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1 Introduction

Since the theorem of CPT is general under the assumption of the Lorentz invariance and

causality1 it will be true in a world with a higher number of dimensions than the empirical

(3+1), independent of the details of the way the extra dimensional space is realized in such

a “Kaluza Klein theory” as long as the assumption of the Lorentz invariance and causal-

ity is valid. Under these conditions the CPT symmetry is the symmetry of the system

whatever are the extra dimensional space details.

The concept of what the other symmetries C , P and T separately mean is in effective

theories somewhat a matter of definition partly arranged so as to make them conserved if

possible. A theory, which would in the low energy regime explain all the observed phenom-

ena, are expected, however, to have the concept of the discrete symmetries well understood.

The main questions to be discussed in this article are:

• The definition of the discrete symmetries to be discrete symmetries in the higher di-

mensional space-time of the Kaluza Klein type, we shall denote these symmetries by

CH, PH and TH, which means that we require extension of the so far defined discrete

symmetries.

1The conservation of the product of all three symmetries CPT is discussed in the refs. [1–5].
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• The definition of the discrete symmetries in the (3 + 1) dimensions after letting a

series or rather a group of Killing transformations to manifest the corresponding

Noether’s charges in (3 + 1), we shall denote these symmetries by CN , PN and TN ,

which means that we analyse the type of symmetries in the extra dimensional space

leading to observed symmetries in (3 + 1).

There are two special examples of spaces with extra dimensions to the observed (3+1)

on which we discuss the here proposed discrete symmetries:

I. The space ofM5+1 which breaks intoM3+1×M2 withM2 which due to the zweibein

compactifies in an almost S2.2 Both, spin connections and vielbeins, have the ro-

tational invariance around the axes perpendicular to the M2 surface, manifesting

correspondingly the U(1) charge in d = (3 + 1).

II. The space ofM13+1 which breaks intoM3+1× the rest,3 manifesting again rotational

symmetries responsible for the charges in d = (3+1), required by the standard model.

There are vielbein and spin connection fields in d > 4 which manifest in d = (3+1) as

the corresponding gauge vector (and scalar [15–30]) fields after the compactification.

In the Kaluza-Klein kind4 of theories [31–39] total angular moments in higher dimen-

sions (d > (3+1)) manifest as charges in (3+1) and the corresponding spin connections and

vielbeins as the gauge fields [35–37, 40]. In the low energy regime there are indeed the spin

degrees of freedom5 which manifest as the conserved Kaluza-Klein charges [6–12, 27–29].

There are several papers [41–53] discussing discrete symmetries in higher dimensional

spaces in several contexts. Authors discuss mostly only the parity symmetry, some of

them the charge conjugation and very rare all the three symmetries. All discussions on

discrete symmetries concern particular models. We are proposing the definition of the

2We showed in the refs. [6–14] that in such an almost compactified space the appropriately chosen spin

connections guarantees that (2
d−2
2

−1 = 2 families of) only (either) left (or right) handed spinors keep

masslessness while being coupled with the Kaluza-Klein U(1) charge to the corresponding gauge fields.
3First the manifold M13+1 breaks into M7+1× M6, M6 manifesting the Kaluza-Klein charges of

SU(3)×U(1), with (eight families of) massless spinors, and then further to M3+1× M4× M6, manifesting

the symmetry of SO(3, 1)× SU(2)× SU(2) × U(1) ×SU(3). Further breaks bring masses to eight fami-

lies [15–30] of spinors. These further breaks could go similarly as it does in some theories with the sigma

model action [31, 32]. These studies are in progress.
4With the Kaluza-Klein type of theories we mean the theories in which fermions carry only spins,

and (may be) family quantum numbers, as internal degrees of freedom and interact correspondingly only

through spin connections and vielbeins [12, 15].
5The lowest energy state in any bound system is (almost always) the state with orbital excitation equal

to zero. Like it is the 1s state of the hydrogen atom. A state which has no orbital or radial excitation

when M (d−1)+1 breaks into M3+1× the rest could manifest the subgroups of the spin degrees of freedom

in higher dimension as charges in (3 + 1). As an example let us cite a toy model [6–14], where the rest is

the infinite disc curled into an almost S2. The lowest energy state, which appears to be massless, has the

orbital angular momentum equal to zero, so that it is the spin in d = (5, 6), which manifests as the charge

in the Kaluza-Klein sense. For all the other states, which are massive, there are subgroups of the total

angular moments in higher dimensional space which determine the Kaluza-Klein charges in d = (3 + 1).
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discrete symmetries for the Kaluza-Klein kind of theories in even dimensional spaces.6

This definition leads after compactification of space-time into the (so far) observed (3+1)-

dimensional space to the measured properties of particles and anti-particles.

Extending the prescription of the discrete symmetries from d = (3 + 1) to any d

(eq. (2.1), (2.6), section 2), the anti-particle to a chosen particle would have in the sec-

ond quantized theory all the components of spin, or total angular momentum (except the

S03 component which is involved in the boost and does not contribute to the spin compo-

nent; in quantum mechanics time is a parameter), the same as the starting particle, which

means that it would have all the charges the same as the corresponding particle. This would

be in contradiction with what we observe, namely that the anti-particle to a chosen particle

has opposite charges.

In this paper, section 3, we modify the d-dimensional discrete symmetries, for example

the charge conjugation operator CH (eq. (2.1)) as it would follow from the (3 + 1) case

by analogy, so that they work effectively in the (3 + 1) dimensional theory. As we shall

see below, the connection between the effective three dimensional ones (eqs. (3.1), (3.4)),

CN , TN and P(d−1)
N , and the d-dimensional ones (eq. (2.3), (2.6)), CH, TH and P(d−1)

H ,

is a multiplication with products of representatives of the Lorentz group corresponding to

reflections and a parity operator in higher dimensions. Our notation is that we put index H
on discrete symmetries P(d−1)

H , TH, and CH for the whole space, i.e. d dimensions, while we

use N for the effective discrete symmetries in only our (3+1) dimensions. We define three

kinds of the charge conjugation operator: C(H,N ), C(H,N ), and C(H,N ). The first one oper-

ates on the single particle state, put on the top of the Dirac sea, transforming the positive

energy state into the corresponding negative energy state (eqs. (2.1), (3.1)). The second

one does the job of the first one emptying [15] (eqs. (2.5), (2.8), (3.1), (3.4)) in addition the

negative energy state, creating correspondingly a hole, which manifests as a positive energy

anti-particle state, put on the top of the Dirac sea. (The corresponding single anti-particle

state must also solve the equations of motion as the starting particle state does, although

we must understand it as a hole in the Dirac sea in the context of the Fock space). The third

one eqs. (2.5), (3.1) is the operator, operating on the second quantized state (eq. (2.3)).

Discrete symmetries presented in this paper commute with the family quantum num-

bers — the family groups defining the equivalent representations with respect to the spin

and correspondingly to all the charge groups have no influence on the here presented dis-

crete symmetries.7

Although we illustrate our proposed discrete symmetries in two special cases (sec-

6We demonstrate in the refs. [6–14] that the masslessness of fermions can be guaranteed only in even

dimensional spaces.
7This paper is initiated by the theory, proposed by one of us (S.N.M.B) [15–30], and named the

spin-charge-family theory. This theory, which is offering the mechanism for generating families, predicts

consequently the number of observable families at low energies. It also predicts several scalar fields which

at low energies manifest as the Higgs and Yukawa couplings of the standard model. The spin in higher

dimensions manifests as the observed charges in d = (3+1), as in all the Kaluza-Klein kind of theories. The

generators of the groups, determining families in this theory, commute with the total angular momentum

in all dimensions. Both authors have published together several papers, proving that in non-compact

spaces the break of the starting symmetry in d > 4 might allow massless fermions after the break [11–14]

for all the Kaluza-Klein theories.
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tions 2.1, 3.1, 3.2, 4), in which fermions, section 3.2, interact in the Kaluza-Klein way with

the vielbein and spin connection fields, the proposed redefinition of the discrete symmetries,

marked by index N , is expected to be quite general, offering experimentally observed prop-

erties of anti-particles in d = (3 + 1) for the Kaluza-Klein kind of theories, helping also to

define the discrete symmetries in d = (3+1) in other cases with higher dimensional spaces.

We allow, in general, curling up extra dimensions by various bosonic background fields

(metric tensors, magnetic fields, . . . in extra dimensions) as far as the equations of mo-

tion determining properties of fermions in extra dimensions keep the proposed discrete

symmetries conserved.

We assumed that there are a few fixed points symmetries and particular rotational

symmetries around these fixed points in higher than d = (3+1) and that there are a series

of Cartan subalgebra symmetries around fixed points. Various subgroups of the rotations

around (a) fixed point(s) are the “Killing forms” manifesting charges in the (3+1) effective

theory. (The example of compactified two extra dimensions on an almost S2-sphere with

a Killing form transformation being a rotation of the sphere illustrates that typically there

shall be two fixed points. But if we had for instance an infinite extra dimensional space,

only one fixed point is also possible.)

Having such one or more fixed points attached to the “Killing forms” of the charges

makes it very attractive and natural to assume parity symmetry under point inversions in

the fixed point(s) (the parity operation should at the same time be inversion in both fixed

points, if, say, there are two). Combining such a suggestively imposed parity inversion in

the extra dimensions with the parity operation in (3 + 1) would lead to parity operation

P(d−1)
H (eq. (2.6)) in all the (d− 1) spatial dimensions.

Our effective parity, P(d−1)
N , eqs. (3.1), (3.4), proposal does, however, not contain any

transformation of the extra dimensional coordinates and just got the contribution of the

γa matrices adjusted so that the extra dimensional gamma matrices γ5, γ6, . . . , γd−1,γd

commute with P(d−1)
N . This means that this operation is quite insensitive to the extra

dimensions in such a way that it is not important if the extra dimensional space obeys any

parity like symmetry.

We pay attention on spaces with even d.8

We do not discuss the way how does an (almost) compactification happen in our here

discussed two particular cases. In the ref. [11–14] we propose vielbein and spin connection

fields which are responsible for the compactification of an infinite surface into an almost

S2, but do not tell what (fermion condensates) causes the appearance of these gauge fields.

These studies are for the two cases, presented in this paper, under consideration. There

are, however, several proposals in the literature which suggest the compactification scheme

and discuss it [54, 55]. We are not yet able to comment them from the point of view of our

two discussed cases.

Our new discrete symmetries are demonstrated in section 3, in which spins or total

angular moments in higher dimensions manifest charges of massless and massive spinors

in d = (3 + 1), by showing how do the example wave functions and quite general La-

8We do not pay attention on renormalizability of the theory in this paper.
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grange density transform under the C(H,N ), P(d−1)
(H,N ), and T(H,N ) discrete symmetries. These

two particular cases concern fermions, the charges of which originate in d > 4, in: i.)

d = (5 + 1), when SO(5, 1) breaks into SO(3, 1) × U(1) [11, 12], with U(1) manifesting as

the Kaluza-Klein charge in d = (3 + 1). ii.) d = (13 + 1), the symmetry of which breaks

into SO(3, 1)× SU(3)× SU(2) ×U(1), while the subgroups determine charges of fermions,

manifesting before the electroweak break left handed weak charged and right handed weak

chargeless massless quarks and leptons [15–30] of the standard model. In these two demon-

strations the technique [57–59] is used to treat spinor degrees of freedom, which is very

convenient for this purpose, since it is transparent and simple.

We discuss the generality of our effective proposal for discrete symmetries in section 4,

in subsection 4.1 of which we discuss our two special cases, commenting also possible way

of compactifying the higher dimensional space.

We shall use the concept of the Dirac sea second quantized picture, which is equivalent

to the formal ordinary second quantization, because it offers, in our opinion, a nice physical

understanding.

We do not study in this paper the break of the CP and correspondingly of the T

symmetry.

2 Discrete symmetries in d-dimensions following the definitions in d =

(3 + 1)

We start with the definition of the discrete symmetries as they follow from the prescription

in d = (3+ 1). We treat particles which carry in d dimensions only spin, no charges. They

also carry the family quantum numbers, which, however, commute with the discrete family

operators.

We first treat free spinors. We define the CH operator to be distinguished from the CH
operator. The first transforms any single particle state Ψpos

p , index p denotes the fermion

state, which solves the Weyl equation for a free massless spinor with a positive energy and

it is in the second quantized theory understood as the state above the Dirac sea, into the

charge conjugate one with the negative energy Ψneg
p and correspondingly belonging to a

state in the Dirac sea

CH =
∏

γa∈ℑ
γa K . (2.1)

The product of the imaginary γa operators is meant in the ascending order. We make

a choice of γ0, γ1 real, γ2 imaginary, γ3 real, γ5 imaginary, γ6 real, and alternating real

and imaginary ones we end up in even dimensional spaces with real γd. K makes complex

conjugation, transforming i into −i.
We define CH as the operator, which emptyies the negative energy state in the Dirac

sea following from the starting positive energy state, and creates an anti-particle with the

positive energy and all the properties of the starting single particle state above the Dirac sea

— that is with the same d-momentum and all the spin degrees of freedom the same, except

the S03 value, as the starting single particle state. The operator S03 is involved in the boost

(contributing in d = (3+1), together with the spin, to handedness) and does not determine

– 5 –
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the (ordinary) spin. Accordingly we do not have to keep the S03 value a priori unchanged

under the charge conjugation. Had we instead considered CP we would also have kept S03.

Let Ψ†
p[Ψ

pos
p ] be the creation operator creating a fermion in the state Ψpos

p (which is a

function of ~x) and let Ψp(~x) be the second quantized field creating a fermion at position

~x. Then

Ψ†
p[Ψ

pos
p ] =

∫

Ψ†
p(~x)Ψ

pos
p (~x)d(d−1)x (2.2)

or on a vacuum where it describes a single particle in the state Ψpos

{Ψ†
p[Ψ

pos
p ] =

∫

Ψ†
p(~x)Ψ

pos
p (~x)d(d−1)x } |vac〉

so that the anti-particle state becomes

{CHΨ†
p[Ψ

pos
p ] =

∫

Ψp(~x) (CHΨpos
p (~x))d(d−1)x} |vac〉 .

We also can derive the relation

CHΨ(~x) (CH)
−1 = CHformal Ψ(~x) = (CHK)formal Ψ

†(~x) . (2.3)

This formal operation CHformal means the action on the second quantized field Ψ as if it

were a function of ~x and a column in gamma matrix space, and that the complex conju-

gation is replaced by the Hermitian conjugation (†) on the second quantized operator.9

Let us define the operator “emptying” [15–18] (arXiv:1312.1541) the Dirac sea, so

that operation of “emptying” after the charge conjugation CH (which transforms the state

put on the top of the Dirac sea into the corresponding negative energy state) creates the

anti-particle state to the starting particle state, both put on the top of the Dirac sea and

both solving the Weyl equation for a free massless fermions

“emptying” =
∏

ℜγa

γaK = (−)
d
2
+1
∏

ℑγa

γa Γ(d)K , (2.4)

although we must keep in mind that indeed the anti-particle state is a hole in the Dirac

sea from the Fock space point of view. The operator “emptying” is bringing the single

particle operator CH into the operator on the Fock space. Then the anti-particle state

creation operator - Ψ†
a[Ψ

pos
p ] — to the corresponding particle state creation operator —

can be obtained also as follows

Ψ†
a[Ψ

pos
p ] |vac〉 = CHΨ†

p[Ψ
pos
p ] |vac〉 =

∫

Ψ†
a(~x) (CHΨpos

p (~x)) d(d−1)x |vac〉 ,

CH = “emptying” · CH . (2.5)

The operator CH = “emptying” · CH operating on Ψpos
p (~x) transforms the positive energy

spinor state (which solves the Weyl equation for a massless free spinor) put on the top

of the Dirac sea into the positive energy anti-spinor state, which again solves the Weyl

9This simply means that, for example, we can use Hermitian conjugate equations of motion for

(CHK)formalΨ(~x) and then check the CH without the complex conjugation: (CHK)formal.

– 6 –
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equation for a massless free anti-spinor put on the top of the Dirac sea. Let us point out

that the operator “emptying” transforms the single particle operator CH into the operator

operating in the Fock space.

The operator “emptying” operates meaningfully in all known cases when the higher

dimensions manifest charges or masses or both in d = (3 + 1) space.

We define the time reversal operator TH and the parity operator P(d−1)
H as follows

TH = γ0
∏

γa∈ℜ
γa K Ix0 ,

P(d−1)
H = γ0 I~x ,

Ixx
a = −xa , Ix0xa = (−x0, ~x) , I~x~x = −~x ,

I~x3
xa = (x0,−x1,−x2,−x3, x5, x6, . . . , xd) . (2.6)

Again the product
∏

γa is meant in the ascending order in γa.

Let us calculate now the product of CH P(d−1)
H TH and CH P(d−1)

H TH

CHP(d−1)
H TH ∝ Γ(d) Ix ,

CHP(d−1)
H TH = “emptying” · CHPHTH ∝

∏

γa∈ℑ
γa IxK , (2.7)

with

CH =
∏

ℜγa

γaK CH ∝ Γ(d) . (2.8)

∝ stays for up to a phase. It follows

CHP(d−1)
H THΨ†

p[Ψ
pos
p ] (CHP(d−1)

H TH)−1 = Ψ†
a[CHP(d−1)

H THΨpos
p ] . (2.9)

Γ(d) is defined in eq. (2.11)

2.1 Free spinors case

To demonstrate what do the discrete symmetry operators of eqs. (2.1), (2.6), (2.8) do on

the spinor states let us first look for the solutions of the Weyl equation for a free spinor in

d = (d− 1) + 1 for d even,

γapa ψ = 0 , (2.10)

and show the application of the above defined discrete symmetries on the solutions for two

particular cases: i. d = (5 + 1), the properties of which we study in several papers [6–14],

and ii. d = (13 + 1), which one of the authors of this paper uses in her spin-charge-family

theory [15–30], since it manifests in d = (3+1) in the low energy regime the family members

(explaining correspondingly the appearance of families) with the family members assumed

by the standard model (extended with the right handed neutrino). Let us recognize that the

operator of handedness, expressed in terms of the Cartan subalgebra members, is as follows

Γ((d−1)+1) = (−2i)
d
2 S03S12S56 . . . S(d−1)d . (2.11)

– 7 –
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For the choice of the coordinate system so that d-momentum manifests pa =

(p0, 0, 0, p3, 0 . . . 0) the Weyl equation simplifies to

(−2iS03p0 = p3)ψ . (2.12)

We shall make use of this choice. Solutions in the coordinate representation are plane

waves: e−ipaxa . In this part TH and PH manifest as follows

TH(· · · )e−ip0x0+ip3x3
= (· · · )e−ip0x0−ip3x3

, PH(· · · )e−ip0x0+ip3x3
= (· · · )e−ip0x0−ip3x3

,

(2.13)

since in the momentum representation only pa is a vector, while xa is just a parameter (and

opposite in the coordinate representation). (With TH transformed wave function develops

the usual Schroedinger way for x0 is replaced by −x0.)

d = (5+1) case. Let us now demonstrate the application of the discrete operators CH,
TH and PH on one Weyl representation from table 1, which represents the positive and

negative energy solutions of the Weyl equation (2.12) in d = (5 + 1). Here and in what

follows we do not pay attention on the normalization factor of the single particle states.

Let us make a choice of the positive energy state ψpos
1 =

03

(+i)
12

(+)
56

(+) e−ip0x0+ip3x3
, for

example. We use the technique of the refs. [57–59]. A short overview can be found in the

appendix. The reader is kindly asked to look for more detailed explanation in [15, 59]. It

follows for p0 = |p0| and p3 = |p3|

CHψpos
1 →

03

(+i)
12

[−]
56

[−] eip
0x0−ip3x3

= ψneg
2 . (2.14)

This state is the solution of the Weyl equation for the negative energy state. But

the hole of this state in the Dirac sea makes a positive energy state (above the Dirac

sea) with the properties of the starting state, but it is an anti-particle state: Ψpos
a1 =

03

(+i)
12

(+)
56

(+) e−ip0x0+ip3x3
, defined10 on the Dirac sea with the hole belonging to the

negative energy single-particle state ψneg
2 . Namely, CHΨ[Ψpos

p ]C−1
H , when applied on the

vacuum state, represents an anti-particle.

This anti-particle state is correspondingly the solution of the same Weyl equation,

and it belongs to the same representation as the starting state (and CH is obviously a

good symmetry in this d = 2 ( mod 4) space). The operator CH from eq. (2.8), applied

on the state ψpos
p1 , gives the same result: ψpos

a1 , which belong to the same representation

of the Weyl equation as the starting state. But this state has the S56 spin, which should

represent in d = (3 + 1) the charge of the anti-particle, the same as the starting state.

This is not in agreement with what we observe.

Since both TH (THψpos
1 =

03

[−i]
12

[−]
56

[−] e−ip0x0−ip3x3
) and PH (PHψ

pos
1 =

03

[−i]
12

(+)
56

(+)

e−ip0x0−ip3x3
) are defined with an odd number of γa operators, none of them are the sym-

metry (the conserved operators) within one Weyl representation, since both transform

10If one would like a more detailed meaning of Ψpos
a one can imagine the second quantization of the

whole theory using anti-particles instead of particles in the theory and so obtaining the original particles as

holes. In such a theory an anti-particle state corresponding to Ψpos
a would be Ψ

†[Ψpos]|antivac〉, therefore

Ψ
†[Ψneg]|antivac〉 → Ψ

†[Ψpos]|antivac〉.

– 8 –
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correspondingly the starting state into a state of another Weyl representation. (This is

true for all the spaces with d = 2 ( mod 4), while in the spaces with d = 0 ( mod 4) the

operator TH has an even product of γa, while CH contains an odd number of γa.)

The product of TH and P(d−1)
H is again a good symmetry, transforming the start-

ing state, say ψpos
1 , into a positive energy state of the same Weyl representation,

TH P(d−1)
H ψpos

1 =
03

(+i)
12

[−]
56

[−] e−ip0x0+ip3x3
= ψpos

2 , and solving the Weyl equation.

Also the product of all three discrete symmetries is correspondingly a good sym-

metry as well, transforming the starting state (put on the top of the Dirac sea)

into the positive energy anti-particle state, CH TH P(d−1)
H Ψ†[Ψpos

1 ](CH TH P(d−1)
H )−1

= Ψ†
a[CHTH P(d−1)

H Ψpos
1 ] → Ψ†

a[Ψ
pos
2 ] , which is the hole in the state ψneg

1 in the Dirac sea.

d = (13 + 1) case. Let us now look at d = (13 + 1) case, the positive energy states

of which are presented in table 2. Following the procedure used in the previous case of

d = (5 + 1), the operator CH transforms, let say the first state in table 2, which represents

due to its quantum numbers the right handed (with respect to d = (3 + 1)) u-quark with

spin up, weak chargeless, carrying the colour charge (12 ,
1

(2
√
3)
), the third component of the

second SU(2)II charge 1
2 , the hyper charge 2

3 and the electromagnetic charge 2
3 , while it

carries the momentum pa = (p0, 0, 0, p3, 0, . . . , 0), as follows

CHu1R →
03

(+i)
12

[−] |
56

[−]
78

[−] ||
9 10

[−]
11 12

[+]
13 14

[+] eip
0x0−ip3x3

. (2.15)

This state solves the Weyl equation for the negative energy and inverse momentum,

carrying all the eigenvalues of the Cartan subalgebra operators (S12, S56, S78, S9 10, S11 12,

S13 14), except S03, of the opposite values than the starting state (this negative energy

state is a part of the starting Weyl representation, not presented in table 2, but the reader

can find this state in the ref. [29, 30]). The second quantized charge conjugation operator

CH empties CHu1R in the Dirac sea, creating the anti-particle state to the starting state

with all the quantum numbers of the starting state, obviously in contradiction with the

observations, that the anti-particle state has the same momentum in d = (3 + 1) but

opposite charges than the starting state.

We conclude that the second quantized anti-particle state (the hole in the Dirac sea)

manifests correspondingly all the quantum numbers of the starting state, but it is the

anti-particle. Requiring that the eigenvalues of the Cartan subalgebra members in d ≥ 5

represent charges in d = (3 + 1), the charges should have opposite values, which the

definition of the discrete symmetries operators in eqs. (2.1), (2.6) does not offer. The

charge conjugation operation is a good symmetry in any d = 2 ( mod 4) from the point of

view that in any of spaces with d = 2( mod 4) CH ψpos
i defines the state within the same

Weyl representation due to the fact that it is defined as the product of an even number of

imaginary operators γa. The product of the time reversal and the parity operation is in

the space with d = 2 ( mod 4) again a good symmetry, which means that it transforms

the starting state of a chosen Weyl representation into the state belonging to the same

Weyl representation, with the same d-momentum as the starting state.
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ψpos
i positive energy state p0

|p0|
p3

|p3| (−2iS03) Γ(3+1) S56

ψpos
1

03

(+i)
12

(+) |
56

(+) e−i|p0|x0+i|p3|x3
+1 +1 +1 +1 1

2

ψpos
2

03

(+i)
12

[−] |
56

[−] e−i|p0|x0+i|p3|x3
+1 +1 +1 −1 −1

2

ψpos
3

03

[−i]
12

[−] |
56

(+) e−i|p0|x0−i|p3|x3
+1 −1 −1 +1 1

2

ψpos
4

03

[−i]
12

(+) |
56

[−] e−i|p0|x0−i|p3|x3
+1 −1 −1 −1 −1

2

ψneg
i negative energy state p0

|p0|
p3

|p3| (−2iS03) Γ(3+1) S56

ψneg
1

03

(+i)
12

(+) |
56

(+) ei|p
0|x0−i|p3|x3 −1 −1 +1 +1 1

2

ψneg
2

03

(+i)
12

[−] |
56

[−] ei|p
0|x0−i|p3|x3 −1 −1 +1 −1 −1

2

ψneg
3

03

[−i]
12

[−] |
56

(+) ei|p
0|x0+i|p3|x3 −1 +1 −1 +1 1

2

ψneg
4

03

[−i]
12

(+) |
56

[−] ei|p
0|x0+i|p3|x3 −1 +1 −1 −1 −1

2

Table 1. Four positive energy states and four negative energy states, the solutions of eq. (2.12),

half have p3

|p3| positive and half negative. pa = (p0, 0, 0, p3, 0, 0), Γ(5+1) = −1, S56 defines charges

in d = (3 + 1). Nilpotents
ab

(k) and projectors
ab

[k] operate on the vacuum state |vac〉fam not written

in the table.

2.1.1 Solutions of the Weyl equations in d = (5 + 1)

There are 2
d
2
−1 = 4 basic spinor states of one family representation in d = (5+ 1).11 Since

the operators of eqs. (2.1), (2.6) do not distinguish among the families, all the families

behave equivalently with respect to these discrete symmetry operators. One of the family

representation, with four basic spinor states, is in the technique [59], described in terms of

nilpotents
ab

(k) and projectors
ab

[k] (see appendix A), as follows

Ψ1 =
03

(+i)
12

(+)
56

(+) |vac〉fam,

Ψ2 =
03

(+i)
12

[−]
56

[−] |vac〉fam,

Ψ3 =
03

[−i]
12

[−]
56

(+) |vac〉fam,

Ψ4 =
03

[−i]
12

(+)
56

[−] |vac〉fam , (2.16)

where |vac〉fam is defined so that there are 2
d
2
−1 family members (this is, however, not a sec-

ond quantized vacuum). All the basic states are eigenstates of the Cartan subalgebra (of the

Lorentz transformation Lie algebra), for which we take: S03, S12, S56, with the eigenvalues,

which can be read from eq. (2.16) if taking 1
2 of the numbers ±i or ±1 in the parentheses

( ) (nilpotents) and [ ] (projectors). We look for the solutions of eq. (2.12) for a particular

choice of the d-momentum pa = (p0, 0, 0, p3, 0, 0), and find what is presented in table 1.

11There are for d = 6 in the spin-charge-family proposal 2
d
2
−1 = 4 families of spinors.
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ψ
pos
i positive energy state p0

|p0|
p3

|p3|
(−2iS03) Γ(3+1) τ13 τ23 τ4 Y Q

u1R

03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) e−i|p
0|x0+i|p3|x3 +1 +1 +1 +1 0 1

2
1
6

2
3

2
3

u2R

03

[−i]
12

[−] |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) e−i|p
0|x0−i|p3|x3 +1 −1 −1 +1 0 1

2
1
6

2
3

2
3

d1R
03

(+i)
12

(+) |
56

[−]
78

[−] ||
9 10

(+)
11 12

(−)
13 14

(−) e−i|p
0|x0+i|p3|x3 +1 +1 +1 +1 0 − 1

2
1
6

− 1
3
− 1

3

d2R
03

[−i]
12

[−] |
56

[−]
78

[−] ||
9 10

(+)
11 12

(−)
13 14

(−) e−i|p
0|x0−i|p3|x3 +1 −1 −1 +1 0 − 1

2
1
6

− 1
3
− 1

3

d1L
03

[−i]
12

(+) |
56

[−]
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) e−i|p
0|x0−i|p3|x3 +1 −1 −1 −1 − 1

2
0 1

6
1
6

− 1
3

d2L
03

(+i)
12

[−] |
56

[−]
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) e−i|p
0|x0+i|p3|x3 +1 +1 +1 −1 − 1

2
0 1

6
1
6

− 1
3

u1L

03

[−i]
12

(+) |
56

(+)
78

[−] ||
9 10

(+)
11 12

(−)
13 14

(−) e−i|p
0|x0−i|p3|x3 +1 −1 −1 −1 1

2
0 1

6
1
6

2
3

u2L

03

(+i)
12

[−] |
56

(+)
78

[−] ||
9 10

(+)
11 12

(−)
13 14

(−) e−i|p
0|x0+i|p3|x3 +1 +1 +1 −1 1

2
0 1

6
1
6

2
3

Table 2. One SO(7, 1) sub representation of the representation of SO(13, 1), the one representing

quarks, which carry the colour charge (τ33 = 1/2, τ38 = 1/(2
√
3)). All members have Γ(13+1) =

−1. All states are the eigenstates of the Cartan subalgebra (S03, S12, S56, S78, S9 10, S11 12, S13 14)

with the eigenvalues defined in eq. (A.2) and solve the Weyl equation (2.12) for the choice of

the coordinate system pa = (p0, 0, 0, p3, 0, . . . , 0). The infinitesimal generators of the weak charge

SU(2) group are defined as (~τ1 = 1
2 (S

58 − S67, S57 + S68, S56 − S78)), of another SU(2) as (~τ2 =
1
2 (S

58 + S67, S57 − S68, S56 + S78)), of the τ4 charge as (− 1
3 (S

9 10 + S11 12 + S13 14)) and of the

colour charge group as (~τ3 = ( 12 (S
9 12 − S10 11, S9 11 + S10 12, S9 10 − S11 12, S9 14 − S10 13, S9 13 +

S10 14, S11 14 − S12 13, S11 13 + S12 14, 1√
3
(S9 10 + S11 12 − 2S13 14)), Y = τ23 + τ4, Q = τ13 + Y .

Nilpotents
ab

(k) and projectors
ab

[k] operate on the vacuum state |vac〉fam not written in the table.

2.1.2 Solutions of the Weyl equations in d = (13 + 1)

There are 2
d
2
−1 = 64 basic spinor states of one family representation in d = (13 + 1).

(We again do not pay attention on the families, since all behave equivalently with respect

to the discrete symmetries presented in eqs. (2.1), (2.6).) We present in this subsection

positive energy states for quarks of a particular charge (τ33 = 1/2, τ38 = 1/(2
√
3)). The

solution for, say, the right handed u-quark with spin up, u1R, with the colour charge

(τ33 = −1/2 and τ38 = 1/(2
√
3)), weak chargeless and with a positive momentum p3 is

proportional to (
03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

[−]
11 12

[+]
13 14

(−) e−ip0x0+ip3x3
). All the other colour

states follow from this one by the application of the generators τ3i of the colour group

SU(3), the definition of which, expressed as the superposition of Sab, can be found in the

caption of table 2. One can as well define the generators of the total angular momentum

Jab = Lab + Sab. The definition of the generators of the charge groups, presented in the

caption of table 2, then changes correspondingly by replacing Sab by Jab.

3 Discrete symmetries in d even with the desired properties in d = (3+1)

In section 2 we define the discrete symmetries in spaces with d > (3 + 1) as they follow

from the definition in d = (3 + 1). This definition, however, does not allow to interpret

the angular momentum (the spin, indeed, at the low energy regime) in higher than four

dimensions as charges in (3 + 1). The proposed charge conjugated states have, namely,

the same charges as the starting states.
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We look for new discrete symmetries, which would lead to the desired properties of

the anti-particle state to any second quantized state:

i. The anti-particle state has the same momentum in d = (3 + 1) as the starting state.

ii. The anti-particle state has the opposite values of the Cartan subalgebra of the total

angular momentum Jst = Lst + Sst , (s, t) ∈ (5, 6, . . . , d) (or at low energies rather

the opposite values of the Cartan subalgebra of Sst , (s, t) ∈ (5, 6, . . . , d)) as the

starting state.

The manifestation of the total angular momentum (in the low energy regime rather

the spin degrees of freedom) in d > 4 as charges in d ≤ 4 depends on the symmetries

that (non-)compact spaces manifest [11–13]. (For the toy model [11–13] in d = (5+ 1) the

spin on the infinite surface, curled into an almost sphere, manifests for a massless spinor

as a charge in d = (3 + 1). Only to the massive states the total angular momentum in

d = (5, 6) contributes.) In the case of the spin-charge-family theory in d = (13+ 1), which

manifests at low energies properties of the standard model, the operators ~τ1, ~τ2, ~τ3, Y, τ4, Q,

or rather their superposition (which all are superposition of Sab, a, b ∈ {5, 6, . . . , 14}) define
the conserved charges in d = (3 + 1) before and after the electroweak break.

We define new discrete symmetries by transforming the above defined discrete symme-

tries (CH, CH, CH , TH , PH ) so that, while remaining within the same groups of symme-

tries, the redefined discrete symmetries manifest the experimentally acceptable properties

in d = (3+1), which is of the essential importance for all the Kaluza-Klein theories [33–39]

without any degrees of freedom of fermions besides the spin and family quantum num-

bers [12–30]. We define new discrete symmetries as follows

CN = CH P(d−1)
H eiπJ1 2 eiπJ3 5 eiπJ7 9 eiπJ11 13 , . . . , eiπJ(d−3)(d−1) ,

TN = TH P(d−1)
H eiπJ1 2 eiπJ3 6 eiπJ8 10 eiπJ12 14 , . . . , eiπJ(d−2)d ,

P(d−1)
N = P(d−1)

H eiπJ5 6 eiπJ7 8 eiπJ9 10 eiπJ11 12 eiπJ13 14 , . . . , eiπJ(d−1)d ,

CN = CH P(d−1)
H eiπJ1 2 eiπJ3 5 eiπJ7 9 eiπJ11 13 , . . . , eiπJ(d−3)(d−1) ,

CN = CH P(d−1)
H eiπJ1 2 eiπJ3 5 eiπJ7 9 eiπJ11 13 , . . . , eiπJ(d−3)(d−1) . (3.1)

The operator for “emptying” is defined in eq. (2.4) as “emptying” =
∏

ℜγa γ
aK, the

operator CN =
∏

ℜγa γ
aK CN , while the operator CN is defined according to eq. (2.5) as

Ψ†
aN [Ψpos

p ] |vac〉 = CN Ψ†
p[Ψ

pos
p ] |vac〉 =

∫

Ψ†
aN (~x) (CN Ψpos

p (~x)) d(d−1)x |vac〉 . (3.2)

The rotations (eiπJ1 2 eiπJ3 5 eiπJ7 9 . . . , eiπJ(d−3)(d−1)) together with (multiplied by) P(d−1)
H ,

which are included in CN (and in CN and CN ), keep pi for i = (1, 2, 3) unchanged, while

they transform a state so that all the eigenvalues of the Cartan subalgebra except S03

and J12 (or at the low energy regime S12) change sign.12 Correspondingly this redefined

12Since in our extra dimension picture J35 is no longer a symmetry (for the metric taken as a background

field) in coordinate space, the operation eiπJ3 5 looks suspicious as being not a symmetry, but it is. Indeed,

the operation eiπJ3 5 is in the coordinate part composed just of a mirror reflection around the x3 = 0 plane

in usual space and reflection in the extra dimension space around the surface x5 = 0.
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CH transforms a second quantized state into the anti-particle state with the same four

momentum as the starting state but with the opposite values of the total angular momen-

tum (or at the low energy regime rather the spin) determined by the Cartan subalgebra

eigenvalues, except for S03 and J12 (or at the low energy regime S12). The parity operator

P(d−1)
N changes pi into −pi only for i = (1, 2, 3), while the time reversal operator corrects

all the properties of the new CN (and CN ) and P(d−1)
N so that

CNP(d−1)
N TN = CHP(d−1)

H TH → Γ(d) Ix ,

CNP(d−1)
N TN = CHP(d−1)

H TH . (3.3)

All three new operators commute among themselves as also the old ones do. The shorter

expressions for the same discrete operators of eq. (3.1) are up to a phase

CN =
3
∏

ℑγm,m=0

γm Γ(3+1)K Ix6,x8,...,xd ,

TN =
3
∏

ℜγm,m=1

γm Γ(3+1)K Ix0 Ix5,x7,...,xd−1 ,

P(d−1)
N = γ0 Γ(3+1) Γ(d) I~x3

,

CN =
d
∏

ℜγa,a=0

γa K
3
∏

ℑγm,m=0

γm Γ(3+1)K Ix6,x8,...,xd

=
d
∏

ℜγs,s=5

γs Ix6,x8,...,xd . (3.4)

Operators I operates as follows: Ix5,x7,...,xd−1 (x0, x1, x2, x3, x5, x6, x7, x8, . . . , xd−1, xd)

= (x0, x1, x2, x3,−x5, x6,−x7, . . . ,−xd−1, xd); Ix6,x8,...,xd

(x0, x1, x2, x3, x5, x6, x7, x8, . . . , xd−1, xd) = (x0, x1, x2, x3, x5,−x6, x7,−x8, . . . , xd−1,−xd),
d = 2n.

The above defined operators CH,P(d−1)
H and TH (eqs. (2.1), (2.6), (2.8)), indexed by

H, are good symmetries only when also boson fields, in the Kaluza-Klein theories the

gravitational fields, in higher than (3 + 1) dimensions are correspondingly transformed

and not considered as background fields. However, the operators CN ,P(d−1)
N and TN

with index N will be good symmetries even if we take it that there is a background field

depending only on the extra dimension coordinates — independent of whether the extra

dimension space is compactified or not — so that they are not transformed.

One can namely easily see that the transformations of the coordinates of the extra di-

mensions in eqs. (3.1), (3.4) are cancelled between the π-rotations and the actions of e.g. PH
on the extra dimensional coordinates. Thus it can be easily seen that even if we consider a

background gravitational field for the extra dimensions — but the (3+1) dimensional space

is either flat or their gravitational field is considered dynamical so as to be also transformed

— these operators with index N , CN ,P(d−1)
N and TN , are good symmetries with respect to

the space-time transformations. They are indeed good symmetries according to their action
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on the Weyl field. The crucial point really is that the N -indexed operators CN ,P(d−1)
N and

TN with their associated x-transformations do not transform the extra (d− 4) coordinates

so that background fields depending on these extra dimension coordinates do not matter.

3.1 Free spinors

Let us now see on two cases, for d = (5+1) and for d = (13+1), how do the new proposals

for the discrete symmetries, CN , P(d−1)
N , TN , manifest for non interacting spinors.

Charge conjugation symmetry CN . Let us start with ψpos
1 from table 1. In

d = (5+ 1) the charge conjugation operator CN equals to CH P(d−1)
H eiπJ12 eiπJ35 . To test

this symmetry on the second quantized state Ψ†[Ψpos
1 ] one can start with eq. (2.14) and the

recognition below this equation that CH transforms a second quantized state Ψ†[Ψpos
1 ] into

the anti-particle second quantized state with the properties as the starting state: The same

d-momentum and the same eigenvalues of the Cartan subalgebra operators (S03, J12, J56,

or rather S12, S56). One can easily check that the operation of P(d−1)
H eiπJ12 eiπJ35 on this

anti-particle state (the hole in the Dirac sea) with the properties S03 = i
2 , S

12 = 1
2 , S

56 = 1
2

and the momentum (|p0|, 0, 0, |p3|, 0, 0) (manifesting in e−ip0x0+ip3x3
) transforms this anti-

particle state into the anti-particle state
03

(+i)
12

(+) |
56

[−] e−ip0x0+ip3x3
put on the top of the

Dirac sea, with the same spin and the same handedness in d = (3 + 1) and the opposite

“charge”: S56 = −1
2 — if we recognize the spin in d = (5, 6) as the charge in d = (3+1) —

as the starting second quantized state. But CNψpos
1 =

03

(+i)
12

[−] |
56

(+) eip
0x0−ip3x3

(solving

the Weyl equation (2.12)) does not belong to the same Weyl representation as the starting

state Ψpos
1 and also

03

(+i)
12

(+) |
56

[−] e−ip0x0+ip3x3
does not. We can conclude that the charge

conjugation operator CN ,

CNΨ†
p[Ψ

pos
1 ](CN )−1 = Ψ†

aN [CN Ψpos
1 ] , (3.5)

is not a good symmetry.

Let us make the charge conjugation operation CN on the second quantized state

Ψ†[u1R], the corresponding single-particle state of which, put on the top of the Dirac sea,

is presented in the first line of table 2. We find in eq. (2.15) that CHu1R =
03

(+i)
12

[−] |
56

[−]
78

[−]

||
9 10

[−]
11 12

[+]
13 14

[+] eip
0x0−ip3x3

. To apply CN on u1R we must, according to the definition in the

first line of eq. (3.1), multiply CHu1R by P(d−1)
H eiπJ1 2 eiπJ3 5 eiπJ7 9 eiπJ11 13 . We end up with

CNu1R =
03

(+i)
12

[−] |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) eip
0x0−ip3x3

. (3.6)

The corresponding second quantized state is the hole in this single particle negative energy

state in the Dirac sea (Fock space), which solves the Weyl equation for the negative energy

state. It is the state

CN u1R =
03

(+i)
12

(+) |
56

[−]
78

[−] ||
9 10

[−]
11 12

[+]
13 14

[+] e−ip0x0+ip3x3
. (3.7)
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This state, put on the top of the Dirac sea, is the anti-particle state. But neither the state of

eq. (3.6) nor the state of eq. (3.7) does belong to the same Weyl representation, similarly

as it was in the case with d = (5 + 1). Although the corresponding second quantized

state, that is the hole of the state of eq. (3.6) in the Dirac sea, which is the same as

the state of eq. (3.7) put on the top of the Dirac sea, CN u1R (CN )−1 (→
03

(+i)
12

(+) |
56

[−]
78

[−]

||
9 10

[−]
11 12

[+]
13 14

[+] e−ip0x0+ip3x3 |vac〉fam) has the right charges, that is the opposite ones to those

of the corresponding particle state, it is not a good symmetry. Again this is not within the

same Weyl representation and correspondingly CN is not a good symmetry in d = (13+1).

In all the spaces with d = 2 ( mod 4) the charge conjugation operator CN is not a

good symmetry within one Weyl representation: with a product of an odd number of γa

it jumps out of the starting Weyl representation.

Parity symmetry P
(d−1)
N . P(d−1)

N (the third lines in eqs. (3.1), (3.4)) reflects only

in the d = (3 + 1) and multiplies spinors with γ0. It does not keep the transformed

state within the same Weyl representation, either in the case d = (5 + 1) or in the case

d = (13 + 1). In d = (5 + 1) it transforms the single particle state Ψpos
1 into

03

[−i]
12

(+) |
56

(+)

e−ip0x0−ip3x3 |vac〉fam, which is not within the same Weyl representation. In d = (13 + 1)

P(d−1)
N transforms u1R into

03

[−i]
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) e−ip0x0−ip3x3 |vac〉fam ,

manifesting that P(d−1)
N is not a good symmetry in spaces with d = 2 ( mod 4).

CN× P
(d−1)
N symmetry. Let us now check the CN P(d−1)

N symmetry. According to

the third and the fourth line of eq. (3.1), (3.4)) and to eqs. (2.1), (2.6) it contains an

even number of γa operators. Correspondingly the application of CN P(d−1)
N on any state

transforms the state again into the state within the same Weyl representation.

In d = (5 + 1) we apply CN P(d−1)
N on Ψ†

p[Ψ
pos
1 ] by applying CN P(d−1)

N on Ψpos
1 as

follows: CN P(d−1)
N Ψ†

p[Ψ
pos
1 ] (CN P(d−1)

N )−1 = Ψ†
aN [CN P(d−1)

N Ψpos
1 ]. One recognizes that

it is CN P(d−1)
N Ψpos

1 = Ψpos
4 (table 1), which must be put on the top of the Dirac sea,

representing the hole in the state ψneg
3 in the Dirac sea. The state is within the same Weyl

and solves the Weyl equation. The CN P(d−1)
N manifests as a good symmetry.

Let in d = (13+1) the operator CN P(d−1)
N apply on Ψ†

p[u1R]. One applies correspond-

ingly CN P(d−1)
N on u1R, which gives the state

03

[−i]
12

(+) |
56

[−]
78

[−] ||
9 10

[−]
11 12

[+]
13 14

[+] e−ip0x0−ip3x3
.

This state (which solves the Weyl equation γapaΨ = 0) gives, put on the top of the Dirac

sea, the corresponding anti-particle, belonging to the same Weyl representation, and it

is left handed with respect d = (3 + 1). This anti-particle is recognized as a left handed

weak chargeless anti u-quark, of the anti-colour charge, belonging to the same Weyl

representation (see the ref. [30], table 4., line 35).

CN P(d−1)
N is a good symmetry in d = 2(2n+ 1)(= 2 ( mod 4)) spaces.

Following eq. (2.9), the creation operator for an anti-particle state, which is CNP(d−1)
N

transformed creation operator for the particle state is therefore

CNP(d−1)
N Ψ†

p[Ψ
pos
1 ] (CNP(d−1)

N )−1 = Ψ†
aN [CNP(d−1)

N Ψpos
1 ] . (3.8)

I~x3
reflects (x1, x2, x3) and Ix6,x8,...xd reflects even coordinates in d > 3.
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Time reversal TN . The application of the time reversal operator TN (the second equa-

tion in eqs. (3.1), (3.4), constructed in spaces with even d out of an even number of γa

operators, does keep the transformed state within the same Weyl representation.

Let us test on d = (5 + 1) case first, applying TN on Ψpos
1 . The transformed state is

Ψpos
3 from table 1: the state has the same handedness in d = (3 + 1) as the starting state,

the same S56 eigenvalue and opposite p3 and S12. Obviously TN is a good symmetry.

In the case of d = (13+ 1) operator TN transforms u1R with spin up from table 2 into

the state with spin down (u2R =
03

[−i]
12

[−] |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) e−ip0x0−ip3x3
), keeping all

the quantum numbers except eigenvalue of S03 and S12 the same and p3 changes the sign.

The state solves the Weyl equation.

TN is a good symmetry d = 2 ( mod 4). It keeps states within the same Weyl repre-

sentation and commutes with the operator γapa.

CN × P
(d−1)
N × TN symmetry. In d = (5 + 1) the operator CNP(d−1)

N TN transforms

Ψ†
p[Ψ

pos
1 ], with Ψpos

1 from table 1 and creating the particle state, into the creation operator

for the positive energy anti-particle state Ψ†
aN [Ψpos

2 ], since CN P(d−1)
N TN Ψpos

1 = Ψpos
2 .

This state has an opposite handedness in d = (3 + 1) and also the opposite spin and the

opposite “charge”.

In d = (13+ 1) the operator CN P(d−1)
N TN transforms the right handed weakless u1R

quark with spin up and colour (12 ,
1

2
√
3
) from table 1, put on the top of the Dirac sea, into

the positive energy anti-particle state with the properties of ū1L from the ref. [30], table

4., line 36) (put on the top of the Dirac sea): weak chargeless, with the spin down and of

the anti-colour charge (−1
2 ,− 1

2
√
3
).

CN P(d−1)
N TN is a good symmetry, as it is expected to be.

3.2 Interacting spinors

Let us assume quite a general Lagrange density for a spinor in d = ((d−1)+1) dimensional

space, which carries, like in the Kaluza-Klein theories, the spins and no charges

L =
1

2
EΨ† γ0 γa p0aΨ+ h.c. ,

p0a = fαa pα +
1

2E
{pα, fαa E}− − 1

2
Scd fαa ωcdα . (3.9)

fαa are vielbein and ωcdα spin connection fields, the gauge fields of pa and Sab, respectively.

In this paper we do not discuss the families quantum numbers, which commute with

here defined discrete symmetries operators. Let the vielbeins and spin connections be

responsible for the break of symmetry ofM (d−1)+1 intoM3+1×Md−4 so that the manifold

Md−4 is (almost) compactified and let the spinor manifest in d = (3+1) the ordinary spin

and the charges.13 Looking for the subgroups (denoted by B,C) of the SO((d − 1) + 1)

group and assuming no gravity in d = (3 + 1), the Lagrange density of eq. (3.9) can be

13In the references [8, 11–14] it is demonstrated on the toy model how such an almost compactification

could occur.
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rewritten in a more familiar shape

L =
1

2
EΨ† γ0 (γm p0m + γs p0s) Ψ + h.c. ,

p0m = pm −
∑

B

~τB ~AB
m ,

p0s = fσs pσ +
1

2E
{pσ, fσs E}− −

∑

C

~τC ~AC
s , (3.10)

with m = (0, 1, 2, 3), s = (5, 6, . . . , d). We have τBi =
∑

st b
Bi

st S
st , τCi =

∑

st c
Ci

st S
st ,

∑

B ~τB ~AB
m = 1

2

∑

st S
st ωstm ,

∑

C ~τC ~AC
s = 1

2

∑

st S
st fσs ωstσ .

One finds that

CN τAi
C
−1
N = −τAi ,

CN AAi
m (x0, ~x3) C

−1
N = −AAi

m (x0, ~x3) ,

CNP(d−1)
N τAi (CNP(d−1)

N )−1 = −τAi ,

CNP(d−1)
N AAi

m (x0, ~x3) (CNP(d−1)
N )−1 = −AAim(x0,−~x3) ,

CNP(d−1)
N TN τBiABi

m (x) (CNP(d−1)
N TN )−1 = (−τBi) (−ABi∗

m (−x)) , (3.11)

for τAi from the Cartan subalgebra for each A, but it is always true that τAiAAi
m transforms

either to (−τAi) (−AAi
m ) or to τAiAAi

m , for each Ai, all in agreement with the standard

knowledge for the gauge vector fields and charges in d = (3 + 1) [60].

One can check also that CNP(d−1)
N TN γa (CNP(d−1)

N TN )−1 = γa ;

CNP(d−1)
N TN Sab (CNP(d−1)

N TN )−1 = −Sab ; CNP(d−1)
N TN fαa (x) pα (CNPNTN )−1

= fα ∗
a (−x) pα ; CNP(d−1)

N TN ωabc(x) (CNP(d−1)
N TN )−1 = −ω∗

abc(−x) . We also

have CNP(d−1)
N TN τCiACi

s (x)(CNP(d−1)
N TN )−1 = (−τCi) (−ACi∗

s )(−x)) , concerning in

d = (3+ 1) the gauge scalar fields. The later determine massless and massive solutions for

spinors and, if gaining nonzero vacuum expectation values, contribute not only to masses

of spinors but also to those gauge fields, to which they couple.

There exist in (almost) compactified spaces Md−4, for particular choices of vielbeins

and spin connection fields in eq. (3.9), massless and massive solutions [6–14]. In subsec-

tion 4.1 we discuss such a case for d = (5 + 1). One finds that the operator CNP(d−1)
N

transforms either the massless or massive solutions of the Weyl equation, which represent

particle states on the top of the Dirac sea, into their anti-particle states, which are holes in

the Dirac sea. It follows also for the case that the infinite surface in the fifth and the sixth di-

mensions compactifies into an almost S2 with the radius ρ0 that the massive state ψ
(6)(mρ0)

(n+ 1
2
)

= (An

56

(+) ψ
(4)
(+)(~p) +Bn+1 e

iφ
56

[−] ψ
(4)
(−)(~p)) e

inφ (ψ
(4)
(±)(~p) are the corresponding plane wave

solutions in d = (3+1) with the three momentum ~p) with the charge (n+ 1
2) (M

56 ψ
(6)(mρ0)

(n+ 1
2
)

= (n+ 1
2) ψ

(6)(mρ0)

(n+ 1
2
)

, M56 is the total angular momentum) transforms under CNP(d−1)
N into

ψ
(6)(mρ0)

−(n+ 1
2
)
= (Bn+1

56

(+) ψ
(4)
(+)(−~p)+An e

iφ
56

[−] ψ
(4)
(−)(−~p)) e−i(n+1)φ, which is the hole in the
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Dirac sea. This state ψ
(6)(mρ0)

−(n+ 1
2
)
solves the by CNP(d−1)

N transformed Weyl equation (4.7)

with F → −F and (Bn+1 = A−n−1, An = B−n), as one can check in eq. (4.10).

The Hermiticity requirement for the Lagrange density (eq. (3.10)), L† = L, leads to

ω∗
abc(x) = (∓)ωabc(x) ; (−) if a = c or b = c , (+) otherwise , (3.12)

which is to be taken into account together with the CNPNTN invariance.

4 Discussions on generality of our proposal for discrete symmetries

Searching for the appropriate definition of the discrete symmetries, when starting at higher

dimensions than 4, for any even d, we indeed limited ourselves to a simple example with

two different choices of dimension. We assumed that there is a central point symmetry

(there might be several) and particular rotational symmetries around the central point.

We do not really study how could an almost compactification occur. There are several

papers in the literature [31, 32, 54, 55] studying the way of compactification. It is not

easy to say whether the experiences from this literature can usefully be used in our

cases. In one of our cases we so far just use the appropriate gauge fields, zweibeins and

spin connections, without paying attention where do they originate and then study the

properties of the scalar and vector gauge fields and spinors. We shortly present their

properties in the subsections of this section.

Let us ask first how general is our proposal for Kaluza-Klein type of theories. Although

for examples like the one when dimensions are compactified into a (compact14) torus with

momenta as the conserved charges would not be of our type, still our proposal might be of

a help to find the definition of appropriate symmetries also for such cases.

We got the proposals for the discrete symmetries for the effective (3 + 1) theory

(eqs. (3.1), (3.4)) from analysing our special case, for which one immediately sees that

the proposal for P(d−1)
N does not contain any transformation of the extra dimension co-

ordinates, while getting the contribution of the γa matrices adjusted so that the extra

dimensional gamma matrices γ5, γ6, . . . , γd−1, γd commute with P(d−1)
N . This means that

this operation is quite insensitive to the extra dimensions in such a way that it is not

important if the extra dimensional space obeys any parity like symmetry. Correspondingly

there should be no transformation of the extra dimension boson fields in the sense that

the extra dimensional components should not be changed except for their transformation

due to the coordinate flipping in the first three dimensions. The components with vector

or tensor indices among the first three spatial components bring correspondingly the signs

shifted, but otherwise the boson fields are not to be transformed under P(d−1)
N . This means

successively that the general type of background fields describing the extra dimensional

curling up in some way will not be modified under this operation and thus one takes such

fields as background fields in the sense of this N -marked parity operation P(d−1)
N , which

means that one leaves such background fields untouched.

14An almost from the infinite surface compactified torus has no conserved charges.
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Looking at eq. (3.4) one sees that the background fields have to obey some reflection

symmetry in order that TN and CN be well defined symmetries. (One needs well defined

discrete symmetries even if in particular cases each of them is not a good symmetry, when

the handedness of spinors prevent them to be a good symmetries, while the product of

the two is then a good symmetry.)

So, unless the extra dimensional back ground fields obey in even d the reflection

symmetry for CN

(x5, x6, · · · , xd) → (x5,−x6, x7,−x8, · · · , xd−1,−xd) , (4.1)

while for TN they obey

(x5, x6, · · · , xd) → (−x5, x6,−x7, x8, · · · ,−xd−1, xd) , (4.2)

the equations of motion for spinors do not have these symmetries of TN and CN . One

easily checks that the toy model [11–14] has the above (eqs. (3.4), (4.1), (4.2)) symmetry.

These requirements for the extra dimensional reflection for background and fermion

fields of eqs. (4.1), (4.2) are due to our request that anti-particles should manifest in

(3 + 1) dimensions opposite charges as particles (the charges of which correspond to

appropriate “Killing forms”). (So that CN inverts the charges.) One can understand the

alternating reflection properties of xs, s ≥ 5, eq. (4.1), example of the toy model [11–14],

by the requirement that the “Killing forms”, which are circles around the fixed point,

must change the orientation.

Concerning the alternating reflection (in coordinate space) of TN in eq. (4.2) one can

understand this alternation by again looking at our example of the toy model [11–14].

Since TH (eq. (2.6)) reflects the momentum ~p in (d − 1) dimensions, the “Killing forms”

acquire a change in the direction. To compensate the change of the sign of the “Killing

forms” we need the alternative reflection offered by TN . In this way one namely obtains

the usually wanted property of the (3 + 1)-dimensional time reversal operator TN that it

leaves the charges untouched.

While TH does change the signs of “Killing forms”, CH does not. So, both, CH and TH
are cured by the same reflection of “Killing forms”: in an example, when compactification

is made by a torus (let us say again that almost compactified torus has no rotational

symmetry), where the generators of translations around the torus are declared as charges

in (3 + 1), we must replace the reflection symmetry of eqs. (4.1), (4.2) by the reflection

which again inverts the corresponding “Killing forms”. This means that xs goes to −xs,
s = 5, 6, . . . around any point.

In the torus case we need the true parity PH ×PN in extra dimensions to change the

signs of “Killing forms”.

In complicated cases we can a priori imagine that constructing appropriate reflections

inverting the signs of all the to be charges “Killing forms” could be complicated.

If the background fields are mainly just the metric tensor fields with extra dimensional

components and the charges commute, it would not be difficult to find for each separate

charge a reflection symmetry, reflecting just that symmetry, just that charge. Combining
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these reflections for the separate charges to a combined reflection reflecting all the charges

would then be a proposal for the replacement for (4.2) and (4.1).

Let us mention the ref. [56] with one of the authors of this paper (H.B.N.) as a coauthor.

The book stresses that symmetries can often be derived from small assumptions which we

put into a theory. For the discrete symmetries for the strong and electromagnetic interac-

tions one ought to assume: i. Anomaly cancellations, ii. Small group representations and

iii. Charge quantization rule. This author understands their derivation as a competitive

way of deriving the discrete symmetries operators without knowing the theory behind.

Let us add that the Calabi-Yau kind of spaces [31, 32] seems to have the symmetry so

that our proposed discrete symmetries work.

4.1 Comments on two special cases

In the subsection 3.2 we discuss how do our proposed discrete symmetries, eq. (3.1), (3.4),

behave in cases when there are the vielbein and spin connection fields (eq. (3.9)) of the

Kaluza-Klein kinds, which determine the spinor interactions. We demonstrate there how

do spinors manifest in d = (3+1) the Kaluza-Klein charges, interact with the Kaluza-Klein

vector gauge fields and with the scalar gauge fields (these last ones determine masses

of spinors in (3 + 1) and, after gaining nonzero vacuum expectation values, besides the

masses of spinors also the masses of those vector gauge fields which they interact with) and

how do spinors, vector gauge fields and scalar gauge fields transform under our proposed

discrete symmetries.

In this subsection we shortly present the fields, zweibeins and spin connections, which

in our toy model [11–14] in d = (5+1) cause an almost compactification. We also comment

briefly our “realistic case” in d = (13+1) which is offering the explanation for all the charges

and gauge fields of the standard model, with the families and scalar fields included, although

we do not discuss in this paper the appearance of families and correspondingly a possible

explanation for the Yukawa couplings [15–30].

A toy model in d = (5+ 1). In the ref. [11–13] we present the zweibeins and the spin

connection fields, assumed to be caused by a kind of spinor condensates, which allow after

the compactification of the manifold M5+1 into M3+1× an almost S2 one massless and

mass protected solution and the chain of massive solutions of the Weyl equation following

from the Lagrange density in eq. (3.9). We assume a flat (3 + 1) space and the zweibein

in d = (5, 6)

esσ = f−1

(

1 0

0 1

)

, fσs = f

(

1 0

0 1

)

, (4.3)

with

f = 1 +

(

ρ

2ρ0

)2

=
2

1 + cosϑ
,

x(5) = ρ cosφ, x(6) = ρ sinφ ,

E = det(esσ) = f−2 , esσ f
σ
t = δst , (4.4)
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and the spin connection field

fσs′ ωstσ = iF f εst
es′σx

σ

(ρ0)2
, 0 < 2F ≤ 1 , s = 5, 6, σ = (5), (6) , (4.5)

where ρ0 is the radius of S2. It follows that this choice of the spin connection field on

an almost S2 allows for 0 < 2F ≤ 1 only one normalizable (square integrable) massless

solution - the left handed spinor with the Kaluza-Klein charge in d = (3 + 1) equal to
1
2 . The massless and massive solutions preserve the rotational symmetry around the axis

perpendicular to the surface in the fifth and the sixth dimension and are correspondingly

the eigenfunctions of the total angular momentum M56 = x5p6−x6p5+S56 = −i ∂
∂φ +S56,

M56ψ(6) = (n + 1
2)ψ

(6). For the choice of the coordinate system pa = (p0, 0, 0, p3, p5, p6)

the massive solution with the Kaluza-Klein charge n+ 1/2

ψ
(6)(ρ0m)
n+1/2 = (An

03

(+i)
12

(+)
56

(+) +Bn+1 e
iφ

03

[−i]
12

(+)
56

[−]) · einφe−i(p0x0−p3x3) , (4.6)

solves the equation of motion, derived from the Lagrange function eq. (3.9), with An and

Bn+1 determined by the equations

−if
{(

∂

∂ρ
+
n+ 1

ρ

)

− 1

2 f

∂f

∂ρ
(1 + 2F )

}

Bn+1 +mAn = 0 ,

−if
{(

∂

∂ρ
− n

ρ

)

− 1

2 f

∂f

∂ρ
(1− 2F )

}

An +mBn+1 = 0 . (4.7)

There exists the massless left handed spinor with the Kaluza-Klein charge in d = (3 + 1)

equal to 1
2

ψ
(6)(m=0)
1
2

= N0 f
−F+1/2

03

(+i)
12

(+)
56

(+) e−i(p0x0−p3x3) . (4.8)

For F = 1
2 and p1 = 0 = p2 this solution corresponds to the particle described by ψpos

1 and

put on the top of the Dirac sea. The corresponding CNP(d−1)
N transformed state, put on

the top of the Dirac sea, that is the anti-particle state, the hole indeed in the Dirac sea, is

the state ψpos
4 corresponding to the empty ψneg

3 in the Dirac sea, in accordance with what

we have discussed in section 3. With the operator CNP(d−1)
N transformed state ψ

(6)(ρ0m)
n+1/2

is the state

ψ
(6)(ρ0m)
−(n+1/2) = (A−(n+1)

03

(+i)
12

(+)
56

(+) +B−n e
iφ

03

[−i]
12

(+)
56

[−]) · e−i(n+1)φe−i(p0x0+p3x3) , (4.9)

with the two functions A−(n+1) and B−n, which solve the equations

−if
{(

∂

∂ρ
− n

ρ

)

− 1

2 f

∂f

∂ρ
(1− 2F )

}

B−n +mA−(n+1) = 0,

−if
{(

∂

∂ρ
+

n+ 1

ρ

)

− 1

2 f

∂f

∂ρ
(1 + 2F )

}

A−(n+1) +mB−n = 0 , (4.10)

where F goes to −F , in accordance with the CNP(d−1)
N = γ0 γ5 I~x3

Ix6 transformation

requirement for the fields.

One easily sees that ψ
(6)(ρ0m)
−(n+1/2) = − CNP(d−1)

N ψ
(6)(ρ0m)
(n+1/2) .
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Would the scalar (with respect to (d = (3 + 1))) fσs ω56σ achieve nonzero vacuum

expectation values breaking the rotational symmetry on the (5, 6) surface, the charge S56

would no longer be conserved and the scalar fields would behave similar as the Higgs of

the standard model, carrying in this case the “hypercharge” S56.

The case with d = (13 + 1). In the case of d = (13 + 1) the compactification is

again assumed to be triggered by spinor condensates which then cause the appearance of

vielbeins and spin connection fields. The compactification from the symmetry SO(13, 1)

(first to SO(7, 1) × U(1)II × SU(3) and then) to SO(3, 1) × SU(2)I × SU(2)II ×U(1)II
×SU(3), leaving all the family members massless (in the toy model case we found the

solution for the compactification of the (x5, x6) surface into an almost S2 for particular spin

connections and vielbeins) ensure that the spins in d > 4 (in the low energy limit, otherwise

the total angular momenta) manifest in d = (3 + 1) all the observed charges. (There are

in the theory [15–30] two kinds of spin connection fields. The second one, not discussed in

this paper, takes care of families. Correspondingly there are before the electroweak break

four, rather than three so far observed, massless families of quarks and leptons.)

We don’t yet have the solution for the compactification procedure not even comparable

with the one for the toy model in d = (5 + 1). This study is under consideration.

However, analysing a massless left handed representation in d = (13 + 1) — similarly

as in the case of the toy model but in this case taking into account the charge groups of

quarks and leptons assumed by the standard model, they are subgroups of SO(13, 1) — one

easily sees that one (each) family representation in d = (13 + 1) contains [15–30] the left

handed (with respect to d = (3 + 1)) weak charged coloured quarks and colourless leptons

with particular spinor quantum number (16 for quarks and −1
2 for leptons) and zero hyper

charge and the right handed weak chargeless quarks and leptons, with the spinor charge

of the left handed ones but with the hyper charges as required by the standard model. In

table 2 are u and d quarks of a particular colour presented, left and right handed ones.

Leptons distinguish from the quarks in the colour and in the spinor quantum numbers. One

can find the whole one family representation in the ref. [30] and in table 3 of appendix A.

When the scalar spin connection fields of the two kinds (bringing appropriate weak and

hyper charges to the right handed members of one family) gain nonzero vacuum expectation

values, the electroweak break occurs, causing that the fermions and the weak bosons become

massive, while the U(1) electromagnetic field stay massless.

The effective Lagrange density is presented in eqs. (3.9), (3.10).

The term ψ̄γsp0s ψ is responsible for masses of spinors in d = (3 + 1), with γ0γs , s =

(7, 8) transforming the right handed quarks and leptons, weak chargeless and of particular

hypercharge into the left handed weak charged partners.

Similarly as in the case of the toy model the discrete symmetries of eq. (3.4) keep their

meaning also in this case.

5 Conclusions

We define in this paper the discrete symmetries, CN , PN and TN (eqs. (3.1), (3.4)) in even

dimensional spaces leading in d = (3+1) to the experimentally observed symmetries, if the

Kaluza-Klein kind of a theory [33–39] with d > (3 + 1) determining charges in d = (3 + 1)
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(among them also the spin-charge-family proposal of one of us (N.S.M.B. [15–30, 57–59]

offering also the mechanism for generating families) is the right way to understand the

assumptions of the standard model. We indeed define three kinds of the charge conjugation

operators: besides CN , which operates on the creation operator for a particle, also CN
transforming the positive energy state representing a particle when put on the top of the

Dirac sea into its negative energy partner, and CN which empties this negative energy

state in the Dirac sea representing on the top of the Dirac sea the anti-particle state (3.2).

Although we designed this discrete symmetry operators for cases with a central point

symmetry (see section 4) (there might be several) and particular rotational symmetries

around the central point in higher dimensions, yet our proposal might help to define these

discrete symmetries also in more complicated cases, as discussed in section 4.

Our (CN , PN , TN ) discrete symmetries are rotated and reflected with respect to the

symmetries as they would follow if extending the definition of the discrete symmetries

from d = (3 + 1) to any even d: (CH, PH and TH), presented in eqs. (2.1), (2.6). The

discrete symmetries (CH, PH and TH) do not lead, namely, to the experimentally observed

definitions, since if using CH on a second quantized state Ψ†, the charge conjugated state

has the same charge as the starting state. The proposed new discrete symmetries (CN , PN
and TN ) behave as they should — in agreement with the observed properties of fermions

and anti-fermions.

We do not study in this paper the break of CN , PN and TN symmetries.

We analyse properties of the proposed symmetries from the point of view of the ob-

servables in d = (3+1). Our definition of discrete symmetries is, as discussed in this paper

and in particular in section 4, more general and valid for spaces with the central points and

rotational symmetries around these points and might be helpful also for finding appropri-

ate discrete symmetries operators in examples, when compactification is made by a torus,

where the generators of translations around the torus are declared as charges in (3 + 1).

These discrete symmetries do not distinguish among families of fermions as long as the

family groups form equivalent representations with respect to the charge groups.

We illustrate our definition of the discrete symmetries on two cases: i. d = (5+1) and

ii. d = (13 + 1). The first case is a toy model which we show [6–14] that the Kaluza-Klein

kind of theories can lead in non-compact spaces to observable (almost massless) properties

of fermions. We present in table 1 one family of fermions of positive and negative energy

states. We also presented a way for a possible compactification in this toy model to

demonstrate that our definition of the discrete symmetries is meaningful 4.1.

For the second illustration of the proposed discrete symmetries the one family spinor

representation of the spin-charge-family theory, which explains the assumptions of the

standard model, is taken. We present in table 2 the representation of quarks of particular

colour charge, in table 3 we present all the members of one representation. It contains

quarks and leptons and the corresponding charge conjugated states.

The discrete symmetries proceed similarly to the case of d = (5 + 1). In this second

illustration fermions carry the experimentally recognized properties: CN PN transforms

the right handed u-quark with the spin up, weak chargeless and of the colour charge (12 ,
1

2
√
3
)

and the hyper charge equal to 2
3 into the left handed weak chargeless anti-quark with spin
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up and with the anti-colour charge (−1
2 ,− 1

2
√
3
) and anti-hyper charge −2

3 (see appendix A

lines 1 and 35 and also the ref. [30], table 2. line 1 and table 4. line 35). CN PN transforms

the weak charged (12) left handed neutrino, with spin up and colour chargeless into the right

handed weak anti-charged (−1
2) anti-neutrino with the spin up, anti-colour chargeless (see

appendix A table 3, line 31 and 61 and also the ref. [30], table 3, line 31 and table 5, line 61).

We also discuss about an acceptable compactification procedure, which leads in this

case to the standard model as a low energy effective theory of the spin-charge-family

theory. This study is in progress.

We concentrated on discrete symmetries of fermions, but discussed also the properties

of bosonic fields in higher dimensions, which are assumed to be treated as background

fields, discussing in section 4 their behaving with respect to both kinds of the discrete

symmetries: CN , P(d−1)
N and TN and CH, P(d−1)

H and TH.
The proposed discrete symmetries CN , P(d−1)

N and TN , defined for spaces with di-

mensions d even have obviously the desired properties in the observable part of space in

cases with central point symmetries and the rotational symmetries around such central

points [11, 12, 15–30], in which the way of curling up the higher dimensional space into

(almost) compact spaces or non compact spaces do not break a parity.

To discuss discrete symmetries of Kaluza-Klein kind of theories proposed in the liter-

ature [31, 32, 41–53] from the point of view of our proposal would require our complete

understanding of these models and in addition discussions with the authors.
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A The technique for representing spinors [6, 20, 57–59], a shortened

version of the one presented in [15–18]

The technique [6, 20, 57–59] can be used to construct a spinor basis for any dimension d

and any signature in an easy and transparent way. Equipped with the graphic presentation

of basic states, the technique offers an elegant way to see all the quantum numbers of

states with respect to the Lorentz groups, as well as transformation properties of the

states under any Clifford algebra object.

The objects γa have properties {γa, γb}+ = 2ηab I, for any d, even or odd. I is the

unit element in the Clifford algebra.

The Clifford algebra objects Sab close the algebra of the Lorentz group

Sab := (i/4)(γaγb − γbγa) , {Sab, Scd}− = i(ηadSbc + ηbcSad − ηacSbd − ηbdSac) .

The “Hermiticity” property for γa’s: γa† = ηaaγa is assumed in order that γa are formally

unitary, i.e. γa † γa = I.

The Cartan subalgebra of the algebra is chosen in even dimensional spaces as follows:

S03, S12, S56, · · · , Sd−1 d, if d = 2n ≥ 4.
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The choice for the Cartan subalgebra in d > 4 is straightforward. It is useful to define

one of the Casimir operators of the Lorentz group - the handedness Γ ({Γ, Sab}− = 0) in any

d, for even dimensional spaces it follows: Γ(d) := (i)d/2
∏

a (
√
ηaaγa), if d = 2n .

The product of γa’s in the ascending order with respect to the index a: γ0γ1 · · · γd is

understood. It follows for any choice of the signature ηaa that Γ† = Γ, Γ2 = I. For d even

the handedness anticommutes with the Clifford algebra objects γa ({γa,Γ}+ = 0).

To make the technique simple the graphic presentation is introduced

ab

(k):=
1

2

(

γa +
ηaa

ik
γb
)

,
ab

[k]:=
1

2

(

1 +
i

k
γaγb

)

, (A.1)

where k2 = ηaaηbb. One can easily check by taking into account the Clifford algebra relation

and the definition of Sab that if one multiplies from the left hand side by Sab the Clifford

algebra objects
ab

(k) and
ab

[k], it follows that

Sab
ab

(k)=
1

2
k

ab

(k) , Sab
ab

[k]=
1

2
k

ab

[k] , (A.2)

which means that we get the same objects back multiplied by the constant 1
2k. This

also means that when
ab

(k) and
ab

[k] act from the left hand side on a vacuum state |ψ0〉 the

obtained states are the eigenvectors of Sab. One can further recognize that γa transform
ab

(k) into
ab

[−k], never to
ab

[k]:

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) . (A.3)

Let us deduce some useful relations

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k) = ηaa
ab

[k] ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k] = 0 ,

ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k) =
ab

(k) ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k) = 0 . (A.4)

Taking into account the above equations it is easy to find a Weyl spinor irreducible

representation for d-dimensional space.

For d even we simply make a starting state as a product of d/2, let us say, only

nilpotents
ab

(k), one for each Sab of the Cartan subalgebra elements, applying it on an

(unimportant) vacuum state. Then the generators Sab, which do not belong to the Cartan

subalgebra, being applied on the starting state from the left, generate all the members of

one Weyl spinor.

0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) ψ0

0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) ψ0

...
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od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) ψ0

... (A.5)

All the states have the handedness Γ, since {Γ, Sab}− = 0. States, belonging to one

multiplet with respect to the group SO(q, d − q), that is to one irreducible representation

of spinors (one Weyl spinor), can have any phase. We made a choice of the simplest one,

taking all phases equal to one.

There are two kinds of the Clifford algebra objects [13–16, 57, 58]: besides the Dirac

γa ones also γ̃a, with the properties [57, 58]

{γ̃a, γ̃b}+ = 2ηab , {γa, γ̃b}+ = 0 , (A.6)

for any d, even or odd. γ̃a form the equivalent representations with respect to γa. If γa

multiply any Clifford algebra object B =
∑

i=0,d aa1···aiγ
a1 · · · γai from the left hand side

(γaB|vac〉fam , |vac〉fam is the vacuum state), multiply γ̃a the same B from the right hand

side (γ̃aB|vac〉fam = i(−)nB Bγa|vac〉fam. (−)nB = +1,−1, when the object B has an even

or odd Clifford character, respectively.

Correspondingly transforms γa the object
ab

(k) into
ab

[−k], never to
ab

[k], and
ab

[k] to
ab

(−k),
never to

ab

(k), while γ̃a transforms
ab

(k) into
ab

[k], never to
ab

[−k], and
ab

[k] to
ab

(k), never to
ab

(−k).
The generators Sab (or superposition of Sab) take care of spins and charges of the

family members, while S̃ab (or superposition of S̃ab) take care of families.

We present below the multiplet of states and charge conjugated states of quarks

and leptons belonging to one SO(13, 1) multiplet of quarks and leptons. To find families

of the subgroup SO(7, 1) the generators of S̃ab, (a, b) ∈ (0, . . . , 7, 8) , with the property

{S̃ab, Sab}− = 0 must be taken into account.

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 τ31 τ38 τ4 Y Q

Octet, Γ(1,7) = 1, Γ(6) = −1,

of quarks and leptons

1 uc1
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] 1 1

2
1 0 1

2
1
2

1
2
√

3
1
6

2
3

2
3

2 uc1
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] 1 − 1

2
1 0 1

2
1
2

1
2
√

3
1
6

2
3

2
3

3 dc1R

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] 1 1

2
1 0 − 1

2
1
2

1
2
√

3
1
6

− 1
3

− 1
3

4 dc1R

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] 1 − 1

2
1 0 − 1

2
1
2

1
2
√

3
1
6

− 1
3

− 1
3

5 dc1L

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] -1 1

2
-1 − 1

2
0 1

2
1

2
√

3
1
6

1
6

− 1
3

6 dc1L

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] -1 − 1

2
-1 − 1

2
0 1

2
1

2
√

3
1
6

1
6

− 1
3

7 uc1
L

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] -1 1

2
-1 1

2
0 1

2
1

2
√

3
1
6

1
6

2
3

8 uc1
L

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] -1 − 1

2
-1 1

2
0 1

2
1

2
√

3
1
6

1
6

2
3

9 uc2
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] 1 1

2
1 0 1

2
− 1

2
1

2
√

3
1
6

2
3

2
3

10 uc2
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] 1 − 1

2
1 0 1

2
− 1

2
1

2
√

3
1
6

2
3

2
3

· · ·

17 uc3
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) 1 1

2
1 0 1

2
0 − 1

√

3
1
6

2
3

2
3

18 uc3
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) 1 − 1

2
1 0 1

2
0 − 1

√

3
1
6

2
3

2
3

· · ·

– 26 –



J
H
E
P
0
4
(
2
0
1
4
)
1
6
5

25 νR

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) 1 1

2
1 0 1

2
0 0 − 1

2
0 0

26 νR

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) 1 − 1

2
1 0 1

2
0 0 − 1

2
0 0

27 eR

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) 1 1

2
1 0 − 1

2
0 0 − 1

2
−1 −1

28 eR

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) 1 − 1

2
1 0 − 1

2
0 0 − 1

2
−1 −1

29 eL

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) -1 1

2
-1 − 1

2
0 0 0 − 1

2
− 1

2
−1

30 eL

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) -1 − 1

2
-1 − 1

2
0 0 0 − 1

2
− 1

2
−1

31 νL

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) -1 1

2
-1 1

2
0 0 0 − 1

2
− 1

2
0

32 νL

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) -1 − 1

2
-1 1

2
0 0 0 − 1

2
− 1

2
0

33 d̄c̄1L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
(+) -1 1

2
1 0 1

2
− 1

2
− 1

2
√

3
− 1

6
1
3

1
3

34 d̄c̄1L

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
(+) -1 − 1

2
1 0 1

2
− 1

2
− 1

2
√

3
− 1

6
1
3

1
3

35 ūc̄1
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Table 3. The left handed (Γ(13,1) = −1 = Γ(7,1) ×Γ(6)) multiplet of spinors — the members of the

SO(13, 1) group, manifesting the subgroup SO(7, 1) — of the colour charged quarks and anti-quarks

and the colourless leptons and anti-leptons is presented in the massless basis using the technique

of this appendix. It contains the left handed (Γ(3,1)) weak charged (τ13) and SU(2)II chargeless

(τ23) quarks and the right handed weak chargeless and SU(2)II charged quarks of three colours (ci

= (τ33, τ38)), with the spinor charge (τ4) and the colourless left handed weak charged leptons and

the right handed weak chargeless leptons. S12 defines the ordinary spin ± 1
2 . Additional notations

are presented in table 2. The vacuum state |vac〉fam, on which the nilpotents and projectors operate,

is not shown. The reader can find this Weyl representation also in the refs. [15–17, 29, 30]. Two anti-

octets of anti-quarks of the rest two anti-triplet colours follow from the presented one by substituting

the part ||
9 10

[−]
11 12

(+)
13 14

(+) of the basis by ||
9 10

(+)
11 12

[−]
13 14

(+) for q̄c̄
2

L,R and by ||
9 10

(+)
11 12

(+)
13 14

[−] for

q̄c̄
3

L,R. Correspondingly the charges are ( 12 ,− 1
2
√
3
) and (0, 1√

3
), respectively.15
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15The family in table 3 differs from the family in table 2 in the part concerning coordinates

x9, x10, x11, x12, x13, x14, but both are equivalent with respect to the discrete symmetries, charges and spins.
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[12] D. Lukman, N.S. Mankoč Borštnik and H.B. Nielsen, ‘An effective two dimensionality’ cases

bring a new hope to the Kaluza-Klein-like theories, New J. Phys. 13 (2011) 103027

[arXiv:1001.4679] [INSPIRE].
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