ
∫ x

2
dx′

U2 +XG2 + 2F2

z2 + (x′)2
, (D.6)

F2 = −iλ
∫ x

2
dx′

V2 + Y1G2 + Y F2

z2 + (x′)2
, (D.7)

where

X = z − 2iΣ′I , Y = z + 2iΣ′I , Y1 = 2Σ′2I −
1

2
x2

U2 =
i

2
XY, V2 = −I

(
2Σ′I(Σ

′
I + iz) +

1

2
x2

)
, (D.8)

and we introduced cutoff Λ′ on the spatial momentum p′s.

These equations can be solved along the same lines as the vertex function, giving

F1 =
2m′ + λx+ iz − (2m′ + λx− iz)e

−2iλ
(

arctan x
z
−arctan 2Λ′

z

)
2z

, (D.9)

G1 = i
e
−2iλ

(
arctan x

z
−arctan 2Λ′

z

)
− 1

z
, (D.10)

F2 =
1

8z
(2λ+ 2m+ iz)

(
e2iλ(arctan( z2)−arctan( z2))(2λ+ 2m− iz)(2m+ λx+ iz),

− (2λ+ 2m+ iy)(2m+ λx− iz)

)
(D.11)

G2 =
1

4z

(
i
(
4λ2 + 4m2 + 8λm+ 4imz + 2iλxz − z2

)
,

− i(2λ+ 2m+ iz)2e2iλ(arctan( zx)−arctan( z2))
)
. (D.12)

In the conformal limit and at vanishing chemical potential our result reproduces that of [5].
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E Details of the viscosity calculation

E.1 Two point correlators

The viscosity Kubo formula requires both the two point function
〈
T ij(q)T kl(−q)

〉
and the

contact term
〈
δT ij

δgkl

〉
(q). The stress-stress two point function follows exactly along the lines

of the current-current two point function, described in appendix D, and so we begin there.

The stress tensor vertex satisfies the recursion relation

Uµν(p; q) = Uµν0 (p; q)− 2πiλ

∫
d3r

(2π)3

1

(r − p)−
H+ (G(r + q)Uµν(r; q)G(r)) . (E.1)

The inhomogeneous term Uµν0 (p; q) in the recursion relation is given by

= + +

The first term in the r.h.s. originates from the bi-fermionic part of the stress tensor

Tµν = −1

2
ψ̄γ(µ

↔
Dν)ψ +

(
1

2
ψ̄γλ

↔
Dλψ +mψ̄ψ + p0

)
ηµν , (E.2)

while the other two terms come from the ψ̄Aψ part of the stress tensor (the internal

fermionic lines are full propagators). In the loop we have the full fermionic propagator.

We find

U++
0 (p; q) = −ip−γ+,

U−−0 (p; q) = −iµ
p′+
p′2s
V2γ

− − µ
p′2+
p′4s
U2I,

U+−
0 (p; q) = 2µ

p′+
p′2s
V3γ

+ +
i

2
p−γ

− +
i

2
(2p3 + q3)γ3 − µU3I, (E.3)

where

U2 =
λ

12

(
12m′2(x− 2) + 6λm′(x2 − 4) + (λ2 − 1)(x3 − 8)

)
,

V2 =
1

4
x2 − c′20 +

λ

4
(x− 2)(4m′ + (2 + x)λ),

U3 = −m′ + 3

4
λ(2Λ′ − x),

V3 =
i

4

(
1

4
x2 − c′20 −

3λ

4
(x− 2)(4m′ + (2 + x)λ)

)
. (E.4)
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We use the ansatz for the matrix structure

V ++ = γ+ F1(x, z)p− − I G1(x, z)
p2
−
µ
,

V −− = −iµ
p′+
p′2s
V2γ

− + γ+ 2µp′3+F2(x, z)

p′3s
− I

µp′2+G2(x, z)

p′4s
,

V +− =
i

2
p−γ

− +
i

2
(2p3 + q3)γ3 + γ+ 2µp′+F3(x, z)

p′2s
− I µG3(x, z), (E.5)

which gives the following integral equations

G1 = iλ

∫ 2Λ′

x
dx′

2F1 +XG1

z2 + x′2
,

F1 = −i+ iλ

∫ 2Λ′

x
dx′

Y F1 + Y1G1

z2 + x′2
,

G2 = U2 − iλ
∫ x

2
dx′

1

y2 + x′2
(J2 + 2F2 +XG2) ,

F2 = −iλ
∫ x

2
dx′

1

z2 + x′2
(I2 + Y F2 + Y1G2) ,

G3 = U3 + iλ

∫ 2Λ′

x
dx′

1

z2 + x′2
(J3 + 2F3 +XG3) ,

F3 = V3 − iλ
∫ x

2
dx′

1

z2 + x′2
(I3 + Y1G3 + Y F3) ,

where

I2 = − i
2
XY1V2,

J2 = i

(
2Σ′I(Σ

′
I + iz) +

1

2
x′2
)
V2,

I3 = −1

4

(
i

4
zx2 + 2

(
5

4
x2 + z2

)
Σ′I − izΣ′2I − 2Σ′3I

)
,

J3 =
i

2

(
z2 +

3

4
x2 − Σ′I(Σ

′
I + iz)

)
. (E.6)

Solving these equations we obtain

G1 =
e
−2iλ

(
arctanx

z
−arctan 2Λ′

z

)
−1

iz
,

F1 =
(z−2im′−iλx)+(z+2im′+iλx)e

−2iλ
(

arctanx
z
−arctan 2Λ′

z

)
2iz

,

G2 =
1

24z

(
6λ2
(
16im′2+8m′((x−2)x−2)z+i

(
x2−4

)
z2
)

−16λ
(
z
(
λ2+3m′2+3λm′−1

)
−3iλ(λ+2m′)2

)
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+2λ
(
96im′3+24m′2(x−4)z+12im′(x−2)z2−xz

(
x2+3z2

))
+3(2λ+2m′−iz)(2iλ+2im′−z)3e−2iλ(arctan( z2)−arctan( zx))

+3(z+2im′)(2m′+iz)3+8λ3x
(
x2−6

)
z
)
,

F2 =
1

48z

(
3(2λ+2m′−iz)(2λ+2m′+iz)3(2m′+λx−iz)e−2iλ(arctan( z2)−arctan( zx))

−(2m′+λx+iz)
(
48λ4+48m′4+192λm′3+24m′2

(
12λ2−iλ(x−2)z+z2

)
+ 12λm′

(
16λ2−iλ

(
x2−4

)
z+4z2

)
−2iλ

(
λ2−1

)(
x3−8

)
y+3z4+24λ2z2

))
,

G3 =

(
4
(

(2λ+2m′+iz)e2iλarctan( z
2Λ′ )+(−2λ−2m′+iz)e2iλarctan( z2)

)2
)−1

×e2iλarctan( z
2Λ′ )
(
−(λ2Λ′−2m′)

(
4(λ+m′)2+z2

)
×exp

(
2iλ
(

arctan
( z
x

)
−arctan

( z

2Λ′

)
+arctan

(z
2

)))
+
(
4(λ+m′)2+z2

)
e2iλarctan( z2)(−2λΛ′+6m′+2λx)

−(2m′+λx)(2λ+2m′+iz)2e2iλarctan( z
2Λ′ )+(2λΛ′−2m′)(2λ+2m′+iz)2e2iλarctan( zx)

−(2λ+2m′−iz)2(4m′+λ(x−2Λ′))e2iλ(2arctan( z2)−arctan( z
2Λ′ ))

)
,

F3 = −
(

16
(

(z−2iλ−2im′)e2iλarctan( z
2Λ′ )+(z+2iλ+2im′)e2iλarctan( z2)

))−1

×
(
−(2λ+2m′−iz)e2iλarctan( z2)(12m′2+m′(−8λΛ′+8λx+4iz)

+
(
λ2−1

)
x2−4λΛ′(λx+iz)

)
+(2m′+(λ−1)x)(2m′+λx+x)(2λ+2m′+iz)e2iλarctan( z

2Λ′ )

−2(2λΛ′−2m′)(2λ+2m′+iz)(2m′+λx−iz)e2iλarctan( zx)
)
. (E.7)

Knowing the vertex one can calculate the stress tensor two-point function, diagramat-

icaly represented as

+

λρ

p+ q

p

µν

p

k

k + q − pλρ µν

which is equal to〈
Tµν(q)T λρ(−q)

〉
=

∫
d3p

(2π)3
Tr
(
G(p+ q)Uµν(p; q)G(p)Uλρ0 (p+ q;−q)

)
+

1

2

∫
d3pd3k

(2π)6
Gαβ(k + q − p)Tr

(
G(p)Uµν,βv G(k)Uλρ,αv

)
. (E.8)
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Here

Uµν,λv = i(ηλ(µγν) − ηµνγλ) (E.9)

denotes the vertex arising from the ψ̄Aψ part of the stress tensor. One may check by hand

that the final term contributes only to the + −+− component of the correlation function

and that that contribution is

−1

4

∫
d3pd3k

(2π)6
G+3(k − p)Tr (G(p)H+(G(k))) . (E.10)

We find the nonzero contributions are〈
T−−(q)T++(−q)

〉
=
iµ3

8π

∫ 2Λ′

2
dx
J2 + 2F2 +XG2

x2 + y2
= − µ3

8πλ

(
G2(2Λ′, y)− U2(2Λ′, y)

)
,

〈
T+−(q)T+−(−q)

〉
=
µ3

4π

∫ 2Λ′

2
dx

1

x2 + y2

(
1

16

(
Y1 − 2(x2 + y2)

)2 − 1

4

(
3x4 + 4x2y2 + y4

)
+

(
i

4
XY1 − Σ′I(x

2 + y2)

)
U3 − i

(
y2 +

3

4
x2 − Σ′I(Σ

′
I + iy)

)
V3

+

(
−i
(
y2 +

3

4
x2 − Σ′I(Σ

′
I − iy)

)
+ 2Y U3 − 4V3

)
F3

+

(
− i

4
Y Y1 − Σ′I(x

2 + y2) + 2Y1U3 − 2XV3

)
G3

)
+
λµ3

12π
(Λ′ − 1)2(λ(Λ′ + 2) + 3m′). (E.11)

Removing O(Λn), n = 1, 2, 3, divergent terms, we obtain from the U++ (or the U−−)

vertex〈
T−−(q)T++(−q)

〉
=

N

384πλω

(
4λµω

(
12c0(ω − 2λµ) +

(
8λ2 + 4

)
µ2 − 6λµω + 3ω2

)
− 3(ω − 2c0)(2c0 + ω)3

(
1− e−2λ arctanh

(
ω
2µ

)))
. (E.12)

Here we have Wick rotated back to Lorenztian space to obtain the retarded propagator:

z = − iω
µ .

Using the U+− vertex we find〈
T+−(q)T+−(−q)

〉
=

N

(
48πλ

(
(ω − 2c0)e

2λ arctanh
(
ω
2µ

)
+ (2c0 + ω)

))−1

×
(
−12c4

0−12c3
0λµ−3c2

0

(
4λ2µ2+6λµω−ω2

)
+
(
12c4

0+12c3
0λµ+3c2

0

(
4λ2µ2−6λµω−ω2

)
− 2c0λµ

(
2
(
λ2 + 4

)
µ2 − 3ω2

)
+ λµ2ω

(
2
(
λ2 + 4

)
µ− 3λω

))
e

2λ arctanh
(
ω
2µ

)

+ 2c0λµ
(
2
(
λ2 + 4

)
µ2 − 3ω2

)
+ λµ2ω

(
2
(
λ2 + 4

)
µ+ 3λω

))
− λµ2N(λµ− 3c0)

12π
.

(E.13)
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Regularizing the T+− correlation function is subtle. We have adopted the following regular-

ization scheme. First the exponents e2λ arctanh(ωΛ) were set to one, and then the polynomially

divergent terms were removed.

E.2 Hall viscosity contact terms

To complete the calculation of the viscosity tensor, we need the contact terms in (6.5)

Gij,klcontact(q) =

〈
δT ij

δgkl

〉
(q). (E.14)

We begin by considering variations of the spin connection, which will contribute a constant

offset to the Hall viscosity. Recall that to couple a Dirac spinor to curved space one needs

to introduce a veilbein eaµ, that is, a local orthonormal basis for the tangent space.

eaµe
bµ = ηab, where ηab = diag(−1, 1, 1). (E.15)

There are many possible selections of such a basis, related by local Lorentz transforma-

tions (LLTs)

ea →
(
e−

i
2
θcdJ

cd
)a

be
b, (E.16)

where

(Jab)cd = i(δadδ
b
c − δacδbd) (E.17)

are the generators of so(2, 1) in the vector representation. We shall raise and lower Lorentz

indices a, b, . . . with the ηab and it’s inverse ηab throughout this section.

Under an LLT, ψ transforms in the Dirac representation

ψ → e−
i
2
θabS

ab
ψ, Sab = − i

4
[γa, γb], (E.18)

and so the Dirac action involves an so(d, 1)-valued connection ωabµ through the Lorentz

covariant derivative14

Dµ = ∂µ +
i

2
ωµabS

ab. (E.19)

On a metric compatible, torsion free background, this is determined by the veilbein

ωabµ = eaν∇µebν , (E.20)

from which one may check that Dµψ transforms covariantly under LLTs.

The spin connection then enters the stress through through15

Tµν
∣∣
ω part

=
i

4

(
ηµνψ̄{γλ, Sab}ψ − ηλ(µψ̄{γν), Sab}ψ

)
ωλab. (E.21)

14We suppress Aµ as it is not important here.
15Variation of the spin connection in the action does not contribute extra terms to the stress tensor itself.
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Now under a metric variation we choose a gauge where

δeµa = −1

2
ηµλeρaδgλρ, (E.22)

and an explicit computation gives

Gµν,λρcontact(q) = − i
4
η(λ|(µεν)|ρ)σqσ

〈
ψ̄ψ
〉
. (E.23)

Rotating back to Minkowski space we have

Gµν,λρcontact(ω) =
i

4
η(λ|(µεν)|ρ)ω

〈
ψ̄ψ
〉
, (E.24)

where we’ve defined εµν = εµν0. The only contribution is to the Hall viscosity

ηH contact(ω) =
1

4

〈
ψ̄ψ
〉
. (E.25)

Finally we evaluate this expectation value

〈
ψ̄(x)ψ(x)

〉
= −

∫
d3k

(2π)3
Tr G(k) = −µ

2

4π

∫ ∞
2

dxΣI(x). (E.26)

This is quadratically divergent. Upon regularization we have〈
ψ̄ψ
〉

=
µ

4π
(2c0 − λµ) . (E.27)

E.3 Bulk and shear contact terms

Now we consider the remaining contributions to the contact term (E.14). The variation of

the stress operator is

δTµν(x)

δgλρ(0)
=

(
1

2
ψ̄γ(µην)(λ

↔
Dρ)ψ +

1

4
ψ̄γ(ληρ)(µ

↔
Dν)ψ

− 1

4
ηµνψ̄γ(λ

↔
Dρ)ψ −

(
1

2
ψ̄γσ

↔
Dσψ +mψ̄ψ

)
ηµ(ληρ)ν

)
δ3(x). (E.28)

The contribution to the shear viscosity is easy to evaluate. The + +−− component of the

above is

−1

4
ψ̄γ−

↔
∂−ψ −mψ̄ψ, (E.29)

where we have used the gauge condition A− = 0. Taking the expectation value and

regulating divergences,〈
δT++

δg−−

〉
(ω) =

∫
d3k

(2π)3
Tr

((
m+

i

2
k−γ

−
)
G(k)

)
= − µ

24π

(
9c2

0 − 15λc0µ+ (1 + 5λ2)µ2
)
. (E.30)
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Now we turn to the bulk viscosity. The + −+− component of (E.28) is

− 3

16
ψ̄γi

↔
Diψ −

1

4
ψ̄γ3

↔
D3ψ −

1

2
mψ̄ψ. (E.31)

Computing the expectation value proceeds as above but also involves diagrams with a

single gauge field. In the end one finds.

G+−,+−
contact =

µ

48π

(
(1− λ2)µ2 + 3λc0µ− 3c2

0

)
.

(E.32)
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