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Abstract: We study complexified elliptic Calogero-Moser integrable systems. We deter-

mine the value of the potential at isolated extrema, as a function of the modular parameter

of the torus on which the integrable system lives. We calculate the extrema for low rank

B,C,D root systems using a mix of analytical and numerical tools. For so(5) we find con-

vincing evidence that the extrema constitute a vector valued modular form for the Γ0(4)

congruence subgroup of the modular group. For so(7) and so(8), the extrema split into two

sets. One set contains extrema that make up vector valued modular forms for congruence

subgroups (namely Γ0(4), Γ(2) and Γ(3)), and a second set contains extrema that exhibit

monodromies around points in the interior of the fundamental domain. The former set can

be described analytically, while for the latter, we provide an analytic value for the point of

monodromy for so(8), as well as extensive numerical predictions for the Fourier coefficients

of the extrema. Our results on the extrema provide a rationale for integrality properties

observed in integrable models, and embed these into the theory of vector valued modular

forms. Moreover, using the data we gather on the modularity of complexified integrable

system extrema, we analyse the massive vacua of mass deformed N = 4 supersymmetric

Yang-Mills theories with low rank gauge group of type B,C and D. We map out their

transformation properties under the infrared electric-magnetic duality group as well as un-

der triality for N = 1∗ with gauge algebra so(8). We compare the exact massive vacua on

R3 × S1 to those found in a semi-classical analysis on R4. We identify several intriguing

features of the quantum gauge theories.
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1 Introduction

Four-dimensional gauge theories accurately describe forces of nature. Since solving them is

hard, we may revert to studying supersymmetric four-dimensional gauge theories, in which

the power of holomorphy lends a helping hand. Twenty years ago, we realised how to solve

for the low-energy effective action on the Coulomb branch of N = 2 gauge theories in four

dimensions [1, 2]. The solution techniques were soon recognised to lie close to those studied

in integrable systems [3, 4]. It is the bridge between integrable models and supersymmetric

gauge theories that we will further explore in this paper. We also attempt to reinforce both

sides separately, and present results in a manner such that the contributions to these two

domains may be read independently.

The link between supersymmetric gauge theories and integrable systems was useful

in writing down the low-energy effective action for N = 2∗ gauge theory, namely N = 4

super Yang-Mills theory with gauge group G, broken to N = 2 supersymmetry by adding

a mass term for one hypermultiplet. For the gauge group G = SU(N) this program was

completed in terms of a Hitchin integrable system with SL(N,C) bundle over a torus with

puncture [5]. The associated elliptic Calogero-Moser system permits generalisations to any

root system, and allows for twists, which were used to provide Seiberg-Witten curves and

differentials for N = 2∗ theory with general gauge group G [6]. The generalisation was

non-trivial since the elegant technique of lifting to M-theory [7] is difficult to implement

in the presence of orientifold planes (see e.g. [8, 9]), while the relevant generalised Hitchin

integrable system has a gauge group which is related to the gauge group of the Yang-Mills

theory in an intricate manner [10]. For a review of part of the history, see the lectures [11].

We will be interested in breaking supersymmetry further, from N = 2 to N = 1

by adding another mass term for the remaining chiral multiplet (providing us with three

massive chiral multiplets of arbitrary mass). We will study this N = 1∗ gauge theory

with generic gauge group G. With N = 1 supersymmetry, we hope to calculate the

effective superpotential W at low energies exactly. For an adjoint mass deformation from

N = 2 to N = 1 this was done in the original work [1] in certain cases. For N = 1∗

and gauge group G = SU(N), the exact superpotential was proposed in [12] following

the techniques of [1, 13]. The superpotential is the potential of the complexified elliptic

Calogero-Moser integrable system associated to the root lattice of type AN−1. In [14] the

exact superpotential for N = 1∗ with more general gauge algebra was argued to be the

potential of the twisted elliptic Calogero-Moser system with root lattice associated to the

Lie algebra of the gauge group G. See [15] for further generalizations to N = 1∗ theories

with twisted boundary conditions on R3 × S1.
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In this paper, we wish to analyse the proposed exact superpotential in more detail.

This involves a study of the properties of the isolated extrema of the complexified and

twisted elliptic Calogero-Moser integrable system. The results are of independent interest,

and we have therefore dedicated a first part of this paper to the study of the integrable

systems per se.

The paper is structured as follows. In section 2, we review the relevant elliptic Calogero-

Moser models. We pause to demonstrate a Langlands duality between the B and C type

integrable systems. We then analyse the isolated extrema of the complexified potential of

low rank integrable systems of B,C and D type, and their modular properties. We observe

the strong connection to vector valued modular forms. The latter in turn provide a natural

backdrop for integrality properties of integrable systems (see e.g. [16–18]). Section 2 is the

technical heart of the paper, and we will lay bare many properties of the vector valued

modular forms, using a combination of analytical work and extensive numerics. We will

analytically describe the potential in certain classes of extrema. We also find sets of extrema

that exhibit a monodromy in the interior of the fundamental domain. In these cases we

are able to calculate the monodromy, as well as to provide extensive numerical data for the

integer valued coefficients describing the value of the potential at the extrema.

Finally, in section 3, we reinterpret the results we obtained in terms of the physics of

massive vacua of N = 1∗ theories. We compare our results for the quantum theory on

R3 × S1 to semi-classical results for massive vacua in R4, and discuss electric-magnetic

duality properties in the infrared under the modular group as well as the Hecke group.

For so(8), we also detail the action of the global triality symmetry on the massive vacua.

We will encounter confirmations of semi-classical results, and interesting puzzles. We

conclude in section 4 and argue that we have only scratched the surface of a broad field of

open problems.

2 Elliptic integrable systems and modularity

It is interesting to identify and study dynamical systems that are integrable. Often they

form solvable subsectors of more complicated theories of even more physical interest. There

exist one-dimensional models of particles with interactions that are integrable, and the

Calogero-Moser models of our interest are one such class [19–21]. These models are as-

sociated to root systems of Lie algebras (amongst others). See e.g. [22, 23] for a review.

Integrable systems are also known to have certain integrality properties. Namely, their

minimal energy, frequencies of small oscillations as well as eigenvalues of Lax matrices are

often expressible in terms of a series of integers [16–18].

In this section, we study properties of (twisted) elliptic Calogero-Moser systems. We

analyse the complexified model, defined on a torus with modular parameter τ . In par-

ticular, we examine the extrema of the complexified potential, and exhibit their curious

characteristics.

2.1 The elliptic Calogero-Moser models

The member of the pyramid of Calogero-Moser integrable systems we concentrate on is

the elliptic Calogero-Moser model. We concentrate on the models associated with a root

– 2 –
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system ∆, as well as their twisted counterparts. These models have a Hamiltonian with

rank r variables, with canonical kinetic term, and a potential of the form:

V∆ = g
∑
α∈∆

℘(α(X);ω1, ω2) , (2.1)

where ℘ is the Weierstrass elliptic function on a torus with periods 2ω1 and 2ω2 and g is a

coupling constant. We choose the half-periods such that the imaginary part of the modular

parameter τ = ω2/ω1 is positive.1 The vector X lives in the space dual to the root lattice

of rank r and the sum in the potential is over all the roots α of the root system ∆.2 The

model is integrable for all Lie algebra root systems. The twisted elliptic Calogero-Moser

model is defined in terms of twisted Weierstrass functions:

℘n(x;ω1, ω2) =
∑
k∈Zn

℘

(
x+

k

n
2ω1;ω1, ω2

)
, (2.2)

which are summed over shifts by fractions of periods (thus in effect modifying that period).

We have a twisted elliptic Calogero-Moser model for all non-simply laced root systems and

the value of n is then given by the ratio of the length squared of the long versus the short

roots. We will be interested in the twisted elliptic Calogero-Moser model with potential:

V∆,tw = gl
∑
αl∈∆l

℘(αl(X);ω1, ω2) + gs
∑
αs∈∆s

℘n(αs(X);ω1, ω2) , (2.3)

where αl denote the long and αs the short roots in the root system ∆ = ∆l ∪∆s, and gl
and gs are two coupling constants. We will concentrate on the root systems Ar, Br, Cr
and Dr corresponding to the classical algebras su(r+1), so(2r+1), sp(2r) and so(2r). We

allow complex values for the components of the vector X (i.e. X ∈ Cr).

The symmetries of the potential. Let us discuss in detail the symmetries of the

twisted elliptic Calogero model that act on the set of variables X. We first observe that

the Weyl group action leaves invariant the scalar product α(X) = (α,X) and that the

root system is Weyl invariant.3 This implies that the Weyl group action on X leaves the

potential invariant. Secondly, we note that the outer automorphisms of the Lie algebra,

which correspond to symmetries of the Dynkin diagram, also leave the set of roots and

the scalar product invariant. Therefore, outer automorphisms as well form a symmetry of

the model.

Moreover, the periodicities of the model in the two directions of the torus are as follows.

By the definition of the dual weight, or co-weight lattice, we have that α(λ∨) ∈ Z for all

roots α. This implies that shifts of X by 2ω2 P
∨, namely shifts by periods times co-weights,

leave the potential invariant.

To discuss the periodicity in the ω1 direction, we concentrate for simplicity on the

algebras A,B,C and D, and normalize their long roots to have length squared two. We

1See appendix B for more on our conventions for elliptic functions.
2See appendix A for our conventions and a compendium of properties of Lie algebras and Lie groups.
3We mostly follow [24] for our conventions on Lie algebras. See also appendix A for the definitions of

the different lattices discussed hereafter.
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then have that for a long root αl and a weight λ, the equation (αl, λ) ∈ Z holds while

for a short root αs of the B or C algebras we have (αs, λ) ∈ 1
2Z, for all weights λ. As

a consequence, the periodicity in the (twisted) ω1 direction is the lattice 2ω1 P where P

is the weight lattice. The group of all symmetries is a semi-direct product of the lattice

shifts, the Weyl group as well as the outer automorphism group.

2.2 Langlands duality

Beyond the many features of these integrable systems already discussed in the literature,

the first supplementary property that will be pertinent to our study of isolated extrema,

is their behaviour under an inversion of the modular parameter τ . We therefore briefly

digress in this subsection to discuss a few of the details of the duality. Models associated

to simply laced Lie algebras map to themselves under the modular S-transformation S :

τ → −1/τ . This is easily confirmed using the transformation rule (B.3) of the Weierstrass ℘

function under modular transformations. We do have a non-trivial Langlands or short-long

root duality between the twisted elliptic Calogero-Moser model of B-type and the twisted

model of C-type. In order to exhibit the duality, we make the potential for the (twisted)

Br = so(2r + 1) theory more explicit:4

VB = bl

[∑
i<j

℘(xi − xj ;ω1, ω2) + ℘(xi + xj ;ω1, ω2)

]

+bs

[
r∑
i=1

℘(xi;ω1, ω2) + ℘(xi + ω1;ω1, ω2)

]
,

and for the Cr = sp(2r) theory as well:

VC = cs

[∑
i<j

℘(yi − yj ;ω′1, ω′2) + ℘(yi + yj ;ω
′
1, ω
′
2)

+℘(yi − yj + ω′1;ω′1, ω
′
2) + ℘(yi + yj + ω′1;ω′1, ω

′
2)

]

+cl

r∑
i=1

℘(2yi;ω
′
1, ω
′
2) . (2.4)

We have chosen a standard parameterisation of the vector X as well as the root systems,

and we have assigned half-periods ωi to the B-system and ω′i to the C-system. We have also

made explicit the twisted Weierstrass functions ℘2 with twisting index 2, which is the ratio

of lengths squared of the long and short roots. To demonstrate the duality between these

models, we use the elliptic function identities (B.5) to manipulate the so(2r+ 1) potential

4For the non-simply laced cases, we will always work with the twisted model, and we will drop the

corresponding subscript on the potential from now on.
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such that it becomes of the form of the sp(2r) potential:

VB = bl

[∑
i<j

℘(xi − xj ; 2ω2,−ω1) + ℘(xi − xj + 2ω2; 2ω2,−ω1) + ℘(xi + xj ; 2ω2,−ω1)

+℘(xi + xj + 2ω2; 2ω2,−ω1)

]
+ bs

r∑
i=1

℘(xi;ω2,−ω1/2)

−π
2r(r − 1)

24ω2
2

bl

[
2E2

(
−ω1

ω2

)
− E2

(
− ω1

2ω2

)]
+
π2r

6ω2
1

bs

[
2E2

(
2
ω2

ω1

)
− E2

(
ω2

ω1

)]
= bl

[∑
i<j

℘(xi − xj ; 2ω2,−ω1) + ℘(xi − xj + 2ω2; 2ω2,−ω1) + ℘(xi + xj ; 2ω2,−ω1)

+℘(xi + xj + 2ω2; 2ω2,−ω1)

]
+ bs

r∑
i=1

℘(xi;ω2,−ω1/2)

+
π2

12ω2
1

(2rbs + r(r − 1)bl)

[
2E2

(
2
ω2

ω1

)
− E2

(
ω2

ω1

)]
. (2.5)

In the last equality, we used the modular transformation rule (C.3) for a combination of

second Eisenstein series. We observe that the end result (2.5) can be identified with the

Cr potential (2.4), provided we match parameters as follows:

ω′1 = 2ω2 ω′2 = − ω1 yi = xi

cs = bl cl = 4bs , (2.6)

and we allow for a τ -dependent shift of the potential that invokes the second Eisenstein

series E2. These identifications imply a duality (which we will denote S2) between the

modular parameters of the B and C-type integrable systems:

τB ≡ − 1

2τC
. (2.7)

In the following, we will be interested in B and C models in which the ratio of the long to

short root coupling constants is equal to two, i.e. we put bl = b = 2bs and cl = c = 2cs.
5

It is important that this relation is compatible with the duality map (2.6). We rewrite the

identity of the potentials for this specific ratio of parameters:∑
i<j

℘(xi − xj ;ω1, ω2) + ℘(xi + xj ;ω1, ω2) +
1

2

(∑
i

℘(xi;ω1, ω2) + ℘(xi + ω1;ω1, ω2)

)
=
∑
i<j

℘(xi − xj ; 2ω2,−ω1) + ℘(xi − xj + 2ω2; 2ω2,−ω1)

+℘(xi + xj ; 2ω2,−ω1) + ℘(xi + xj + 2ω2; 2ω2,−ω1)

+2
∑
i

℘(2xi; 2ω2,−ω1) +
π2r2

12ω2
1

[
2E2

(
2
ω2

ω1

)
− E2

(
ω2

ω1

)]
,

5Various particular choices of parameters and observables that we make in section 2 are motivated by

the gauge theory applications that we will discuss in section 3. It is also of interest to study the integrable

systems more generally.
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and the integrable system duality can be summarised as:

VB(xi, τ) =
1

2τ2
VC

(
xi
2τ
,− 1

2τ

)
+
π2r2

3
[2E2(2τ)− E2(τ)] , (2.8)

when we use the rescaling (B.2). The duality may be viewed as a standard Langlands

duality. We went through its detailed derivation since the τ -dependent shift in the duality

transformation (2.8) is important for later purposes.

2.2.1 Langlands duality at rank two

There is a further special case of low rank which is of particular interest to us in the

following. The B and C type Lie algebras of rank two are identical: so(5) ≡ sp(4). If

we apply the duality of B and C type potentials to this special case, we derive that the

following transformations leave the potential invariant:

ω′1 = 2ω2 ω′2 = −ω1 c′ = 2b

x′2 − x′1 = 2x1 x′1 + x′2 = 2x2 . (2.9)

If we parameterise the potential in terms of the modular parameter τ = ω2/ω1, the duality

transformation for so(5) reads:

Vso(5)(x1, x2, τ) =
1

2τ2
Vso(5)

(
x1 + x2

2τ
,
x1 − x2

2τ
,− 1

2τ

)
+

4π2

3
[2E2(2τ)− E2(τ)] . (2.10)

In summary, we derived a Langlands duality between B and C type (twisted) elliptic

Calogero-Moser models. The resulting identities captured in equations (2.8) and (2.10)

and the shifts appearing in these duality transformations will be useful. We return to the

more general discussion of the integrable systems, and in particular their extrema.

2.3 Integrable models at extrema

There have been many studies of classical integrable models at equilibrium. These have

uncovered remarkable properties, like the integrality of the minimum of the potential and of

the frequencies of small oscillations around the minimum, amongst others (see e.g. [16–18]).

We will analyse the potential of certain elliptic integrable systems evaluated at generalised

equilibrium positions. We show that they give rise to interesting vector valued modular

forms as well as more general non-analytic modular vectors. Modularity provides a more

conceptual way of understanding the integrality properties of the integrable system. This

rationale then continues to hold for the integrable systems that can be obtained from

the elliptic Caloger-Moser systems by limiting procedures (e.g. the trigonometric models).

Thus, studying elliptic integrable systems, depending on a modular parameter, is found to

have an additional pay-off.

It is known that A-type integrable systems often have simpler properties than do the

integrable systems associated with other root systems. As a relevant example, let us quote

the fact that the (real) Calogero-Moser (Sutherland) system with trigonometric potential

of A-type has equally spaced equilibrium positions along the real axis, while the B,C,D-

type potentials have minima associated to zeroes of Jacobi polynomials [17], which satisfy

– 6 –
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known relations [25], but are not known explicitly in general. The elliptic Calogero-Moser

systems that we examine show a similar dichotomy. Extrema of the (complex) elliptic

A-model are equally spaced. This fact leads to relatively easily constructable values for

the potential at extrema, for any rank [5, 12, 26]. For the B,C,D-type models that we

study in this paper, much less is known, and we need to combine numerical searches with

analytic approaches to determine the extremal values of the potential, for low rank cases.

To be more precise, we will be interested in extrema of the complexified potential,

satisfying:6

∂XiV (Xj) = 0 ∀i , (2.11)

and we moreover demand that at the extremum (2.11) the function

r∑
i=1

|∂XiV (Xj)|2 (2.12)

not posses any flat directions.7

Recall that the group of symmetries acting on the variables X were a lattice group of

translations, the Weyl group as well as the outer automorphisms of the Lie algebra. Using

these symmetries, we will introduce a notion of equivalence on the variables X. We will

consider the vector X to be identified by the periodicities of the model. The periodicity in

the ω1 direction is given by the weight lattice P , while in the ω2 direction it is the co-weight

lattice P∨. Furthermore, we will consider extrema that are related by the action of the

Weyl group of the Lie algebra to be equivalent. By contrast, outer automorphisms are

taken to be global symmetries of the problem. When the global symmetry group is broken

by a given extremum, the global symmetries will generate a set of degenerate extrema.

2.4 The case Ar = su(r + 1)

The extrema of the elliptic Calogero-Moser model of type Ar have been studied in great

detail, mostly in the context of supersymmetric gauge theory dynamics (see e.g. [5, 12,

26]). Firstly, we remark that in this case, the equivalence relations that follow from the

periodicity of the potential as well as the Weyl symmetry group of the Lie algebra are

straightforwardly implemented. We use the parameterisation of simple roots in terms of

orthogonal vectors αi = ei − ei+1, and the fundamental weights then read πi =
∑i

j=1 ej ,

with weight lattice spanned by the vectors ei. We can parameterise the coordinates of our

integrable system by a vector Xje
j living in the dual to the root space (and ej(ei) = δj i).

The Weyl group Sn acts by permuting the components Xj . We can shift one of the

components Xj to zero by convention. The equivalence under shifts by fundamental weights

is identical to the toroidal periodicity relations for the individual coordinates Xj . The

inequivalent extrema of the su(n) potential (satisfying the additional condition (2.12) of

6This will correspond, in section 3, to a supersymmetric vacuum in the N = 1∗ gauge theory, where the

effective superpotential W is identified with the potential V of the integrable system.
7This condition implies that the vacuum is massive in the supersymmetric gauge theory. We briefly

comment on massless vacua later on.
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non-flatness) are then argued to correspond one-to-one to sublattices of order n of the torus

with modular parameter τ [5, 12]. These extrema are classified by two integers p and k

satisfying that p is a divisor of n and k ∈ {0, 1, . . . , np −1}. The number of extrema is equal

to the sum of the divisors of n. The Z2 outer automorphism of Ar>1 acts trivially on the

minima, since it acts by permutation, combined with a sign flip for all Xj , which leaves a

sublattice ankered at the origin invariant.

The value of the potential at one of these extrema is (with a given choice of cou-

pling constant):

VAn−1(τ) =
n3

24

(
E2(τ)− p

q
E2

(
p

q
τ +

k

q

))
. (2.13)

Under the SL(2,Z) action on the torus modular parameter τ , the sublattices of order n of

the torus are permuted into each other (in a way that depends intricately on the integer

n). The permutation of the sublattices also entails the permutation of the values (2.13) at

these extrema under SL(2,Z). The list of extremal values of the elliptic Calogero-Moser

model therefore form a vector valued modular form (see e.g. [27–29]) of weight two under

the group SL(2,Z). The associated representation of the modular group is a representation

in terms of permutations specified by the SL(2,Z) action on sublattices of order n. One

can identify a subgroup of the modular group under which a given component of the

vector-valued modular form is invariant, and then use minimal data to fix it [30].

In summary, the extrema of the Calogero-Moser model of type Ar = su(r + 1) are

under analytic control. The positioning of the extrema can be expressed linearly in terms

of the periods of the model, and the vector valued modular form of extremal values for the

potential has an automorphy factor that can be characterised by sublattice permutation

properties. The extremal values are generalised Eisenstein series of weight two under

congruence subgroups of the modular group.

2.5 The B,C,D models

For other algebras, we are at the moment only able to study low rank cases. From the

analysis, it is clear that crucial simplifying properties of the Ar case are absent. Never-

theless, generic features of the Ar case persist in a subclass of extrema, in that we find

vector-valued modular forms as extremal values for the potential. We also find a class of

extremal values that exhibit new features.

To describe in detail which extrema are considered to be equivalent, we must discuss

the equivalence relations that we mod out by for the B,C and D root systems individually.

Dr = so(2r). For the Dr case, we can parameterise the roots as αi = ei − ei+1 (for

i ∈ {1, 2, . . . , r − 1}) and αr = er−1 + er. We put X = Xje
j and imply that the relation

ei(e
j) = δi

j holds. The equivalence of the vector X under shifts proportional to the

weight lattice implies that each variable Xj lives on a torus with modular parameter τ . It

moreover identifies the vector X with the vector X shifted by a half-period in each variable

simultaneously. The Weyl group is W (so(2r)) = Sr n Zr−1
2 , and acts by permutation of

the components Xj , as well as the sign change of an even number of them. The outer
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Br Individual Xi → −Xi

Collective Xi → Xi + ω1

Cr Individual Xi → −Xi and Xi → Xi + ω1

Collective Xi → Xi + ω2

Dr Even number of sign flips Xi → −Xi

Collective Xi → Xi + ω1 and Xi → Xi + ω2

Global symmetries: Z2 generically and S3 for D4.

Table 1. Symmetries and equivalences.

automorphism group (for r 6= 4) is equal to Z2 and acts as Xr → −Xr. For r = 4, the

global symmetry group is S3 triality.

Br = so(2r + 1). For Br, the roots are αi = ei − ei+1 (for i ∈ {1, 2, . . . , r − 1}) and

αr = er. We recall that the periodicity is the weight lattice in the ω1 direction (due to

the twist), and the co-weight lattice in the ω2 direction. Thus, we can shift components of

the vector X = Xje
j by periods, or all components simultaneously by a half period in the

ω1 direction. In the ω2 direction, we allow shifts of the individual components by periods.

The Weyl group acts by combinations of permutations and any sign flip of the coordinates.

Cr = sp(2r). The roots are αi = (ei−ei+1)/
√

2 (for i ∈ {1, 2, . . . , r−1}) and αr =
√

2er.
8

We can shift components Xj of X =
√

2Xje
j by half-periods in the ω1 direction, while in

the ω2 direction, we can allow shifts by any period, as well as a half-period shift of all Xj

simultaneously. The Weyl group allows any permutation and sign flip of the coordinates.

The equivalence relations and symmetries in the B,C and D cases, beyond permutation

symmetries and toroidal periodicity, are summarized in table 1.

Armed with this detailed knowledge about the equivalence of configurations, we pro-

grammed a numerical search for isolated extrema. In the following subsections, we list

the results we found by root system. For simply laced root systems we studied the ellip-

tic Caloger-Moser model, while results for non-simply laced root systems correspond to

the twisted elliptic Calogero-Moser model with a coefficient for the short root term which

is equal to one half the coefficient in front of the long root terms (as described below

equation (2.7)).

2.6 The case C2 = sp(4) = so(5) and vector valued modular forms

Since the root system C2 is the first example of our series, we provide a detailed discussion.

We discuss the positions of the isolated extrema, the series expansions relevant to the

potential at these extrema, the action of the duality group, as well as the identification of

the relevant vector valued modular forms.

8By our conventions, we normalise the long roots such that they have length squared two.
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Figure 1. Extrema at τ = i for the Lie algebra so(5).

2.6.1 The positions of the extrema

For the Lie algebra so(5) = sp(4) we found 7 isolated extrema of the potential. We provide

their positioning at τ = i in figure 1. We have drawn in bold the positions of the extrema

as well as their opposites, in a fundamental cell of the torus.9

These numerical results were found using a Mathematica program, which was written

around the built-in function FindMinimum. Careful programming augments the precision

of the algorithm to at least two hundred digits. The most costly part of the algorithm is

the random search for extrema. Indeed, the intricate landscape drawn by the potential

can hide extrema. We gave a drawing of the position of the numbered extrema on the

9We have indicated reflections over other half-periods in grey, to illustrate that the minima are close to

forming sublattice structures.
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torus with modular parameter τ = i. The positions of the extrema for other values of the

modular parameter can be reached by interpolation. We have analytic control over a few

extra properties of the extrema. E.g. if we follow extremum 1 to τ = i∞, we find that

the equilibrium positions are given by 1
2π arccos(±1/

√
3) where ±1/

√
3 are the zeroes of

the Jacobi polynomial P
(0,0)
2 . The first extremum, which we label 1, lies on the real axis

and is the equilibrium position of the real integrable system. The extremum 2 lies on the

imaginary axis, while extrema 3 and 4 are then approximately obtained by applying the

transformation τ → τ + 1. The extrema 5 and 6 are S2 Langlands duals of extrema 3 and

4. It is easy to deduce from the potential that the positions of the extrema generically

behave non-linearly as a function of τ .

2.6.2 Series expansions of the extrema

By numerically evaluating the extrema of the potential for a range of values of the modular

parameter τ , we are able to write the extrema as an expansion in terms of a power of the

modular parameter q = e2πiτ . The extremal values can be written in terms of the series:

A0(q) =
1

24
+ q + q2 + 4q3 + q4 + 6q5 + 4q6 + 8q7 + q8 + 13q9 + 6q10 + 12q11

+4q12 + 14q13 + 8q14 + . . . (2.14)

A1(q) = 1 + 48q + 828q2 + 8064q3 + 109890q4 + 1451520q5 + 11198088q6+141212160q7

+1666682811q8 + 9413050176q9 + 145022264892q10 + 1838450006784q11

+11103941590326q12 + 138638111404032q13 + . . .

A2(q) = 2 + 48q + 576q2 + 9792q3 + 99576q4 + 743904q5 + 13146624q6 + 115737984q7

+1015727364q8 + 14338442448q9 + 102050482176q10 + 935515738944q11

+12532363069968q12 + 122390111091744q13 + . . .

A3(q) =
13

216
+ 7q + 541q2 + 24508q3 + 939669q4 + 19944842q5 + 764752180q6

+21016537080q7 + 905672825157q8 + 38827071780859q9

+827503353279726q10 + . . .

A4(q) = 1 + 148q + 7446q2 + 154344q3 + 5100349q4 + 352720380q5 + 10627587582q6

+166124184888q7 + 5419843397586q8 + 294399334337124q9 + . . .

A5(q) = − 1

216
+ 29q + 431q2 + 80468q3 − 231081q4 + 94846414q5 + 1301490428q6

+90560563752q7 − 529100109849q8 + 93349951292249q9 + . . . . (2.15)

The integer coefficients have been determined up to an accuracy of at least 10−6. For the

first order terms, the accuracy can be up to 10−200. In terms of these series, the potential
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in extremum number 1, on the real axis is (with a given choice of normalisation):

V1 = 144π2A3

( q
27

)
. (2.16)

The potential in the other extrema are:

V2 = −12π2

(
8

3
A0(q) + (2q)1/3A1(q/9) + (2q)2/3A2(q/9)

)
V3 = −12π2

(
8

3
A0(q) + (2q)1/3e2πi/3A1(q/9) + (2q)2/3e4πi/3A2(q/9)

)
V4 = −12π2

(
8

3
A0(q) + (2q)1/3e4πi/3A1(q/9) + (2q)2/3e2πi/3A2(q/9)

)
, (2.17)

and

V5,6 = 72π2

(
A5

( q
27

)
± i
√

q

27
A4

(
− q

27

))
V7 =

48

3
π2A0(q) . (2.18)

The growth properties of these series, as well as the fact that we are dealing with a physical

system living on a torus suggests turning these numerical data into an analytic understand-

ing, based on the theory of modular forms. In the following, we show that this is possible

for the rank 2 root system B2.

2.6.3 The extrema as modular forms of the Hecke group and the Γ0(4) sub-

group

We need to introduce a few groups related to the modular group. We already noted

the duality transform for the B,C-type twisted Calogero-Moser system under the map

S2 : τ → −1/(2τ) (see equation (2.7)). For the so(5) Lie algebra, which is identical to

the sp(4) Lie algebra, this transformation maps the integrable system to itself (up to a τ

dependent shift of the potential and an overall factor — see equation (2.10)). The map

T : τ → τ + 1 also maps the integrable system to itself. Together, these transformations

generate the action of a Hecke group dubbed Γ∗(2) on the modular parameter τ . This

group contains a subgroup Γ0(4) which is a congruence subgroup of the modular group

SL(2,Z). Generators of the group Γ0(4) can be chosen to be the 2× 2 matrices:

T :

(
1 1

0 1

)

U :

(
1 0

4 1

)
. (2.19)

The action of these matrices on τ coincides with the action of the elements T and U =

S2T
−2S2 of the Hecke group. For more information on Hecke groups and associated mod-

ular forms see e.g. the lectures [31].
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77

Figure 2. The diagram of the action of dualities on the extrema for B2 = so(5). In red, we draw

the action of Langlands S2-duality, and in green, T -duality (when the action is non-trivial).

The extremal values of the potential may therefore form a vector valued modular form

with respect to the Hecke group Γ∗(2), and as a consequence also with respect to the

congruence subgroup Γ0(4) of the modular group SL(2,Z), since we expect extrema to

be at most permuted and/or rescaled under the group. Here, we assume analyticity in

the interior of the fundamental domain. We will mostly exploit the group Γ0(4) in the

following, since the literature on the subject of modular forms with respect to congruence

subgroups is abundant. For starters, we determine the action of the operations T and S2

on the vector Vi of extremal values of the twisted Calogero-Moser potential:

T :



1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1


,

S2 :



0 1 0 0 0 0 −2

1 0 0 0 0 0 −2

0 0 0 0 1 0 −2

0 0 0 0 0 1 −2

0 0 1 0 0 0 −2

0 0 0 1 0 0 −2

0 0 0 0 0 0 −1


. (2.20)

See figure 2 for a summary of the action of the duality group. To this information,

we add the last column in the matrix S2, which originates in the shift of the potential

under Langlands duality. From these data, we easily calculate the action of the generator

U = S2T
−2S2 on the vector valued modular form:

U :



0 0 0 0 1 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 0

0 0 0 0 0 0 1


. (2.21)
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We thus find the action of Γ0(4) on the vector valued modular form, and we observe the

following pattern: there is one entry (the seventh) which is an ordinary modular form of

weight 2 under Γ0(4), and there are two sets of three components (namely {2, 3, 4} and

{1, 5, 6}) that mix under Γ0(4). Thus, our vector valued modular form of dimension seven

splits into a singlet and a sextuplet. Concentrating on the ordinary modular form of weight

2, we have that it is a linear combination of Eisenstein series E2,N defined by:

E2,N (τ) = E2(τ)−NE2(Nτ) . (2.22)

Indeed, the dimension of the space M2(Γ0(4)) of modular forms of Γ0(4) is two, and it

is spanned by E2,2 and E2,4. We thus only need two Fourier coefficients to fix the entire

modular form, and we find that:

A0(q) = − 1

24
E2,2(τ) =

1

48
(θ4

3 + θ4
4)(τ) (2.23)

V7 =
π2

3
(θ4

3 + θ4
4)(τ) . (2.24)

We then have a slew of consistency checks on all the other integers that we determined

numerically (see (2.14)). These thirteen checks work out. We do therefore claim that the

result (2.24) is exact. This is a simple example illustrating our methodology.

Next, we consider the triplet consisting of the components {2, 3, 4}. We find three

eigenvectors of T , with eigenvalues corresponding to the cubic roots of unity. The eigen-

vector with eigenvalue 1 is also mapped to itself under the U transformation, and forms

again a modular form of weight 2 under Γ0(4). It is indeed proportional to E2,2:

V2 + V3 + V4 = −2π2(θ4
3 + θ4

4)(τ) . (2.25)

The other two eigenvectors, we raise to the power three, such that they become in-

variant under the T -transformation. These forms belong to the spaceM6(Γ0(4)) of weight

six modular forms. The dimension of this vector space is 4 (see theorem 3.5.1 in [32] with

g = ε2 = ε3 = 0 and ε∞ = 3), and it consists of three Eisenstein series, and one cusp form.

A basis for these vector spaces is given by:

E1
6 = − 1

252
E6(τ) (2.26)

E2
6 = − 1

252
E6(2τ) (2.27)

E4
6 = − 1

252
E6(4τ) (2.28)

S6 = η(q2)12 , (2.29)

where E6 is the Eisenstein series of weight six, and η is the η-function, also recorded in

appendix C. We need four coefficients to fix the eigenvectors in terms of this basis and we

find (using the notation ω3 = exp(2πi/3)):

(V2 + ω3V3 + ω2
3V4)3 = −23328π6(E1

6 − E2
6 − 2S6) (2.30)

(V2 + ω2
3V3 + ω3V4)3 = −23328π6(E1

6 − E2
6 + 2S6) . (2.31)

The consistency checks using the numerics work out.
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For the second triplet, we diagonalise U first, and proceed very analogously as above,

except that we have to take a higher power for the second combination to find a modular

form of weight 12 with respect to Γ0(4). We find the relations:

(V1 + ω3V5 + ω2
3V6)3 + (V1 + ω2

3V5 + ω3V6)3 = 5832π6(E1
6(q)− 64E2

6)

((V1 + ω3V5 + ω2
3V6)3 − (V1 + ω2

3V5 + ω3V6)3)2 = 136048896π12η(q)24 . (2.32)

Note that the sum of all potentials is necessarily a modular form with weight 2 of Γ0(4).

Indeed, this sum is equal to 112π2A0(q) (as follows from the identity A5(q/27)+A3(q/27) =
4
3A0(q)).

2.6.4 A remark on a manifold of extrema

There are also branches of extrema, namely, non-isolated extrema. These too, we expect

to behave well under a modular subgroup. Although this was not the focus of our inves-

tigation, we did find numerical evidence for a manifold of extrema at which the potential

takes the Γ0(4) covariant value −2π2

3 E2,2.

Summary. In summary, we have full analytic control over the value of the potential for

all isolated extrema of the so(5) twisted Calogero-Moser integrable system. We have found

a vector valued modular form of weight two of Γ0(4), and we were able to explicitly express

its seven components in terms of ordinary modular forms of Γ0(4). The vector valued

septuplet splits into a singlet modular form and a sextuplet vector valued modular form.

The plot will thicken at higher rank.

2.7 The case D4 = so(8) and the point of monodromy

At this stage, we choose to present our results on the rank four D4 = so(8) model first,

since they are simpler than those on the non-trivial rank three cases to be presented in

subsection 2.8. The so(8) model is simply laced and we therefore expect the ordinary

modular group SL(2,Z) to play the leading role. The integrable system exhibits a global

symmetry group S3 that permutes the three satellite simple roots of the Dynkin diagram

of so(8). We will refer to the S3 permutation group as triality. We turn to the enumeration

and classification of the extrema of the potential. We found 34 extrema. These are listed

and labelled in appendix D.1. If we mod out by the global symmetry group, we are left

with 20 extrema. The latter fall into multiplets of the duality group of size 1, 3, 4 and 12.

We discuss these multiplets in the following paragraphs.

2.7.1 The singlet

There is a singlet under S and T duality as well as triality. It has zero potential: V1 = 0.

2.7.2 The triplet

There is also a triplet under the duality group, labelled {2, 3, 4}, and the dualities act as:

T =

1 0 0

0 0 1

0 1 0

 S =

0 1 0

1 0 0

0 0 1

 .
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The relations S2 = 1 and (ST )3 = 1 are satisfied. We note that in these extrema, the

positions belong to the lattice generated by ω1/2 and ω2/2. For this multiplet,T-duality

acts geometrically.

We would like to deduce again from the S and T matrices and from the known first co-

efficients of the series expansions (see appendix D.1) the exact expressions of the potentials

in these extrema. The functions are expected to transform well under some congruence

subgroup of the modular group. Note that the sum of the three functions must be a full-

fledged modular form — indeed, the sum V2(q) + V3(q) + V4(q) vanishes. A brute force

strategy leading to the identification of the appropriate congruence subgroup is the follow-

ing. We decompose the generators of congruence subgroups10 in terms of a product of S

and T operations. We evaluate the product using the representation at hand (here 3 × 3

matrices) and check whether it is trivial for every generator.

It turns out that the subgroup Γ(2) acts trivially on the extremal potentials. Hence

all the potentials V2, V3 and V4 belong to M2(Γ(2)). This space has dimension 2, and it

is the set of linear combinations of the three Eisenstein functions associated to the three

vectors of order 2 in (Z2)2 which have the property that the sum of the three coefficients

vanishes. (See appendix C for details and conventions). Matching a few coefficients, we

find that

V2 = 12

(
2G2,2

[
0

1

]
−G2,2

[
1

1

]
−G2,2

[
1

0

])

V3 = 12

(
−G2,2

[
0

1

]
−G2,2

[
1

1

]
+ 2G2,2

[
1

0

])

V4 = 12

(
−G2,2

[
0

1

]
+ 2G2,2

[
1

1

]
−G2,2

[
1

0

])
.

This can also be written in terms of the Weierstrass ℘ function:

V2(τ) = 3

(
2℘

(
1

2
; τ

)
− ℘

(
τ + 1

2
; τ

)
− ℘

(τ
2

; τ
))

V3(τ) = 3

(
−℘
(

1

2
; τ

)
− ℘

(
τ + 1

2
; τ

)
+ 2℘

(τ
2

; τ
))

V4(τ) = 3

(
−℘
(

1

2
; τ

)
+ 2℘

(
τ + 1

2
; τ

)
− ℘

(τ
2

; τ
))

.

These two ways of writing the potentials make the action of dualities manifest. For instance,

the transformation properties (B.3) show that under S-duality, ℘(1
2 , τ) becomes ℘(1

2 ,
−1
τ ) =

τ2℘( τ2 , τ) while ℘( τ+1
2 , τ) becomes τ2℘( τ+1

2 , τ), so that V2 and V3 are S-dual, et cetera.

The result can also be written using perhaps more familiar modular forms

V2(q) = −6π2E2,2(q)

V3(q) =
3

2
π2
(
2E2,2(q)− 3θ4

2(q)
)

V4(q) =
3

2
π2
(
2E2,2(q) + 3θ4

2(q)
)
.

10There exist algorithms to find the generators. These are for instance implemented in Sage.
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The action of T -duality is again clear from these expressions. For S-duality it is slightly

more intricate. Given that E2,2(q) = −θ4
2(q2)− θ4

3(q2), it relies on the identities

2θ4
3(2τ) + 2θ4

2(2τ) + 3θ4
2(τ) = −θ4

2(τ/2) + 2θ4
3(τ/2)

θ4
3(τ/2) + θ4

4(τ/2)− 6θ4
4(τ) = −4θ4

3(2τ)− 4θ4
2(2τ) + 6θ4

2(τ) ,

for S-duality between extrema 2 and 3, and self-S-duality for extremum 4, respectively.

2.7.3 The quadruplet

We move on to discuss the extremal values of the potential in the quadruplet. We can

arrive at the following closed form for the potential in extremum 6:

V6(q) = −24π2(− 1

24
E2,3(q) + (η(q)3 + 9η(q9)3)η(q3)2/η(q) + 3(η(q3)3/η(q))2) .

Note that this can alternatively be written as

V6(q) = −24π2(g0(q) + q1/3g1(q) + 3q2/3g2(q)) ,

where the gi are functions that can be expanded into series with only integer powers of

q (and the three summands in this expression correspond to the same summands in the

expression above). Thus we know how the operation τ → τ + 1 acts on the extremum, and

it generates two other extrema, whose potential we also know exactly. These are extrema

7 and 8:

V7(q) = −24π2(g0(q) + e2iπ/3q1/3g1(q) + 3e−2iπ/3q2/3g2(q))

V8(q) = −24π2(g0(q) + e−2iπ/3q1/3g1(q) + 3e2iπ/3q2/3g2(q)) .

The potential for the extremum 5 is:

V5(q) = −3π2E2,3(q) .

In the basis {5, 6, 7, 8} the matrices for S- and T -dualities are:

T =


1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

 S =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 .

We can also apply the same method as above. The generators of Γ(3) are all trivial in

this basis. Thus the potentials are weight 2 modular forms of this congruence subgroup.

The latter form a 3-dimensional space, generated by the zero-sum linear combinations of

the 4 Eisenstein series associated to the order 3 vectors in (Z3)2 (there are 8 such vectors,

but the Eisenstein series are invariant under v → −v, leaving only 4 distinct functions, see
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appendix). We find

V5 =
27

2

(
3G2,3

[
0

1

]
−G2,3

[
1

0

]
−G2,3

[
1

1

]
−G2,3

[
1

2

])

V6 =
27

2

(
−G2,3

[
0

1

]
+ 3G2,3

[
1

0

]
−G2,3

[
1

1

]
−G2,3

[
1

2

])

V7 =
27

2

(
−G2,3

[
0

1

]
−G2,3

[
1

0

]
+ 3G2,3

[
1

1

]
−G2,3

[
1

2

])

V8 =
27

2

(
−G2,3

[
0

1

]
−G2,3

[
1

0

]
−G2,3

[
1

1

]
+ 3G2,3

[
1

2

])
,

or alternatively,

V5(τ) =
3

2

(
3℘

(
1

3
; τ

)
− ℘

(τ
3

; τ
)
− ℘

(
τ + 1

3
; τ

)
− ℘

(
τ + 2

3
; τ

))
V6(τ) =

3

2

(
−℘
(

1

3
; τ

)
+ 3℘

(τ
3

; τ
)
− ℘

(
τ + 1

3
; τ

)
− ℘

(
τ + 2

3
; τ

))
V7(τ) =

3

2

(
−℘
(

1

3
; τ

)
− ℘

(τ
3

; τ
)

+ 3℘

(
τ + 1

3
; τ

)
− ℘

(
τ + 2

3
; τ

))
V8(τ) =

3

2

(
−℘
(

1

3
; τ

)
− ℘

(τ
3

; τ
)
− ℘

(
τ + 1

3
; τ

)
+ 3℘

(
τ + 2

3
; τ

))
.

The dualities act on the vectors characterising the modular forms as follows

T :

[
0

1

]
→

[
0

1

]
[

1

0

]
→

[
1

1

]
→

[
1

2

]
→

[
1

0

]
,

S :

[
0

1

]
↔

[
1

0

]
[

1

1

]
↔

[
1

2

]
.

This reproduces the action of the dualities on the associated extrema. Thus, while the

pattern of the positions of the extrema is non-linear, the arguments of the values of the

potential at certain extrema do provide a linear realisation of the duality group.

Finally, we note that triality generates three copies of the triplet as well as of the

quadruplet. Indeed, each of these extrema is left invariant by a Z2 subgroup of S3 (as

described in appendix D.1).

Up to now, we have discussed the singlet, triplet and quadruplet whose duality dia-

grams are summarised in figure 3.

– 18 –



J
H
E
P
0
4
(
2
0
1
5
)
1
2
8

2.7.4 The duodecuplet and a point of monodromy

In the multiplet of size twelve, also depicted in figure 3, a new feature appears. We find

that the extrema exhibit a monodromy around a point in the interior of the fundamental

domain of the parameter τ . Thus, to be able to describe the multiplet structure in this

case we must first discuss the monodromy.

The point of monodromy. We find a single point in the interior of the fundamental

domain around which there is monodromy amongst extrema. It is possible to determine

this point numerically11 and its value is close to τM ∼ 2.41558i. In particular, the extrema

13 and 16 are exchanged when we follow a loop in the τ -plane that closely circles the value

τM . Moreover, using the geometry of the positions of the extrema 13 and 16, one can show

that τM is a solution of the system of equations
℘(z; τ)2 + ℘(z − ω3; τ)2 + ℘(2z − ω3; τ)2 =

π4

3
E4(τ)

2℘′(z; τ) + 2℘′(z − ω3; τ) + ℘′(2z − ω3; τ) = 0 ,

(2.33)

where ω3 = ω1 + ω2, which gives the numerical result

τM = 2.415576987549484510777262081474158860468152563579077460 . . . i .

Using the large accuracy of the value of the point of monodromy τM , we find the corre-

sponding rational Klein invariant (with the normalisation (C.1)):

j(τM ) =
488095744

125
= 1728× 7626496

3375
.

This can be considered as an exact statement — the uncertainty is as low as 10−200. Elliptic

curves with rational Klein invariant have interesting arithmetic properties (see e.g. [32]).

The extended duality group. We can add the monodromy group to the set of gener-

ators S and T that act on our vector of extrema. The resulting diagram of dualities then

becomes the one in figure 3. The generators satisfy the relations:

• S2 = M2 = 1 and T 6 = 1, while (TM)8 = 1

• SM = MS

• (MST )3 = 1.

11The most immediate manifestation of the monodromy phenomenon can be seen as a symmetry breaking

in the equilibrium positions for extrema 13 and 16 when moving on the imaginary axis across the point

of monodromy τM (which is purely imaginary). Below this critical value, as can be seen in the diagrams

drawn at τ = i (in appendix D.1), the two extrema are exchanged by the Z2 action Xi ↔ −X̄i, while above

the critical value, they are both invariant with respect to this action. This makes it possible to determine

2.41557 ≤ ImτM ≤ 2.41558.
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1
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3

4

5

6

8 77

17

9

10

18

11

14

16

13

12

19 20

15

Figure 3. The diagram of the action of dualities on the D4 = so(8) extrema. In red we exhibit

the action of S-duality, in green, T -duality, and in dotted blue, the monodromy.

Once we are underneath the point of monodromy in the canonical fundamental domain,

the matrix MT plays the role usually taken by the matrix T in SL(2,Z). In particular,

relations like (ST )3 = 1 implied by the geometry of the fundamental domain of the modular

group take on the form (SMT )3 = 1, et cetera. Triality leaves each extremum invariant.

In appendix D.1, we give terms in the Fourier expansion of the extremal values of

the potential in the duodecuplet. We note that a consistency and exhaustivity check on

all multiplets is provided by the fact that the sum of all extrema in a given multiplet of

SL(2,Z) has to be a weight 2 modular form. The check works out: the sum equals zero

in each multiplet separately, as it must. An analytic understanding of the duodecuplet

extrema remains desirable.

2.8 The dual cases B3 = so(7) and C3 = sp(6)

2.8.1 Exact multiplets

For the twisted elliptic integrable models associated to the dual Lie algebra root systems

so(7) and sp(6), we present our results succinctly. We have found 17 isolated extrema for

each, and they are Langlands dual. We have therefore 34 extrema in total. We identified

two quadruplets of the full duality group for which we found analytic expressions for the

potential at the extrema. The list of the corresponding extrema is given in appendix D.2.

We find the following duality properties and analytic values for the extrema of the potential.
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The extrema labelled {1, 2} have extremal values for the so(7) potential equal to V1(τ) and

V2(τ). From the diagram of dualities (figure 4), we read off that these extremal values

are modular forms of Γ0(4) with weight 2. Moreover, Langlands duality then implies that

V1∨(2τ) and V2∨(2τ) are also of that ilk. The spaceM2(Γ0(4)) of these weight 2 forms has

the two generators

−E2,2(τ) = θ4
2(2τ) + θ4

3(2τ) = 1/2(θ4
3(τ) + θ4

4(τ))

−E2,4(τ) = 3θ4
3(2τ) = 3/4(θ2

3(τ) + θ2
4(τ))2 .

In terms of the generators, the extrema are:

V1(τ) = π2 (−E2,2(τ)− 2E2,4(τ))

V2(τ) = π2 (−7E2,2(τ) + 2E2,4(τ))

V1∨(2τ) = π2 (+E2,2(τ) + 0E2,4(τ))

V2∨(2τ) = π2 (−2E2,2(τ) + 1E2,4(τ)) .

For the other quadruplet under the full duality group, we have a similar story, with the

happy ending:

V3(2τ) = π2/6 (−15E2,2(τ) + 7E2,4(τ))

V4(2τ) = π2/6 (+9E2,2(τ)− 1E2,4(τ))

V3∨(τ) = 8π2/3 (−3E2,2(τ) + 1E2,4(τ))

V4∨(τ) = 8π2/3 (0E2,2(τ)− 1E2,4(τ)) .

The action of Langlands S2 duality as well as T-duality can be found explicitly using these

exact expressions, for instance by exploiting properties of θ functions. As an example, we

note that the action of T -duality is summarised in the equalities:

E2,2

(
τ +

1

2

)
= −2E2,2(τ) + E2,4(τ)

E2,4

(
τ +

1

2

)
= −3E2,2(τ) + 2E2,4(τ) .

Moreover, on the extrema, the Langlands duality S2 acts as

1

2τ2
V1

(
− 1

2τ

)
= V1∨(τ) + 3π2E2,2(τ) ,

and similar relations hold for the other S2-dual couples, as predicted by the duality for-

mula (2.8).

2.8.2 The duodecuplet, the quattuordecuplet and the points of monodromy

We further identified a duodecuplet and a quattuordecuplet under the duality group (for

a total of (4 + 4 + 12 + 14)/2 = 17 extrema for B3 = so(7)). Sufficient data to reproduce

them is provided in appendix D.2. These multiplets exhibit points of monodromy, and
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1v 3

1

2

42v

3v

4v

13

14

15

1617

13v

14v

15v

16v17v

12v

12

1/2+1.031i10

5

6

78

9

5v

6v

7v

8v

9v

11

1/2 + 1.914534 i

11v 10v

0.63395 i

41
42

12

14

Figure 4. The diagram of dualities for so(7) and sp(6) extrema. In red, we show the action of

Langlands S2-duality on the extrema, in green, T -duality, and in dotted blue, monodromies, with

the corresponding approximate values of the points of monodromy τ . As discussed in the text,

monodromies relating sp(6) extrema exist but are not represented here as they are equivalent to

those already depicted.

the full duality diagram is captured in figure 4. It should be understood that we only

represent points of monodromy that are inequivalent (where two monodromies are taken

to be equivalent when they are equal up to conjugation by other elements of the duality

group). For instance S2MτS2 is the monodromy around −1/(2τ).

We draw attention to a few features of the diagram. There are 5 extrema that form

a quintuplet under T-duality (around τ = i∞), labelled 5, 6, 7, 8, 9. When we also turn
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Figure 5. The positions of the monodromies (red dots) inside the fundamental domain of Γ0(4)

(shaded).

around the point of monodromy, the quintuplet enhances to a septuplet. This is reminiscent

of a feature of the duality diagram for the duodecuplet of so(8).

Finally, we performed an exhaustivity check on the extrema by summing the extremal

values of the potential. We found12∑
i∈41

Vi(τ) = −8π2E2,2(τ)

∑
i∈42

Vi(τ) = 2π2E2,2(τ)

∑
i∈12

Vi(τ) = −20π2E2,2(τ)∑
i∈14

Vi(τ) = 19π2E2,2(τ) ,

showing again that the sum of potentials over every multiplet is a modular form of Γ0(4).

This concludes our systematic case-by-case discussion of the low rank B,C,D isolated

extrema of (twisted) elliptic Calogero-Moser models. We finish the section with a few

further remarks on general features of the problem of identifying isolated extrema.

12We evaluated the sum of the extrema numerically at two different values of τ to identify the linear

combination of E2,2 and E2,4 that equals the sum. We can then perform arbitrary many numerical checks

at other values of τ , and these work out.
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2.9 Limiting behaviour

We wish to make a remark on the limiting behaviour of the integrable models near an

extremum. As an example, consider extremum number 7 for B2 = so(5) which has its

extremal positions equal to a real number plus τ/2. We can take the limit of the potential

as τ → i∞ while keeping the difference between the extremal positions and τ/2 fixed.

The limit of the integrable system is then a (trigonometric) Sutherland system of type

D2 = so(4), and indeed, the real part of the extremal positions agrees with those of the

Sutherland system. This is but one example of the limiting behaviour of the models near

the extrema.

2.10 Partial results for other Lie algebras

In this subsection, we discuss very partial results for some higher rank Lie algebras. We

think of the elliptic integrable model as a perturbation of the Sutherland model, with

trigonometric potential. The Sutherland model has a ground state with all particles sprin-

kled on the real circle. We can perturb this traditional ground state by turning on the

elliptic deformation by powers of the small parameter q, and follow the ground state under

perturbation. In this way, we can reconstruct the extremum of the complexified ellip-

tic potential associated to the Sutherland extremum on the real line. To take the limit

from the elliptic integrable system towards the Sutherland model, it is sufficient to use the

expansion formula:

℘(x;ω1, ω2) = − π2

12ω2
1

E2(q) +
π2

4ω2
1

csc2

(
πx

2ω1

)
− 2π2

ω2
1

∞∑
n=1

nqn

1− qn
cos

nπx

ω1
, (2.34)

valid when the imaginary part of the modular parameter τ is sufficiently large. The first

term in the formula (2.34) is constant from the perspective of the integrable system dy-

namics, while the second term gives rise to the leading Sutherland potential. The minimum

at the equilibrium of the Sutherland potential on the real line can be computed analyti-

cally [17] — it is related to the norm of the Weyl vector of the Lie algebra. The positions

of the equilibria are given in terms of zeroes of the Jacobi polynomials. We can perform

perturbation theory around these extrema (numerically), and we find the following series

in q for the potential at perturbed Sutherland extrema, for various gauge algebras:

Vso(5)

π2
=

26

3
+

112q

3
+

8656q2

81
+

392128q3

2187
+

5011568q4

19683
+

319117472q5

1594323

+
12236034880q6

43046721
+

112088197760q7

387420489
+ . . .

Vso(6)

π2
= 8 + 64q + 192q2 + 256q3 + 192q4 + 384q5 + 768q6 + 512q7 + 192q8 + . . .

Vso(7)

π2
= 25 +

408q

5
+

153816q2

625
+

23730528q3

78125
+

6103562136q4

9765625
+

663346128528q5

1220703125

+
129316813943136q6

152587890625
+

10819167546478272q7

19073486328125
+ . . .

Vso(8)

π2
= 24 +

576q

5
+

212544q2

625
+

39538944q3

78125
+

6618263616q4

9765625
+

909871629696q5

1220703125

+
171403608639744q6

152587890625
+

8112643818471936q7

19073486328125
+

1087819119225488448q8

2384185791015625
+ . . .
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Vso(9)

π2
=

164

3
+

992q

7
+

5133728q2

12005
+

2305844608q3

4117715
+

168902799438112q4

176547030625

+
11307570247017024q5

12111126300875
+

640315787843154194816q6

370903242964296875

+
1106383118191321793331968q7

890538686357276796875
+

69929754265259380435436903968q8

38181846177568242666015625

+
17683503230173163609024329488224q9

13096373238905907234443359375
+ . . .

Vso(10)

π2
=

160

3
+

1280q

7
+

1303808q2

2401
+

616518656q3

823543
+

365560247552q4

282475249

+
101140172889600q5

96889010407
+

9869502718168064q6

4747561509943

+
18401127697466238976q7

11398895185373143
+

6582207315175560008960q8

3909821048582988049
+ . . .

Vso(11)

π2
=

305

3
+

1960q

9
+

30141880q2

45927
+

29034410080q3

33480783
+

4243088924219480q4

2790589782267

+
7560807432828504560q5

6103019853817929
+

4158609757083162994374880q6

1526041805387611692663

+
96348742286518866720674240q7

52975451244169948759587
+

304885265038041162579660724924120q8

92724468600756742242419154123

+ . . .

Vso(12)

π2
= 100 +

800q

3
+

4055200q2

5103
+

1335804800q3

1240029
+

63808646477600q4

34451725707

+
42945633858692800q5

25115308040403
+

6332155765834649948800q6

2093335809859549647
+ . . .

We see that at least for some extrema, it is fairly straightforward to generate interesting

data on the value of the potential at these extrema at higher rank. We note a first pattern,

valid at the order to which we have worked, in both the rank of the gauge group, and the

power of the modular parameter q. Table 2 gives the conjectured smallest integer N such

that for gauge algebra g, the potential Vg(Nq)/π
2 has a Fourier expansion with only integer

coefficients in the following sense: the expansion can be written as n0(r+n1q+n2q
2 + . . .)

where the ni are integers, and the first term r is rational.

As an example of this pattern, let us quote the formula:

1

66679200π2
Vso(12)

(
633 × q

)
=

1

666792
+ q + 745143q2 + 252572301828q3 + 108583732036588599q4

+25066769592690393853446q5 + 11087973934403204342320752348q6

+1966652180387341854168182867614728q7 + . . .

As a final remark, we note that our numerical searches in this and previous subsections are

far from exhausting the capabilities of present day computers.
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k 5 6 7 8 9 10 11 12 13 14

N 33 1 53 53 7352 73 3672 3673 3171113 3271113

Table 2. The integer N for gauge algebra so(k) rendering the Fourier expansion integral.

3 The massive vacua of N = 1∗ gauge theories

In this section, we first briefly review properties of the infrared physics of the N = 1∗ su-

persymmetric gauge theory, and then show how the data we gathered on elliptic integrable

systems in section 2 elucidates the physics of this gauge theory further. We obtain the

N = 1∗ gauge theory from N = 4 supersymmetric Yang-Mills theory with gauge group G

by adding three masses mi for the three chiral N = 1 supermultiplets. We can then go to

the Coulomb branch of the gauge theory, and compactify the theory on a circle [1, 13]. Two

massless scalars remain in the theory for each U(1) in the unbroken U(1)r gauge group,

namely the Wilson lines φ =
∫
S1 Aµdx

µ and the scalar duals σ of the photons. Since there

are no fields in the theory which are charged under the center of the gauge group, we may

choose the gauge group such that we allow for gauge transformations that twist around

the circle by an element of the center. This lends a periodicity to the Wilson line under

shifts taking values in the co-weight lattice P∨. This reasoning corresponds to a choice of

gauge group G = G̃/C where G̃ is the universal cover, and C its center.13

The gauge theory compactified on a circle gets non-perturbative superpotential con-

tributions from magnetic monopole configurations whose charges take values in the dual

root lattice Q∨. The scalar duals of the photons have as a result a smallest possible peri-

odicity equal to the weight lattice P . We choose to classify extrema of the superpotential

with respect to these identifications. We should mention that other choices will be physi-

cally relevant. Since in deriving the effective superpotential we compactified the theory on

R3 × S1, the resulting effective theory is influenced by the choice of the spectrum of line

operators that probe the phases of our four-dimensional theory [5, 33, 34]. These determine

the set of allowed monopole operators in three dimensions, and this set may be larger than

the collection allowed by the minimal periodicity relation chosen above. Depending on

the choice of the spectrum of line operators, this can lead to an increase of the number of

inequivalent solutions, and therefore to an increase in the Witten index. This was analyzed

carefully in [34, 35].

We have identified the shift symmetries acting on the Wilson line and the dual photon.

We further divide out the configuration space by the Weyl group, which is the remnant of

gauge invariance. This classification of supersymmetric vacua agrees with the classification

we did in section 2 in the elliptic integrable systems, on the condition that we identify the

ω2 direction with the Wilson line.

Our N = 1∗ theory is a deformation of N = 4 theory, and it inherits some of its

properties. In particular, the electric-magnetic duality group of N = 4 gauge theories

13Note that the dual theory to the one with gauge group G̃/C has gauge group G̃, for a simply laced

group. The two scalars are interchanged under S-duality. Thus, the duality symmetries mix various global

choices of gauge groups. Duality also acts on the twist direction of the twisted elliptic potential.
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in four dimensions [36–38] plays a crucial role. The duality symmetry was determined

to be the group SL(2,Z) for simply laced gauge groups and Γ0(4) for the B and C type

gauge groups [39–41]. Moreover, the S2 generator of the Hecke group exchanges the B

and C type systems. An infrared counterpart to these duality groups are present in our

integrable systems, which allow for a (generalized) duality group action on the infrared

modular parameter τ [26], inherited after mass deformation from the N = 4 duality. Note

in particular that the requirement of the B type and C type exchange is implemented

in our integrable system by the Langlands duality we discussed in subsection 2.2. This

duality provides a further consistency check on the relative weight of the short and long

root contributions, fixed in [14] through consistency with the superpotential of the pure

N = 1 super Yang-Mills theory.

In [14], following the reasonings in [1, 6, 12, 13], an exact effective superpotential

for N = 1∗ was proposed for any gauge group, equal to the potential of the twisted

elliptic Calogero-Moser model. The arguments were based on holomorphy, uniqueness of

the deformation fromN = 2∗, the form of non-perturbative contributions, and integrability.

We have added to these reasonings the test of S-duality in subsection 2.2. We wish to

further strengthen the arguments for the superpotential by comparing the results for the

exact quantum vacua for the theory on R3×S1 with semi-classical results for the theory on

R4. While the Witten indices of these theories are not identical [34, 35], and in particular

dependent on the choice of allowed dyonic line or monopole operators, we do expect them

to be closely related.

3.1 Semi-classical vacua

A semi-classical analysis of the massive vacua of N = 1∗ on R4 proceeds in several steps.

First one solves the equations of motion for constant scalar field configurations which are

equivalent to the statement that the three complex scalars satisfy a su(2) algebra. The

enumeration of inequivalent embeddings of su(2) in the gauge algebra then provides the

set of classical solutions. In a second step, one analyzes the unbroken gauge group for each

classical vacuum, and then counts the number of vacua that the corresponding pure N = 1

quantum theory gives rise to in the infrared (using e.g. the index calculation [42]). For

gauge algebra su(n) the number of classical vacua was thus argued to be equal to the sum

of the divisors of n [5], and this number coincides precisely with the number obtained from

the exact superpotential [5, 12] for the theory on R3×S1 (where one classifies vacua in the

manner described above). For other gauge algebras, the semi-classical counting of vacua

was performed in [43]. For gauge algebra so(n) it was argued to be:

Zsemi−class(x, y) = 1 + x+ x2y + 3x3 + 6x4 + x5(6 + y) + x6(7 + 3y) + x7(15 + 2y)

+x8(26 + y2) + x9(31 + 5y) + . . . (3.1)

where the power of x is equal to n and the power of y is the number of massless U(1)’s

in a given massless branch of vacua. Although we will concentrate on massive vacua, let

us remark that the semi-classical counting of massless vacua may well be futile in the full

quantum theory, where there may be a single manifold of massless vacua of given rank [51]
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(albeit with different branches). Thus, we will only further consider the semi-classical

formula (3.1) for y = 0. For low rank then, the formula gives the following number of

massive vacua, semi-classically:

so(5) :sc 6 so(6) :sc 7 so(7) :sc 15 so(8) :sc 26 . (3.2)

We know the result for so(6) = su(4) to be in agreement with the number of massive vacua

of the exact superpotential for the theory on R3×S1. We moreover have that this counting

of so(2r + 1) vacua agrees with the semi-classical counting of vacua of sp(2r) [45], both

on R4. In the following, we compare the predictions for the number of vacua some low

rank gauge theories on R4 to the results we obtained for the massive vacua coded in the

superpotential on R3×S1. To make the comparison, we need to go into a little more detail

of the semi-classical analysis.

3.2 Low rank case studies of quantum vacua

In this subsection, we compare the analysis of integrable system extrema to the semi-

classical analysis of massive vacua of N = 1∗ gauge theory on R4 case by case. We

will moreover refine the counting at some stages by taking into account the transformation

properties of the vacua under remaining global symmetries. This will also be the occasion to

interpret the many duality properties that we found for the integrable systems in section 2.

We also briefly comment on the monodromies.

To wrap up a loose end first, let us note that the minimal mass Mi of a given vacuum

i can be computed using the equation

M2
k = min

[
Spec(MT

kMk)
]
, (3.3)

where Mk is the matrix of second derivatives of the potential in vacuum k:

(Mk)ij =
∂2Vk(X)

∂Xi∂Xj
.

This clarifies the logic behind our definition of isolated extrema of the integrable system

(see equation (2.12) and the corresponding footnote).

The case so(5). Semi-classically, we expect six vacua for the gauge theory on R4. Let’s

recall in a little more detail how this counting arises. We allow for various five-dimensional

representations of su(2) as vacuum expectation values for the three complex scalars of

N = 1∗. Even-dimensional representations must appear in even numbers. They need

to take values in the gauge Lie algebra, and we classify them up to gauge equivalence.

One then finds the following allowed representations [43] — we indicate the dimensions of

the su(2) representations, the unbroken part of the gauge group, and then the number of

massive vacua they give rise to in the infrared:

5 : 1 : 1

3 + 1 + 1 : so(2) : 0
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2 + 2 + 1 : sp(2) : 2

1 + 1 + 1 + 1 + 1 : so(5) : 3 . (3.4)

For instance, the 2 + 2 + 1 dimensional representation breaks the gauge algebra down to

sp(2). Classically, this gives rise to a pure N = 1 theory with sp(2) gauge algebra at low

energies, which gives rise to two quantum vacua. Summing all the resulting numbers of

semi-classical vacua, we find six massive vacua in total.

When we compare this analysis to the exact quantum vacua that we found for the so(5)

gauge theory on R3 × S1, we remark that we have a neat correspondence. In particular,

there is one vacuum, on the real axis, that we can identify in the exact quantum regime as

the fully Higgsed vacuum (corresponding to the 5-dimensional irreducible representation

of su(2) in the list (3.4)). Its S-dual we interpret as a confining vacuum, and it is a triplet

under the T-transformation, agreeing neatly with the so(5) confining vacua (corresponding

to the trivial representation of su(2) in (3.4)). We moreover found a doublet under T-

transformation, again in agreement with the two vacua corresponding to the sp(2) classical

vacuum. Thus, at this level, we find excellent agreement. We note that the analysis

of section 2 demonstrates that the six vacua are in a single SL(2,Z) sextuplet and that

their transformation properties are in correspondence with the transformation properties

of sublattices of the torus lattice. Their (generalized) S-duality and T-duality properties

are now entirely known.

The exact analysis has revealed a seventh vacuum on R3 × S1. It does not have a

semi-classical counterpart in the analysis of [43].

One can wonder whether our identification used for the dual of the photon (mentioned

in the introduction to section 3), and therefore of the parameterization of the Coulomb

branch moduli space reduced the number of physical vacua on R3 × S1. Indeed, identi-

fying our model as the one corresponding to gauge group SO(5)+ (in the nomenclature

of [34, 35]), leads to a doubling of the triplet in the semi-classical analysis, while the other

multiplets remain unchanged. For the 1 + 2 + 2 semi-classical split, this is the case be-

cause the commutant is a SU(2) ⊂ SO(5) gauge group (corresponding to a long root in

SO(5)), and thus the pure N = 1 gauge theory gives rise to only a doublet of vacua upon

compactification.

In the integrable system, this more careful analysis corresponds to the rule that solu-

tions can only be identified under shifts by 2ω1 (and not ω1). A look at the so(5) extrema

in the diagrams in subsection 2.5 shows that this relaxed equivalence relation adds precisely

three vacua, namely each of the confining vacua (labelled 2, 3 and 4) obtains a partner, as

expected from the analysis of pure N = 1 [34, 35]. Thus, in this more careful treatment,

we increase the number of vacua by three on both sides of the analysis, and the lone wolf

(seventh vacuum) still poses a puzzle.

The seventh vacuum is a singlet under S-duality and T-duality transformations. We

observe that the extremum (due to its positioning at τ/2 for all extremal points) is associ-

ated to a Wilson line which corresponds to the fundamental spinorial weight of so(5). This

is the element of the weight lattice divided by the root lattice that generates the center

Z2. One can analyze the semi-classical configurations that contribute near this extremum,
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by taking the limit discussed in subsection 2.9. Still, we note that the variables we use

to describe the gauge theory in the ultraviolet are entirely different from the variables we

use to describe the gauge theory physics in the infrared. Thus it remains hard to pinpoint

the precise disconnect between the semi-classical physics on R4 and the exact quantum

analysis on R3 × S1 for N = 1∗.

We have computed the masses of the vacua. They are all roughly of the same or-

der, and much above the accuracy of our numerical approximations, thus guaranteeing

that our vacua are indeed massive. Moreover, for a given massive vacuum, the values of

the masses are all approximately within a factor of 100 from each other. Interesting pat-

terns in the (ratios) of masses (of various vacua) exist — it should be fruitful to study

them systematically.

The case so(8). In the case of the gauge algebra so(8), we find a further set of surprises.

First, let’s compare the quantum vacua on R3 × S1 to the semi-classical analysis on R4.

The semi-classical analysis yields [43]:

7 + 1 : H : 1s

5 + 3 : H : 1s

5 + 1 + 1 + 1 : so(3) : 2

4 + 4 : sp(2) : 2∗

3 + 3 + 1 + 1 : so(2)× so(2) : 0

3 + 2 + 2 + 1 : sp(2) : 2s

3 + 1 + 1 + 1 + 1 + 1 : so(5) : 3

2 + 2 + 2 + 2 : sp(4) : 3∗

2 + 2 + 1 + 1 + 1 + 1 : sp(2)× so(4) : 6s

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 : so(8) : 6s (3.5)

for a total of 26 massive vacua. The semi-classical analysis was done under the assumption

that the Z2 outer automorphism of so(2N) is a gauge symmetry [43], in contrast to our

analysis in section 2. If we adopt this point of view, we are left with a single Z2 global

symmetry, and we have indicated in the counting above whether a set of vacua are a singlet

(s) or are conjugate (∗) under that remaining Z2.

Using this analysis, and the T-duality transformation properties of the integrable sys-

tem extrema, we can partially match the list of semi-classical and quantum vacua on R4

and R3 × S1 respectively. The 6 under the T-duality group makes for a match between

extrema 10, 11, 12, 13, 14, 15 and the su(2) representation 1+1+1+1+1+1+1+1. These

correspond to the confining vacua. The doublets which are conjugate under the remaining

global Z2 match extrema 3 and 4 (as well as their Z2 reflections) to the representations

4 + 4 and 5 + 1 + 1 + 1. The conjugate triplets match 6, 7, 8 (as well as their Z2 reflections)

onto 3 + 1 + 1 + 1 + 1 + 1 and 2 + 2 + 2 + 2. The smaller representations of the T-duality

group are harder to match. We can still identify the Higgs vacuum with the extremum

number 9, which lies on the real axis and which we can therefore follow all the way to weak
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coupling. For other extrema, again, it is hard to follow the change of effective description of

the gauge theory dynamics from the ultraviolet to the infrared. There is again a mismatch

of one in the total number. Taking into account the partially gauged global symmetry,

we find 27 vacua in the quantum theory on the circle, while semi-classically we only have

26 on R4.

Of course, our modular analysis of extrema again obtains a gauge theory interpretation.

Recall that we found a singlet, triplet and quadruplet under the modular group. The

modular group plays the role of a generalized duality group [26], acting on the effective

gauge coupling in the infrared.

Note that we also found a more surprising feature: a new duality group, with a gen-

erator corresponding to a monodromy around a point in the fundamental domain of the

effective coupling that we used to describe our theory. We found a duodecuplet of vacua

transforming under this new duality group. It could be very interesting to understand this

group better in terms of gauge theory physics, or, as associated to the choice of parame-

terisation in the infrared.

Again, the masses all lie very amply above our numerical accuracy, such that we can

claim that we indeed identified massive vacua. Masses are again within a factor of 100 or

so from each other, and exhibit interesting patterns that could be explored.

The cases so(7) and sp(6). For gauge algebra so(7), the semi-classical analysis on R4

predicts fifteen massive vacua, that arise as follows [43, 45]:

7 : 1 : 1

5 + 1 + 1 : so(2) : 0

3 + 3 + 1 : so(2) : 0

3 + 2 + 2 : sp(2) : 2

3 + 1 + 1 + 1 + 1 : so(4) : 3

2 + 2 + 1 + 1 + 1 : sp(2)× so(3) : 4

1 + 1 + 1 + 1 + 1 + 1 + 1 : so(7) : 5 . (3.6)

In the quantum theory on R3 × S1, we do find a quintuplet under T-duality associated

to the confining vacuum on the imaginary axis, dual to the Higgs vacuum on the real

axis, near weak effective coupling. It enhances to a septuplet under T-duality at stronger

effective coupling. It seems from our analysis that the quantum theory on R3×S1 permits

two more quantum vacua, and that the multiplet structure under T-duality is blurred at

strong effective coupling. This too, deserves further scrutiny.

3.3 Tensionless domain walls, colliding quantum vacua and masslessness

The point in the fundamental domain around which we have found a monodromy in the

case of the so(8) gauge algebra, corresponds to a point at which two massive vacua have

equal superpotential. At this point, a supersymmetric domain wall between the vacua

becomes tensionless [46, 47]. The physics associated to such a situation is hard to discuss

in detail, because of the difficulty of controlling the Kähler potential in gauge theories
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with N = 1 supersymmetry only. Explorations of the physics in this regime can be found

in [44, 48, 49]. We note in particular that in a mass and cubically deformed N = 1 U(N)

theory in [48, 49], an extension of the ZN action associated to shifts in the θ angle of

the gauge theory to Z2N was observed due to the presence of a point of monodromy in

an effective coupling. The T-operation (shifting the θ angle of the gauge theory) in our

situation is also crucially influenced by the presence of the point of monodromy: above

the point of monodromy (at weak effective coupling), we find a ZN−2 action, while below

(at strong effective coupling), we find a ZN action (for the case N = 8 as well as for

the case of N = 7). We also note that the collision of the extrema of the superpotential

indicates the existence of an effectively massless excitation since there will be a zero mode

for the matrix of second derivatives. The physics, or at least the properties of the effective

description, seem close to the discussion in e.g. [48]. It would be interesting to elucidate

this point further.

4 Conclusions and open problems

We studied the isolated extrema of complexified elliptic Calogero-Moser models, and en-

countered a plethora of beautiful phenomena. The values of the integrable interparticle

potential at the extrema are true vector-valued modular forms in some cases, allowing for

an analytic determination of the extrema in terms of modular forms of congruence sub-

groups of the modular group. This gives rise to webs of extrema that form representations

under the duality group of the model. The latter can either be a modular or a Hecke group.

A more intricate phenomenon is the appearance of monodromies amongst a second class of

extrema as we loop around a point in the fundamental domain of the modular group. The

duality group is then enlarged to include the monodromy generator. We determined the

action of these generators on extrema. Moreover, we provided a wealth of Fourier coeffi-

cients of the extremal potential. These analyses can be viewed as a considerable widening

of the observation of the integrality of observables in equilibria of integrable systems.

Secondly, we interpreted the results on extrema of Calogero-Moser systems in terms

of mass-deformed N = 4 supersymmetric gauge theory in four dimensions. We compared

our results based on a low-energy effective action for the quantum theory on R3 × S1

to semi-classical predictions for the theory on R4. The total number of quantum vacua

approximately matched the number resulting from the semi-classical analysis. While the

rough match we performed is expected to be only approximate [34, 35], it is an interesting

open problem to pinpoint the origin of the mismatch for N = 1∗ with general gauge group.

Furthermore, we noted that the precise multiplet structures in the quantum theory showed

surprising features, including monodromy properties of the quantum vacua.

It should be clear that we only scratched the surface of this intriguing domain at the

intersection of integrable systems, modularity and gauge theory. The new features of the

extrema that we laid bare in the B,C,D-type integrable models (compared to the A-type

theories) prompts the question of the generic counting of the extrema, the relevant dual-

ity group and modular structure (including monodromies) as well as their representation

and number theoretic content. Clearly, our analysis begs to be extended to exceptional

– 32 –



J
H
E
P
0
4
(
2
0
1
5
)
1
2
8

algebras of low rank, to higher rank root systems, to models with different choices of cou-

pling constants, as well as to the integrable generalizations of the elliptic Calogero-Moser

models, including for instance the Ruijsenaars model with spin. Moreover, our study can

be extended to other observables, like the ratio of the frequencies of fluctuations. It would

also be interesting to attempt to characterize the positions of the extrema through e.g. a

generalization of zeroes of orthogonal polynomials [25]. All indications are that similarly

intriguing phenomena as the ones we uncovered will appear in this broader field.

In gauge theory, one would like to analyze more closely the Seiberg-Witten curves

of the N = 2∗ theories that underlie our models, and in particular, locate the points in

Coulomb moduli space where the curve develops a number of nodes equal to the rank of the

gauge group, and where the vanishing cycles are mutually local (indicating the existence of

massive vacua after mass deformation). The Seiberg-Witten curves are defined by equations

of higher order, rendering this analysis harder than in the cases treated in detail so far [5].

One would also like to have access to the large rank generalization of our results, to

connect to holographic dual backgrounds with orientifold planes [26, 43, 50]. For these

purposes it might suffice to have access to the large rank generalization of a Higgs and

confining vacuum, which one may hope to characterize analytically. It would also be useful

to perform a more careful analysis of the discrete choices of gauge groups and line operators

in our model [34, 35], and to classify various supersymmetric vacua further [33, 34], e.g. by

understanding a single phase, then chasing it through the duality chains.

Finally, we already noted in passing that the branches of massless vacua predicted by

the semi-classical analysis may turn out to be connected in the quantum theory, giving

rise to a single massless vacuum manifold, consisting of branches that can be characterized

by differing algebraic equations [51]. Our numerical explorations up to now are consistent

with the fact that all massless vacua have the same value of the superpotential. It would

be interesting to clarify the structure of these vacuum manifolds further for the models

at hand.
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A Lie algebra

We briefly review Lie algebra concepts that are useful to us in discussing the symmetries

of both the integrable systems and gauge theories we discuss in the bulk of the paper.

See e.g. [24] for a detailed exposition of the following facts. Let us consider a (compact

simple) Lie group G with maximal torus T . They have corresponding tangent algebras g

and t. We can then identify T as a linear group, and its space of characters χ(T ) is in

bijection with a lattice in the space t∗(R) dual to the tangent algebra t, and defined over

the real numbers R. To the Lie algebra, we can associate its space of weights in the adjoint

representation, which is the set of roots ∆. Again, these roots are elements of the Euclidean
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space t∗(R). The space t(R) comes equipped with a non-degenerate scalar product, which

we will denote (·, ·). This scalar product allows us to identify a function λ on the space

t(R) with an element uλ of the space t(R) through the relation:

λ(x) = (uλ, x) , (A.1)

valid for all elements x of t(R). We will occasionally abuse notation and write λ(x) = (λ, x),

and also (uλ, uλ′) = (λ, λ′), which defines a dual scalar product on t∗(R). The bijection

between the space generated by the roots and its dual allows us to define the dual roots

(i.e. the co-roots) through the relation:

α∨ =
2uα

(α, α)
. (A.2)

The root lattice Q is the lattice generated by the roots. Any set of simple roots αi spans

the space t∗. The weight lattice P also sits inside t∗ and is defined to be generated by a

basis πj such that:

2
(αi, πj)

(αi, αi)
= δij , (A.3)

for all i and j that run from 1 to the rank of the group G. We moreover define the dual

root lattice Q∨ to be the lattice generated by the dual roots, and the dual weight lattice

P∨ to be the weight lattice corresponding to the dual root lattice. The dual of the lattice

generated by the characters of a given group G will be denoted t(Z). We have the following

properties. The center C(G) of the group G is given by:

C(G) ≡ P∨/t(Z) ≡ χ(T )/Q . (A.4)

Moreover, when G is simply connected it is equal to its universal cover G̃. We then have

that the space of characters is bijective to the whole of the weight lattice χ(T ) = P , and

that t(Z) = Q∨, such that C(G) is maximal and C(G̃) = P/Q = P∨/Q∨. The group with

minimal center C(G) = 1 is the universal cover G̃ divided by its center C(G̃). In this case

we have that the set of weights is the set of roots χ(T ) = Q and that t(Z) = P∨.

Our definitions imply that the fundamental weights π∨j that generate the dual weight

lattice P∨ satisfy:

(π∨j , uαi) = δij , (A.5)

and therefore that:

α(X) = (uα, X) = (α,X) (A.6)

is integer for X in the dual weight lattice, i.e. for X a co-weight.

We summarize inclusions and dualities in the diagram below. The arrows indicate that

the lattices are dual, i.e. that the contractions give integers:

t∗(R) ⊃ P ⊃ χ(T ) ⊃ Q

l l l
Q∨ = P ∗ ⊂ t(Z) ⊂ P∨ = Q∗ ⊂ t(R)

We end this review on Lie group and Lie algebra theory with table 3 which exhibits

useful data on the Weyl group, the outer automorphisms, the dual Coxeter number and

the center of the universal covering group corresponding to the classical Lie algebras.
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Algebra Weyl group Outer Automorphisms Dual Coxeter number Center Univ. Cover

Ar, r > 1 Sr+1 Z2 r + 1 Zr+1

A1 Z2 1 2 Z2

Br Sr n Zr2 1 2r − 1 Z2

Cr Sr n Zr2 1 r + 1 Z2

Dr, odd r Sr n Zr−1
2 Z2 2r − 2 Z4

Dr, even r > 4 Sr n Zr−1
2 Z2 2r − 2 Z2 × Z2

D4 S4 n Z3
2 S3 6 Z2 × Z2

Table 3. Lie Algebra Data.

B Elliptic functions

Our conventions for the elliptic Weierstrass function are:

℘(x;ω1, ω2) =
1

x2
+

∑
(m,n) 6=(0,0)

(
1

(x+ 2mω1 + 2nω2)2
− 1

(2mω1 + 2nω2)2

)

℘(z; τ) =
1

z2
+

∑
(m,n) 6=(0,0)

(
1

(z +m+ nτ)2
− 1

(m+ nτ)2

)
(B.1)

which entails the equality

℘(z; τ = ω2/ω1) = 4ω2
1 ℘(2ω1z;ω1, ω2) . (B.2)

We impose the convention that =(ω2/ω1) = =(τ) > 0. The Weierstrass function is a Jacobi

form of level 2 and index 0:

℘

(
z

cτ + d
;
aτ + b

cτ + d

)
= (cτ + d)2℘(z; τ) . (B.3)

It has the following expansion for large imaginary part of τ :

℘(x;ω1, ω2) = − π2

12ω2
1

E2(q) +
π2

4ω2
1

csc2

(
πx

2ω1

)
− 2π2

ω2
1

∞∑
n=1

nqn

1− qn
cos

nπx

ω1
. (B.4)

For the twisted Weierstrass functions, we can derive the equalities:

℘(x;ω1, ω2) + ℘(x+ ω1;ω1, ω2) = ℘

(
x;
ω1

2
, ω2

)
+

π2

6ω2
1

(
2E2

(
2
ω2

ω1

)
− E2

(
ω2

ω1

))
℘(x;ω1, ω2) + ℘(x+ ω2;ω1, ω2) = ℘

(
x;ω1,

ω2

2

)
− π2

6ω2
1

(
E2

(
ω2

ω1

)
− 1

2
E2

(
ω2

2ω1

))
. (B.5)

These can be proven using the definition of the Weierstrass function ℘, as well as the

definition of the second Eisenstein series E2.

C Modular forms

We present a compendium of modular forms that we put to use in the bulk of our paper.
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C.1 Theta and eta functions

We first fix our conventions for the theta-functions with characteristics:

θ

[
α

β

]
(τ) =

∑
n∈Z

exp
[
iπ(n+ α)2τ + 2πiβ(n+ α)

]
.

Particular examples of these theta-functions include:

θ2(q) = θ

[
1
2

0

]
(q) = 2q1/8 + 2q9/8 + 2q25/8 + 2q49/8 + . . .

θ3(q) = θ

[
0

0

]
(q) = 1 + 2q1/2 + 2q2 + 2q9/2 + 2q8 + . . .

θ4(q) = θ

[
0
1
2

]
(q) = 1− 2q1/2 + 2q2 − 2q9/2 + 2q8 + . . .

We also make use of the Dedekind eta-function:

η(q) = q1/24
∞∏
n=1

(1− qn) ,

and the Klein invariant

j(q) = 1728
E3

4(q)

E3
4(q)− E2

6(q)
=

1

q
+ 744 + 196884q + . . . (C.1)

C.2 Modular forms and sublattices

In this subsection we recall how to find a basis of the space of modular forms of weight k

for the congruence subgroup ([32]):

Γ(N) =

{(
a b

c d

)
∈ SL2(Z) :

(
a b

c d

)
≡

(
1 0

0 1

)
modN

}
.

First we note that the cusps of Γ(N) can be identified with the pairs ±v ∈ (Z/NZ)2

of order N . This makes it possible to count the number of such cusps:

ε∞(Γ(N)) =


3 N = 2

N2

2

∏
p|N

(
1− 1

p2

)
N ≥ 3 .

For any congruence subgroup Γ the space of modular formsMk(Γ) of weight k decomposes

into the subspace of cusp forms and the Eisenstein space: Mk(Γ) = Sk(Γ) ⊕ Ek(Γ). For

N = 2 we have

dimS2(Γ(2)) = 0

and for N ≥ 3,

dimS2(Γ(N)) = 1 +
N2(N − 6)

24

∏
p|N

(
1− 1

p2

)
.

In particular, dimS2(Γ(3)) = 0 and dimS2(Γ(6)) = 1.
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We want an explicit basis of the Eisenstein space. For any vector v = [ cd ] ∈ (Z/NZ)2

of order N , and for k ≥ 3, we define the (non-normalized) Eisenstein series

Gk,N [v] (τ) = Gk,N

[
c

d

]
(τ) =

∑′

v′≡v(N)

1

(c′τ + d′)k
,

and for weight two

G2,N [v] (τ) = G2,N

[
c

d

]
(τ) =

1

N2

[
℘

(
cτ + d

N
, τ

)
+G2(τ)

]
,

where the primed sum runs over those non-vanishing vectors v′ =
[
c′

d′

]
that equal v modulo

N . One can show that the Fourier expansion of these functions in terms of q = e2iπτ is:

Gk,N

[
c

d

]
(q) = δ(c)ζdN (k) +

(−2πi)k

N2(k − 1)!

∞∑
n=1

σk−1,N

[
c

d

]
(n)qn/N

where

σk−1,N

[
c

d

]
(n) =

∑
m|n and n

m
≡c(N)

sgn(m)mk−1 exp

(
2πi

dm

N

)
and

ζdN (k) =
∑′

d′≡d (N)

1

(d′)k
.

This Fourier expansion is valid for all k ≥ 2, including k = 2 which is the case we are

mostly interested in.

For k ≥ 3, any set {Gk,N [v]} with one v corresponding to each cusp of Γ(N) represents

a basis of the space Ek(Γ(N)) of Eisenstein series of weight k on Γ(N) (and in particular

dim Ek(Γ(N)) = ε∞). For the case k = 2 these statements have to be modified, because

of the lack of modularity of the (ordinary) weight 2 Eisenstein series. It turns out that

dim E2(Γ(N)) = ε∞−1, and that E2(Γ(N)) is the set of linear combinations of the {Gk,N [v]}
(where v ∈ (Z/NZ)2 is of order N) whose coefficients sum to 0.14

The Eisenstein series Gk,N [v] have good transformation properties under SL(2,Z) for

k ≥ 3 and N ∈ {2, 3} provided the vector v is transformed accordingly:15

1

(cτ + d)k
Gk,N [v]

(
aτ + b

cτ + d

)
= Gk,N

[(
a b

c d

)
v

]
(τ) .

For k = 2, we have to take into account a non-holomorphic term, except for linear combina-

tions where the sum of the coefficients vanishes, as is the case for the potentials considered

in the bulk of the paper.

14Theorem 4.6.1 in [32]
15For generic N the relation between the normalized Eisenstein series, which enjoy these good transfor-

mation properties, and the series Gk,N [v] is not simply a proportionality relation (see formula (4.5) in [32]),

but it is a simple rescaling for N = 2 and N = 3.
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Finally, we also define

E2,N (τ) = E2(τ)−NE2(Nτ) . (C.2)

These are weight 2 modular forms of Γ0(N). We use extensively the fact that M2(Γ0(4))

has dimension 2 and is generated by

−E2,2(q) = 1 + 24q + 24q2 + 96q3 + 24q4 + 144q5 + . . .

−E2,4(q) = 3 + 24q + 72q2 + 96q3 + 72q4 + 144q5 + . . .

We note the transformation property of the form E2,2 under τ → −1/(2τ):

E2,2(−1/(2τ)) = E2(−1/(2τ))− 2E2(−1/τ) = −2τ2E2,2(τ) . (C.3)

D The list of extrema

In this appendix, we list the extrema of the complexified (twisted) elliptic Calogero-Moser

models with root systems D4 = so(8) and B3 = so(7). We provide a few more details on

how we obtained them, how to relate them through dualities, as well as Fourier expansions

of the extremal potentials.

D.1 The list of extrema for so(8)

The strategy we used to find extrema boils down to finding all the minima (which are

also zeros) of the (auxiliary, gauge theory) potential (2.12) with non vanishing mass (3.3)

using a simple gradient algorithm with random initial conditions. Then we identify those

configurations that are related by one of the symmetries we quotient by. This procedure is

executed at a given value of τ . Once the complete list of extrema is known, we can follow

a given extremum along any curve in the τ upper half plane, by adiabatically varying τ .

The T -dual extrema and the monodromies are obtained in this way, while the action of

S-duality is known exactly. We thus unfold the whole web of dualities.

In order to determine the potential at the extrema, we first make use of our knowledge

of T -duality, which dictates the Fourier expansion variable q1/n, where n is the smallest

positive integer such that Tn acts trivially on the extremum under consideration. Then

we evaluate the extremal potential at many different values of τ and find recursively the

rational Fourier coefficients.

D.1.1 The diagrams of the extrema

In the diagrams that follow, the black dots represent the values of the components Xi,

i = 1, 2, 3, 4 at the extrema. The dark grey dots are images under the symmetries discussed

in section 2.5.

In some of the diagrams, there are five black dots instead of four, reflecting the fact that

they represent three extrema related by the global S3 symmetry. For every such extremum,

one subgroup Z2 ⊂ S3 acts trivially. One of the three extrema is obtained by choosing one

of the circled black dots and the three ordinary black dots, a second one is obtained by
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choosing the other circled black dot and the three black dots, while the third is determined

by the four small black dots. (The pale grey dots show the possible translations of this

extremum by half-periods.)

We note in passing that some exact information on the positioning of the extrema is

available. For instance, for extremum number 9, some exact information on the positions is

the following. At τ → i∞, the system reduces to the Sutherland system (with trigonometric

potential). According to [17], the positions at equilibrium are related to the roots of a

Jacobi polynomial. Explicitly in the case of D4, the polynomial is P
(1,1)
2 (y) = 15

4 (y− 1)2 +
15
2 (y − 1) + 3, from which we deduce the positions X1 = 0, X2,3 = 1

2π arccos(±1/
√

5) and

X4 = 1
2 . For τ → 0, the positions converge on X1 = 0, X2 = 1/6, X2 = 1/3 and X4 = 1

2 .

This numerical convergence is slow.

S-duality guarantees that the situation is similar for the extremum on the imaginary

axis, with the two limits exchanged. Moreover, T-duality then acts in the τ → i∞ limit as

X0 → X0, X1 → X1 + 1/6, X2 → X2 + 1/3, X3 → X3 + 1/2. (These transformations are

exact within the precision of the numerics.) This generates the 6-cycle. Et cetera.

D.1.2 The series for the so(8) extremal potentials

We have been able to determine the q-expansions of the potentials in each extremum with

great accuracy, in terms of functions with integer coefficients. For extrema 1 to 8, we

gave the exact expression in section 2.7. To list the series for the remaining extrema, we

introduce 11 functions, for which we only reproduce the first few coefficients — more can

be obtained — :

f1(q) =
1

1800
− 467q + 45379q2 − 23993958092q3 − 44044347374301q4

−711960536580667762q5 + . . .

f2(q) = 1− 15172q + 51582918q2 − 397077052296q3 + 5101142359347277q4

+94300056917523369780q5 + . . .

f3(q) =
1

600
+ q + 369q2 + 68644q3 + 11490041q4 + 1579638246q5 + . . .

f4(q) = 1 + 3096q + 1818378264q2 + 2446348866170976q3

+4535490919062930456600q4 + . . .

f5(q) = 1− 142284q − 2825331513294q2 − 110241726267588876840q3 + . . .

f6(q) = 2 + 780960q + 18367562372664q2 + 762875530342634406144q3 + . . .

f7(q) = 1− 4478868q − 121113750523626q2 − 5314750232983801186536q3

f8(q) =
1

3
(14 + 79929712q + 2425403175787968q2

+111756708524847535116096q3 + . . .)

f9(q) =
1

3
(−37− 489421748q − 16364614670173794q2

−787663906596039662206584q3 + . . .)

f10(q) = 1− 12264q − 7273512936q2 − 9785395464683424q3

−18141963676251721826280q4 + . . .
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Figure 6. Extrema at τ = i for so(8).
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Figure 7. Extrema at τ = i.
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Figure 8. The dots show the successive ratios of the coefficients of f11, and a line has been drawn,

for comparison, at the value 1/qM = e−2πiτM .

f11(q) = 1 + 110596q + 110757888006q2 + 180011523750912008q3

+367762906594569664954381q4 + . . .

The potentials then read

V9 = 14400π2f3

(
q

53

)
V10+k = −4π2

5∑
j=0

(16q)j/6 exp

(
2πi

kj

6

)
f4+j

(
q

33

)
V16 = −3π2(f10(q)− 72

√
qf11(q))

V17 = −3π2(f10(q) + 72
√
qf11(q))

V19 = −24π2(75f1(q/153) + i
√

5q/3f2(q/153))

V20 = −24π2(75f1(q/153)− i
√

5q/3f2(q/153)) ,

where k = 0, . . . , 5. The last series V18 can then be deduced from the fact that the sum

of all potentials in the duodecuplet vanishes. Note that the coefficients grow rapidly,

preventing the functions above to be modular forms. The monodromy is responsible for

this phenomenon, as can be confirmed by the estimation of the convergence radius given

by the successive ratios of the coefficients (see figure 8).

D.2 The list of extrema for so(7) and sp(6)

Finally, in the case of the algebras B3 = so(7) and C3 = sp(6), we only present diagrams

of the extremal positions for the so(7) root system, since the corresponding extrema for

sp(6) can be found by Langlands duality. We use the same conventions as for the so(5)

figures. Additional data, like the data we presented for so(8) in the previous section, can

be found.
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Figure 9. Extrema at τ = i for so(7).
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Figure 10. Extrema at τ = i for so(7).
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