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1 Introduction

It is well-known that in order to connect string theory to real-world physics, it has to

be compactified from ten (twentysix, if only the bosonic theory is considered) to four

dimensions. For closed strings, the presence of D compact dimensions Xa implies the

existence not only of momentum modes pa which are quantized along such dimensions,

but also of winding modes wa representing the number of times the string winds around

the compact dimension. Topologically, the closed string winding number is a meaningful

concept.

Just as pa can be considered as the momentum associated with Xa, one can ask what

is the coordinate the winding number wa is associated with. The answer to this question

is provided by X̃a, the T-dual coordinate of Xa, which is a co-vector (one-form) being wa

a vector.

T-duality is an old subject in string theory (for a recent review, see ref. [1] and ref-

erences therein). It implies that in many cases two different geometries for the extra

dimensions are physically equivalent. T-duality is therefore a clear indication that ordi-

nary geometric concepts can break down in string theory at the string scale. In the simplest

case of a circle compactification, it implies that the closed string compactified on a circle

of radius R is equivalent to the one compactified on a circle of radius α′/R. But more

than a mere duality, T-duality is an exact symmetry of the Hamiltonian, and hence of the

spectrum, of a closed string compactified on a circle. In this case, T-duality is encoded in

the simultaneous transformations R ↔ α′/R and pa ↔ wa/
√
α′ under which Xa ↔ X̃a,
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with wa playing the role of momentum mode for X̃a. The fact that T-duality is an ex-

act symmetry for closed strings suggests that one could extend the standard formulation,

based on the Polyakov action, by introducing the symmetry at the level of the world-sheet

sigma-model Lagrangian density, so looking for a manifestly T-dual invariant formulation

of closed string theory. This, of course, requires the introduction, in the sigma-model, of

both the compact coordinates Xa and the dual ones X̃a, so it is based on a doubling of the

string coordinates in the target space, hence the name of double string theory. It appears

that the compact part of the target space in double string theory is locally defined by the

direct sum of the tangent and cotangent spaces in each point.

The main goal of this new action would be to explore more closely the gravity implied

by string theory. In fact, if interested in writing down the complete effective field theory of

such generalized sigma-model, one should consider, correspondently to the introduction of

Xa and X̃a, a dependence of the fields associated with string states on such coordinates,

besides the one on the non-compact dimensions. So one can claim that the double string

effective field theory is a double field theory [2–9]. In particular, this has to be true for the

well-known effective gravitational action of a closed string involving the fields associated

with its massless states: the gravitational field Gµν , the Kalb-Ramond field Bµν and the

dilaton φ. So one can ask what this action becomes in light of the fact that all those

fields depend on Xa and X̃a and, in particular, which symmetries and what properties

it would have, perhaps shedding light on aspects of string gravity unexplored thus far.

But, of course, in order to answer these questions, one must first find an answer to the

more fundamental question of how the closed string would look like when the T-duality is

manifested in the sigma-model Lagrangian density.

First attempts to face these issues were already explored by W. Siegel in ref. [10] and by

A. A. Tseytlin in refs. [11, 12]. In particular, the latter author defines a sigma-model action

written in a first-order form involving string coordinates mapping the string in the compact

factor M of the target space R1,d−1 ⊗M, besides the usual string coordinates mapping

the string in the uncompact Minkowski factor R1,d−1. This model is essentially described

by the sum of actions for the right and left scalar string coordinates XR;L reproducing the

Floreanini-Jackiw Lagrangians respectively for antichiral and chiral scalar fields. It is not

manifestly local Lorentz invariant, but this invariance is recovered on-shell. In fact, it is

precisely the requirement that the local Lorentz invariance could hold on-shell to dictate a

constraint in this model that implies the geometry of the double torus determined by the

O(D,D) invariant metric. This invariance results to be, therefore, an output of the theory

coming from its consistency. As a result of this symmetry, the non-covariant action contains

the O(D,D) invariant metric together with a generalized target space metric depending

on D2 moduli which are identified with the background values of the components of the

fields G and B.

In this paper a review of this approach is first given. Then the Dirac method of

quantizing constrained systems is applied to this theory, since it contains primary second

class constraints.

The Dirac procedure is carried out in the convenient basis provided by the right and

left coordinates XR;L, where both the O(D,D) and the generalized metrics are diagonal.
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In such basis, all of the explicit dependence on the B-field disappears, making the analysis

easier, but it can be reintroduced by any O(D,D) rotation. The presence in the theory of

second class constraints leads to the introduction of the Dirac brackets and the quantization

is performed by substituting the latter with commutators, as usual. It turns out that the

mode expansions of the fields XR;L satisfy the same commutation relations as the ones

of the string modes. Then, Virasoro generators are introduced: they provide constraints

coming from the equations of motion of the zweibein. This procedure will lead to the

interesting result that the coordinates Xa and X̃a behave like non-commuting phase space

coordinates [13, 14] but their expressions in terms of Fourier modes generate the usual

oscillator algebra of the standard formulation.

Besides the non-covariant double string theory à la Tseytlin, a covariant version has

been proposed by C. Hull [15] in which the O(D,D) invariance is an input of the the-

ory. More precisely, the author starts with a covariant action already involving a doubled

number of string coordinates on the torus, exhibiting the manifest GL(2D;Z) invariance

that, in turn, generates the O(D,D) symmetry when a self-duality constraint is imposed,

halving the degrees of freedom.

In this paper, a comparison between the two approaches will be carefully done and, in

particular, it will be shown that the constraint imposed by Hull is equivalent to the one of

Tseytlin for restoring the local Lorentz invariance. Furthermore, it will be explicitly shown

that introducing the Hull’s constraint in the covariant action, according to the procedure

introduced by Pasti, Sorokin and Tonin [16, 17] reproduces the non-covariant action (see

also refs. [7, 18]). The connection between the two formulations has already been noticed

in refs. [5, 18] in the case of one compact dimension and in the absence of the B-field. It is

here generalized for D compact dimensions and in the presence of a non-trivial background.

This result clearly shows that the two models are equivalent. Also for the covariant action,

a careful analysis of the quantization, initiated in refs. [19–23], is performed. Here, it is

carried out in the XR;L-frame where the Dirac quantization can be straightforwardly made

in the general case. The duality constraints satisfy the same algebra as the primary second

class constraints of the non-covariant model. Hence, Dirac brackets are introduced: these,

once replaced by commutators, lead for the Fourier modes of the fields XR;L to the same

commutation relations as the ones in the Tseytlin model. Finally, it is shown that the

quantization of the Hull covariant model is exactly the same as the Tseytlin non-covariant

model.

Manifestly T-duality invariant models were originally proposed in the framework of

closed string theories. However, suggestions on how to include open strings with D-

branes [5, 15] and superstrings have also been proposed [24–26]. In the same spirit, it

has been explored the possibility of canceling out the surface integrals generated from the

derivation of the equations of motion, by imposing open-string like boundary conditions.

These relate Xa and X̃a on the world-sheet boundaries. The analysis has been done in

the basis of the right and left coordinates and the boundary conditions imposed on these

quantities result to be the same as the ones usually imposed on the corresponding bosonic

string fields in the presence of a magnetic field [27].

The structure of this paper is the following.
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Section 2 is devoted to the non-covariant double string sigma-model first introduced by

Tseytlin. In particular, in subsection 2.1 the action and its symmetries will be described.

Explicit solutions of the equations of motion for the string coordinates are given. In

subsection 2.2 the analysis of the constraints will be performed in the presence of second-

class constraints leading to Dirac brackets. After that, quantization is discussed.

Section 3 is devoted to the covariant double string sigma-model introduced by Hull.

The relative action, its symmetries and its constraints will be analyzed and a demonstra-

tion of its equivalence with the non-covariant action is done. After the analysis of such

constrained system, its quantization will be faced.

In section 4, explicit open string solutions of the equations of motion for the string

coordinates are given, together with a more intuitive picture of what “dual field” could

mean in this case.

Three appendices complete this work. In appendix A, notations are fixed and useful

identities used in the text are summarized. In appendix B, details on solving the equations

of motion in both the approaches are given, together with some details on the quantization

procedure. In appendix C, the open string symmetry O(D) is examined.

2 The non-covariant double string sigma-model

2.1 Action and its symmetries

The aim of this section is to review the non-covariant T-duality symmetric formulation [11,

12] of the bosonic string theory.

The starting point is the following generalized sigma-model action:

S[eaα, χ
i] = −1

2

∫
Σ
d2ξ e Cabij (χ)∇aχi∇bχj (2.1)

where the coordinates on the two-dimensional manifold Σ are ξ0 ≡ τ, ξ1 ≡ σ. It is a

functional of the zweibein eaα(ξ), being a and α, respectively, the label for the flat and

the curved index, and of N two-dimensional scalar fields χi(ξ) which are vectors in an

N -dimensional target space M. Furthermore, ∇aχi = e αa ∂αχ
i and e = det [eaα].

The action (2.1) is meant to be generic, with the number of embedding coordinates χi

kept, at this level, unspecified. Indeed, the usual sigma-model action for strings propagating

in a background is obtained considering Cabij = T (ηabGij − εabBij) (ε01 = −ε10 = 1), being

T the string tension, Gij the metric tensor of the target space and Bij the antisymmetric

Kalb-Ramond field. In this case the scalar fields χi (i = 1, . . . , N) are the string coordinates

in M. The same action will be suitable, under certain conditions, to describe a “double

string” sigma-model with manifest T-duality, as we are going to show.

Let us consider the case in which the action (2.1) can be rewritten in a first order

form [12] independently of the value taken by the coefficients C00
ij that will be considered

vanishing since now on. One gets:

S = −1

2

∫
d2ξ e

[
Cij∇0χ

i∇1χ
j +Mij∇1χ

i∇1χ
j
]
, (2.2)

with Cij = C01
ij + C10

ji and Mij = Mji ≡ C11
ij .
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Rewriting Cij = C(ij) + C[ij] ≡ Cij +Hij yields to:

S = −1

2

∫
d2ξ e

[
Cij∇0χ

i∇1χ
j +

1

2
εabHij∇aχi∇bχj +Mij∇1χ

i∇1χ
j

]
. (2.3)

The action (2.3) exhibits the following local invariances:

• invariance under two-dimensional diffeomorphisms ξα → ξ′α(ξ) acting as

χ′i(ξ′α) = χi(ξα) and e′aα = eaβ
∂ξβ

∂ξ′α
; (2.4)

• invariance under Weyl transformations

eaα → λ(ξ)eaα , (2.5)

which leave the fields χi and the quantities e eαa e
β
b invariant.

Generally, when a vielbein is introduced, then one must ensure that the formalism is

invariant under local Lorentz transformations, so that physical observables are independent

of the arbitrary choice of the vielbein itself. In fact, as good as eaα would be

e′aα = Λab(ξ)e
b
α , (2.6)

with Λab(ξ) being an arbitrary ξ-dependent Lorentz SO(1, 1) matrix. This finite transfor-

mation on eaα induces the following infinitesimal one:

δeaα = ωab(ξ)e
b
α , (2.7)

with ωab = −ωba. In particular, the choice ωab(ξ) = α(ξ)εab will be here performed. The

action (2.3) is not manifestly invariant under such transformations, so the requirement of

on-shell local Lorentz invariance has to be made.

In order to study the variation of the action under local Lorentz transformations one

can neglect, in fact, the only term having such a symmetry, that is the one proportional to

Hij . This simplifies the action as follows:

S = −1

2

∫
d2ξ e

[
Cij∇0χ

i∇1χ
j +Mij∇1χ

i∇1χ
j
]
. (2.8)

It results that the variation of S under an infinitesimal local Lorentz transformation δeaα =

α(ξ)εabe
b
α is

δS

δeaα
δeaα = α(ξ)

δS

δeaα
εabe

b
α (2.9)

and can be expressed in terms of the ε-trace (t̂ ≡ εab t ba ) of the tensor t ba so defined:

t ba ≡
2

e

δS

δeaα
ebα. (2.10)
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The explicit expression for t ba can be straightforwardly computed from the action (2.8) and

it results to be:

t ba = −δba
[
Cij∇0χ

i∇1χ
j +Mij∇1χ

i∇1χ
j
]

+δb0Cij∇aχi∇1χ
j + δb1Cij∇0χ

i∇aχj + 2δb1Mij∇aχi∇1χ
j . (2.11)

The vanishing of the variation (2.9) is equivalent to the condition

εabtab = 0 . (2.12)

Furthermore, the Weyl invariance implies:

t aa = Trace [t ba ] = 0 (2.13)

since:

0 =
δS

δeaα
λeaα =

λ

2
et aa . (2.14)

One can easily see from eq. (2.11) that t00 = t11, as it must be since the theory is Weyl

invariant.

The equation of motion for eaα, δS/δeaα = 0, implies

t ba = 0 . (2.15)

This is similar to what happens in the usual formulation of string theory, where the equation

of motion for the world-sheet metric gαβ (δS/δgαβ = 0) determines the vanishing of the

energy-momentum tensor Tαβ ≡ − 2
T

1√
−g

δS
δgαβ

. Eq. (2.15) has to be imposed as an additional

constraint both at the classical and at the quantum level.

As previously shown, the requirement of local Lorentz invariance implies the vanishing

of the ε-trace of tab. Hence, on the solution of the equation of motion of the zweibein (2.15),

this condition is satisfied and the local Lorentz invariance is recovered. The invariances

under diffeomorphisms and Weyl transformations, together with this latter invariance that

holds on-shell, allow to choose the flat gauge eaα = δaα for the zweibein. The analogy with

the usual formulation of string theory is very strong. In that case the equation of motion

for the world-sheet metric, Tαβ = 0, play the role of constraints while the conformal gauge

in which gαβ = ηαβ plays the same role as the flat gauge.

The equation of motion for χi is now going to be considered in the case in which the

matrices C and M are constant. Details on the derivation of such equation are given in

appendix B. Here only the result is quoted:

∂α
[
e α

1 e(Cij∇0χ
j +Mij∇1χ

j)
]

= 0 (2.16)

with the following surface integrals:

−
∫ +∞

−∞
dτδχi e e 1

1

(
Cij∇0χ

j +Mij∇1χ
j
)∣∣∣∣σ=π

σ=0

+
1

2

∫ +∞

−∞
dτ Cij ∂0χ

jδχi
∣∣∣∣σ=π

σ=0

. (2.17)
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It is crucial, at this point, to observe that, with C and M constant, the action (2.8) has a

further local gauge symmetry under the following transformations:

χi → χ′i = χi + f i(τ, σ) , (2.18)

with the functions f i satisfying ∇1f
i = 0 and the same boundary conditions as the fields

χ and χ′. This shift symmetry leaves the equation of motion in (2.16) invariant. In fact,

it generates a vanishing extra term:

∂α
[
ee α

1 Cij∇0f
j
]

= ∂α
[
e eα0Cij∇1f

j
]

= 0 (2.19)

where the identity

e α0 e
β
1 − e

α
1 e

β
0 =

1

e
εαβ . (2.20)

has been used. In appendix B it is shown that the Lagrangian density is modified by a

total derivative when the transformation (2.18) acts on it. This symmetry constitutes a

relevant aspect of the action (2.8) since it will provide a gauge choice in which the equation

of motion becomes of first order.

In the flat gauge, eq. (2.16) reduces to:

∂1

[
Cij∂0χ

j +Mij∂1χ
j
]

= 0 (2.21)

from which one obtains:

Cij∂0χ
j +Mij∂1χ

j = gi(τ) , (2.22)

being gi(τ) an arbitrary τ -dependent function. In particular, the shift symmetry can be

here used to fix C ∂0f = g. As a result one has:

Cij∂0χ
j +Mij∂1χ

j = 0 (2.23)

and the boundary conditions, once the latter equation is used, reduce to:

1

2

∫ +∞

−∞
dτ Cij

[
∂0χ

jδχi
]∣∣∣∣σ=π

σ=0

. (2.24)

This term is vanishing when periodicity in σ is imposed on χi (as it happens for closed

strings) or, alternatively, when ∂0χ
i = 0 at σ = 0, π (as it happens for open strings with

Dirichlet conditions).

Eq. (2.23) in fact appears in the explicit expression of the ε-trace of tab. Indeed,

computing the ε-trace and imposing its vanishing yield to:

εabtab =
[
∇0χ

iCij +∇1χ
iMij

]
(C−1)jk

[
Ckl∇0χ

l +Mkl∇1χ
l
]

+ ∇1χ
i (C −MC−1M)ij∇1χ

j = 0 . (2.25)

Hence, in the flat gauge and along the solutions of the equations of motion for χi, eq. (2.25)

reduces to the following condition on the matrices C and M :

C = MC−1M. (2.26)

– 7 –



J
H
E
P
0
4
(
2
0
1
4
)
1
7
1

The matrix C can be always put, after suitably rotating and rescaling χi, in the

following diagonal form:

C = diag(1, · · · , 1,−1, · · · ,−1) , (2.27)

with p eigenvalues 1 and q eigenvalues −1. Being C = C−1, this implies that the property

in eq. (2.26) becomes the one defining the indefinite orthogonal group O(p, q) of N × N
matrices M with N = p + q (with p, q still undetermined at this level) in Rp,q with the

standard inner product given by:

C = MCM. (2.28)

With this identification of C and with χi = (χµ−, χ
ν
+), the action (2.8) can be rewritten as

follows:

S = −1

2

∫
d2ξ e

 p∑
µ=1

∇0χ
µ
−∇1χ

µ
− −

q∑
ν=1

∇0χ
ν
+∇1χ

ν
+ +Mij∇1χ

i∇1χ
j

 (2.29)

and it will be shown in a while that it can be interpreted, when a suitable frame is chosen,

as describing a system of interacting p two-dimensional antichiral scalar fields (χ̇− = −χ′−)

and q two-dimensional chiral scalar fields (χ̇+ = χ′+), according to the Floreanini-Jackiw

Lagrangians for two-dimensional chiral and antichiral scalars [28]:

L±(χ̇± , χ
′
±) = ±1

2
χ̇±χ

′
± −

1

2
χ′2±. (2.30)

Requiring the absence of a quantum Lorentz anomaly implies that p = q = D with 2D =

N [30, 31]. Consequently, the matrix C in eq. (2.26) becomes the O(D,D;R) invariant

metric in the 2D-dimensional target space M with coordinates χi:

ds2 = dχiCij dχ
j . (2.31)

In conclusion, it has been shown that the action (2.8) describes a mixture of D chiral scalars

χµ+ and D antichiral scalars χµ− (µ = 1, . . . , D), which can be regarded as the components

of the 2D-dimensional vector χi ≡ (χµ−, χ
µ
+), with i = 1, . . . , 2D.

In the action (2.29) the “non-chiral” basis of fields X i ≡ (Xµ, X̃µ) can be introduced,

with

Xµ ≡ 1√
2

(χµ+ + χµ−) ; X̃µ ≡
1√
2
δµν(χν+ − χν−), (2.32)

in which the matrix C becomes off-diagonal:

Cij = −Ωij ; Ωij =

(
0µν I νµ
Iµν 0µν

)
, (2.33)

with (Ω)ij = (Ω−1)ij . The condition (2.26) becomes the constraint M−1 = Ω−1MΩ−1 on

the symmetric matrix M that has D2 = D(D + 1)/2 +D(D − 1)/2 independent elements

– 8 –
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and, thus, it can be parametrized by a symmetric matrix G and an antisymmetric one B.

The expression for M , defined up to a sign, being the above constraint quadratic in it, is:

Mij = ±

(
(G−BG−1B)µν (BG−1) νµ

(−G−1B)µν (G−1)µν

)
. (2.34)

The matrix M is the so-called generalized metric [11, 12, 29, 34]. At the end of this

section, it will be observed that only the positive sign of M determines a positive definite

Hamiltonian. Hence, M is considered positive in eq. (2.34).

In the non-chiral basis the action (2.8) can be expressed as:

S =
1

2

∫
d2ξ e

[
Ωij∇0χ

i∇1χ
j −Mij∇1χ

i∇1χ
j
]
. (2.35)

It is invariant under the O(D,D) transformations:

χ′ = Rχ ; M ′ = R−tMR−1 ; RtΩR = Ω ; R ∈ O(D,D) (2.36)

showing that the background itself suitably transforms. One can immediately see that

the matrix Ω belongs to O(D,D) and, in particular, when Rij = Ωij , the action (2.35),

expressed in terms of Xµ and X̃µ

S =
1

2

∫
d2ξe

[
∇0X

µ∇1X̃µ +∇0X̃µ∇1X
µ − (G−BG−1B)µν∇1X

µ∇1X
ν

− (BG−1) νµ ∇1X
µ∇1X̃ν + (G−1B)µν∇1X̃µ∇1X

ν − (G−1)µν∇1X̃µ∇1X̃ν

]
(2.37)

exhibits what in string theory will become the more familiar T-duality invariance under

X ↔ X̃ with a consequent transformation of the generalized metric given by M ′ = M−1.

Hence, once can claim that the sigma-model action (2.8), even if non-covariant, is

the candidate to describe a bosonic string in the background constituted by G and B

compactified on a torus TD. It exhibits a manifest T-duality invariance O(D,D). So one

can introduce the string tension T that makes S dimensionless (in natural units) with the

fields χi interpreted as the string coordinates on the double torus T 2D:

S = −T
2

∫
d2ξ e

[
Cij∇0χ

i∇1χ
j +Mij∇1χ

i∇1χ
j
]
. (2.38)

The string tension T can be, as usual, expressed in terms of l, the fundamental length of

the theory, through the relation T = 1/(2πl2). It is to be observed here that eqs. (2.23)

and (2.26) can be recast in the following covariant form:

−εabCij∂bχj +Mij∂aχ
j = 0 . (2.39)

It will be shown in the following that the two equations in (2.39) coincide with the con-

straints imposed in the covariant formulation of the manifestly T-dual invariant bosonic

string theory. In this case, their role is to keep only the physical degrees of freedom.
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The double torus T 2D that is going to be considered now is defined by the identifica-

tion X ≡ X + 2πlL, being L = (w, lp) a vector spanning a Lorentzian lattice ΛD,D. In

components, the identification becomes:

Xµ(τ, σ + π) = Xµ(τ, σ) + 2π l wµ ; X̃µ(τ, σ + π) = X̃µ(τ, σ) + 2π l2 pµ. (2.40)

On the torus the previous symmetry O(D,D;R) is broken to its discrete subgroup

O(D,D;Z).

In order to reconduce the action (2.8) to a sum of Floreanini-Jackiw Lagrangians, it is

necessary to put the matrices C and M simultaneously in a block-diagonal form. This is

performed by the matrix

(T −1)ij =
1√
2

(
(G−1)µν (G−1)µν

(−EtG−1) νµ (EG−1) νµ

)
, (2.41)

where E ≡ G+B. In fact, the matrix T −1 transforms C and M respectively into

T −tCT −1 =

(
G−1 0

0 −G−1

)
≡ C−1 ; T −tMT −1 =

(
G−1 0

0 G−1

)
≡ G−1 (2.42)

and introduces new coordinates Φi = TijX j ≡ (XRµ, XLµ), in terms of which the R and

L sectors are completely decoupled also in the presence of the B-field. The matrix G−1 is

the generalized metric in the chiral coordinates system.

The matrix T is not an element of the group O(D,D) because it changes the metric

C in C−1. It has to be seen as leading to a field redefinition that makes the explicit

dependence on the B-field disappear in the action. An O(D,D) transformation leaves

invariant the metric C but, in general, transforms G−1 in a non-diagonal matrix, as shown

in appendix B. Hence, such matrix, after the action of the non-compact group, will exhibit

all the dependence on the fields G and B as any general symmetric O(D,D) matrix. The

transformations which leave invariant the two metrics G and C, and hence the action, belong

to the subgroup O(D)×O(D) of the original orthogonal group O(D,D).

In the flat gauge, previously introduced, the action becomes:

S ≡
∫
d2ξ[LR + LL] , (2.43)

with

1

T
LL;R ≡ ±

1

2
∂0X

t
L;RG

−1∂1XL;R −
1

2
∂1X

t
L;RG

−1∂1XL;R (2.44)

which is just the realization in the double string theory of the Floreanini-Jackiw La-

grangians (2.30) with a non-vanishing Kalb-Ramond field as background. Eq. (2.39) can

be rewritten in a more compact form in terms of the Hodge duals of dXR and dXL
1 as:

∗dXR = dXR ; ∗ dXL = −dXL . (2.45)

1The conventions used here for p-forms in a D-dimensional space-time with metric G having sig-

nature (−,+(D−1)) are the following: w(n) = 1
n
wµ1...µndx

µ1 ∧ · · · ∧ dxµn and ∗w(n) =

√
−detG

n!(D−n)!

εν1...νD−nµ1...µnw
µ1...µndxν1 ∧ · · · ∧ dxνn with ε01...(D−1) = 1.
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The next aim is to solve the self- and anti-self-dual conditions (2.45) with the boundary

conditions already given but rewritten in the new chiral basis. It is worth to observe here

that this corresponds to solve both the equations of motion for the string coordinates and

the constraint εabtab = 0, necessary to recover the local Lorentz invariance. Hence, along

the solution, only two conditions derive from the original constraints tab = 0.

The solution of the duality equations (2.45), with identifications on the torus now

rewritten as:

XRµ[τ − (σ + π)] = XRµ(τ − σ)− 2π l2 pRµ (2.46)

XLµ[τ + (σ + π)] = XLµ(τ + σ) + 2π l2 pLµ (2.47)

with (
−lpR
lpL

)
= T

(
w

lp

)
, (2.48)

is given by:

XR(τ − σ) = xR + 2 l2 pR(τ − σ) + il
∑
n6=0

αn
n
e−2in(τ−σ) (2.49)

XL(τ + σ) = xL + 2 l2 pL(τ + σ) + il
∑
n6=0

α̃n
n
e−2in(τ+σ) (2.50)

formally identical to the usual expansion of the right and left bosonic string coordinates.

The relation between (XR, XL) and (X, X̃) implies:

X(τ, σ) = x+ 2l2G−1
[
p−Bw

l

]
τ + 2lwσ (2.51)

+
il√
2
G−1

∑
n6=0

e−2inτ

n

[
αne

+2inσ + α̃ne
−2inσ

]
and

X̃(τ, σ) = x̃+ 2l2
[
BG−1p+ (G−BG−1B)

w

l

]
τ + 2l2pσ (2.52)

+
il√
2

∑
n 6=0

e−2inτ

n

[
−EtG−1αne

+2inσ + EG−1α̃ne
−2inσ

]
where x and x̃ are defined by:

x =
1√
2
G−1(xR + xL) ; x̃ =

1√
2

(−EtG−1xR + EG−1xL) (2.53)

and from eq. (2.48):

pR =
1√
2

[
p− Ew

l

]
; pL =

1√
2

[
p+ Et

w

l

]
. (2.54)

Reading p and w respectively as a momentum and a winding number, one can see that

these expressions are the same as the ones holding in the usual closed string compactified

on a torus.
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The Hamiltonian of this system turns out to be:

H =
T

2

∫ π

0
dσ ∂1Φt G−1 ∂1Φ . (2.55)

Having chosen for M the positive sign, H is positive definite.

It is convenient to introduce the world-sheet light-cone coordinates σ+ = τ + σ and

σ− = τ − σ. In terms of these ones, the components of the t-tensor turn out to be:

t++ = ∂+X
t
RG
−1∂+XR + ∂+X

t
LG
−1∂+XL − 2∂+X

t
LG
−1∂−XL

t−− = ∂−X
t
RG
−1∂−XR + ∂−X

t
LG
−1∂−XL − 2∂+X

t
RG
−1∂−XR

(2.56)

while the Weyl invariance imposes t+− = −t−+, with

t+− = −1

4
εabtab = ∂−X

t
LG
−1∂−XL − ∂+X

t
RG
−1∂+XR (2.57)

and ∂± = 1
2(∂0 ± ∂1). The quantity defined in (2.57) is of course vanishing on-shell, while

the other two quantites in (2.56) have to be seen as contraints to be imposed at the classical

and quantum level. On-shell they look like the contraints on T++ and T−− for the energy-

momentum tensor in the usual bosonic string theory leading to the Virasoro algebra.

2.2 Analysis of the constraints and quantization

The quantization of two-dimensional self- and anti-self-dual fields has been extensively

investigated in the literature [11, 12, 28, 32]. It is already known, for example, that

these systems are characterized by primary second class constraints which require the

introduction of Dirac brackets. The action in exam is the one in eq. (2.43). It describes

the dynamics of D chiral and D antichiral scalar fields.

Since the Lagrangians are linear in the time derivative of the fields, the conjugate

momenta

PR ≡
∂LR

∂(∂0Xt
R)

= −T
2
G−1∂1XR ; PL ≡

∂LL
∂(∂0Xt

L)
=
T

2
G−1∂1XL (2.58)

define the primary constraints of the theory:

ΨR(PR, XR) = PR +
T

2
G−1∂1XR ≈ 0 ; ΨL(PL, XL) = PL −

T

2
G−1∂1XL ≈ 0 . (2.59)

The classical dynamics of the system is studied by defining the Poisson brackets{
PR;L(τ, σ), Xt

R;L(τ, σ′)
}
PB

= I δ(σ − σ′) . (2.60)

According to the previous definition, the primary constraints satisfy the following equal

‘time’ algebra {
ΨR;L(τ, σ), Ψt

R;L(τ, σ′)
}
PB

= ∓TG−1δ′(σ − σ′) , (2.61)

with δ′(x) = ∂xδ(x) and the upper [lower] sign on the right hand side of the previous

identity refers to the label R [L] on the left of the same equation. The algebra in eq. (2.61)

implies that these primary constraints are second class.
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As it has been shown, further constraints hold in the theory, i.e. tab = 0. A rigorous

analysis of all the constraints requires the study of the complete algebra generated by all

of them.

By analogy with the standard procedure followed in string theory, the constraints are

evaluated here on the solution of the equation of motion for the fields XR;L. One of the

constraints, t+− ≈ 0, is already satisfied on it. The other constraints become:

ΨR = PR −
T

2
G−1∂−XR ≈ 0 ; ΨL = PL −

T

2
G−1∂+XL ≈ 0 (2.62)

and

t++ = ∂+X
t
LG
−1∂+XL ≈ 0

t−− = ∂−X
t
RG

−1∂−XR ≈ 0.
(2.63)

On the equations of motion, the algebra of the constraints reads:{
ΨR(τ, σ), t−−(τ, σ′)

}
PB

= δ′(σ − σ′)G−1∂−XR(τ − σ) ≈ 0 (2.64)

(with a similar expression for ΨL and t++). Here the last relation comes from the constraint

t−− ≈ 0.

As already stressed, according to the Dirac analysis, the presence of second class con-

straints leads to the introduction of the Dirac brackets. In appendix A their definition is

explicitly given. A straightforward computation leads to:{
XR;L(τ, σ), Xt

R;L(τ, σ′)
}
DB

= ∓G
T
ε(σ − σ′){

PR;L(τ, σ), Xt
R;L(τ, σ′)

}
DB

=
1

2
I δ(σ − σ′) (2.65){

PR;L(τ, σ), P tR;L(τ, σ′)
}
DB

= ±T
4
G−1δ′(σ − σ′)

where ε(σ − σ′) is the step function defined in appendix A.

It is also useful to give the equal time Dirac brackets of the original variables X and X̃:{
X(τ, σ), X̃t(τ, σ′)

}
DB

=
1

T
I ε(σ − σ′){

P (τ, σ), Xt(τ, σ′)
}
DB

=
{
P̃ (τ, σ), X̃t(τ, σ′)

}
DB

=
1

2
I δ(σ − σ′) (2.66){

P (τ, σ), P̃ t(τ, σ′)
}
DB

= −T
4
I δ′(σ − σ′)

being P and P̃ the conjugate momenta with respect to X and X̃.

The double world-sheet sigma-model is now quantized by replacing the Dirac brackets

with the corresponding commutator according to the well-known substitution:

{· , ·}DB → −i[· , ·] . (2.67)

The Dirac brackets of second class constraints with themselves and with any function

defined on the phase space are vanishing. At the quantum level, this means that they
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commute with any operator and therefore they can be considered as c-numbers [33] having

to be zero. Hence, at the quantum level, eqs. (2.59) are operator identities that can be

“strongly” put to zero. One can then write on-shell:

PR = TG−1

l2pR + l
∑
n6=0

e−2in(τ−σ)αn

 ; PL = TG−1

l2pL + l
∑
n6=0

e−2in(τ+σ)α̃n

 .
The Dirac brackets given in eqs. (2.65), via the usual substitution in eq. (2.67), determine

the following commutators for the Fourier modes:

[pR;L, x
t
R;L] = iG ; [αm, α

t
n] = mGδm+n ; [α̃m, α̃

t
n] = mGδm+n . (2.68)

Details about the previous identities are given in appendix B.

The constraints involving the Laurent expansions of the components t++ and t−− are:

t++ = ∂+X
t
LG
−1∂+XL ≡

4

πT

∑
n∈Z

L̃n e
−2in(τ+σ) = 0 (2.69)

t−− = ∂−X
t
RG

−1∂−XR ≡
4

πT

∑
n∈Z

Ln e
−2in(τ−σ) = 0 , (2.70)

where

L̃n =
T

4

∫ π

0
dσ e2inσ∂+X

t
LG
−1∂+XL =

1

2

∑
m∈Z

α̃tmG
−1 α̃n−m − aδn,0 (2.71)

Ln =
T

4

∫ π

0
dσe−2inσ∂−X

t
RG

−1∂−XR =
1

2

∑
m∈Z

αtmG
−1 αn−m − aδn,0 . (2.72)

Here, α̃0 ≡ lpL and α0 ≡ lpR have been defined and, by analogy with the usual Vira-

soro generators, a constant a has been added in the zero components of the Virasoro-like

generators in order to take into account the normal ordering ambiguity.

Finally, one observes that the following relation between the Hamiltonian and the

components of the t-tensor holds on-shell:

H

2
=
T

4

∫ π

0
dσ [t++ + t−−] = L̃0 + L0 . (2.73)

Again, it is the generalization, in this context, of the usual relation between the Hamiltonian

and the Virasoro generators.

In this section, similarities and differences between the ordinary bosonic string and

the double string theory have emerged out. Among the former, the most relevant are

given by the coincidence of eqs. (2.68) with the ones usually satisfied by the Fourier modes

of the string coordinates in bosonic string theory and by the fact that the Virasoro-like

generators, once expressed in terms of their Fourier modes, are formally identical to the

standard Virasoro generators. Hence, the quantum anomaly both in the sectors αµn and α̃µn
is vanishing with µ varying in 26 space-time dimensions. Of course, this critical dimension

is now equal to the sum of the number of the non-compact dimensions and of the D compact

dimensions of the torus TD.
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Furthermore, it is worth to observe here that the free double string theory has to be

considered as an extension of the usual bosonic string theory. Indeed, as already stressed

in the original paper by Tseytlin [12], in the free double string theory it is always possible

to integrate out the X̃ coordinate and, modulo boundary terms which have to be carefully

treated, one can always recover the action of the usual string theory. However, the main

difference between the two formulations, also in the free case, is the presence of the zero

mode x̃ of the dual coordinate X̃ which turns out to be completely independent on the

zero mode x of the field X. This feature allows to introduce two completely independent

and decoupled R and L sectors, when the B-field is in the background.

3 The covariant double string sigma-model

In this section, attention will be focused on the Lorentz and O(D,D;Z) manifestly invariant

formulation of the double string theory by Hull [15] and how it is related to the non-

covariant action proposed by Tseytlin [11, 12].

In the covariant approach, the starting point is the sigma-model defined by the coordi-

nates (Y (τ, σ), X (τ, σ)) mapping the string world-sheet in the target space. Locally, the

target space looks like R1,d−1⊗ T 2D where the coordinates Y ≡ (Y I) , I = 0, . . . , d− 1 are

associated with the non-compact space-time while the coordinates X ≡ (X i), i = 1, . . . , 2D,

through the identification given in eq. (2.40), describe the double torus. The world-sheet

action proposed in ref. [15] is

S = −T
4

∫
dX iMij(Y ) ∧ ∗dX j (3.1)

where M is a generalized metric.

The action, supplemented by the torus identifications given in eq. (2.40), is invariant

under the GL(2D;Z) group which is the manifest symmetry of the theory [15]. Since the

number of the coordinates on the torus has been doubled, a self-duality constraint that

could halve them has to be imposed:

∗Mij dX j = −Ωij dX j . (3.2)

Here Ω is the O(D,D) invariant metric defined in eq. (2.33). With this choice, the in-

variance of the theory reduces to the one under O(D,D;Z). Eq. (3.2) is identical to the

ε-trace constraint of the Tseytlin action necessary for restoring, in that case, the Lorentz

local invariance.

The energy-momentum tensor obtained from this action turns out to be:

Tαβ = − 4

T

1√
−g

δS

δgαβ
= ∂αχ

tM ∂βχ−
1

2
gαβ∂γχ

tM ∂γχ. (3.3)

It is traceless because of the Weyl invariance. The latter, together with the invariance under

reparametrizations of the world-sheet, is used to gauge-fix the two-dimensional metric so

that gαβ = ηαβ.
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The equations of motion for χ, clearly satisfied on the constraint surface, are:

d ∗ (Mdχ) = 0 (3.4)

with boundary conditions given by the surface integral:

−T
2

∫
dτ δX tM∂1X

∣∣∣∣σ=π

σ=0

(3.5)

vanishing if periodicity conditions, peculiar of closed strings, are imposed.

By proceeding in analogy with the non-covariant formulation, it is convenient to in-

troduce the right and left coordinates Φi = (XRµ, XLµ):

Φi = TijX j ; T =
1√
2

(
E −I
Et +I

)
. (3.6)

It has been already shown in eq. (2.42) how the matrix T acts on the generalized metric

and on the O(D,D) invariant one. According to those transformations, in this new system

of coordinates the matrix C−1 plays the role of the O(D,D) invariant metric and G−1 the

one of generalized metric.

The action (3.1), when rewritten in terms of these coordinates, becomes:

S = −T
4

∫
dΦt G−1 ∧ ∗dΦ . (3.7)

It is worth to observe that in this frame any dependence on the Kalb-Ramond field disap-

pears making the quantization of the theory quite simple and transparent.

The energy-momentum tensor can be equivalently written as:

Tαβ = ∂αΦtG−1∂βΦ− 1

2
ηαβ∂

γΦtG−1∂γΦ (3.8)

and the conjugate momentum is:

P ≡

(
PR(τ, σ)

PL(τ, σ)

)
=
T

2
G−1∂0Φ . (3.9)

The Hamiltonian turns out to be:

H =
T

4

∫ π

0
dσ
[
∂0ΦtG−1∂0Φ + ∂1ΦtG−1∂1Φ

]
. (3.10)

In the new basis the constraints become the “duality” conditions

2

T
ΨR ≡ dXR − ∗dXR = 0 ;

2

T
ΨL ≡ dXL + ∗dXL = 0 (3.11)

that generalize to this case the self-dual and anti-self dual constraints satisfied by the usual

string coordinates compactified on a torus. Eqs. (3.11) formally determine four conditions
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for the XR;L coordinates. However, only two of them are independent and they can be

written in the following form:

(ΨR;L)0 = ± (ΨR;L)1 ≡ T∂±XR;L = GPR;L ±
T

2
∂1XR;L = 0 (3.12)

where the definition of the conjugate momentum has been used. These constraints coincide

with the second-class ones in eq. (2.59) and so satisfy the algebra given in eq. (2.61),

behaving like second-class constraints.

The identities given in eq. (3.11) can be incorporated in the action,2 according to the

procedure defined in refs. [16, 17] (see also refs. [6, 18]). Following this procedure, the

self- and anti-self-dual conditions can be taken into account by introducing an auxiliary

one-form u and by writing

S = −T
4

∫
dΦt G−1 ∧ ∗dΦ +

1

T

∫
d2σ

1

u2
uα Ψt

α G−1 Ψβ u
β , (3.13)

being Ψ ≡ (ΨR , ΨL) and uα = ∂α a with a an auxiliary scalar field. The action (3.13) is

invariant under the following local transformations:

δa = ϕ ; δΦ =
2

T

ϕuαΨα

u2
. (3.14)

The symmetries of this action allow to choose the gauge uα = δ0
α [17] with u2 =

uαu
α = −1 and, in this gauge, the previous action coincides with the one written in

eq. (2.43) showing the equivalence between the constrained theory by Hull and the one by

Tseytlin. The proof of the equivalence completely fixes the relative overall coefficients of

the two actions.

The chosen gauge breaks the Lorentz invariance of the original action. However, there

exists a linear combination of Lorentz and gauge transformations, which preserves the

choice uα = δ0
α. This transformation is fixed by requiring δuα = vεαβδ0

β + ∂αϕ = 0, being

the first term an infinitesimal Lorentz transformation with constant parameter v and the

second one an infinitesimal gauge rotation. This equation implies ϕ = vσ. The Lorentz

transformations of the field Φ are now replaced by [17]:

δΦ = vξαε
αβ∂βΦ +

2vσ

T

uα Ψα

u2
. (3.15)

In the following discussion, instead of implementing constraints in the action, it will

be preferred to perform the Dirac analysis of the constrained systems.

It is convenient, in analogy with string theory, to introduce the world-sheet light-cone

coordinates σ± = τ ± σ. According to the standard rules of the tensor analysis, the

non-vanishing components of the energy-momentum tensor in these coordinates are:

T++ =
1

2
(T00 + T01) = ∂+ΦtG−1∂+Φ ; T−− =

1

2
(T00 − T01) = ∂−ΦtG−1∂−Φ , (3.16)

2One of the authors, F. P., is deeply grateful to Dmitri Sorokin for a very helpful discussion on this

topic.
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being, as usual, ∂± = 1
2(∂0 ± ∂1). It is also useful to express the components of the

energy-momentum tensor in terms of the “second class” constraints:

T++ =
1

T 2
Ψt
RG
−1ΨR + ∂+X

t
LG
−1∂+XL

T−− =
1

T 2
Ψt
LG
−1ΨL + ∂−X

t
RG
−1∂−XR.

(3.17)

It is easy to check that the left and right sectors commute by definition, while

{T±±, ΨR,L}PB = ∓ 2

T
δ′(σ − σ′)ΨR,L ≈ 0 (3.18)

where the “weak” identity to zero is meant on the surface of the constraints. Furthermore,

the following identity holds:{
∂∓XR;L(τ, σ), ΨR;L(τ, σ′)

}
= 0 . (3.19)

The Hamiltonian in these coordinates becomes

H =
T

2

∫ π

0
dσ

[
1

T 2
Ψt
RG
−1ΨR + ∂−X

t
RG
−1∂−XR

+
1

T 2
Ψt
LG
−1ΨL + ∂+X

t
LG
−1∂+XL

]
(3.20)

which has weakly vanishing Poisson brackets with the second class constraints.

Second class constraints are treated by the Dirac method of quantization [33]. This

is also been done in the approach followed in ref. [19] (see also [34]). Here, the analysis is

going to be extended to the general torus TD,D also with a B-field background. The Dirac

brackets between the canonical coordinates are:{
PR;L(τ, σ), Xt

R;L(τ, σ′)
}
DB

=
1

2
I δ(σ − σ′){

XR;L(τ, σ), Xt
R;L(τ, σ′)

}
DB

= ∓G
T
ε(σ − σ′) (3.21){

PR;L(τ, σ), P tR;L(τ, σ′)
}
DB

= ±T
4
G−1δ′(σ − σ′) .

The second class constraints can be now strongly imposed, yielding XR ≡ XR(σ−) and

XL ≡ XL(σ+). These identities, once solved with the closed string boundary conditions,

lead to the the Fourier expansions given in eqs. (2.49), (2.50).

The expression of the energy-momentum tensor on the surface constraint simplifies

becoming:

T++ = ∂+X
t
LG
−1∂+XL ; T−− = ∂−X

t
RG
−1∂−XR (3.22)

while the Hamiltonian reduces to

H =
T

2

∫ π

0
dσ
[
∂−X

t
RG
−1∂−XR + ∂+X

t
LG
−1∂+XL

]
. (3.23)
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Eq. (3.21) determines the following Dirac brackets for the coordinates Fourier modes:

{pR;L, x
t
R;L}DB = G ; {αm, αtn}DB = imGδm+n ; {α̃m, α̃tn}DB = imGδm+n , (3.24)

which again coincide with the Poisson brackets of the string modes in the bosonic string

theory.

For completeness, it is interesting to give also the Dirac brackets among the original

coordinates χ and their momenta. In this frame the conjugate momentum is given by

P = T tP and one has: {
P(τ, σ), χt(τ, σ′)

}
DB

=
1

2
I δ(σ − σ′){

χ(τ, σ), χt(τ, σ′)
}
DB

=
Ω−1

T
ε(σ − σ′) (3.25){

P(τ, σ), Pt(τ, σ′)
}
DB

= −T
4

Ω δ′(σ − σ′) .

The previous Dirac brackets are invariant under O(D,D;Z) transformations. This can be

easily seen by observing that P ′ = R−tP and reminding that χ′ = Rχ.

The quantization of this theory is exactly the same as the Tseytlin one. It is trivially

obtained by applying on eq. (3.24) the standard substitution given in eq. (2.67) which leads

again to the eq. (2.68).

4 Open string solutions

The analysis performed so far is based on the mode expansion given in eqs. (2.51), (2.52)

which solve the duality constraints in (2.45), (3.11) with the boundary conditions in

eq. (2.40). These are necessary to cancel out the surface integrals generated by the standard

procedure used for the derivation of equations of motion.

In order to explore the possibility to find open string like solutions of the duality

equations, it is useful to write explicitly the boundary terms. In the Tseytlin and Hull

models, they are respectively equal to[
−δXt

RG
−1 (∂0 + 2∂1)XR + δXLG

−1 (∂0 − 2∂1)XL

]∣∣σ=π

σ=0
= 0[

δXt
RG
−1∂1XR + δXt

LG
−1∂1XL

]∣∣σ=π

σ=0
= 0 .

(4.1)

By introducing the world-sheet light-cone coordinates σ± and after some simple algebra,

it is possible to write, on-shell, both the boundary terms in the following form:[
δXt

RG
−1∂−XR − δXt

LG
−1∂+XL

]∣∣σ=π

σ=0
= 0 . (4.2)

In the spirit of finding open string like solutions, boundary conditions relating the R and

L sectors have to be imposed. Indeed the following identification

∂−XR(τ − σ)|σ=π
σ=0 = ± ∂+XL(τ + σ)|σ=π

σ=0 (4.3)

fulfills eq. (4.2) since the expansions

δXR;L(τ ∓ σ)|σ=0,π = ∂∓XR;L|σ=0,π δτ (4.4)

also determine δXR(τ − σ)|σ=0,π = ±δXL(τ + σ)|σ=0,π.
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Eq. (4.3) is the usual left and right identification of an open string in a trivial back-

ground. However, this theory has a non trivial background made of constant fields G and B.

These latter are hidden in the definition of the XR;L coordinates. In order to make explicit

such a dependence, it is convenient to introduce the rotated coordinates XR;L = OR;LX̂R;L

satisfying the constraint ∂−X̂R

∣∣∣σ=π

σ=0
= ± ∂+X̂L

∣∣∣σ=π

σ=0
. One can easily see that eq. (4.2) is

satisfied through the use of these rotated coordinates, if the invertible matrices OR;L are

related by the identity: OtRG
−1OR = OtLG

−1OL. This latter condition, once introduced

the matrix ORO
−1
L ≡ R−t, becomes:

RtGR = G (4.5)

that, when rewritten in the flat system of coordinates by using the space-time vielbein, is

nothing but the definition of orthogonal group. After having introduced the matrix R, one

can write XR = R−tOLX̂R and XL = OL X̂L. R acts on the R-coordinates as an O(D)-

transformation leaving the action invariant. This symmetry can be fixed by performing

the following choice:

R = E−tE (4.6)

where E = G+B. With this choice, the connection with the standard formulation of the

bosonic string in the presence of a magnetic field is straightforward as one can see in a

while.

It is simple to see, with the help of the identity GE−tE = E E−tG, that the matrix

R satisfies the condition given in eq. (4.5). The boundary conditions for the coordinates

XL and XR become:

∂−XR|σ=π
σ=0 = ± R−t∂+XL

∣∣σ=π

σ=0
⇒ EtG−1 ∂−XR|σ=π

σ=0 = ± EG−1∂+XL

∣∣σ=π

σ=0
(4.7)

which are the standard ones satisfied by an open string in the presence of a Kalb-Ramond

field [27]. By using the definition of R and eq. (4.6), the matrices OR;L can be written in

the form

OL = EtA ; OR = E A (4.8)

being A ≡ (A)µν , at this level, a completely arbitrary matrix. This arbitrarity corresponds

to the residual symmetry allowed by gauge choice (4.6). On-shell (X̂R, X̂L) are determined

by the equations of motion and the boundary conditions. (XR, XL), instead, are still

arbitrary because of the ambiguity in the choice of A. In order to analyse this extra

symmetry, it is interesting to study the transformations induced on such coordinates by

changing A and keeping (X̂R, X̂L) fixed. In detail, by performing different choices for such

matrices, one can write:

XR;L = (G± B)A1X̂R;L ; X ′R;L = (G± B)A2X̂R;L . (4.9)

The latter equations determine the following transformation both on XR and XL:

XR;L = [(G± B)A1A
−1
2 (G± B)−1]X ′R;L (4.10)
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under which the string action has to be invariant, which happens if:

(A1A
−1
2 )t GopenA1A

−1
2 = Gopen . (4.11)

The quantity Gopen = EG−1Et = EtG−1E is the so-called open string metric [27]. By

writing eq. (4.11) alternatively for the peculiar cases (A1, A2) = (I, A2) and (A1, A2) =

(A1, I), one sees that the residual gauge symmetries are the ones that leave the open string

metric invariant.

Now that all the ingredients have been introduced, it is straightforward to solve the

equations of motion with the boundary conditions given in eq. (4.3). The solution with the

same boundary conditions at σ = 0 and σ = π, i.e.:

∂−X̂R

∣∣∣
σ=0

= ± ∂+X̂L

∣∣∣
σ=0

; ∂−X̂R

∣∣∣
σ=π

= ± ∂+X̂L

∣∣∣
σ=π

(4.12)

can be taken from ref. [27]. By writing XR = E X̂R and XL = EtX̂L (A = I) one has

X̂R = xR +
l2√
2
G−1

openp(τ − σ) + i
l√
2

∑
n6=0

αn
n
e−in(τ−σ) (4.13)

X̂L = xL ±
l2√
2
G−1

openp(τ + σ)± i l√
2

∑
n6=0

αn
n
e−in(τ+σ) . (4.14)

For mixed boundary conditions

∂−X̂R

∣∣∣
σ=0

= ± ∂+X̂L

∣∣∣
σ=0

; ∂−X̂R

∣∣∣
σ=π

= ∓ ∂+X̂L

∣∣∣
σ=π

(4.15)

one instead obtains:

X̂R = x+ i
l√
2

∑
r∈Z+ 1

2

αr
r
e−ir(τ−σ) , (4.16)

X̂L = x± i l√
2

∑
r∈Z+ 1

2

αr
r
e−ir(τ+σ) . (4.17)

The mode expansion of the starting (X, X̃) coordinates are given by:

X =
1√
2

(
G−1EX̂R +G−1EtX̂L

)
; X̃ =

1√
2

(
EG−1EX̂R − EtG−1EtX̂L

)
. (4.18)

The expression of X given in the first identity of eq. (4.18) coincides with the standard

open string expansion in the presence of a Kalb-Ramond field [27]. The second identity

in the same equation is its dual expression. In order to have a more intuitive picture of

what “dual field” means in this context, it is enlightening to consider the case B = 0 as an

example. When B = 0 then (XR, XL) = (GX̂R, G X̂L), and the mode expansions of the

X and X̃-fields simplify being equal to:

X = x+
l2

4
G−1p[τ − σ ± (τ + σ)] + i

l

2

∑
n 6=0

e−inτ
αn
n

(
einσ ± e−inσ

)
(4.19)

X̃ = x̃+
l2

4
p[τ − σ ∓ (τ + σ)] + i

l

2

∑
n 6=0

e−inτ
αn
n

(
einσ ∓ e−inσ

)
(4.20)
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with x = (xR + xL)/
√

2 and x̃ = G (xR − xL)/
√

2. The expression given in eq. (4.19),

taken with the upper sign, in the following denoted by X(+), is the usual mode expansion

of the string coordinates having NN-boundary conditions while the expression with the

lower sign, i.e. X(−), corresponds to open strings with DD-boundary conditions. For the

X̃, given in eq. (4.20), this correspondence is inverted. In particular, by denoting again by

X̃(±) the two expressions associated respectively with the upper and lower choice of the

signs in eq. (4.19), one finds the suggestive identity:

X(+) = G−1X̃(−) ; X(−) = G−1X̃(+) . (4.21)

These are the expected relations for T-dual coordinates in absence of the Kalb-Ramond

B-field.

The quantization of this system is not straightforward because now the XR and XL

fields are not any more independent, for this reason its study is postponed in a forthcoming

publication.
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A Notations and useful identities

It is useful to summarize the notation adopted for the indices. Two-dimensional flat indices

are denoted by a, b, . . . ; the corresponding curved ones are denoted by the Greek letters

α, β, . . . . The indices used for labelling the 2D compact dimensions are i, j, . . . , while the

ones adopted for the D compact directions are µ, ν, . . . .

The Fourier expansion of the Dirac delta function is:∑
n∈Z

e2inσ = 2πδ(2σ) = πδ(σ) , σ ∈ [0, π] . (A.1)

It is connected with the Heaviside θ-function by the identity:

ε(σ) ≡ 1

2
[θ(σ)− θ(−σ)] =

1

2

∫ σ

−σ
dt δ(t) =

2σ

2π
− i

2π

∑
n6=0

1

n
e2inσ . (A.2)

The above equation implies that ∂σε(σ) = δ(σ).
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The following notation for the Poisson brackets at equal τ , introduced for the first time

in eq. (2.60), has been used:{
PR;L(σ), Xt

R;L(σ′)
}
PB
≡

{
P 1
R;L(σ), XR;L 1(σ′)

} {
P 1
R;L(σ), XR;L 2(σ′)

}
. . .

{
P 1
R;L(σ), XR;LD(σ′)

}{
P 2
R;L(σ), XR;L 1(σ′)

} {
P 2
R;L(σ), XR;L 2(σ′)

}
. . .

{
P 2
R;L(σ), XR;LD(σ′)

}
...

...
. . .

...{
PDR;L(σ), XR;L 1(σ′)

} {
PDR;L(σ), XR;L 2(σ′)

}
. . .

{
PDR;L(σ), XR;LD(σ′)

}

 .

The Dirac brackets for the right sector are defined as:

{· , ·}DB = {· , ·}PB −
∫
dσ dσ′

{
· ,Ψt

R

}
PB

[{
ΨR,Ψ

′t
R

}
PB

]−1 {
Ψ
′
R, ·
}
PB

= {· , ·}PB −
∫
dσ dσ′

{
· ,Ψt

R

}
PB

[
−G
T
ε(σ − σ′)

] {
Ψ
′
R, ·
}
PB

, (A.3)

(where ΨR ≡ ΨR(τ, σ) and Ψ′R ≡ ΨR(τ, σ′)) with a similar expression for the left sector.

In the latter equation the derivative of the Dirac δ-function, which was in
{

ΨR,Ψ
′t
R

}
PB

,

has been subsituted by the step function ε(σ − σ′). This is possible due to the following

integral identity: ∫
dσ̃[∂σδ(σ − σ̃)]ε(σ̃ − σ′) = ∂σε(σ − σ′) = δ(σ − σ′) . (A.4)

It shows that the ε-function is the “inverse” of ∂σδ(σ) .

B Equations of motion, symmetries and quantization

In the Tseytlin double sigma model, the equations of motion for the fields χi are obtained

from the variation of the action given in eq. (2.8):

δS = −
∫
d2ξ ∂α

[
e e α

1 δχt (C∇0χ+M∇1χ)
]
− 1

2

∫
d2ξ ∂α

(
εαβδχtC ∂βχ

)
+

∫
d2ξ δχt {∂α [e e α

1 (C∇0χ+M∇1χ)]} . (B.1)

Here, ∇a is a linear combination of covariant derivatives (∇a ≡ e α
a ∇α), and∇α, acting on a

world-sheet scalar, can be equivalently thought as the two-dimensional covariant derivative

or the usual partial one.

The first two integrals in eq. (B.1) give the following boundary terms:

δSboundary = −
∫
dτ

{
δχt

[
e e 1

1 (C∇0χ+M∇1χ)− 1

2
C ∂0χ

]}∣∣∣∣σ=π

σ=0

, (B.2)

while the last one in eq. (B.1) gives the equation of motion:

∂α [e e α
1 (C∇0χ+M∇1χ)] = 0 . (B.3)
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If one performs the following shift in the fields

χ(ξα)→ χ′(ξα) ≡ χ(ξα) + f(ξα) , with ∇1f = 0 (B.4)

the action (2.8) acquires a boundary term

S → S′ ≡ S − 1

2

∫
d2ξεαβ∂αf

tC∂βχ (B.5)

In the flat gauge, where eaα = δaα, one has: f ≡ f(τ).

The equations of motion obtained from this modified action are unchanged while the

boundary terms get modified:

δSboundary → δS′boundary ≡ δSboundary −
1

2

∫
dτ
[
δχtC ∂0f

]∣∣∣∣σ=π

σ=0

. (B.6)

In the double closed string theory, by assuming that the function f satisfy the same periodic

identification f(τ, σ+π) ≡ f(τ, σ) as the function χ, the last term in eq. (B.6) vanishes, so

proving the invariance of both the equations of motion and the boundary terms under the

shift symmetry showed in eq. (B.4). The fields χ′, χ and, for consistency, also the function

f , satisfy the same boundary conditions. This remark justifies the periodic identification

imposed on the vector function f and allows to cancel the boundary term also when open

string like boundary conditions are imposed.

The components of the tensor t ba can be easily read from the action (2.8):

t 0
0 = −Mij∇1χ

i∇1χ
j ; t 1

1 = Mij∇1χ
i∇1χ

j

t 1
0 = Cij∇0χ

i∇0χ
j + 2Mij∇0χ

i∇1χ
j ; t 0

1 = Cij∇1χ
i∇1χ

j (B.7)

In the light-cone gauge they become

t++ =
1

2
t00 +

1

4
(t01 + t10) ; t−− =

1

2
t00 −

1

4
(t01 + t10)

t+− = −t−+ = −1

4
(t01 − t10) = −1

4
εabtab . (B.8)

It can be useful to show that the mode expansions given in eqs. (2.51) and (2.52),

with the parentheses defined in eq. (3.24), satisfy the Dirac brackets written in eqs. (2.65)

or (3.21):

{
XR;Lµ(τ, σ), XR;Lν(τ, σ′)

}
DB

= ∓2 l2Gµν

(σ − σ′)− i

2

∑
n6=0

1

n
e2in(σ−σ′)


= ∓2π l2Gµνε(σ − σ′){

PµR;L(τ, σ), XR;Lν(τ, σ′)
}
DB

= δµνT l
2
∑
n∈Z

e2in(σ−σ′) =
1

2
δ(σ − σ′){

PµR;L(τ, σ), P νR:L(τ, σ′)
}
DB

= ±T 2 l2Gµν i
∑
n6=0

n e2in(σ−σ′)

= ±Gµν T
4
δ′(σ − σ′) (B.9)
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being, for the Tseytin’s action given in section 2, PR;L = ∓T
2G
−1 ∂1XR;L while for the Hull’s

one given in section 3, the expression of the conjugate momenta is PR;L = T
2G
−1 ∂0XR;L.

In both cases one can write:

PR = T l G−1
∑
n∈Z

αne
−2in(τ−σ) ; PL = T l G−1

∑
n∈Z

α̃ne
−2in(τ+σ) (B.10)

with α0 = l pR, α̃0 = lpL and T = 1/(2π l2).

The action of the O(D,D) group on the coordinates Φ introduced in section 2, is better

understood through the target space vielbein, defined by Gµν = E a
µ δabE

b
ν . The O(D,D)

metric is now written as:

C =

(
E a
µ 0

0 E a
µ

)(
δab 0

0 −δab

)(
E b
ν 0

0 E b
ν

)
≡ E C Et , (B.11)

being C the matrix defined in eq. (2.27). A matrix R, belonging to the non-compact

orthogonal group, acts on the coordinates Φ̃ = E−1Φ as Φ̃′ = R Φ̃ and leaves C invariant,

i.e. R−1CR−t = C. The matrix G in the flat system of coordinates becomes, instead, the

identity matrix:

G =

(
E a
µ 0

0 E a
µ

)(
δab 0

0 δab

)(
E b
ν 0

0 E b
ν

)
. (B.12)

It is not invariant under an O(D,D) transformation. In other words, the matrix G is no

longer of the form given in eq. (2.42) after the action of an element of such non-compact

group.

The Dirac brackets can be expressed in a more simplified notation by introducing the

vector Φ = (XR, XL) and P = (PR, PL):{
Φ(τ, σ), Φt(τ, σ′)

}
=

1

T
C ε(σ − σ′){

P(τ, σ), Φt(τ, σ′)
}

=
1

2
I δ(σ − σ′) (B.13){

P(τ, σ), Pt(τ, σ′)
}

=
T

4
C−1 δ′(σ − σ′) .

It is also useful to rewrite these brackets in terms of the original variables X and P. This is

obtained by writing the conjugate momenta in the Tseytlin and Hull theories in the chiral

basis and transforming them in the original basis where the coordinates are X and X̃. In

detail, the conjugate momenta are, respectively:

P =
T

2
C−1 ∂1Φ ; P = −T

2
G−1 ∂0Φ . (B.14)

By using the identity Φ = T X , where T is the matrix whose inverse is defined in eq. (2.41),

and the identities written in eq. (2.42), one has in both the theories:

P = T t P =
T

2
Ω ∂1X ; P = T t P =

T

2
M ∂0X . (B.15)
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The previous identities allow to write:

T −1
{

Φ(τ, σ), Φt(τ, σ′)
}
T −t =

{
X (τ, σ), X t(τ, σ′)

}
=
ε(σ − σ′)

T
T −1 C T −t =

ε(σ − σ′)
T

Ω−1 (B.16)

which is the first Dirac brackets written in eq. (2.65). The other parentheses given in the

same equation are similarly obtained.

C Open strings and the O(D) symmetry

In this appendix the role of the O(D) symmetry discussed in section 4 is examined from a

different point of view. In particular it is shown that the solution of the equations of motion

with boundary conditions written in eq. (4.3) and the ones obtained by imposing the left

and right identification written in eq. (4.7) are related by the O(D) matrix Rt = EtE−1.

The boundary conditions shown in eq. (4.3) do not exhibit any dependence on the

B-field. As a consequence, the solutions of the duality equations with such boundary

conditions are:

X ′R = qR +
l2√
2
q(τ − σ) + i

l√
2

∑
n6=0

an
n
e−in(τ−σ)

X ′L = qL ±
l2√
2
q(τ + σ)± i l√

2

∑
n6=0

an
n
e−in(τ+σ) .

(C.1)

On the other hand, the solution of the duality equations with boundary conditions written

in eq. (4.7) are (A = I):

XR = ExR +
l2√
2
E G−1

open p(τ − σ) + i
l√
2

∑
n6=0

E αn
n

e−in(τ−σ)

XL = Et xL ±
l2√
2
Et G−1

open p(τ + σ)± i l√
2

∑
n 6=0

Et αn
n

e−in(τ+σ) .

(C.2)

The solutions given in eqs. (C.1) and (C.2) have to be related because eq. (4.3) is obtained

from eq. (4.7) by taking R = I.
The simplest connection between the two solutions is obtained by identifyingXR = X ′R.

This latter condition determines the following relations among the Fourier modes, qR =

E xR, q = E G−1 pR end an = E αn. These latter relations once used in the expression of

XL gives:

XL = EtE−1X ′L =⇒ XL = RtX ′L (C.3)

where it has been set qL = E xL by analogy with the right coordinates. From the previous

expression one sees that the fields L are related by the matrix Rt and this property is in

agreement with the general symmetry arguments introduced in section 4.
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[14] D. Andriot, M. Larfors, D. Lüst and P. Patalong, (Non-)commutative closed string on T-dual

toroidal backgrounds, JHEP 06 (2013) 021 [arXiv:1211.6437] [INSPIRE].

[15] C.M. Hull, A Geometry for non-geometric string backgrounds, JHEP 10 (2005) 065

[hep-th/0406102] [INSPIRE].

[16] P. Pasti, D.P. Sorokin and M. Tonin, On Lorentz invariant actions for chiral p forms, Phys.

Rev. D 55 (1997) 6292 [hep-th/9611100] [INSPIRE].

[17] P. Pasti, D.P. Sorokin and M. Tonin, Space-time symmetries in duality symmetric models,

Leuven Notes in Math. and Theor. Phys. 6 167 [hep-th/9509052] [INSPIRE].

[18] S. Groot Nibbelink, F. Kurz and P. Patalong, Renormalization of a Lorentz invariant

doubled worldsheet theory, arXiv:1308.4418 [INSPIRE].

– 27 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1142/S0217751X13300111
http://dx.doi.org/10.1142/S0217751X13300111
http://arxiv.org/abs/1302.1719
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.1719
http://dx.doi.org/10.1088/1126-6708/2009/09/099
http://arxiv.org/abs/0904.4664
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4664
http://dx.doi.org/10.1007/JHEP07(2010)016
http://arxiv.org/abs/1003.5027
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.5027
http://dx.doi.org/10.1002/prop.201300024
http://arxiv.org/abs/1309.2977
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.2977
http://arxiv.org/abs/1306.2643
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2643
http://dx.doi.org/10.1103/PhysRevD.87.041902
http://dx.doi.org/10.1103/PhysRevD.87.041902
http://arxiv.org/abs/1207.6110
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.6110
http://dx.doi.org/10.1016/j.nuclphysb.2007.09.021
http://arxiv.org/abs/0708.2267
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.2267
http://dx.doi.org/10.1016/j.physletb.2008.03.012
http://arxiv.org/abs/0712.1121
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.1121
http://dx.doi.org/10.1088/0264-9381/30/16/163001
http://dx.doi.org/10.1088/0264-9381/30/16/163001
http://arxiv.org/abs/1305.1907
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1907
http://dx.doi.org/10.1016/0550-3213(84)90453-X
http://dx.doi.org/10.1016/0550-3213(84)90453-X
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B238,307
http://dx.doi.org/10.1016/0370-2693(90)91454-J
http://dx.doi.org/10.1016/0370-2693(90)91454-J
http://inspirehep.net/search?p=find+J+Phys.Lett.,B242,163
http://dx.doi.org/10.1016/0550-3213(91)90266-Z
http://dx.doi.org/10.1016/0550-3213(91)90266-Z
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B350,395
http://dx.doi.org/10.1007/JHEP12(2010)084
http://dx.doi.org/10.1007/JHEP12(2010)084
http://arxiv.org/abs/1010.1361
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1361
http://dx.doi.org/10.1007/JHEP06(2013)021
http://arxiv.org/abs/1211.6437
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.6437
http://dx.doi.org/10.1088/1126-6708/2005/10/065
http://arxiv.org/abs/hep-th/0406102
http://inspirehep.net/search?p=find+J+JHEP,0510,065
http://dx.doi.org/10.1103/PhysRevD.55.6292
http://dx.doi.org/10.1103/PhysRevD.55.6292
http://arxiv.org/abs/hep-th/9611100
http://inspirehep.net/search?p=find+J+Phys.Rev.,D55,6292
http://arxiv.org/abs/hep-th/9509052
http://inspirehep.net/search?p=find+EPRINT+hep-th/9509052
http://arxiv.org/abs/1308.4418
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4418


J
H
E
P
0
4
(
2
0
1
4
)
1
7
1

[19] E. Hackett-Jones and G. Moutsopoulos, Quantum mechanics of the doubled torus, JHEP 10

(2006) 062 [hep-th/0605114] [INSPIRE].

[20] D.S. Berman and N.B. Copland, The String partition function in Hull’s doubled formalism,

Phys. Lett. B 649 (2007) 325 [hep-th/0701080] [INSPIRE].

[21] N.B. Copland, A Double σ-model for Double Field Theory, JHEP 04 (2012) 044

[arXiv:1111.1828] [INSPIRE].

[22] N.B. Copland, Connecting T-duality invariant theories, Nucl. Phys. B 854 (2012) 575

[arXiv:1106.1888] [INSPIRE].

[23] O. Hohm, W. Siegel and B. Zwiebach, Doubled α′-geometry, JHEP 02 (2014) 065

[arXiv:1306.2970] [INSPIRE].
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