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1 Introduction

Gauge/gravity correspondence has been used to explore many aspects of gauge theories

which cannot be studied using usual perturbation theory techniques. The original cor-

respondence was proposed as a duality between the AdS5 × S5 background of type IIB

supergravity and the N = 4 SYM in four dimensions [2, 3].

One important feature of this original correspondence is that the duality relates string

theory and a conformal field theory with maximal supersymmetry and all fields transform-

ing in the adjoint representation. To make contact with the real world, we need to extend

these ideas to non-conformal field theories with minimal supersymmetry as well as adding

fields transforming in the fundamental representation.

In particular, for phenomenological applications we need N = 1 supersymmetry. In [4],

the authors found the gravity dual of a pure N = 1 SYM in d = 3 + 1 (coupled to extra

modes that could not be decoupled while maintaining calculability). In this particular

solution, called the Maldacena-Núñez solution, we start with Nc D5-branes, where the

field theory living on the worldvolume of these branes carries 16 supercharges, and we

wrap them on a sphere S2. In general this breaks supersymmetry. In order to preserve

some fraction of the original supersymmetries, we twist the fields in such a way that we

preserve four supercharges [5, 6], equivalent to N = 1 supersymmetry in 3+ 1 dimensions.

As we already mentioned, realistic theories require fields transforming in the funda-

mental representation. To address this, one considers flavor branes in the gravity side,
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which is equivalent to adding an open string sector [7]. One can start by studying the

quenched approximation, when probe branes are used in a way that the number of flavor

branes Nf in negligible compared to the number Nc of color branes. Then, the next natu-

ral step is to consider the unquenched case, that is the case in which the number of flavor

branes is of the same order as the number color branes [8–10].

Another important development was considered in [1, 11, 12], where it was found a

solution of 5 dimensional supergravity which can be lifted to 7 dimensions and then to 10

dimensions. In this case we have a gravitational solution that holographically describes

D5-branes wrapping a three-cycle inside a G2 manifold. In the IR limit, the theory living

in the worldvolume of these branes was identified as being dual to N = 1 SU(Nc) SYM in

three-dimensions with Chern-Simons level k = Nc/2.

In [13] the ansatz of [11] was generalized and this allowed one to find a new class

of solutions in which in the UV limit the metric is a product of a G2 cone and a three

dimensional Minkowski space, and the dilaton is a constant, in contrast to the original

behaviour of the Maldacena-Nastase solution, where the dilaton diverges as the holographic

coordinate goes to infinity. It is important to realize that this solution corresponds to D5-

branes wrapped on a three-cycle of a G2 cone in which the near-horizon effects of the branes

on the metric become negligible in the UV limit.

Note that Canoura, Merlatti and Ramallo [13] also added massless fundamental flavors

to the Maldacena-Nastase (hereafter MNa) solution in the unquenched case. The authors

found that this system with Nf ≥ 2Nc dramatically differs from Nf < 2Nc. Massive

fundamental flavors were added to the MNa solution in [14] and the author showed that

is is possible to find a solution which interpolates between the deformed unflavored MNa

background and the massless flavored background.

As pointed in [15, 16], we can obtain the UV completion of this solution considering

a G2-structure rotation [17] which is a solution generating technique analogous to the U-

duality. The rotation procedure is implemented in a type IIA with N = 1 and generates a

more general type IIA solution. The important point is that in this rotation procedure we

have an extra warp factor in the metric and this term ensures the finiteness of the cycle

along the energy scale.

The gauge theory analysis of the rotated MNa solution was performed in [15], and

the author showed that the dual field theory is confining and that in the IR limit the

Chern-Simons term dominates the dynamics of the theory.

Another well-known important generating solution technique is T-duality. In [16] a

non-abelian T-duality has been considered along the SU(2) isometry of the deformed MNa

solution [13], and this gave a rather complicated massive type IIA solution, with all fields

in the RR sector and which is dual to a confining Chern-Simons gauge theory.

In this article we consider a T-duality transformation on the MNa solution that defines

also a dual field theory. In section 2 we start with a review of the solution due to Canoura

et al. [13], and which contains the original solution [1] as a special case. Next, in section 3

we start to perform an abelian T-duality in the MNa solution along an U(1) isometry in

the D5-brane solution, which gives a D4-brane solution wrapping a two-cycle. We close

section 3 by computing the Maxwell and Page charges.
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In section 4 we consider some aspects of the dual gauge theory, defining it in the process.

In section 4.1 we find the quark-antiquark potential and we see that the requirements for

confinement are satisfied. In such a case we are able to compute the string tension. Next

we follow considering the gauge coupling and the entanglement entropy, which has been

used as a probe of confinement. Finally, we study some conditions in which we can treat

the wrapped D4-branes as a domain wall, so that we induce a Chern-Simons term in the

gauge theory.

2 Wrapped fivebranes on a three-cycle

We start our analysis by considering a short review of the deformed MNa solution [1].

It is a type-IIB supergravity solution that consists of D5-branes wrapping a 3-cycle in a

manifold that supports a G2-structure. In the IR limit this theory is dual to N = 1 SYM

in three dimensions. In [13] the ansatz was generalized and this solution has the original

solution as a special case. The string frame metric is given by

ds2st = eϕ
(
dx21,2 + ds27

)
, (2.1)

and the internal part of the metric, which describes the manifold supporting a G2-struc-

ture, is

ds27 = Nc

[
e2gdr2 +

e2h

4
(σi)2 +

e2g

4

(
ωi − 1

2
(1 + w)σi

)2
]
, (2.2)

where we are using an optimum holographic coordinate defined in [15]. Also, σi and ωi are

two sets of SU(2) Maurer-Cartan forms satisfying

dλi
a = −1

2
ǫijkλ

j
a ∧ λk

a, (2.3)

where λi
1 = σi and λi

2 = ωi for i = 1, 2, 3. These forms can be represented in terms of

Euler angles as

λ1
a = cosψadθa + sinψa sin θadφa (2.4a)

λ2
a = − sinψadθa + cosψa sin θadφa (2.4b)

λ3
a = dψa + cos θadφa , (2.4c)

for 0 ≤ θa ≤ π, 0 ≤ φa < 2π, 0 ≤ ψa < 4π.

Also, the MNa solution has a non-trivial RR 3-form

F3 =
Nc

4

{
(σ1 ∧ σ2 ∧ σ3 − ω1 ∧ ω2 ∧ ω3) +

γ′

2
dr ∧ σi ∧ ωi

− (1 + γ)

4
ǫijk[σ

i ∧ σj ∧ ωk − ωi ∧ ωj ∧ σk]

}
.

(2.5)
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One can easily show that this field strength is generated by the following two-form potential

C(2) =

(
−1

4
Nc cos θ1

)
dφ1 ∧ dψ1 +

(
1

4
Nc cos θ2

)
dφ2 ∧ dψ2 +

Nc(1 + γ)

8
dψ1 ∧ dψ2

+
Nc(1 + γ)

8
sin θ1 sin(ψ1 − ψ2)dφ1 ∧ dθ2

+
Nc(1 + γ)

8
(cos θ1 cos θ2 + sin θ1 sin θ2 cos(ψ1 − ψ2))dφ1 ∧ dφ2 (2.6)

+
Nc(1 + γ)

8
cos θ1dφ1 ∧ dψ2 +

Nc(1 + γ)

8
cos(ψ1 − ψ2)dθ1 ∧ dθ2

+

(
−Nc(1 + γ)

8
sin(ψ1 − ψ2) sin θ2

)
dθ1 ∧ dφ2 +

Nc(1 + γ)

8
cos θ2dψ1 ∧ dφ2 ,

so that F3 = dC(2).

Unfortunately, the solution for these equations is known just semi-analytically in the

IR and UV limits. In the IR limit, that is, r ∼ 0 we have

e2g = g0 +
(g0 − 1)(9g0 + 5)

12g0
r2 + . . . (2.7a)

e2h = g0r
2 − 3g20 − 4g0 + 4

18g0
r4 + . . . (2.7b)

w = 1− 3g0 − 2

3g0
r2 + . . . (2.7c)

γ = 1− 1

3
r2 + . . . (2.7d)

φ = φ0 +
7

24g20
r2. (2.7e)

On the other hand, in the UV limit, where r ∼ ∞, we have

e2g = c1e
4r/3 − 1 +

33

4c1
e−4r/3 (2.8a)

e2h =
3c1
4

e4r/3 +
9

4
− 77

16c1
e−4r/3 (2.8b)

w =
2

c1
e−4r/3 + . . . (2.8c)

γ =
1

3
+ . . . (2.8d)

φ = φ∞ +
2

c21
e−8r/3. (2.8e)

We write the whole set of components of the string frame metric as

xM = {xµ, xA}; {(µ = 0, 1, 2); (A = r, α̃, α)},

where

{xr ≡ r;xα̃ ≡ θ1, φ1, ψ1;x
α = θ2, φ2, ψ2}.
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Now we have

(λi
a)

2 = dθ2a + dφ2
a + dψ2

a + 2 cos θadψadφa (2.9)

and

ωiσi = cos(ψ1 − ψ2)dθ1dθ2 − sin(ψ1 − ψ2) sin θ2dθ1dφ2

+ sin(ψ1 − ψ2) sin θ1dφ1dθ2 + [cos(ψ1 − ψ2) sin θ1 sin θ2 + cos θ1 cos θ2]dφ1dφ2

+ cos θ1dφ1dψ2 + cos θ2dψ1dφ2 + dψ1dψ2. (2.10)

Then, we write the string-frame metric as

ds2st = gMNdxMdxN = eϕdx21,2 +∆dr2 +Σ(σi)2 +Ω(ωi)2 + 2Ξωiσi , (2.11)

where we define

∆ = eϕ+2gNc (2.12a)

Σ =
eϕ

4
Nc

(
e2h +

e2g

4
(1 + w)2

)
≡ eϕΣ̃ (2.12b)

Ω =
eϕ+2g

4
Nc ≡

∆

4
(2.12c)

Ξ = −eϕ+2g

8
(1 + w)Nc ≡ −Ω

2
(1 + w) (2.12d)

for later convenience. Finally, using that M = {µ,A} we find the components of the metric

matrix

(gMN ) =

(
gµν = eϕηµν gµA = 0

gAµ = 0 gAB

)
.

Obviously, we need to find just the components gAB and these are

grr = ∆ grµ = 0 grα̃ = grα = 0

gθ̃θ̃ = gφ̃φ̃ = gψ̃ψ̃ = Σ gφ̃ψ̃ = Σcos θ1

gθθ = gφφ = gψψ = Ω gφψ = Ωcos θ2

gθθ̃ = Ξcos(ψ1 − ψ2) gφθ̃ = −Ξ sin(ψ1 − ψ2) sin θ2 gψθ̃ = 0

gθφ̃ = Ξsin(ψ1−ψ2) sin θ1 gφφ̃=Ξ[sin θ1 sin θ2 cos(ψ1−ψ2)+cos θ1 cos θ2] gψφ̃=Ξcos θ1

gθψ̃ = 0 gφψ̃ = Ξcos θ2 gψψ̃ = Ξ .

3 D4-brane solution

Now we perform a T-duality transformation in a direction along the brane, namely, the

xφ̃ ≡ φ1 direction. If we consider the type-IIA solution with NS-NS sector given by
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{ϕ̃, g̃MN , BMN}, the Buscher’s rules [18–21] are

e2ϕ̃ =
e2ϕ

|gφ̃φ̃|
g̃φ̃φ̃ =

1

gφ̃φ̃

g̃MN = gMN −
gφ̃Mgφ̃N −Bφ̃MBφ̃N

gφ̃φ̃
g̃φ̃M =

1

gφ̃φ̃
Bφ̃M

BMN = BMN − 2
Bφ̃[MgN ]φ̃

gφ̃φ̃
BMφ̃ = −

gMφ̃

gφ̃φ̃
.

3.1 NS-NS sector

Using the transformation rules above, the dilaton is

e2ϕ̃ =
1

Σ
e2ϕ =

1

Σ̃
eϕ (3.1)

and the dual metric is

ds̃2st = e2ϕ̃Σ̃dx21,2 +∆dr2 +
1

Σ
dφ2

1 +Σ(dθ21 + sin2 θ1dψ
2
1)

+ 2Ξ
[
(cosψ1ω

1 − sinψ1ω
2)dθ1 − sin θ1 cos θ1(sinψ1ω

1 + cosψ1ω
2)dψ1

+ sin2 θ1ω
3dψ1

]
+Ω(ωi)2

− Ξ2

Σ

[
sin2 ψ1 sin

2 θ1(ω
1)2 + 2 sinψ1 cosψ1 sin

2 θ1ω
1ω2

+ 2 sinψ1 cos θ1 sin θ1ω
1ω3 + cos2 ψ1 sin

2 θ1(ω
2)2 + 2 cosψ1 sin θ1 cos θ1ω

2ω3

+ cos2 θ1(ω
3)2

]
,

(3.2)

where we can rewrite the coefficients in terms of the type-IIA dilaton ϕ̃

∆ = e2ϕ̃+2gNcΣ̃

Σ = e2ϕ̃Σ̃2

Ω =
e2ϕ̃+2g

4
NcΣ̃

Ξ = −e2ϕ̃+2g

8
(1 + w)NcΣ̃. (3.3)

Also, we define a first rotation

ω̃1 = cosψ1ω
1 − sinψ1ω

2 = cos(ψ2 − ψ1)dθ2 + sin(ψ2 − ψ1) sin θ2dφ2

ω̃2 = sinψ1ω
1 + cosψ1ω

2 = − sin(ψ2 − ψ1)dθ2 + cos(ψ2 − ψ1) sin θ2dφ2

ω̃3 = ω3 = dψ2 + cos θ2dφ2

σ̃1 = cosψ1σ
1 − sinψ1σ

2

σ̃2 = sinψ1σ
1 + cosψ1σ

2

σ̃3 = σ3 . (3.4)
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We then consider a second rotation

ω̂1 = ω̃1

ω̂2 = cos θ1ω̃
2 − sin θ1ω̃

3

ω̂3 = sin θ1ω̃
2 + cos θ1ω̃

3

σ̂1 = σ̃1

σ̂2 = cos θ1σ̃
2 − sin θ1σ̃

3

σ̂3 = sin θ1σ̃
2 + cos θ1σ̃

3 , (3.5)

obtaining the metric

ds̃2st =
Nc

4
e2ϕ̃

(
e2h +

e2g

4
(1 + w)2

)
dx21,2 +∆dr2 +

1

Σ
dφ2

1 +Σ(dθ21 + sin2 θ1dψ
2
1)

+ 2Ξ[ω̃1dθ1 − sin θ1 cos θ1ω̃
2dψ1 + sin2 θ1ω̃

3dψ1] + Ω(ω̃i)2

− Ξ2

Σ
[sin θ1ω̃

2 + cos θ1ω̃
3]2 , (3.6)

or reorganizing

ds̃2st =
Nc

4
e2ϕ̃

(
e2h +

e2g

4
(1 + w)2

)
dx21,2 +∆dr2 +

1

Σ
dφ2

1+

+

(
Σ− e2ϕ̃+2g (1 + w)2

42
NcΣ̃

)
(dθ21 + sin2 θ1dψ

2
1)

+ e2ϕ̃+2gNc

4
Σ̃

[(
ω̂1 − 1

2
(1 + w)dθ1

)2

+

(
ω̂2 +

1

2
(1 + w) sin θ1dψ1

)2
]

+

(
Ω− Ξ2

Σ

)
(ω̂3)2. (3.7)

Finally, the 2-form field, which vanishes in the original solution, is non-trivial after the

T-duality and one can write in the following form

B = −
{
cos θ1dψ1 ∧ dφ1 +

Ξ

Σ
sin(ψ1 − ψ2) sin θ1dθ2 ∧ dφ1

+
Ξ

Σ
[sin θ1 sin θ2 cos(ψ1 − ψ2) + cos θ1 cos θ2]dφ2 ∧ dφ1 +

Ξ

Σ
cos θ1dψ2 ∧ dφ1

}
.

(3.8)

One important cycle in this background is

C2 = {θ1 = θ2 ≡ θ;ψ1 = ψ2 ≡ ψ|φ1, φ2, r, x1, x2 = const.} (3.9)

which is the cycle where the metric is wrapped.1 The induced metric is given by

ds2C2 = (Σ + 2Ξ + Ω) dθ2 +

(
Ω+ Σsin2 θ + 2Ξ sin2 θ − Ξ2

Σ
cos2 θ

)
dψ2 , (3.10)

and vanishes in the IR limit. The B field vanishes on this cycle.

1This cycle is a restriction for φ1 = φ2 =const. of the Σ3 cycle {σi = ωi} on which D5-branes are

wrapped. Since φ1 is the T-duality direction, after it, the D4-branes are wrapped on C2. Moreover, since

supersymmetry was preserved before the T-duality, it should be preserved afterwards, making it likely the

cycle is supersymmetric.
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3.2 R-R sector

Remember that the RR-sector for the type IIA supergravity is {C(1), C(3)} while the RR-

sector for type IIB supergravity is {C(0), C(2), C(4)} and in the present case, the non-trivial

field is just C(2), whose field strength is given by the F3 in (2.5),

F3 =
Nc

4

{
(σ1 ∧ σ2 ∧ σ3 − ω1 ∧ ω2 ∧ ω3) +

γ′

2
dr ∧ σi ∧ ωi

− (1 + γ)

4
ǫijk[σ

i ∧ σj ∧ ωk − ωi ∧ ωj ∧ σk]

}
. (3.11)

Given the T-duality rules for going from type-IIB to type-IIA supergravity,

C
(2n+1)
M1...M2n+1

= C
(2n+2)

M1...M2n+1φ̃
+ (2n+ 1)B[M1|φ̃|

C
(2n)
M2...M2n+1]

+2n(2n+ 1)B[M1|φ̃|
gM2|φ̃|

C
(2n)

M3...M2n+1]φ̃

/
gφ̃φ̃

(3.12a)

C
(2n+1)

M1...M2nφ̃
= C

(2n)
M1...M2n

− 2ng[M1|φ̃|
C

(2n)

M2...M2n]φ̃

/
gφ̃φ̃ , (3.12b)

we can use (2.6) and find the RR potential forms of the type IIA-solution

n = 0. In this case, we have the following components of the dual theory

C
(1)
M1

= C
(2)

M1φ̃

C
(1)

φ̃
= C(0) = 0 , (3.13)

so we obtain the potential

C(1) = −
{
Nc(1 + γ)

8
[cos θ1 cos θ2 + sin θ1 sin θ2 cos(ψ1 − ψ2)]dφ2 −

Nc

4
cos θ1dψ1

+
Nc(1 + γ)

8
sin(ψ1 − ψ2) sin θ1dθ2 +

Nc

8
(1 + γ) cos θ1dψ2

}
.

(3.14)

n = 1. In this case, we have

C
(3)
M1M2M3

= C
(4)

M1M2M3φ̃
= 0

C
(3)

M1M2φ̃
= C

(2)
M1M2

− 1

gφ̃φ̃
(gM1φ̃

C
(2)

M2φ̃
− gM2φ̃

C
(2)

M1φ̃
). (3.15)

Therefore we obtain the three-form potential

C(3) = −Nc(1 + γ)

8
cos(ψ1 − ψ2)dθ1 ∧ dφ1 ∧ dθ2

+
Nc(1 + γ)

8
sin θ2 sin(ψ1 − ψ2)dθ1 ∧ dφ1 ∧ dφ2

− Nc

8Σ
cos θ1 sin θ1 sin(ψ1 − ψ2) [2Ξ + Σ(1 + γ)] dψ1 ∧ dφ1 ∧ dθ2
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−
[
Nc(1 + γ)

8
cos θ2

+
Nc

4Σ

(
Ξ+

(1+γ)

2
Σ

)
cos θ1[cos θ1 cos θ2+sin θ1 sin θ2 cos(ψ1−ψ2)]

]
dψ1 ∧ dφ1 ∧ dφ2

−
[
Nc(1 + γ)

8
+

Nc

4Σ

(
Ξ +

Σ

2
(1 + γ)

)
cos2 θ1

]
dψ1 ∧ dφ1 ∧ dψ2

+
Nc

4
cos θ2dφ1 ∧ dφ2 ∧ dψ2. (3.16)

We have generated a type IIA-solution of supergravity wich consists of Nc D4-branes

wrapping a two-cycle and with a perpendicular S1 manifold. This solution has non-trivial

RR 2 and 4-forms defined by F2 = dC(1) and F4 = dC(3).

For completeness, starting from a solution of supergravity in eleven dimensions, one can

consider a dimensional reduction on a circle S1 to a type-IIA solution. Conversely, given

a solution of the type-IIA supergravity, we can lift it to a solution of eleven dimensional

supergravity. In fact, the eleven dimensional fields corresponding to the type IIA ones are

written as

g
(11)
MN = e−2ϕ̃/3g̃MN + e4ϕ̃/3C

(1)
M C

(1)
N (C(3))11MNP = C

(3)
MNP

g
(11)
M,11 = e4ϕ̃/3C

(1)
M (C(3))11MN,11 = BMN

g
(11)
11,11 = e4ϕ̃/3 .

Rewriting the dual metric (3.2) as

ds̃2st =
Nc

4
e2(ϕ̃)

(
e2h +

e2g

4
(1 + w)2

)
dx21,2 +∆dr2 +

1

Σ
dφ2

1 +Σ(dθ21 + sin2 θ1dψ
2
1)

+ 2Ξ[cos(ψ1−ψ2)dθ1dθ2−sin(ψ1−ψ2) sin θ2dθ1dφ2−sin(ψ1−ψ2) sin θ1 cos θ1dψ1dθ2

+ (cos θ2 sin
2 θ1 − cos θ1 sin θ1 sin θ2 cos(ψ1 − ψ2))dψ1dφ2 + sin2 θ1dψ1dψ2]

+

(
Ω− Ξ2

Σ
sin2(ψ1 − ψ2) sin

2 θ1

)
dθ22

+

(
Ω− Ξ2

Σ
[sin θ1 sin θ2 cos(ψ1 − ψ2) + cos θ1 cos θ2]

2

)
dφ2

2

+

(
Ω− Ξ2

Σ
cos2 θ1

)
dψ2

2+

+ 2

(
Ωcos θ2 −

Ξ2

Σ
cos θ1[sin θ1 sin θ2 cos(ψ1 − ψ2) + cos θ1 cos θ2]

)
dφ2dψ2

− 2
Ξ2

Σ
[sin θ1 sin θ2 cos(ψ1 − ψ2) + cos θ1 cos θ2] sin(ψ1 − ψ2) sin θ1dθ2dφ2

− 2
Ξ2

Σ
sin(ψ1 − ψ2) sin θ1 cos θ1dθ2dψ2 , (3.17)
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the eleven dimensional metric becomes

ds2(11) = e−2ϕ̃/3ds̃2st

+ e4ϕ̃/3
(
C

(1)

ψ̃
C

(1)

ψ̃
+ C

(1)

ψ̃
C

(1)
φ + C

(1)

ψ̃
C

(1)
ψ + C

(1)

ψ̃
C

(1)
θ

+C
(1)
φ C

(1)
φ + C

(1)
φ C

(1)
ψ + C

(1)
φ C

(1)
θ + C

(1)
ψ C

(1)
ψ + C

(1)
ψ C

(1)
θ + C

(1)
θ C

(1)
θ

)

+ e4ϕ̃/3
(
C

(1)

ψ̃
+ C

(1)
φ + C

(1)
ψ + C

(1)
θ + dx10

)
dx10. (3.18)

3.3 Brane charges

Superstring theories have massless p-form potentials which may be regarded as general-

izations of the electromagnetic gauge field. The Maxwell equations for the gauge field of

electrodynamics A(1) = Aµdx
µ in the presence of sources are

dF2 = ⋆Jm , d ⋆ F2 = ⋆Je. (3.19)

It follows that the electric and magnetic charges are given by

e =

∫

S2

⋆F2 , g =

∫

S2

F2 , (3.20)

where S2 is a two-sphere surrounding the charges.

In string theory in the presence of n-forms, we can define conserved charges associated

to the gauge potentials and then find the stable branes of given electric charge. For instance,

a Dp-brane in type II superstring theory couples to a (p+1)-form C(p+1) with field strength

Fp+2 = dC(p+1). The corresponding electric-type charge is

QDp =

∫

Σ8−p

⋆Fp+2 , (3.21)

where C8−p is a cycle surrounding the charge.

As an explicit example, consider the original background reviewed in section 2. We

know that this solution corresponds to Nc D5branes on an S3. Consider then the 3-cycle

S̃3 = {ωi|σi = 0}, (3.22)

and integrate the RR three form (2.5) on it, obtaining (
∫
ω1 ∧ ω2 ∧ ω3 = 16π2)

1

4π2

∫

S̃3

F3 = Nc, (3.23)

which means that we have a quantization condition.

In [22], the author showed that there are different types of electric or magnetic charge

associated with a gauge field. Here we collect the main results for D4-branes, which is the

case we are interested in.

In the T-dual solution that we computed above, we have one non trivial RR 1-form

C(1) and one 3-form C(3), and the Kalb-Ramond field B is also non-vanishing. The 4-form
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gauge field, which is invariant under the abelian gauge transformation C(1) → C(1) + dξ0
and C(3) → C(3) − B ∧ dξ0, is

F̃4 := dC(3) − C(1) ∧ dB. (3.24)

The Bianchi identity reads now

dF̃4 = −dC(1) ∧ dB, (3.25)

and if we regard the right hand side of this equation as a kind of Maxwell current ⋆JMaxwell,

we are allowed to define a Maxwell charge, by integration of the 4-form field F̃4 on a four

cycle. Another type of charge may be defined when we consider the Bianchi identity as an

exterior derivative of a form, say

d(F̃4 + C(1) ∧ dB) = ⋆J Page, (3.26)

and again we would define the conserved charge by integration. Comparing the two defi-

nitions, we have that

QPage
D4 = QMaxwell

D4 +

∫

C4

C(1) ∧ dB. (3.27)

One important feature of these charges is that the Maxwell charge is not quantized, while

the Page charge satisfies a quantization condition.

Considering a fixed point in the radial coordinate, the following cycle

C4 = {θ2, φ1, φ2, ψ2|ψ1 = θ1 = 0} (3.28)

is particularly smooth in studying the above quantities. Let us start with the Page charge

for convenience. On this cycle, the equation simplifies to

⋆ JD4 = dF4 , (3.29)

and the quantized Page charge is the integral of this current in the five dimensional space

whose boundary is the cycle C4. Therefore, using the Stokes theorem and normalizing our

result, we find (C(3)|C4 = Nc/4 cos θ2dφ1 ∧ dφ2 ∧ dψ2)

QPage
D4 = − 1

8π3

∫

C4

F4 = Nc. (3.30)

Also, we can define the Maxwell charge in this cycle as

QMaxwell
D4 := QD4 −

1

4π3

∫

C4

C(1) ∧ dB , (3.31)

and using the RR forms that we computed, we have

−C(1) ∧ dB =
Nc(1 + γ)

8

Ξ

Σ
sin θ2dθ2 ∧ dφ2 ∧ dψ2 ∧ dφ1

=
Nc(1 + γ)

8

Ξ

Σ
ω1 ∧ ω2 ∧ ω3 ∧ dφ1 , (3.32)

so

− 1

4π3

∫

C4

C(1) ∧ dB =
Ξ

Σ
(1 + γ)Nc , (3.33)

and we see that the Maxwell charge in not quantized, but it runs along the radial direction.
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4 Field theory aspects

The original motivation of the MNa solution was from the gauge/gravity correspondence.

Since we have just found a background by T-duality of the MNa solution, we want to study

properties of the dual gauge field theory to this background.

4.1 Wilson loops

Wilson loop observables are given by (see, e.g., [3, 23–25] for more details)

W (C) := 1

Nc
TrP exp

(
i

∮
Aµdx

µ

)
, (4.1)

where the trace is usually taken over the fundamental representation. From the expectation

value of the Wilson loop, we can compute the quark-antiquark (QQ̄) potential. Choosing

a rectangular loop with sides of length LQQ̄ in the spatial direction and T for the time

direction, with LQQ̄ ≪ T , as T → ∞ we have the behaviour

〈W (C)〉 ∼ e−VQQ̄T , (4.2)

where VQQ̄ is the quark-antiquark potential.

In a confining theory, the potential behaves as

VQQ̄ ∼ σLQQ̄, (4.3)

where the constant σ is called the QCD string tension, so the expectation value of the

Wilson loop (4.2) obeys the area law,

〈W (C)〉 ∼ e−σS , (4.4)

for the rectangular region considered.

In the case of N = 4 SYM, dual to AdS5 × S5, we have a holographic prescription for

a supersymmetric version of the Wilson loop,

W (C) := 1

Nc
TrP exp

[∮
(iAµẋ

µ + θIXI(x)
√
ẋ2)dτ

]
, (4.5)

where xµ(τ) parametrizes the loop and θI parametrizes the sphere S5 and couples to the

scalars XI in N = 4 SYM.

The holographic prescription for the Wilson loop VEV is [26, 27],

〈W (C)〉 ∼ e−S , (4.6)

where S is the area of a string world-sheet which ends on a curve C at the boundary of the

AdS5 space. Since the area of the worldsheet is divergent, we need to subtract the area of

the string going straight down from U = ∞ to U = U0,

W (C) ∼ e−(S−ℓΦ), (4.7)
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where ℓ is the perimeter of the Wilson loop contour C and Φ = U∞ − U0. The area of the

worldsheet can be computed using the Nambu-Goto action

S =
1

2πα′

∫
dτdσ(det gµν∂αX

µ∂βX
ν)1/2, (4.8)

where gµν is the AdS5 × S5 metric. In AdS5 × S5, we find the behaviour VQQ̄ ∼ 1/LQQ̄

determined by conformal invariance, see [26, 27].

We now consider a more general background,

ds2 = −gttdt
2 + gxxdx

2 + gρρdρ
2 + gintij dyidyj , (4.9)

where we assume that the functions (gtt, gxx, gρρ) are functions of ρ only. We do not fix

the internal space, since we consider a probe string that is not excited in these directions;

so the internal space has no role in the present study.

As in AdS space, we consider a string whose ends are fixed at x = 0 and x = LQQ̄ at

the boundary of space, ρ → ∞. In addition, we assume that it can extend in the bulk,

so that the radial coordinate of the string assumes its minimum value at ρ0, and that by

symmetry this occurs at x = LQQ̄/2.

We choose a configuration such that

t = τ x = x(σ) ρ = ρ(σ) , (4.10)

and we compute the Nambu-Goto action (4.8) with relation to the metric (4.9). The

induced metric on the worldsheet is Gαβ = gµν∂αx
µ∂βx

ν , where

Gττ = −gtt, Gσσ = gxx

(
dx

dσ

)2

+ gρρ

(
dρ

dσ

)2

, Gτσ = 0 , (4.11)

and the determinant of the worldsheet is

detGαβ = −gttgxx(x
′)2 − gttgρρ(ρ

′)2

≡ −f2(x′)2 − g2(ρ′)2 , (4.12)

where we have defined the functions f2 = gttgxx and g2 = gttgρρ. Hence we write the

Nambu-Goto action as

S =
T

2πα′

∫ 2π

0
dσ

√
f2(x′)2 + g2(ρ′)2 ≡ T

2πα′

∫ 2π

0
dσL. (4.13)

Its equations of motion give

∂τ

[
1

L
(f2x′2 + g2ρ′2)

]
= 0 (4.14)

∂σ

[
1

L
f2x′

]
= 0 (4.15)

∂σ

[
1

L
g2ρ′

]
=

1

L
(x′2ff ′ + ρ′2gg′). (4.16)
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The first of these equations is trivially satisfied since we assume our background time

independent. The second, (4.15), is satisfied if we assume that the term inside brackets is

a constant C0. That means

1

L
f2x′ = C0 ⇒ f2x′

C0
= (f2x′2 + g2ρ′2)1/2 , (4.17)

which implies that
dρ

dσ
= ±dx

dσ

f

C0g

√
f2 − C2

0 ≡ ±dx

dσ
Weff , (4.18)

thus we write
dρ

dσ
= ±dx

dσ
Weff ⇒ dρ

dx
= ±Weff . (4.19)

Here we wrote Weff just for convenience and one can check that the third equation (4.16)

is satisfied once we assume that the above equation is true.

From the sort of solution we are looking for, one can show that there are two distinct

regions

x < LQQ̄/2
dρ

dx
= −Weff (4.20)

x > LQQ̄/2
dρ

dx
= Weff , (4.21)

and we can formally integrate these equations, so that

dρ

dx
= −Weff ⇒

∫ ρ

∞

dρ

Weff
= −

∫ x

0
dx ⇒ x(ρ) =

∫ ∞

ρ

dρ

Weff
, x < LQQ̄/2

(4.22)

dρ

dx
= Weff ⇒

∫ ∞

ρ

dρ

Weff
=

∫ LQQ̄

x
dx ⇒ x(ρ) = LQQ̄ −

∫ ∞

ρ

dρ

Weff
, x > LQQ̄/2.

(4.23)

The fact that the string must be fixed at ρ → ∞ and we must have x(ρ) finite implies

that the following condition must be satisfied

lim
ρ→∞

Weff(ρ) → ∞. (4.24)

Once this equation is satisfied, the string moves to smaller values of the radial coordinate

down to a turning point ρ0 where dρ
dx

∣∣∣
ρ0

= 0, namely where Weff(ρ0) = 0. We restrict

ourselves to turning points C0 = f(ρ0).

Now we can compute the quark-antiquark separation pair and its potential energy.

The separation is written as

LQQ̄(ρ0) = 2

∫ LQQ̄/2

0
dx = 2

∫ ∞

ρ0

dρ

Weff
. (4.25)
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In order to compute the potential VQQ̄ we need the Nambu-Goto action SNG/T which

diverges, but we need to subtract the W-boson mass given by a string going straight down

on ρ at x = const., i.e.

M =

∫ π

0

√
g2ρ′2 =

∫ ∞

ρ0

g(ρ)dρ, (4.26)

so that the renormalized quark-antiquark potential is given by

2πα′VQQ̄(ρ0) = f(ρ0)LQQ̄(ρ0) + 2

∫ ∞

ρ0

dz
g(z)

f(z)

√
f2(z)− f2(ρ0)− 2

∫ ∞

ρ0

g(z)dz, (4.27)

and one can show that

2πα′
dVQQ̄

dLQQ̄

= f(ρ0). (4.28)

We can now compute the Wilson loops for the T-dual of the MNa solution. In this case,

the solution of the set of equations is not exactly known, but remember that in the UV

limit (where we consider the cutoff r ∼ Λ) we have the asymptotic expansion (2.8a)–(2.8e),

so that

f2 = gttgxx ≃ e2φ∞ (4.29)

g2 = gttgrr ≃ e2φ∞Ncc1e
4Λ/3, (4.30)

therefore, one may check the boundary condition to see that

lim
r→Λ

Weff ∼ 1

f(r0)e2Λ/3N
1/2
c c

1/2
1

√
e2φ∞ − f2(r0), (4.31)

where we will take r0 ∼ 0, implying f2(r0) = e2φ0 . A similar situation occurred in [28],

where the authors found a finite value for the boundary condition limr→∞Weff and it was

argued that the QFT needs to be UV-completed.2 Under this condition, we can calculate

the QCD string tension (see [23, 29, 30]) through

σ =
1

2πα′
f(r0)

∣∣∣∣
IR

=
1

2πα′
eφ0 , (4.32)

and therefore

2πα′
dVQQ̄

dLQQ̄

= f(r0) ⇒ VQQ̄ ≃ eφ0

2πα′
LQQ̄ , (4.33)

which means that this theory exhibits linear confinement.

2One possibility is that the QFT is deformed by an irrelevant operator, modifying the UV, and perhaps

one could remove it by using the solution in [17] as a starting point, as opposed to the one in [13]. It was

argued in [34] that the UV behaviour of the solution in [13] is improved this way. We thank the referee for

this observation.
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4.2 Gauge coupling

We can consider now another important quantity, the gauge coupling. Consider the Dirac-

Born-Infeld action for a generic probe Dp-brane, wrapping an n-cycle Σ, with induced

metric

ds2Dp = e2Aηµνdx
µdxν + ds2Σ (4.34)

and components given by M = {µ, a}, where µ = 0, . . . , p−n are indices in the Minkowski

space and a = 1, . . . , n are indices of the cycle. We also take the gauge field and the Kalb-

Ramond field with non vanishing components Fµν and Bab. Therefore, the DBI action

reads

SDBI = −TDp

∫
dp+1σe−φ

√
− det(GMN +BMN + 2πα′FMN )

= −TDp

∫

M
dp+1−n~x

√
− det(Gµν + 2πα′Fµν)

∫

Σn

dnΣe−φ
√
− det(Gab +Bab),

(4.35)

where M stands for Minkowski space and d = p + 1 − n is the dimension of the reduced

field theory. Taking an expansion of the first integral in terms of α′, we get

SDBI=−TDp

∫

Σn

dnΣe−φ
√
− det(Gab +Bab)

∫

M
dd~xedA

(
1+

(2πα′)2e−4A

4
FµνF

µν+· · ·
)

,

so that we can recognize the gauge coupling as

1

g2YM

= TDp(2πα
′)2

∫

Σn

dnΣe−(4−d)φ−A
√
− det(Gab +Bab). (4.36)

Consider first the MNa solution. In this case, the induced metric on the brane is

ds2ind = eϕ
[
dx21,2 +

Nc

4

(
e2h +

e2g

4
(1− w)2

)
(σi)2

]
, (4.37)

therefore neglecting numerical factors, the coupling constant is given by

1

g2YM

∼
(
e2h +

e2g

4
(1− w)2

)3/2

, (4.38)

and using the asymptotic expansions for these functions, we see that in the IR limit, the

coupling constant diverges gYM → ∞, whilst in the UV limit the coupling constant vanishes

gYM → 0, and this fact is consistent with confinement and asymptotic freedom respectively,

as it should be.

Now, we need to consider the case for the T-dual solution of the MNa. As we know,

we need to consider first the case of the D4-brane wrapping a 2-cycle defined by

C2 = {ψ1 = ψ2 ≡ ψ; θ1 = θ2 ≡ θ} , (4.39)

with φ1 and φ2 fixed. Therefore, the induced metric is given by

ds̃2ind = e2ϕ̃Σ̃dx21,2+(Σ+2Ξ+Ω)dθ2+

(
Σsin2 θ + 2Ξ sin2 θ +Ω− Ξ2

Σ
cos2 θ

)
dψ2 , (4.40)
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and since the Kalb-Ramond field vanishes in this cycle, we can compute the determinant

of the induced metric easily. In fact, up to numerical factors the gauge coupling is

1

g2YM

∼
√
Σ̃e−φ(Σ + 2Ξ + Ω)1/2

∫

S2

(
Σsin2 θ + 2Ξ sin2 θ +Ω− Ξ2

Σ
cos2 θ

)1/2

, (4.41)

and the bracket inside the integral can be written as

Ω− Ξ2

Σ
+ sin2 θ

(
Σ+ 2Ξ +

Ξ2

Σ

)
, (4.42)

whereas

Σ + 2Ξ + Ω = Σ− wΩ. (4.43)

All terms,
√

Σ̃e−φ, (Σ+2Ξ+Ω)1/2, Ω−Ξ2/Σ and Σ+2Ξ+Ξ2/Σ, go to infinity at r → ∞,

so 1/g2YM → ∞. At r → 0,
√
Σ̃e−φ goes to a constant, whereas Σ − wΩ, Ω − Ξ2/Σ

and Σ + 2Ξ + Ξ2/Σ go to 0 as r2, so 1/g2YM → 0. Therefore we again have confinement

(g2YM → ∞ as r → 0) and asymptotic freedom (g2YM → 0 as r → ∞).3

4.3 Non-locality and entanglement entropy

Another useful quantity is the entanglement entropy (EE), which can be defined as the von

Neumann entropy for a reduced system, in a sense that we will explain below.

Consider a quantum mechanical system (we closely follow the formalisms presented

in [31–33]), described by a pure ground state |Ψ〉. The density matrix is

ρtot = |Ψ〉〈Ψ| (4.44)

and it is easy to see that the von Neumann entropy

Stot := −Tr(ρtot ln ρtot)

vanishes. By an imaginary process, we can divide the total systems into two subsystems A

and B, so that, the total Hilbert space is given by the direct product of the corresponding

subsystems Hilbert spaces, that is H = HA ⊗HB.

We may think of the EE as the entropy felt by an observer who has access only to the

subsystem A. Such observer will think that the system is described by the reduced density

matrix

ρA = TrB ρtot, (4.45)

where we have smeared out the information of the subsystem B, by taking the trace over

the Hilbert space HB. Then the entanglement entropy is defined as the von Neumann

entropy for the reduced system A, that is

SA := −Tr(ρA ln ρA).

3Of course, as usual one would need to see whether other couplings (to KK modes, for instance) go to

zero as well, in order to have real asymptotic freedom.
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In a (d + 1)−dimensional QFT, it has been proved that the entanglement entropy

diverges, but after introducing an ultraviolet cut-off ε, the divergence behaves as

SA ∝ Area(∂A)

εd−1
+ subleading terms , (4.46)

since the entanglement between the subsystems A and B is more severe at the boundary ∂A.

For our purposes, we can take the QFT defined on R
d+1 with the following inter-

vals4 [28, 33, 34],

A = R
d−1 × Iℓ

B = R
d−1 × R\Iℓ (4.47)

where Iℓ is a line segment of length ℓ. In such a case, the entanglement entropy is

SA ∝ Vol(Rd−1)

εd−1
, (4.48)

where Vol(Rd−1) is the volume of the space Rd−1, since the boundary of the d−dimensional

region A are two copies of the space R
d−1 with separation ℓ.

The computation of the EE in a QFT is not an easy task for an arbitrary region A, even

if we consider a free theory. If we consider a theory with a gravity dual, we can compute

the EE using the holographic prescription of [31]. In a large Nc (d+1)−dimensional CFT,

we find the minimal area of the d−dimensional surface γ in the (d + 2)-dimensional AdS

space at t = t0, whose boundary of γ coincides with the boundary of the region A, that

is ∂γ = ∂A.

The holographic entanglement entropy is given by the area of this surface

SA =
1

4G
(d+2)
N

∫

γ
ddσ

√
G

(d)
ind , (4.49)

where the G
(d)
ind is the induced string frame metric on the surface γ. Considering a ten-

dimensional metric, we need to take into account the fact that in non-conformal theories

the dilaton and the volume of the internal space are not constant, therefore a natural

generalization is the prescription

SA =
1

4G
(10)
N

∫

γ
d8σe−2φ

√
G

(8)
ind . (4.50)

The entropy is obtained by minimizing the action (4.50) above, over all surfaces that

approach the boundary of the entangling region A. Klebanov, Kutasov and Murugan found

in [33] that in a confining background there are two surfaces minimizing the action, the

first one is disconnected which consists of two cigars descending straight down to the IR

cut-off r0, separated by a distance ℓ, and the second is a connected surface, in which the

cigars are connected by a tube with the width depending on ℓ.

4At fixed time, t = t0.
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Consider a gravitational background in the string frame of the form [33]

ds2 = α(r)[β(r)dr2 + ηµνdx
µdxν ] + gintij dyidyj (4.51)

where xµ (µ = 0, 1, . . . , d) parametrize the flat space R
d+1, r is the radial coordinate and

θi (i = d+ 2, . . . , 9) are internal coordinates. The volume of the internal manifold is

Vint =

∫
d6y

√
det[gintij ], (4.52)

and if we plug the background (4.51), into the prescription (4.50), we get

SA =
1

4G
(10)
N

∫

Rd−1

dd−1x

∫
d6y

√
det[gintij ]

∫ +ℓ/2

−ℓ/2
dxe−2φα(r)d/2

√
1 + β(r)(∂xr)2

=
1

4G
(10)
N

Vol(Rd−1)

∫ +ℓ/2

−ℓ/2
dx e−2φVintα(r)

d/2
√
1 + β(r)(∂xr)2

=
1

4G
(10)
N

Vol(Rd−1)

∫ +ℓ/2

−ℓ/2
dx

√
H(r)

√
1 + β(r)(∂xr)2 , (4.53)

where we have denoted by x the direction along which the interval Iℓ lies, and also we have

defined the useful quantity

H = e−4φV 2
intα

d . (4.54)

We need to find the solution for the equation of motion in the integral (4.53). Since this

integral does not depend explicitly on x, we argue that the “energy” defined with respect

to it is conserved [35], that is, if we take L =
√

H +Hβ(r′)2, then

d

dx

(
dL
dr′

r′ − L
)

= 0

implies that

d

dx

(
H(r)√

H +Hβ(r′)2

)
= 0 , (4.55)

and after fixing the constant at the minimum value of the radial coordinate r∗, we have

the solution
dr

dx
=

1√
β(r)

(
H(r)

H(r∗)
− 1

)1/2

, (4.56)

and integrating between r∗ and infinity, we obtain

ℓ(r∗)

2
=

√
H(r∗)

∫ r∞

r∗
dr

(
β(r)

H(r)−H(r∗)

)1/2

. (4.57)

Finally, we insert equation (4.56) into (4.53), and we get the entropy density for the con-

nected solution,
SA

Vol(Rd−1)
=

1

2G
(10)
N

∫ r∞

r∗
dr

√
β(r)H(r)√

H(r)−H(r∗)
, (4.58)
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where we write the UV cut-off r∞. As we already know, the entanglement entropy generally

is UV divergent, but KKM found that the difference between the EE of the connected and

disconnected solutions is finite, and is easily seen to be given by

2G
(10)
N

Vol(Rd−1)

(
S(c) − S(d)

)
=

∫ ∞

r∗

dr

√
βH√

1−H(r∗)/H(r)
−
∫ ∞

r0

dr
√
βH . (4.59)

The EE can be used as an order parameter for the confinement/deconfinement phase tran-

sition in a confining theory. In fact, a similar phase transition was found by KKM in [33],

where they showed that depending on the value of ℓ, the relevant solutions can be either

the connected or the disconnected solutions and the phase transition between these two

solutions is a characteristic of confining theories.

Moreover, in [34], it was proved that a sufficient condition for the existence of phase

transitions is that the length ℓ(r∗) has an upper bound, and the non-existence of this

maximum correlates with the absence of the phase transition.

We note that the quantity (4.54) is related to the warp factor we get after a dimensional

reduction on the (8− d)-dimensional compact manifold.

In our particular case, the metric (3.2) can be written as

ds̃2st = e2ϕ̃Σ̃dx21,2 + e2ϕ̃Σ̃(e2gNc)dr
2 + g̃intij dyidyj , (4.60)

so that we can compute the volume of the internal manifold (4.52) and the warp fac-

tor (4.54) and find H = Σ̃
√
g̃int, as well as β = e2gNc.

Using the metrics presented in the section 3.1 we can find

l(r∗) = 2
√
NcH(r∗)

∫ ∞

r∗

dr
eg√

H(r)−H(r∗)
(4.61)

2G
(10)
N

Vol(Rd−1)

(
S(conn) − S(disconn)

)
∼ Nc

∫ ∞

r∗

dreg
√
H

(
1√

1−H(r∗)/H(r)
− 1

)

−Nc

∫ r∗

r0

dreg
√
H. (4.62)

One could in principle compute the volume of the internal manifold (4.52), but this

gives us a very complicated equation. We then would need to do the following: firstly,

evaluate the determinant of the internal metric and then solve the integral.

But we cannot solve analytically the integral, since we just have asymptotic solutions.

We can nevertheless find the behavior of Vint.

The asymptotic behavior of the determinant is important, so we need to know - at least

qualitatively - its expression. In fact, the metric of the internal manifold is of the form

[g̃int] =




g̃θ̃θ̃ g̃θ̃φ̃ g̃θ̃ψ̃ g̃θ̃θ g̃θ̃φ g̃θ̃ψ

g̃φ̃θ̃ g̃φ̃φ̃ g̃φ̃ψ̃ g̃φ̃θ g̃φ̃φ g̃φ̃ψ

g̃ψ̃θ̃ g̃ψ̃φ̃ g̃ψ̃ψ̃ g̃ψ̃θ g̃ψ̃φ g̃ψ̃ψ

g̃θθ̃ g̃θφ̃ g̃θψ̃ g̃θθ g̃θφ g̃θψ

g̃φθ̃ g̃φφ̃ g̃φψ̃ g̃φθ g̃φφ g̃φψ

g̃ψθ̃ g̃ψφ̃ g̃ψψ̃ g̃ψθ g̃ψφ g̃ψψ




, (4.63)
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where the non-vanishing components are

g̃θ̃θ̃ = Σ g̃φ̃φ̃ = Σ−1 g̃ψ̃ψ̃ = Σsin2 θ1

g̃θθ = Ω− 1

Σ
Ξ2 sin2(ψ1 − ψ2) sin

2 θ1

g̃θφ = − 1

Σ
Ξ2 sin(ψ1 − ψ2) sin θ1[sin θ1 sin θ2 cos(ψ1 − ψ2) + cos θ1 cos θ2]

g̃θψ = − 1

Σ
Ξ2 sin(ψ1 − ψ2) sin θ1 cos θ1

g̃φφ = Ω− 1

Σ
Ξ2[sin θ1 sin θ2 cos(ψ1 − ψ2) + cos θ1 cos θ2]

2

g̃φψ = Ωcos θ2 −
1

Σ
Ξ2 cos θ1[sin θ1 sin θ2 cos(ψ1 − ψ2) + cos θ1 cos θ2]

g̃ψψ = Ω− 1

Σ
Ξ2 cos2 θ1

g̃θ̃θ = Ξcos(ψ1 − ψ2) g̃θ̃φ = −Ξ sin(ψ1 − ψ2) sin θ2 g̃ψ̃θ = −Ξ sin θ1 cos θ1 sin(ψ1 − ψ2)

g̃ψ̃φ = Ξ[cos θ2 sin
2 θ1 − cos θ1 sin θ1 sin θ2 cos(ψ1 − ψ2)]

g̃ψ̃ψ = Ξsin2 θ1 .

The determinant of this matrix is really laborious to calculate. However, the volume

element acts just in the angular directions, 0 ≤ θa ≤ π, 0 ≤ φa < 2π, 0 ≤ ψa < 4π.

So, we can ignore the expression of the angular directions, since it only gives us numerical

factors, which in the asymptotic limit are not important at all. We are mainly interested

in the radial direction.

In the UV limit r → ∞, the determinant is a function of the form

det[g̃int] ∼ e16r/3A+ subleading , (4.64)

where A is a function of the angular directions only, so Vint diverges at r → ∞. We also

then find H ∼ e16r/3 and eg ∼ e2r/3, so l(r∗) in (4.61) and S(conn) − S(disconn) in (4.62) are

actually convergent at r → ∞.

We also obtain that, modulo possible cancellations, det[g̃int] is finite at r → 0, therefore

both H and β remain finite at r → 0.

Then from (4.61), as r∗ → 0, l(r∗) goes to a constant, whereas at r∗ → ∞,

l(r∗) ∼ e8r∗/3
∫ ∞

r∗
dr

e2r/3√
e16r/3 − e16r∗/3

= (r̃∗)4
∫ ∞

r̃∗

dr̃√
r̃8 − (r̃∗)8

= r̃∗
∫ ∞

1

dz√
z8 − 1

,

(4.65)

where r̃ = e2r/3 and z = r̃/r̃∗, so l(r∗) goes to infinity. This behaviour (l(r∗) increasing to

infinity) already suggests there is no phase transition. Indeed, as was pointed in [28, 34], the

absence of a maximum value for l(r∗) suggests the absence of a first order phase transition in

the entanglement entropy (in the cases with phase transition in the entanglement entropy,

we have a maximum for l(r∗): l increases to a maximum, then decreases with r∗). To verify
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this, we check the sign of S(conn) − S(disconn) at zero and infinity. At r∗ → 0,

∆S|r∗→0 ∼
∫ ∞

r∗→0
dreg(r)

√
H(r)

(
1√

1−H(r∗)/H(r)
− 1

)
> 0 , (4.66)

since the integrand is positive. At r∗ → ∞,

∆S|r∗→∞ ∼
∫ ∞

r∗→∞
dreg(r)

√
H(r)

(
1√

1−H(r∗)/H(r)
− 1

)
−

∫ r∗→∞

0
dreg(r)H(r)

∼
∫ ∞

r∗→∞
dre

10r
3


 1√

1− e
8(r∗−r)

3

− 1


−

∫ r∗→∞

0
dre

10r
3

=
3

2
(r̃∗)5

[∫ ∞

1
dz z4

(
1√

1− z−8
− 1

)
−
∫ 1

0
dz z4

]

=
3

2
(r̃∗)5

√
πΓ

(
3
8

)

40Γ
(
7
8

) → +∞ , (4.67)

so is not only positive, but goes to infinity. If nothing strange happens in between (at

finite r∗), it means that the disconnected solution has always the lower entropy, implying

that there is no phase transition. It is worth mentioning that this behavior is consistent

with [34], where a detailed study of entanglement entropy as a probe of confinement was

considered. In fact, they showed that the UV completion done in [17] provides a consistent

model with phase transitions.

4.4 Domain walls

Our configuration consists of a D4-Brane wrapping a two-cycle defined by C2 = {θ1 =

θ2, ψ1 = ψ2} and for φ1 =const., this cycle vanishes in the IR limit.

We may think of probe D4 branes that wrap the cycle S2 = {θ1, ψ1} at r → 0 and the

remaining angular directions are fixed. This configuration can act as a domain wall if it

has finite tension. This is an useful observable, since even in the presence of singularities,

the tension of the domain wall remains finite. Taking the cycle S2, the induced metric is

ds̃2S2 =
Nce

2ϕ̃

4

(
e2h +

e2g

4
(1 + w)2

)
dx21,2 +Σ(dθ21 + sin2 θ1dψ

2
1). (4.68)

The tension of the domain wall can be computed from the DBI action of the D4-brane

S = −TD4

∫
dθ1dψ1

∫
d3xe−ϕ̃

√
|g̃| ≡ −Teff

∫
d3x, (4.69)

so that the tension in the IR,

Teff = 4πe−φ/2

(
Nc

4

)2(
e2h +

e2g

4
(1 + w)2

)2

ΣTD4 ≃ 4πeφ0/2

(
Nc

4

)3

g30TD4 (4.70)

– 22 –



J
H
E
P
0
4
(
2
0
1
5
)
0
8
1

is finite. We can follow the formalism of [36] (see also [28]) and add a gauge field A1, with

field strength G2 = dA1 in the Minkowski part of the world volume of the brane, in such

a way that we induce a Wess-Zumino term of the form

SWZ = TD4

∫
C(1) ∧G2 ∧G2 ≡ −TD4

∫
F2 ∧G2 ∧A1, (4.71)

where C(1) is the one-form that we found above, and F2 = dC(1) its field strength. Using

the cycle S2, in which the field strength is

F2|S2 = −Nc

4
sin θ1dθ1 ∧ dψ1, (4.72)

we can perform the integral ∫

S2

F2 = −2πNc,

and we insert this integral into the Wess-Zumino action (4.71) above, so that

S = 2πNcTD4

∫
G2 ∧A1. (4.73)

We see that we have induced a Chern-Simons term in the 2 + 1 gauge theory, on the

domain wall.

5 Conclusions

In this paper we have considered a T-duality along an U(1) isometry of a deformation of

the MNa solution in [1], such that the resulting type IIA solution consists of D4-branes

wrapping a two-cycle. We found a solution with non-trivial RR forms, a non-vanishing

Kalb-Ramond field and a complicated metric. We analyzed Maxwell and Page charges

associated to this solution.

We then studied properties of the field theory dual to the T-dual gravitational back-

ground. From a calculation of the Wilson loops, we saw that the dual gauge theory presents

confinement. We also computed the QCD string tension and the gauge coupling of the

gauge theory.

From a calculation of the entanglement entropy, we found that the field theory does

not have a phase transition, despite being a confining theory; this could be due to the

non-locality of the theory, as suggested in [34]. Finally, considering domain walls in the

gravitational background, we generate a Chern-Simons term in the gauge theory.
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[6] J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds

and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

[7] A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236]

[INSPIRE].
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[34] U. Kol, C. Núñez, D. Schofield, J. Sonnenschein and M. Warschawski, Confinement, Phase

Transitions and non-Locality in the Entanglement Entropy, JHEP 06 (2014) 005

[arXiv:1403.2721] [INSPIRE].

[35] A. Lewkowycz, Holographic Entanglement Entropy and Confinement, JHEP 05 (2012) 032

[arXiv:1204.0588] [INSPIRE].

[36] B.S. Acharya and C. Vafa, On domain walls of N = 1 supersymmetric Yang-Mills in

four-dimensions, hep-th/0103011 [INSPIRE].

– 25 –

http://dx.doi.org/10.1016/0370-2693(88)90602-8
http://inspirehep.net/search?p=find+IRN+1742981
http://dx.doi.org/10.1016/0550-3213(95)00367-2
http://arxiv.org/abs/hep-th/9504081
http://inspirehep.net/search?p=find+EPRINT+hep-th/9504081
http://arxiv.org/abs/hep-th/0006117
http://inspirehep.net/search?p=find+EPRINT+hep-th/0006117
http://dx.doi.org/10.1103/PhysRevD.81.086001
http://arxiv.org/abs/0909.0748
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0748
http://arxiv.org/abs/0712.0689
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.0689
http://dx.doi.org/10.1103/PhysRevLett.80.4859
http://arxiv.org/abs/hep-th/9803002
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803002
http://dx.doi.org/10.1007/s100520100799
http://arxiv.org/abs/hep-th/9803001
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803001
http://dx.doi.org/10.1007/JHEP08(2014)107
http://arxiv.org/abs/1402.3294
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.3294
http://dx.doi.org/10.1007/JHEP01(2010)023
http://arxiv.org/abs/0911.0662
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0662
http://arxiv.org/abs/hep-th/0003032
http://inspirehep.net/search?p=find+EPRINT+hep-th/0003032
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://arxiv.org/abs/hep-th/0605073
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605073
http://dx.doi.org/10.1088/1751-8113/42/50/504008
http://arxiv.org/abs/0905.0932
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0932
http://dx.doi.org/10.1016/j.nuclphysb.2007.12.017
http://arxiv.org/abs/0709.2140
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2140
http://dx.doi.org/10.1007/JHEP06(2014)005
http://arxiv.org/abs/1403.2721
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.2721
http://dx.doi.org/10.1007/JHEP05(2012)032
http://arxiv.org/abs/1204.0588
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0588
http://arxiv.org/abs/hep-th/0103011
http://inspirehep.net/search?p=find+EPRINT+hep-th/0103011

	Introduction
	Wrapped fivebranes on a three-cycle
	D4-brane solution
	NS-NS sector
	R-R sector
	Brane charges

	Field theory aspects
	Wilson loops
	Gauge coupling
	Non-locality and entanglement entropy
	Domain walls

	Conclusions

