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1 Introduction

Cosmic inflation is the most successful scenario which not only explains the current cos-

mological observations but also solves the fine-tuning problems such as the horizon and

flatness problems at the same time.

The inflation scenarios are mostly classified according to the size of the tensor-to-

scalar ratio which measures the tensor perturbations of the metric in our universe. One is

the small-field inflation scenario which gives the tiny tensor-to-scalar ratio due to the flat

potential of the scalar field, called inflaton. The other scenario we consider is the large-field

inflation model which gives a sizable and measurable tensor-to-scalar ratio. Recent data

reported by BICEP2 collaboration [1] can be explained by dust emission [2, 3] reported

by the joint analysis of BICEP2, Keck Array and Planck collaborations. In any case, it

is interesting to propose the large-field inflation models which would be tested by future

cosmological observations.

When we consider the large-field inflation models, we always encounter the problems

how to treat the trans-Planckian field values. For example, in the case of natural inflation [4]

known as one of the large-field models, we need the corresponding trans-Planckian axion

decay constant of the inflaton which is required by recent Planck data [5, 6]. (See ref. [7]

and references therein.)

Especially, in the higher-dimensional theory, there are a lot of axions associated with

the internal cycles of the internal manifold and then it would be natural to identify such

axions as the inflaton. However, it is in general to be problematic that the scale of axion

decay constant is severely constrained by the size of internal manifold and the cut-off scale
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of higher-dimensional theory. To overcome such a problem, there are several approaches

to realize trans-Planckian axion decay constant by employing Kim-Niles-Peloso alignment

mechanism [8] in the case of multiple axions with sub-Planckian axion decay constant, for

more details see refs. [9–19]. In the case of single axion, the trans-Planckian axion decay

constant can be realized based on the five-dimensional theory [20, 21] with a small five-

dimensional gauge coupling and the weakly-coupled heterotic string theory with certain

loop-corrections to the gauge coupling [22].

In this paper, we propose the natural inflation scenario in the framework of type

IIB string theory on toroidal orientifold or orbifold and the inflaton is identified as the

imaginary part of the complex structure moduli, ImU2. The axion decay constant of

inflaton is enhanced to the trans-Planckian field value due to the inverse of one-loop factor

in the gauge threshold corrections which have a dependence on the complex structure

moduli. The sections are organized as follows. We briefly review the gauge threshold

corrections caused by the massive open strings between D-branes in the N = 2 sector of

type II string theory in section 2. In section 3, we show the moduli stabilization procedure

step by step and identify the lightest mode (ImU2) as the inflaton. First, some linear

combinations of dilaton and the complex structure moduli expect for the inflaton sector

U2 can be stabilized by three-form fluxes at the perturbative level. Second, we consider

the remaining orthogonal linear combination of dilaton and complex structure moduli and

Kähler modulus stabilization by such non-perturbative effects as those employed in the

racetrack scenario [23–26] in sections 3.1, 3.2 and as that adopted in the Kachru-Kallosh-

Linde-Trivedi (KKLT) scenario [27] in section 3.2. Then the real part of complex structure

moduli ReU2 can be also stabilized due to those nonvanishing superpotential terms at the

same time. Finally, we extract the effective inflaton potential which is in a type of natural

inflation with the trans-Planckian axion decay constant by identifying ImU2 as the inflaton

in the large complex structure moduli limit, ReU2 > 1 in section 3.3. On the other hand,

in the case of ReU2 ≃ 1, we find the modulations to the original scalar potential for the

natural inflation to be discussed in section 3.4. Section 4 is devoted to the conclusion. We

show the mass-squared matrices of moduli in appendix A.

2 Moduli-dependent threshold corrections in type II string theory

We briefly review the one-loop stringy threshold corrections to the gauge couplings on D-

branes in the framework of type II string theory. (For more details, see refs. [28, 29], and

references therein.) The running gauge coupling for scale µ below the string scale Ms is

written by
1

g2a(µ)
=

1

g2a
+ ba ln

(

M2
s

µ2

)

+
∆a

16π2
, (2.1)

where ga is the 4D gauge coupling at the string scale Ms, ba is the beta-function coefficient

of the gauge group Ga and ∆a represents the correction from stringy massive modes at

the one-loop level. In type II string theory, in general, the charged open strings between

two stacks of D-branes or O-planes contribute to the gauge couplings on D-branes as the

threshold corrections ∆a which are mostly moduli-dependent [30].
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In the case of type IIA string theory on toroidal orientifold or orbifold with O-planes

and D6-branes wrapping on a supersymmetric three-cycle (special Lagrangian submanifold)

of the internal tori, the gauge threshold corrections are explicitly computed by an exact

CFT method via the cylinder and Möbius diagram [28]. (There are similar computations

in type IIB string theory and F-theory on the local geometric cycle with fractional D-

branes [31, 32].) When we consider the T-dual picture, they correspond to the setup of

D3/D7-branes or D5/D9-branes in type IIB orientifold or orbifold which depend on the

choice of T-duality. For N = 2 SUSY sector in type IIB string with D3/D7-branes and

O3/O7-planes, (which correspond to the stacks of parallel D6- and D6′-branes or O-planes

in type IIA string theory), one-loop gauge threshold corrections for the gauge theory living

on D7-branes with the gauge group Ga and the wrapping numbers (pka, q
k
a) on three two-tori

labeled by k = 1, 2, 3 are expressed as

∆a = −
∑

c

bN=2
ac

[

ln |η(i Uk)|4 + ln

(

ReUk |p
k
a + i qkaReT

k|2

ReT k

)

− κ

]

, (2.2)

where T k and Uk are Kähler and complex structure moduli, respectively, κ is the IR

regularization constant and η is the Dedekind eta-function. The beta-function coefficients

bN=2
ac represent contributions from the charged massive modes in open strings stretched

between the a-stack of D7-branes and the other c-stack of D-branes, and the summation

over c implicitly extracts the all contributions from the other stacks of D-branes. Note

that the imaginary part of T k is given by the Neveu-Schwarz field.

As pointed out in ref. [33], only holomorphic threshold corrections contribute to the

gauge kinetic function on D7-branes, which is extracted from the first term on the right-

handed side of eq. (2.2),

f1−loop
a = −

1

4π2

∑

c

bN=2
ac ln

(

η(i Uk)
)

. (2.3)

Especially, in the large complex moduli limit, the logarithmic factor in eq. (2.3) behaves as

ln η(i Uk) → −
π

12
Uk, (2.4)

due to the asymptotic form of the Dedekind eta-function. In this limit, the gauge kinetic

function on D7-branes receives the following threshold correction,

fa ≃
∑

i

T i

4π
+
∑

j

bj

48π
U j , (2.5)

where the summations of Kähler and complex structure moduli are only performed over

the cycle wrapped by the D7-branes and bj represents the contribution from the massive

open-string modes. Here we consider the D7-branes , otherwise the dilaton dependence

also appears in the gauge kinetic function depending on the two-form fluxes, because such

fluxes are irrelevant in our scenario of moduli stabilization and inflation. The case with

a more general form of gauge kinetic function in terms of the Dedekind eta-function in

eq. (2.2) are discussed later.
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In the following, we propose the moduli stabilization and inflation scenario in the

framework of type IIB string theory on toroidal orientifold or orbifold such as T 2/Z2 or

T 2/(Z2 × Z2) with D-branes.

3 Natural inflation in type IIB string theory on toroidal orientifold or

orbifold

In this section, we propose the natural inflation in the framework of type IIB string theory

on toroidal orientifold or orbifold such as T 2/Z2 or T 2/(Z2 × Z2) with D-branes. The

inflaton is considered as the axion paired with one of the complex structure moduli intoN =

1 SUSY multiplet and the axion decay constant is enhanced to trans-Planckian value due

to the inverse of a loop-factor accompanying the one-loop corrections to the gauge kinetic

function which makes it possible to realize a successful natural inflation, as shown later.

As pointed out in ref. [34], in the type IIB string theory (unlike the heterotic string

theory) on Calabi-Yau (CY) three-fold, three-form fluxes induce the superpotential Wflux

which depends on the dilaton S and complex structure moduli Uk as

Wflux =

∫

CY
G3 ∧ Ω, (3.1)

where Ω is the holomorphic three-form of the CY manifold and G3 = F3−i SH3 is the three-

form flux determined by Ramond-Ramond (RR) three-form flux F3 and Neveu-Schwarz

(NS) three-form flux H3. Such flux-induced superpotential can stabilize the dilaton and

all complex structure moduli at the perturbative level [34].

In order to show the essential idea of our scenario, as mentioned above, we consider the

type IIB string on the simple toroidal orientifold or orbifold such as T 2/Z2 or T 2/(Z2×Z2)

whose moduli are characterized by dilaton S, three complex structure moduli U1, U2, U3

and single overall Kähler modulus T .1 In order to obtain the desired inflation potential,

we follow a similar step to the KKLT scenario [27] for stabilizing all the moduli other than

ImU2 which is identified as the inflaton field.

3.1 Moduli stabilization with three-form fluxes

First, let us focus on the stabilization of the dilaton and complex structure moduli by em-

ploying the three-form flux. We consider the following Kähler potential and superpotential

of S, U1, U2 and U3 in the framework of 4D N = 1 supergravity,

K=− ln(S + S̄)−
3

∑

i=1

ln(U i + Ū i),

Wflux=w1+iw2 (U
1−U2)+iw3 U

3+iw4 S+w5U
3 (U1−U2)+w6S U3+w7S (U1−U2)

+ iw8SU
3(U1 − U2), (3.2)

1It is straightforward to extend our stabilization mechanism to the case with three Kähler moduli.
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in the Planck unit, MPl = 1, where all the dimensionful quantities are measured by the

reduced Plank mass2 MPl = 2.4× 1018GeV and then the coefficients wm (m = 1, 2, . . . , 8)

are integers determined by the RR- and NS-fluxes.3

To brighten the outlook for analyzing the stabilization of dilaton S and complex struc-

ture moduli U1, U2 and U3, we redefine one of the latter as

U4 = U1 − U2. (3.3)

In the field base S, U2, U3 and U4, the superpotential and Kähler potential are rewritten as

K = − ln(S + S̄)− ln(U2 + Ū2)− ln(U3 + Ū3)− ln(U4 + Ū4 + U2 + Ū2),

Wflux = w1+iw2 U
4+iw3 U

3+iw4 S+w5U
3 U4+w6S U3+w7S U4+iw8SU

3U4. (3.4)

Then the vacuum expectation values of dilaton and complex structure moduli are deter-

mined by the supersymmetric condition,

DIW = 0, (3.5)

where DIW = WI + KIW , with WI = ∂W/∂ΦI and KI = ∂K/∂ΦI , is the covariant

derivative with respect to the moduli fields ΦI , ΦI = S,U2, U3 and U4.

The above stabilization condition (3.5) can be satisfied by

WS = WU3 = WU4 = W = 0. (3.6)

For simplicity and concreteness, we further restrict the RR- and NS-fluxes to those satis-

fying

w1 = w2w6, w3 = −w5w6, w4 = −w6w7, w8 = 1, (3.7)

with which the expectation value of S, U3 and U4 are given by

ReU3ReS = −(w2 + w5w7), ReU4 = 0, ImU3 = w7, ImU4 = w6, ImS = w5, (3.8)

at the minimum given by eq. (3.6). Thus U4 and the linear combination of S and U3 can

be stabilized at the supersymmetric Minkowski minimum and their mass-squared matrices

are found as

m2
S =

=









KU3Ū3
|WU3U4 |2 +KSS̄ |WSU4 |2 0 0

0 KU4Ū4
|WU3U4 |2 KU4Ū4

WU3U4W̄S̄Ū4

0 KU4Ū4
W̄Ū3Ū4WSU4 KU4Ū4

|WSU4 |2









, (3.9)

in the field basis (U4, U3, S), which has rank 2 with some appropriate choices of the integers

wm.4 Note that since there is a Kähler mixing between U2 and U4 as can be seen from

2Here and hereafter, we adopt the Planck unit.
3We choose the certain ansatz of three-form flux that yields the superpotential terms in eq. (3.2) through

eq. (3.1) in order to realize the moduli inflation as discussed later.
4In ref. [35], it is shown that when one leaves one modulus massless at the supersymmetry breaking

minimum, there appears another massless moduli.
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eq. (3.4), we have to canonically normalize them as summarized in the appendix A. The

Kähler mixing between U2 and U4 are the essential ingredients to realize the supersym-

metric Minkowski minimum in the physical domain of the moduli space.

We remark that, with the above choice of RR- and NS-fluxes, the tadpole cancellation

condition may not occur among themselves, however, our moduli stabilization and natural

inflation scenario would not depend on the detail structure of tadpole condition.

3.2 Light moduli stabilization with non-perturbative effects

Next, we discuss the stabilization of remnant complex structure modulus U2, the linear

combination of S and U3, Kähler modulus T below the mass scale of the stabilized complex

structure moduli U4. As mentioned above, for simplicity, we focus on the case with a single

overall Kähler modulus T and then its Kähler potential is expressed as

K = −3 ln(T + T̄ ), (3.10)

in the large volume limit. As a source of stabilizing the Kähler modulus T , dilaton S

and ReU2, we assume the non-perturbative effects such as the gaugino condensation on

D7-branes and D3-brane,

Wnon = A(U)e
−

8π2f1
N1 −B(U) e

−
8π2f2
N2 + C(U)e

−
8π2f3
N3 −D(U) e

−
8π2f4
N4 , (3.11)

where f1 and f2 denote the gauge kinetic functions of pure SU(N1)×SU(N2) gauge theories

on D7-branes,

f1 = f2 =
T

4π
+

b2U2

48π
, (3.12)

where we assume that both of them receive the same threshold corrections depending on

the complex structure modulus U2 determined by the size of b2 given by eq. (2.5). f3 and f4
denote the gauge kinetic functions of pure SU(N3)× SU(N4) gauge theories on D3-branes

at the orbifold fixed points,

f3 = f4 =
S

4π
. (3.13)

A(U), B(U), C(U) and D(U) are functions of only the heavy complex structure moduli

stabilized by the flux-induced superpotential (3.1). Thus we can treat these functions

A(U) and B(U) as constants, neglecting the fluctuations of these heavy moduli around the

stabilized value.

In the same way as employed in the section 3.1, we redefine the Kähler modulus as

T̃ = T +
b2

12
U2. (3.14)

Then the stabilization of the Kähler modulus T̃ and dilaton S can be achieved by two

gaugino-condensation terms in the same way as the racetrack scenario [23–26], i.e.,

DT̃Wnon = (Wnon)T̃ +KT̃Wnon = 0,

DSWnon = (Wnon)S +KSWnon = 0, (3.15)
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which leads to the following value of the Kähler moduli and dilaton at the racetrack mini-

mum,

〈T̃ 〉 ≃
N1N2

2π(N2 −N1)
ln

N2A

N1B
, 〈S〉 ≃

N3N4

2π(N4 −N3)
ln

N4C

N3D
, (3.16)

where the explicit values of parameters are explored by evaluating the cosmological ob-

servables. The above racetrack minimum can be realized due to the following relation,

〈Wnon〉 ≪ 〈(Wnon)T̃ 〉, 〈(Wnon)S〉 which is satisfied in our parameter regions as shown later.

As mentioned in section 3.1, the linear combination of S and U3 is already stabilized by the

flux induced superpotential. Here the remaining orthogonal combination can be stabilized

by this racetrack superpotential for S. (The stabilization point of ImS is the same as that

given by eq. (3.8) when we choose w5 = 0 in the superpotential (3.4).)

In the following, let us discuss the stabilization of the remnant complex structure

modulus U2. Since the Kähler modulus is stabilized at the minimum 〈W 〉 6= 0, the real

part of U2 is stabilized by the Kähler potential,

K = − ln(U2 + Ū2)− ln(U4 + Ū4 + U2 + Ū2)− 3 ln

(

T̃ + ¯̃T −
b2

12
(U2 + Ū2)

)

, (3.17)

under the following condition:

KU2 = −
1

U2 + Ū2
−

1

U4 + Ū4 + U2 + Ū2
+

b2

4

1

T̃ + ¯̃T − b2

12(U
2 + Ū2)

= 0, (3.18)

which determines the expectation value of ReU2 as

ReU2 =
24〈Re T̃ 〉

5b2
, (3.19)

satisfying the extremal condition VU2 = ∂V/∂U2 = 0 and we employed 〈ReU4〉 = 0. We

again remark that U4 and the linear combination of U3 and S are fixed at a high-scale by

the condition DU3W = DU4W = DSW = 0. Therefore, if the gaugino condensation scale

is much smaller than the mass scale of U4 and the linear combination of U3 and S, their

deviations from the minimum given by eq. (3.8) are sufficiently small, and we can replace

the heavy moduli U4, the linear combination of U3 and S by their expectation values (3.8)

in evaluating the stabilization of light moduli T̃ , S and ReU2.

To confirm the stabilization of ReU2, we have to check that the rank of the full mass-

squared matrices for U2, U3, U4, S and T̃ . The explicit form of them and the canonical

normalization of all moduli are summarized in appendix A. From the mass matrices shown

in eq. (A.4), we find the squared mass of ReU2 is positive, if the mass scales of U4 and

the linear combination of U3 and S are much heavier than the gaugino condensation scale

determined by the superpotential (3.11), that is consistent with the above argument.

In the above analysis, the vacuum energy is negative at the minimum DIW = 0 for

I = U2, U3, U4, S and T̃ . Therefore we assume the existence of some uplifting sector with

which the total scalar potential V is in KKLT-type [27],

V = VF + Vup, (3.20)
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where VF is written by the usual N = 1 supergravity formula,

VF = eK
(

KIJ̄DIWDJ̄W̄ − 3|W |2
)

, (3.21)

with KIJ̄ is the inverse of the Kähler metric KIJ̄ = ∂2K/∂ΦI∂Φ̄J̄ for ΦI = S, T̃ , U2, U3 and

U4. The uplifting potential Vup may come from anti-D3-branes [27] and/or nonvanishing

F-terms in some dynamical SUSY breaking sector [36–39], etc. In the next section, we

show the inflaton potential by identifying the light axion ImU2 as the inflaton.

Finally, we comment on the stabilization of the Kähler modulus T . In the above

analysis, the Kähler modulus is stabilized in the same way as the racetrack scenario [23–26].

In the case of the KKLT scenario [27] which is achieved, instead of eq. (3.11), by a single

gaugino-condensation term and a tiny constant value of the nonvanishing flux-induced

superpotential, we can also derive the similar inflaton potential with a trans-Planckian

axion decay constant as seen in the next section. This is because our inflaton potential

does not depend on the stabilization of T . However, in the latter case, we need to tune

the RR- and NS-flux to obtain the tiny expectation value of superpotential 〈W 〉 ≃ 10−2

in order to realize the large volume limit required to ensure the form of Kähler potential

shown in eq. (3.10). When the three-form fluxes are turned on, we may have to consider

a more general geometry than CY (locally) warped due to the energies of these fluxes as

well as some sources for the tadpole cancellation [34]. Thus we further assume that the

possible backreactions from the three-form fluxes are negligible in the relevant sector to

our scenario of moduli stabilization and inflation.

So far, we focus on the single overall Kähler modulus T . The other Kähler moduli

Ti i = 1, 2, · · · , are also stabilized by the non-perturbative effects such as the gaugino

condensation on D7-branes irrelevant to the cycle associated with the modulus T ,

W =
∑

i

Ai(U)e
−

8π2f
(i)
1

M
(i)
1 −Bi(U) e

−
8π2f

(i)
2

M
(i)
2 , (3.22)

at the racetrack minimum, where Ai(U), Bi(U) are the functions of only the heavy complex

structure moduli by the flux-induced superpotential (3.1). f
(i)
1 and f

(i)
2 denote the gauge

kinetic functions of SU(M
(i)
1 )× SU(M

(i)
2 ) gauge theories, e.g., f

(i)
1 = a1Ti and f

(i)
2 = a2Ti

with a1, a2 are constants. It is then assumed these gaugino condenstion scales are much

heavier than the those for the modulus T .

3.3 Natural inflation without modulations

Now we are ready to write down the inflaton potential. The effective scalar potential for

ImU2 is generated from another SU(L) gaugino-condensation term,

W ⊃ E(〈U〉)e−
2π
L
〈T 〉− bπ

6L
〈ReU2〉−i bπ

6L
ImU2

, (3.23)

where we assume the gauge coupling on SU(L) gauge theory receives the threshold correc-

tions which have U2-dependence. The factor E(〈U〉) denotes possible threshold corrections

from the heavy complex structure moduli, U3 and U4, as in the previous step. We assume

– 8 –
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again that all the other moduli are strictly fixed at their minimum given by eqs. (3.8)

and (3.16) obtaining heavy masses and the fluctuations around their vacuum expectation

values are neglected in the effective potential for ImU2. Such a situation can be realized

if the rank of the SU(L), SU(Ni) (i = 1, 2, 3, 4) gauge theories are chosen as L < Ni with

i = 1, 2, 3, 4. In this case, ImU2 is lighter enough than all the other moduli those re-

ceive much heavier masses from the high-scale gaugino-condensation terms (3.11) and the

flux-induced superpotential (3.1), respectively.

After all, the effective scalar potential for ImU2 is generated from VF in eq. (3.21),

which is written as

Veff = Λ1 (1− cos (λ1φ)) , (3.24)

where Λ1 ≃ 6e〈K〉〈Wnon〉E(〈U〉)e−
2π
L
〈T 〉− bπ

6L
Re〈U2〉, λ1 = bπ/6dL and φ = d ImU2 is the

canonically normalized axion field. The normalization factor d ≃ 1/〈ReU2〉 is determined

by the canonical normalization of relevant complex structure moduli which is explicitly

shown in appendix A. Even though U2, U4 and T̃ have a kinetic-mixing from the structure

of Kähler potential (3.17) as mentioned in section 3.2, the effects from the mixing between

φ and ImU4, Im T̃ is negligible on the inflation mechanism discussed in the following. This

is because ImU4 and Im T̃ are heavier enough than ImU2 and already decoupled from the

inflaton dynamics.

When we identify the inflaton as φ, the axion potential is considered as the type

of natural inflation. As seen in the scalar potential (3.24), the axion decay constant is

enhanced by the inverse of one-loop factor and is determined by the ratio b/L and the

vacuum expectation value, 〈ReU2〉. Since the trans-Planckian axion decay constant is

required in order to explain the cosmological observations reported by Planck data [6], the

ratio b/L and 〈ReU2〉 have to be properly chosen. Note that the beta-function coefficient

b in N = 2 sector is not related with the sector of SU(L) gauge theory.

To evaluate the cosmological observables, we define the slow-roll parameters for the

inflaton φ,

ǫ =
1

2

(

∂φVeff

Veff

)2

=
(λ1)

2

2

1− cos2(λ1 φ)

(1− cos(λ1 φ))
2 ,

η =
∂φ∂φVeff

Veff
= (λ1)

2 cos(λ1 φ)

1− cos(λ1 φ)
,

ξ =
∂φVeff∂φ∂φ∂φVeff

V 2
eff

= −(λ1)
4 1− cos2(λ1 φ)

(1− cos(λ1 φ))
2 , (3.25)

and then the cosmological observables such as the power spectrum of the scalar density

perturbation Pζ , the spectral index ns, its running dns/d ln k and the tensor-to-scalar ratio

r are written as

Pζ =
V

24π2 ǫ
, ns = 1 + 2η − 6ǫ, r = 16ǫ,

d ns

d ln k
= 16ǫη − 24ǫ2 − 2ξ, (3.26)

by employing the slow-roll approximation at the leading order. The e-folding number is

also evaluated as

Ne =

∫ φ

φend

Veff

∂φVeff
dφ, (3.27)
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where φend denotes the field value at the end of inflation with which the slow-roll condition

is violated, max{ǫ, η, ξ} = 1.

In order to explain the power spectrum of the scalar density perturbation, Pζ ≃

2.2 × 10−9 reported by Planck [6], we set the parameters in the superpotential given by

eqs. (3.4), (3.16), (3.23) and the Kähler potential given by eq. (3.17),

w5 = 0, w6 = 1, w2 = −8, w7 = −3, N1 = N3 = 12, N2 = N4 = 20, L = 10, b = 1,

b2 = 12, A = −8, B = −3, C = 9, D = 3, E =
1

12
, (3.28)

and the other parameters in eq. (3.4) are fixed such that the conditions given by eq. (3.7)

are satisfied, those lead to the vacuum expectation values of moduli,

〈ReU1〉 ≃ 〈ReU2〉 ≃ 2.8, 〈ReU3〉 ≃ 1, 〈ImU1〉 ≃ 1, 〈ImU2〉 ≃ 0, 〈ImU3〉 ≃ −3,

〈ReS〉 ≃ 7.7, 〈ImS〉 ≃ 0, 〈T̂ 〉 ≃ 7.1. (3.29)

With the above set of parameters, the above cosmological observables and the e-folding

number are evaluated as

ns ≃ 0.963, r ≃ 0.06, dns/d ln k ≃ −8× 10−4, Ne ≃ 61, (3.30)

which are consistent with WMAP, Planck data [6],

ns = 0.9655± 0.0062, (3.31)

at the pivot scale k∗ = 0.05Mpc−1 and the upper limit of r [6],

r < 0.11, (3.32)

when we properly choose the initial condition for inflaton φ.

We remark that, in our model, the axion decay constant is enhanced by the inverse

of loop factor through the stringy threshold corrections which are characterized by the

Dedekind eta-function and the beta-function coefficients b induced by the massive open-

string modes between D-branes in eq. (3.12). Thus, we can realize several values of axion

decay constant depending on the brane configurations, which means that the tensor-to-

scalar ratio can be of O(0.01− 0.1) in our framework.

3.4 Natural inflation with modulations

The previous section shows the usual natural inflation with trans-Planckian decay constant,

which is valid only when the Dedekind eta-function can be approximated by the leading

term as shown in eq. (2.4) in the large field limit of complex structure moduli.

In this section, we estimate the deviations from the large complex-structure limit, by

introducing the next leading term in the Dedekind function,

η(i U2) → e−
π
12

U2
[

1− e−2πU2
−O(e−4πU2

)
]

, (3.33)
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which induces the following correction to the inflaton potential given by eq. (3.24),

Vinf = Veff + Vmod, (3.34)

where

Vmod = Λ2 cos (λ2φ) , (3.35)

with Λ2 = Λ1
2b
L
e−(2π+

b π
6L )〈ReU2〉, λ2 = (2π + b π/6L)/d. Note that the correction Vmod

would in general yield the modulations [40–43] to the leading inflaton potential Veff in the

case of 〈ReU2〉 ≃ 1, though it is not the case in the above analysis with the numerical

values of parameters (3.28) resulting eqs. (3.29)–(3.32).

In the following analysis, we also take care of the vacuum expectation value of ReU2

and the ratio b/L in order to avoid the tachyonic scalar potential around the origin, φ = 0.

Actually we can avoid the nonvanishing field value of the axion φ at the minimum, which

would lead to the strong CP problem if it couples to the QCD sector, that is, the physical

θ̄ term is severely constrained by the non-observation of electric dipole moment of the

neutron [44, 45]. The axion mass squared at the origin is described by

∂2
φVinf

∣

∣

φ=0
= (λ1)

2Λ1 − (λ2)
2Λ2, (3.36)

and its positivity is ensured by the following condition:

(λ1)
2Λ1 − (λ2)

2Λ2 > 0 ↔
(π

6

)2 b

L
> 2

(

2π +
π b

6L

)2

e−2π〈ReU2〉. (3.37)

For general cases, it is interesting to discuss the contributions from the additional

scalar potential Vmod to the inflaton dynamics. By the inclusion of Vmod, the slow-roll

parameters of the inflaton potential Vinf for the inflaton φ are written as

ǫ =
(λ1Λ1 sin (λ1 φ)− λ2Λ2 sin (λ2 φ))

2

2V 2
inf

,

η =
(λ1)

2Λ1 cos (λ1 φ)− (λ2)
2Λ2 cos (λ2 φ)

Vinf
,

ξ2 = −
λ1Λ1 sin (λ1 φ)− λ2Λ2 sin (λ2 φ)

Vinf
×

(λ1)
3Λ1 sin (λ1 φ)− (λ2)

3Λ2 sin (λ2 φ)

Vinf
, (3.38)

while the spectral index ns including the higher-order corrections is found as

ns = 1 + 2η − 6ǫ+ 2

[

−

(

5

3
+ 12C

)

ǫ2 + (8C − 1)ǫ η +
1

3
η2 −

(

C −
1

3

)

ξ2
]

+ · · · , (3.39)

where C = −2 + ln 2 + γ with γ ≃ 0.577 is the Euler-Mascheroni constant and the ellipsis

stands for more higher corrections which are given by the fourth derivative with respect to

the inflaton. (See ref. [46] and references therein.) As discussed later, in models which have

ξ2 = O(0.01), the higher-order terms contribute to the numerical value of ns in eq. (3.39),

while the higher-order corrections to Pζ do not give sizable effects. Note that our inflaton

effective potential is controlled by 〈ReU2〉 and b/L in the superpotential given by eq. (3.4).

In the following analysis, we assume certain numerical values of parameters different from
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Figure 1. Predictions of (ns, r) in the range of e-folding number, 50 ≤ Ne ≤ 60. For the universal

value of 〈ReU2〉 = 1, black-solid, red-dashed, green-dashed, blue-dotdashed and orange-dotted lines

correspond to the fixed ratios b/L = 1/10, 1/5, 1/4, 1/3, 1/2, respectively.

eq. (3.28), those realize the particular value 〈ReU2〉 ≃ 1, with which Vmod does affect the

inflaton dynamics.

Then we numerically evaluate the cosmological observables r, ns, dns/d ln k by putting

several values of b/L. The scalar density perturbation Pζ can be obtained as 2.2 × 10−9

also in this case by suitably choosing the gaugino-condensation terms in eq. (3.16) which

stabilize the Kähler modulus at the racetrack minimum. Figure 1 shows the prediction

of the spectral index ns and the tensor-to-scalar ratio r in the range of e-folding number,

50 ≤ Ne ≤ 60. Several oscillating curves are drawn by varying Ne with the corresponding

fixed values of the ratio b/L in figure 1. This is because the slow-roll parameters oscillate

due to the inclusion of the deviations from the large complex-structure limit as can be seen

in figure 2 which shows the behavior of the slow-roll parameters by setting b/L = 1/5 (1/10)

and 〈ReU2〉 = 1.2 (2.4) in the left (right) panel. Although, in the both left and right panels

in figure 2, the leading scalar potential Veff has the same structure, the next-leading scalar

potential Vmod gives sizable corrections in the left rather than the right panel. The scalar

potential with and without such modulations is shown in the figure 3. As mentioned

above, the detectability of such modulations is governed by the expectation value of ReU2

and then the next-to-next leading scalar potential which comes from the expansion of the

Dedekind functions would be important in the case of 〈ReU2〉 < 1. We summarize our

predictions for the cosmological observables in table 1.

Our results suggest that we can realize several values of the tensor-to-scalar ratio

and spectral index independently to each other when we consider the particular value of

complex-structure modulus, 〈ReU2〉 ≃ 1. This nature is different from the original natural

inflation model [4] and is also seen in the multi-natural inflation scenario [10, 11]. However,

up to now, we do not know which amount of gravitational waves are observed reported by

BICEP2 collaborations [1]. We expect that future cosmological observations select more

precisely certain values of cosmological observables.

In summary, in our framework of type IIB string theory on toroidal orientifold or orb-

ifold, the deviation from the natural inflation depends on the expectation value of the real

part of complex structure modulus, 〈ReU2〉. In the large field limit of complex structure

– 12 –
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Figure 2. The behavior of the slow-roll parameters, ǫ, η and ξ2, which correspond to black-

dotdashed, red-dashed and blue-solid curves, respectively. In the left (right) panel, we set b/L =

1/5 (1/10) and 〈ReU2〉 = 1.2 (2.4).

Figure 3. The scalar potential V versus the inflaton value φ. Along with figure 2, the black-solid

curve corresponds to the scalar potential (3.34) with modulations for the parameter b/L = 1/5

and 〈ReU2〉 = 1.2. On the other hand, the red-dotted curve corresponds to the leading scalar

potential (3.24) without modulations for the same parameters.

b/L 〈ReU2〉 Ne ns r dns/d ln k

1/10 1.3 50 0.96 0.14 −0.0008

1/10 1.3 57 0.96 0.12 −0.012

1/5 1.2 55 0.96 0.08 −0.002

1/5 1.2 60 0.96 0.08 −0.001

1/4 1.2 53 0.96 0.07 −0.002

1/4 1.2 58 0.96 0.06 −0.001

1/3 1.1 54 0.96 0.04 −0.002

1/3 1.1 60 0.96 0.04 −0.001

1/2 1.1 50 0.95 0.01 −0.0003

Table 1. The input values of b/L, ReU2 and the output values of the e-folding number Ne, spectral

index ns, tensor-to-scalar ratio r and the running of spectral index dns/d ln k.
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moduli, our inflaton potential is considered as the original natural inflation scenario [4].

When we construct the standard model sector on Dp-branes (p > 3), the matter fields in

the standard model generically couple to the complex structure moduli. Such couplings

affect the inflaton dynamics after the end of inflation which are related to the reheating

processes. Thus, it is interesting to study toward such a direction in a future work.

4 Conclusion

We proposed a mechanism for the natural inflation with and without modulations in the

framework of type IIB string theory on toroidal orientifold or orbifold. The essential

ingredient to obtain the trans-Planckian decay constant which is required in the natural

inflation is the holomorphic gauge threshold corrections to the gauge kinetic function. Such

threshold corrections are exactly computed in type II string theory on toroidal orientifold or

orbifold by employing the CFT method (see refs. [28, 29], and references therein) which sug-

gests the gauge threshold corrections have moduli dependences. Note that when one of the

moduli is identified as the inflaton, the moduli-dependent threshold corrections are impor-

tant not only to discuss about the gauge coupling unification, but also to enhance the axion

decay constant of the inflaton by the inverse of one-loop factor accompanying the correction.

In our model, the inflaton is considered as ImU2 which is the imaginary part of

the complex structure modulus and the inflaton potential is extracted from the gaugino-

condensation term whose gauge coupling receives the complex structure moduli-dependent

terms characterized by the Dedekind function. We presented that in the large complex-

structure limit, 〈ReU2〉 > 1, the Dedekind function is approximated as the single exponen-

tial term and then the inflaton potential is close to that of the natural inflation which is con-

sistent with cosmological observations such as WMAP, Planck [5, 6] and the joint analysis

of BICEP2, Keck Array and Planck [3]. On the other hand, in the regime with 〈ReU2〉 ≃ 1,

we have to take account of the explicit Dedekind function, which leads to the modulations to

the original natural inflation [4]. The modulations give a sizable modification to the predic-

tions [40–43] of the original natural inflation in the same way as the multi-natural inflation

scenario [10, 11]. The natural inflation with modulations predicts the different predictions

unlike the original natural inflation without modulations. In fact, we can achieve the small

and large tensor-to-scalar ratio without changing the value of spectral index so much. Thus

such natural inflation with modulations can be tested in the near future experiments.

In both inflation scenarios, we stabilize the complex structure moduli except for the

inflaton sector by employing three-form fluxes in the usual manner. The dilaton S, overall

Kähler modulus T and ReU2 are stabilized at the racetrack (KKLT) minimum by double

(single) gaugino-condensation terms (term) above the inflation scale. In general, although

it seems to be difficult to obtain the mass difference between ReU2 and ImU2, it can be

achieved by the Kähler mixing between U2 and the other moduli in our model.

We have not discussed the reheating process. When we construct the standard model

sector on Dp-branes (p > 3), the matter fields in the standard model generically couple to

the complex structure modulus (inflaton). Since such couplings affect the inflaton dynamics

after the end of inflation, it is interesting to study in such a direction for the future work.
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It is also interesting to extend our set-up to more general Calabi-Yau manifold. How-

ever, the one-loop threshold corrections are unknown on D-branes which wrap the internal

cycles of Calabi-Yau manifold. Thus it is beyond our scope.
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A The canonical normalization and mass-squared matrices

In this appendix, we show the canonical normalization and the mass-squared matrices of

all moduli given by the Kähler potential (3.4), (3.10) and the superpotential (3.4), (3.11).

The Kähler metric generated by the Kähler potential (3.4), (3.10) is given by

KIJ̄ =



















KU4Ū4 KU4Ū2 0 0 0

KU2Ū4 KU2Ū2 K
U2 ¯̃

T
0 0

0 KT̃ Ū2 K
T̃
¯̃
T

0 0

0 0 0 KU3Ū3 0

0 0 0 0 KSS̄



















, (A.1)

where

KU2Ū2 =
1

(U2 + Ū2)2
+

1

(U4 + Ū4 + U2 + Ū2)2
+

3c2
2

(T̃ + ¯̃T − c2(U2 + Ū2))2
=

10

3

1

(U2 + Ū2)2
,

KU2Ū4 = KU4Ū2 = KU4Ū4 =
1

(U2 + Ū2)2
, K

U2 ¯̃
T
= K

T̃ Ū2 = −
4

3c2

1

(U2 + Ū2)2
, (A.2)

KU3Ū3 =
1

(U3 + Ū3)2
, KSS̄ =

1

(S + S̄)2
, KT T̄ =

3

(T̃ + ¯̃T − c2(U2 + Ū2))2
=

4

3c2
2

1

(U2 + Ū2)2
,

where c2 = b2/12. Here we employ the stabilization condition given by eq. (3.18) as

discussed in section 3.2. Then the eigenvalues (Keig)I , and the matrix UIJ̄ diagonalizing

the above Kähler metric KIJ̄ for I, J = U4, U2, T̃ , U3, S are numerically estimated in the

case of c2 = 1,

(Keig)U4 ≃
4.3

(U2 + Ū2)2
, (Keig)U2 ≃

1.1

(U2 + Ū2)2
, (Keig)T̃ =

0.27

(U2 + Ū2)2
,

(Keig)U3 = KU3Ū3 , (Keig)S = KSS̄ ,
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UIJ̄ =



















−0.67 −2.19 1 0 0

1 0.14 1 0 0

−1.1 0.8 1 0 0

0 0 0 1 0

0 0 0 0 1



















. (A.3)

Next, we show the mass-squared matrix obtained from the scalar potential which is

consisted of the Kähler potential (3.4), (3.10) and the superpotential (3.4), (3.11),

m2
IJ̄

= (Keig)IK̄(U−1)K̄LVLM̄UM̄N (Keig)NJ̄ , (A.4)

where

(Keig)IK̄ = δIK̄/
√

(Keig)I , (A.5)

and

VLM̄ ≃



















VU4Ū4 0 0 0 0

0 VU2Ū2 V
U2 ¯̃

T
0 0

0 VT̃ Ū2 V
T̃
¯̃
U

0 VT̃ S̄

0 0 0 VU3Ū3 VU3S̄

0 0 V
S
¯̃
T

VSŪ3 VSS̄



















. (A.6)

Note that here the mass-squared matrix is evaluated in the canonically normalized field

basis (Φ2,Φ4,Φ3,ΦS ,ΦT ) with

Φ̄2 =
√

2(Keig)U2(U−1)
U2Ū J̄ Ū

J̄
, Φ̄4 =

√

2(Keig)U4(U−1)
U4Ū J̄ Ū

J̄
, Φ̄T =

√

2(Keig)T̃ (U
−1)

T̃ Ū J̄

¯̃
T

Φ̄3 =
√

2(Keig)U3 Ū
3̄
, Φ̄S =

√

2(Keig)SS̄, (A.7)

and the mass-squared matrix m2
IJ , m

2
Ī J̄

can be obtained in the same way.
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