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1 Introduction

In two recent papers [1, 2] we carried out a calculation for the chiral condensate and

the topological susceptibility in the chiral and the continuum limit. In these works, we

performed an O(a2) scaling towards the continuum limit. However, quantities such as

the chiral condensate or the topological susceptibility are related to correlators where the

coordinates of their fields content are integrated over the whole space-time volume [3].

This integration generates contact terms when two or more fields are located at the same

point. The presence of contact terms can generate short-distance singularities and when

this happens, the renormalization and the discretization effects of these correlators need

a specific discussion. As we will show in this paper for the setup of maximally twisted

mass fermions used in refs. [1, 2], even in the presence of these short distance singularities

automatic O(a)-improvement is preserved at maximal twist, thus justifying the strategy to

perform an O(a2) scaling, as done in refs. [1, 2].

Cut-off effects in lattice correlators are described by the so-called Symanzik effective

theory [4, 5]. One of the basic assumptions for the validity of the Symanzik expansion is

the absence of contact terms in the lattice correlators. These short-distance singularities

alter the form of the lattice artifacts predicted by the Symanzik effective theory. This has

been discussed already for Wilson fermions in ref. [3], where specific O(a) counterterms

had to be added to the lattice correlators to cancel O(a) terms arising from the presence

of short distance singularities in the lattice correlators.

Also the property of automatic O(a) improvement [6] for Wilson twisted mass fermi-

ons [7] at maximal twist relies on the validity of the Symanzik expansion of lattice correla-

tors. It is natural then to question if this property is still valid in the presence of contact

terms. The tool to analyze the nature of the contact terms is the Operator Product Ex-

pansion (OPE) [8]. Using the OPE, it is possible to analyze if additional terms need to

be added to the standard Symanzik expansion of lattice correlators. The symmetry trans-

formation properties of these terms will depend on the quantity to be considered and the

corresponding nature of the contact terms and on the lattice symmetries.
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While we concentrate here on the example of the chiral condensate and the topological

susceptibility, we mention that a similar problem emerges for the vacuum polarization func-

tion needed to evaluate hadronic contributions to electroweak observables [9], in particular

the muon anomalous magnetic moment [10]. In the work here, we show which of such terms

relevant for the chiral condensate and the topological susceptibility appear in this case and

we will demonstrate that the property of automatic O(a) improvement is still preserved. A

first account of these results has been given in refs. [11, 12]. Our argumentation is similar

to the one used in ref. [13].

2 Mixed action formulation and automatic O(a) improvement

To analyze the cutoff effects of the chiral condensate and the topological susceptibility, we

make use of a mixed action approach for the valence and sea quarks. In this section, we

briefly recall how the property of automatic O(a) improvement extends to this particular

framework. For simplicity, we consider a Wilson twisted mass (Wtm) doublet of sea quarks

and Nv Wilson twisted mass valence doublets. The extension to the case of Nf = 2 + 1 + 1

Wilson twisted mass quarks [14] is straightforward once the renormalized quark masses

have been properly matched.

The lattice action

S = SG + SF + SF,val + SPF , (2.1)

has a term for the sea quarks that reads

SF = a4
∑
x

χs(x)
[
Dm + iµsγ5τ

3
]
χs(x) , (2.2)

where

Dm =
1

2

[
γµ
(
∇µ +∇∗µ

)
− a∇∗µ∇µ

]
+m0 , (2.3)

is the usual Wilson operator and m0, µs are the bare untwisted and twisted quark mass.

The theory contains also Nv valence quark doublets with the action

SF,val = a4
∑
x

Nv∑
v=1

χv(x)
[
Dm + iµvγ5τ

3
]
χv(x) , (2.4)

where µv denotes the valence bare twisted mass. The fermion doublets are χTv = (uv, dv)

and χTs = (us, ds).

Apart from one valence quark doublet which has an associated sea quark doublet, the

additional valence doublets need appropriate pseudo-fermion fields φv to cancel the valence

fermionic determinant [3]. The action SPF for the Nv−1 pseudo-fermion fields, i.e. complex

commuting spinor fields, is taken in the following form (in analogy to section 6 of ref. [15]):

SPF = a4
∑
x

Nv−1∑
v=1

|[Dm + iµvγ5]φv(x)|2 . (2.5)

Note that in the above equation we use the 1-flavour twisted mass Dirac operator.
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For the discussion that follows, we do not need the exact form of the gauge action SG.

The long distance properties of the lattice theory close to the continuum limit are

described in terms of the Symanzik effective theory with the action

Seff = S0 + aS1 + . . . , (2.6)

where the leading term, S0, is the action of the target continuum theory with properly renor-

malized parameters. The higher order terms are linear combinations of higher-dimensional

operators

S1 =

∫
d4x

∑
i

ci(g
2
0)Oi(x) , (2.7)

where Oi(x) respect the symmetries of the lattice action and we omit for simplicity the

dependence on the renormalization scale.

A correlation function of products of multiplicatively renormalizable lattice fields, here

denoted by φR = Zφφ, at separated points xi

G(x1, . . . , xn) = 〈φR(x1) · · ·φR(xn)〉 ≡ 〈ΦR〉 (2.8)

takes the form

〈ΦR〉 = 〈Φ0〉0 − a〈Φ0S1〉0 + a〈Φ1〉0 + O(a2) , (2.9)

where

〈Φ0〉0 ≡ 〈φ0(x1) · · · · · ·φ0(xn)〉0 , (2.10)

〈Φ1〉0 ≡
n∑
k=1

〈φ0(x1) · · ·φ1(xk) · · ·φ0(xn)〉0 , (2.11)

and φ0, φ1 are renormalized continuum fields. φ1 is a linear combination of local operators

of dimension dφ + 1 that depend on the specific operator φ and are classified according to

the lattice symmetries transformation properties of φ. The expectation values on the right

hand side of eq. (2.9) are to be taken in the continuum theory with the action S0.

For the sea and valence quarks, the higher-dimensional operators contributing to S1 of

the Symanzik effective action are the same. Using the equations of motion for the quark

fields, a possible list of O(a) terms is [5, 16]

O(s,v)
1 = iχs,v(x)σµνFµνχs,v(x) , O(s,v)

2 = µ2
s,vχs,v(x)χs,v(x) . (2.12)

We omit from the list all the operators proportional to the untwisted quark mass. These

terms do not contribute to the effective theory up to and including the O(a) terms, if we

tune our lattice action to be at maximal twist, i.e. if we set the renormalized untwisted

quark mass to vanish in the continuum limit.

2.1 Automatic O(a) improvement

Automatic O(a) improvement [6] is the property of Wtm that physical correlation functions

made of multiplicatively renormalizable fields are free from O(a) effects. This applies when
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the lattice parameters are tuned to obtain the vanishing of the renormalized untwisted

quark mass, mR = 0, in the continuum limit.

From the lattice perspective, this corresponds to setting the bare untwisted mass m0

to its critical value mcr. The exact way this is achieved is not relevant for what follows,

but for a discussion and further references on this topic see ref. [17].

The relevant symmetries to prove automatic O(a) improvement are the discrete chiral

symmetry

R1,2
5 :

{
χi(x)→ iγ5τ

1,2χi(x) i = sea, valence

χi(x)→ χi(x)iγ5τ
1,2 i = sea, valence

(2.13)

and the symmetry

D :


U(x;µ)→ U †(−x− aµ̂;µ),

χi(x)→ e3iπ/2χi(−x) i = sea, valence

χi(x)→ χi(−x)e3iπ/2 i = sea, valence.

(2.14)

The equivalent transformations for continuum fields, that with abuse of notation we indi-

cate in the same way, are the same for the fermion fields, whereas for the gauge fields the

D transformation is Aµ(x) → −Aµ(−x). To include the twisted mass in the counting of

the dimensions of the operators appearing in the lattice and continuum Lagrangian, one

introduces the spurionic symmetry

D̃ = D × [µi → −µi] i = sea, valence . (2.15)

The lattice action is invariant under the R1,2
5 ×D̃ transformation. If the target contin-

uum theory has a vanishing renormalized untwisted mass, mR = 0, it is invariant separately

under the R1,2
5 and the D̃ transformations. This immediately implies that all the higher-

dimensional operators in the Symanzik expansion contributing to S1 are odd under R1,2
5 ,

thus they vanish once inserted in R1,2
5 -even correlation functions. The same argument ap-

plies for the higher-dimensional operators appearing in the effective theory representations

of local operators, such as axial currents or pseudoscalar densities. We remind that the

R1,2
5 -even correlation functions in the continuum are what we denote as physical corre-

lation functions, because in the twisted basis where we are working, the R1,2
5 symmetry

transformation is a physical flavor transformation.

3 Chiral condensate

The Banks-Casher relation [18] connects the low lying spectrum of the Dirac operator with

the spontaneous chiral symmetry breaking in the following way

lim
λ→0

lim
µs→0

lim
V→∞

ρ(λ, µs) =
Σ

π
. (3.1)

Eq. (3.1) relates the chiral condensate Σ to the spectral density ρ(λ, µs). The method

based on spectral projectors introduced in [3] offers a new strategy to compute spectral
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observables, such as the chiral condensate, in an affordable way [1, 2, 19]. Moreover it allows

us, via the connection to density chains, to compute this quantity using a representation

which is free of short distance singularities and therefore leads to the correct continuum

limit.

The integrated spectral density, i.e. the mode number ν(M,µs), is defined as the

number of eigenvalues λ of the hermitian Dirac operator D†D below a certain threshold

value M2. To study the renormalization and O(a) cutoff effects properties of the mode

number, it is advantageous to consider the spectral sums σk(µv, µs), which are directly

related to the mode number through the following expression

σk(µv, µs) =
1

V

∫ ∞
0

dM ν(M,µs)
2kM

(M2 + µ2
v)
k+1

, (3.2)

where V is the space-time volume. To relate the mode number to a multi-local correlation

function, it is convenient to write the spectral sums σk in terms of density chain correlation

functions of twisted valence quarks with mass µv. In terms of twisted mass density chains,

the spectral sum σ3 reads

σ3(µv, µs) = −a20
∑

x1,...,x5

〈
P+

12(x1)P−23(x2)P+
34(x3)P−45(x4)P+

56(x5)P−61(0)
〉
, (3.3)

where

P+
ab = χaγ5τ

+χb = uaγ5db , (3.4)

P−ab = χaγ5τ
−χb = daγ5ub , (3.5)

are charged pseudoscalar densities, τ± are defined in flavor space, µv is the valence twisted

mass and µs is the sea twisted mass that plays the role of the physical quark mass. In

this particular example, we add 6 doublets to the theory, which is the minimum number

of flavors that still guarantees the renormalizability, as it was stated in ref. [3].

The spectral density and therefore the mode number is directly linked to the chiral

condensate [3]. The representation of the mode number and the spectral density of the

Wilson operator through density chain correlators as in eq. (3.3) allows to discuss the renor-

malization and improvement properties of such quantities. This is particularly important

when computing the mode number using Wilson twisted mass fermions at maximal twist.

The maximal twist condition, mR = 0, should guarantee automatic O(a) improvement of

all physical quantities [6]. The conditional is appropriate, because density chain correlators

are affected by short distance singularities and the integration over the whole space-time

of such singularities generates additional O(a) terms that could spoil the property of au-

tomatic O(a) improvement. The short-distance singularities of a product of two operators

can be studied with the operator product expansion (OPE).

For generic values of the untwisted and twisted mass, the Symanzik expansion for the

renormalized observable introduced in eq. (3.3) reads

σ3,R(µv, µs) = σ3,R(µv, µs)0 + aσ3,R(µv, µs)1 + aσ3,R(µv, µs)ct , (3.6)
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where

σ3,R(µv, µs)0 = −
∫
d4x1d

4x2d
4x3d

4x4d
4x5

〈
P+

12(x1)P−23(x2)P+
34(x3)P−45(x4)P+

56(x5)P−61(0)
〉

0
,

(3.7)

is the continuum expectation value. The standard terms of the Symanzik expansion are

σ3,R(µv, µs)1 =∫
d4x1d

4x2d
4x3d

4x4d
4x5

〈
P+

12(x1)P−23(x2)P+
34(x3)P−45(x4)P+

56(x5)P−61(0)S1

〉
0

− 6cP (g2
0)mv

∫
d4x1d

4x2d
4x3d

4x4d
4x5

〈
P+

12(x1)P−23(x2)P+
34(x3)P−45(x4)P+

56(x5)P−61(0)
〉

0

(3.8)

where the leading O(a) corrections to the pseudoscalar densities are

(δP )±ij(x) = mvcP (g2
0)P±ij (x) (3.9)

and mv = m0 −mc, where mc is the critical untwisted quark mass, commonly determined

through the condition that the PCAC quark mass vanishes.

The O(a) terms arising from the short-distance singularities, denoted by σ3,R(µv, µs)ct,

get contributions from the OPE of two or more pseudoscalar densities at a coincident space-

time point. The lowest dimensional operator that appears in the short-distance expansion

(SDE) of two pseudoscalar densities on the lattice is

ua(x)γ5db(x)db(0)γ5uc(0) ∼
x→0

CPP(x)ua(0)uc(0) , (3.10)

where CPP(x) ∝ |x|−3. Once we sum over x the product of the two pseudoscalar densities,

this short distance singularity will contribute a term

∑
x1

〈
ua(x1)γ5db(x1)db(x2)γ5uc(x2)uc(x3)γ5dd(x3)dd(x4)γ5ue(x4)ue(x5)γ5df (x5)df (0)γ5ua(0)

〉
→ a

〈
ua(x2)uc(x2)uc(x3)γ5dd(x3)dd(x4)γ5ue(x4)ue(x5)γ5df (x5)df (0)γ5ua(0)

〉
(3.11)

to the Symanzik expansion. If we now consider the lowest dimensional operator contribut-

ing to the SDE of 3 pseudoscalar densities at the same point, we get

ua(x2)γ5db(x2)db(x1)γ5uc(x1)uc(0)γ5dd(0) ∼
x1,x2→0

CPPP (x2, x1)ua(0)γ5dd(0) , (3.12)

where CPPP (x2, x1) ∝ |x2|−3|x1|−3. If we now sum over x2 and x1, the contribution of the

short-distance singularities to the Symanzik expansion is an O(a2) effect. Products of even

more pseudoscalar densities in the same point will give contributions of higher power of

the lattice spacing. So up to corrections of O(a2), the contact terms contributions to the

– 6 –
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Symanzik expansion are

σ3,R(µv, µs)ct =

∫
d4x2d

4x3d
4x4d

4x5

〈
S↑13(x2)P+

34(x3)P−45(x4)P+
56(x5)P−61(0)

〉
0

+

∫
d4x2d

4x3d
4x4d

4x5

〈
P−23(x2)P+

34(x3)P−45(x4)P+
56(x5)S↓62(0)

〉
0

+

∫
d4x2d

4x3d
4x4d

4x5

〈
P+

12(x2)S↓24(x3)P−45(x4)P+
56(x5)P−61(0)

〉
0

+

∫
d4x2d

4x3d
4x4d

4x5

〈
P+

12(x2)P−23(x3)P+
34(x4)P−45(x5)S↑51(0)

〉
0

+

∫
d4x2d

4x3d
4x4d

4x5

〈
P+

12(x2)P−23(x3)S↑35(x4)P+
56(x5)P−61(0)

〉
0

+

∫
d4x2d

4x3d
4x4d

4x5

〈
P+

12(x2)P−23(x3)P+
34(x4)S↓46(x5)P−61(0)

〉
0
,

(3.13)

where S↑,↓ac = χa
1
2(1± τ3)χc, i.e. S↑ac = uauc , S

↓
ac = dadc.

For the discussion of the contact terms, we keep generic values for the twisted and

untwisted quark masses. To show that the contact terms σ3,R(µv, µs)ct vanish at maximal

twist, we group them and as an example we consider the two terms∫
d4x2d

4x3d
4x4d

4x5

〈
S↑13(x2)P+

34(x3)P−45(x4)P+
56(x5)P−61(0)

〉
0

+

∫
d4x2d

4x3d
4x4d

4x5

〈
P−23(x2)P+

34(x3)P−45(x4)P+
56(x5)S↓62(0)

〉
0
. (3.14)

We can now use the integrated non-singlet axial Ward identity (WI) to rewrite eq. (3.14)

in a convenient form. For twisted mass fermions at a generic twist angle, the WI reads∫
d4x2d

4x3d
4x4d

4x5

〈
S↑13(x2)P+

34(x3)P−45(x4)P+
56(x5)P−61(0)

〉
0

(3.15)

+

∫
d4x2d

4x3d
4x4d

4x5

〈
P−23(x2)P+

34(x3)P−45(x4)P+
56(x5)S↓62(0)

〉
0

= 2mv

∫
d4x2d

4x3d
4x4d

4x5

∫
d4x1

〈
P+

12(x1)P−23(x2)P+
34(x3)P−45(x4)P+

56(x5)P−61(0)
〉

0
.

All the other terms stemming from the short distance singularities can be treated in an

analogous manner. Thus, tuning the lattice parameters to achieve a maximal twist con-

dition for the sea and valence quarks guarantees that all the O(a) terms including the

non-standard ones coming from the short-distance singularities of the correlator vanish.

For the sake of simplicity we have chosen to write a particular example for six flavors,

however, a generalization of this derivation for a generic number of flavors is straight-

forward.

4 Topological susceptibility

In the continuum, the relation between the topological charge Q and the density chain

correlation functions can be established via the equation Tr{γ5f(D)} = f(0)Q, where D
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is the Dirac operator and f(λ) is any continuous function that decays rapidly enough at

infinity [15].

With twisted mass fermions, the topological susceptibility can be defined by:

χtop = µ8
v,R C4;4,R =

Z2
S

Z2
P

µ8
v C4;4 ≡

〈Q2〉
V

, (4.1)

where V is the space-time volume and the subscript R denotes renormalized quantities,

µv,R = Z−1
P µv, (4.2)

C4;4,R = Z6
PZ

2
SC4;4, (4.3)

ZS and ZP are the renormalization constants of the scalar and pseudoscalar densities,

respectively, and

C4;4 = a28
∑
x1...x7

〈S+
41(x1)P−12(x2)P+

23(x3)P−34(x4)S+
85(x5)P−56(x6)P+

67(x7)P−78(0)〉 , (4.4)

with S±ij = χiτ
±χj , P

±
ij = χiτ

±γ5χj . This definition of χtop is interesting, because it

is expressed in terms of a correlation function of local operators, thus it can be used to

discuss renormalization and O(a) improvement.1 Additionally, it is directly related to the

following spectral sum:

σk;l(µ) =
〈

Tr
{
γ5(D†D + µ2)−k

}
Tr
{
γ5(D†D + µ2)−l

}〉
(4.5)

and hence its computation can be carried out with the spectral projector method [20].

In eq. (4.1), we take Q2 expressed in terms of two closed density chains — both with

4 densities. Note that in the case of full QCD, we could have taken one of the two density

chains to contain only 2 densities — the total of 6 densities would still guarantee the

absence of non-integrable short-distance singularities. However, in the present case, the

theory contains also pseudo-fermion fields, which allow for the construction of flavor-singlet

fields of dimension 2.2 Hence, the lowest dimensional operator appearing in the OPE of

the product of two densities in one of the density chains (with the structure S+
ab(x)P−ba(0))

would be of dimension 2 and thus the Wilson coefficient in this OPE would be proportional

to |x|−4, leading to a logarithmic divergence upon space-time integration. To avoid this

behaviour, both density chains need to contain at least 3 densities (as done in section 6 of

ref. [15]).

The χtop given by the above formula is R1,2
5 -even up to a charge conjugation transfor-

mation:

C :

{
χi(x)→ C−1χi(x)T

χi(x)→ −χi(x)TC,
(4.6)

1Note that the example that we discuss differs from the one in ref. [15], since we are interested in a

formula that can be evaluated with the spectral projector method and thus one that can be expressed using

the Hermitian Dirac operator D†D.
2Note that this does not affect the discussion for the chiral condensate, since there are already more

than 2 densities to guarantee the absence of short-distance singularities.
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where C = iγ0γ2 can be chosen. Thus, the standard terms in the Symanzik expansion of

C4;4 vanish. However, automatic O(a) improvement can still be spoiled by contact terms.

The Symanzik expansion of C4;4

C4;4 = (C4;4)0 + a (C4;4)1 + a (δC4;4)ct (4.7)

contains the continuum correlator (C4;4)0 and the standard O(a) terms (C4;4)1 coming

from the higher dimensional operator in the effective action and the effective operators.

Additional terms labeled here as (δC4;4)ct correspond to the O(a) terms arising from the

short distance singularities in the product of two densities. The product of 2 pseudoscalar

densities is already discussed in the previous section. The lowest dimensional operator

appearing in the OPE of the product of a scalar and pseudoscalar density on the lattice is

ua(x)db(x)db(0)γ5uc(0) ∼
x→0

CSP(x)ua(0)γ5uc(0) , (4.8)

where CSP(x) ∝ |x|−3. Once we sum over x the product of the two pseudoscalar densities,

this short distance singularity will contribute a term∑
x1

〈
ua(x1)db(x1)db(x2)γ5uc(x2)P+

cd(x3)P−da(x4)S+
he(x5)P−ef (x6)P+

fg(x7)P−gh(0)
〉

→ a
〈
ua(x2)γ5uc(x2)P+

cd(x3)P−da(x4)S+
he(x5)P−ef (x6)P+

fg(x7)P−gh(0)
〉
, (4.9)

to the Symanzik expansion (we only write the modified densities in terms of quark fields).

As for the case of the scalar condensate, contact terms arising when 3 or more densities

are at the same point lead to cut-off effects of O(an) with n ≥ 2. The O(a) corrections

arising from the short-distance singularities are

(δC4;4)ct

= c(g20)

∫
d4x2d

4x3d
4x4d

4x5d
4x6d

4x7

〈
P ↑42(x2)P+

23(x3)P−34(x4)S+
85(x5)P−56(x6)P+

67(x7)P−78(0)
〉
0

+ c(g20)

∫
d4x1d

4x2d
4x3d

4x5d
4x6d

4x7

〈
P ↓31(x1)P−12(x2)P+

23(x3)S+
85(x5)P−56(x6)P+

67(x7)P−78(0)
〉
0

+ c(g20)

∫
d4x1d

4x3d
4x4d

4x5d
4x6d

4x7

〈
S+
41(x1)S↓13(x3)P−34(x4)S+

85(x5)P−56(x6)P+
67(x7)P−78(0)

〉
0

+ c(g20)

∫
d4x1d

4x2d
4x4d

4x5d
4x6d

4x7

〈
S+
41(x1)P−12(x2)S↑24(x4)S+

85(x5)P−56(x6)P+
67(x7)P−78(0)

〉
0

+ analogously for the 2nd density chain, (4.10)

where P ↑,↓ij = χi

(
1±τ3

2

)
γ5χj . We study now how (δC4;4)ct transforms under the R1,2

5

symmetry. Let us start considering the first two terms in eq. (4.10). If we perform an R1
5

transformation only for doublets labeled by 1, 2, 3, 4, we obtain〈
P ↑42P

+
23P

−
34S

+
85P

−
56P

+
67P

−
78

〉
0

+
〈
P ↓31P

−
12P

+
23S

+
85P

−
56P

+
67P

−
78

〉
0

R1
5−−→ −

〈
P ↓42P

−
23P

+
34S

+
85P

−
56P

+
67P

−
78

〉
0
−
〈
P ↑31P

+
12P

−
23S

+
85P

−
56P

+
67P

−
78

〉
0
. (4.11)

– 9 –



J
H
E
P
0
4
(
2
0
1
5
)
0
4
8

Up to a relabeling of flavors (4 → 3, 3 → 2, 2 → 1 in the first term and 1 → 2, 2 → 3,

3 → 4 in the second one), this linear combination is odd under R1,2
5 , i.e. it vanishes for

twisted mass fermions at maximal twist. For the third and the fourth term in eq. (4.10),

after the R1
5 transformation on the doublets 1 to 4, we obtain〈
S+

41S
↓
13P

−
34S

+
85P

−
56P

+
67P

−
78

〉
0

+
〈
S+

41P
−
12S
↑
24S

+
85P

−
56P

+
67P

−
78

〉
0

R1
5−−→ −

〈
S−41S

↑
13P

+
34S

+
85P

−
56P

+
67P

−
78

〉
0
−
〈
S−41P

+
12S
↓
24S

+
85P

−
56P

+
67P

−
78

〉
0

C−→ −
〈
S+

14S
↑
31P

−
43S

+
85P

−
56P

+
67P

−
78

〉
0
−
〈
S+

14P
−
21S
↓
42S

+
85P

−
56P

+
67P

−
78

〉
0

relabel−−−−→ −
〈
S+

41P
−
12S
↑
24S

+
85P

−
56P

+
67P

−
78

〉
0
−
〈
S+

41S
↓
13P

+
34S

+
85P

−
56P

+
67P

−
78

〉
0
,

where the relabeling of the doublets is 1↔ 4, 2↔ 3. Thus, also the sum of the third and

fourth terms in eq. (4.10) is odd under the symmetries of the action and thus vanishes. The

same procedure can be used also for the second closed density chain of eq. (4.10), applying

the R1
5 transformation only to doublets labeled by 5–8. Moreover, this proof holds also

in the general case — for any density chain that can be written in terms of D†D (i.e.

containing an even (and not smaller than 4) number of pseudoscalar and scalar densities

in each density chain).

5 Concluding remarks

When using density chain correlators to compute the chiral condensate and the topological

susceptibility as suggested in ref. [3], short distance singularities appear. Thus, the influence

of resulting contact terms needs to be analyzed. In particular, it is a priori unclear, whether

the property of automatic O(a) improvement is preserved for maximally Wilson twisted

mass fermions in the presence of such terms.

Contact terms arise in lattice correlators when two or more (pseudo)scalar densities

are at the same space-time point and generate short-distance singularities that can spoil

this automatic O(a) improvement, i.e. introduce O(a) cut-off effects in physical correlators.

Working in the framework of the Operator Product Expansion and using the symmetries

of our setup, we have shown that the additional terms in the Symanzik expansion that

arise due to contact terms vanish at maximal twist. Thus, automatic O(a) improvement is

preserved, justifying the O(a2) continuum limit scaling analysis of refs. [1, 2].

We remark that our discussion holds also in the general case — for any density chain

that can be written in terms of D†D (i.e. containing an even number of pseudoscalar and

scalar densities). For a discussion concerning the automatic O(a) improvement of the

hadronic vacuum polarization function, we refer to ref. [21].
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