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ABSTRACT: We argue that the neutrino oscillation probabilities in matter are best un-
derstood by allowing the mixing angles and mass-squared differences in the standard
parametrization to ‘run’ with the matter effect parameter a = 2v2GrN.E, where N,
is the electron density in matter and E is the neutrino energy. We present simple analyti-
cal approximations to these ‘running’ parameters. We show that for the moderately large
value of 13, as discovered by the reactor experiments, the running of the mixing angle
f23 and the CP violating phase § can be neglected. It simplifies the analysis of the result-
ing expressions for the oscillation probabilities considerably. Approaches which attempt
to directly provide approximate analytical expressions for the oscillation probabilities in
matter suffer in accuracy due to their reliance on expansion in 613, or in simplicity when
higher order terms in 613 are included. We demonstrate the accuracy of our method by
comparing it to the exact numerical result, as well as the direct approximations of Cervera
et al., Akhmedov et al., Asano and Minakata, and Freund. We also discuss the utility of
our approach in figuring out the required baseline lengths and neutrino energies for the
oscillation probabilities to exhibit certain desirable features.
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1 Introduction

When performing long-baseline neutrino oscillation experiments on the Earth with ac-
celerator based beams, or when detecting atmospheric neutrinos coming from below, the
neutrinos necessarily traverse the Earth’s interior [1-8]. This makes the understanding
of matter effects [9-12] on the neutrino oscillation probabilities an indispensable part of
analyzing such experiments. These matter effects can of course be calculated numerically
for arbitrary matter profiles, but approximate analytical expressions are useful not only for
making initial estimates on the requirements one must place on long-baseline experiments,
but in obtaining a deeper understanding of the physics involved.

The exact three-flavor neutrino oscillation probabilities in constant-density matter can
be expressed analytically [12-23]. This requires the diagonalization of the 3 x 3 effective
Hamiltonian in matter whose ee-element in the flavor basis is shifted by a = 2v2GrN,E,
where N, is the electron density and E is the neutrino energy. The eigenvalues of the
effective Hamiltonian yield the effective neutrino mass-squared differences in matter," while
the diagonalization matrix is multiplied with the vacuum neutrino mixing matrix to yield
its in-matter counterpart. Many authors adopt the standard vacuum parameterization
of the mixing matrix to the matter version, and absorb matter effects into shifts of the
mixing angles and CP violating phase, yielding the effective values of these parameters
in matter [13, 14, 16, 22]. Thus, the neutrino oscillation probabilities in matter can be
obtained from those in vacuum by simply replacing the mass-squared differences, mixing
angles, and CP violating phase with their effective values. Unfortunately, the final exact
expressions for the neutrino oscillation probabilities obtained this way are too complicated
to yield physical insight, especially if re-expressed in terms of the vacuum parameters.

Consequently, various analytical approximations have been devised to better under-
stand the physics potential of various neutrino experiments [12, 22, 25-32]. These ap-
proximations relied on expansions in the small parameters a = §m3;/0m3; ~ 0.03 and/or
$13 = sinfi3 in one form or another, a systematic treatment of which can be found in
ref. [29]. In some cases the matter-effect parameter a = 2v/2GrN.E was also assumed to
be small [12, 26]. For instance, the formula of Cervera et al. in ref. [27] and that of Ahkme-
dov et al. in ref. [29] include terms of order O(a?), O(asi3), and O(s?3). Unfortunately,
the accuracies of these formulae suffer when the value of 013 is as large as was measured by
Daya Bay [33, 34] and RENO [35], consistent with both earlier and later determinations
by T2K [36], MINOS [37, 38], and Double Chooz [39, 40]. Given that the current world
average of sj3 = sinf3 is about 0.15 [41], the terms included are not all of the same order.
Asano and Minakata [32] have derived the order O(as?;) and O(sj3) corrections to the
Cervera et al. formula, but the simplicity of the original expressions is lost. Further im-
provements in accuracy are possible at the expense of simplicity, as was shown by Freund
in ref. [22] where an approximate expression for the oscillation probability P(v. — v,)
including all orders of 613 was derived.

The cubic characteristic equation for the eigenvalues of the effective Hamiltonian can be solved analyt-
ically using Cardano’s formula [24].



In previous papers [42, 43], we had argued the advantage of not expressing the neu-
trino oscillation probabilities in matter directly in terms of the vacuum parameters, but to
maintain their expressions in terms of the effective parameters in matter which ‘ran’ with
the parameter a = 2v/2GrN.E. Further, it was shown that the Jacobi method [44] could
be utilized to find approximate expressions for the ‘running’ parameters in a systematic
fashion, leading to fairly simple and compact expressions. In particular, it was shown that
the effective values of f93 and the CP violating phase § do not ‘run’ to the order considered,
maintaining their vacuum values at all neutrino energies and baselines. (The non-running
of f23 and ¢ has also been discussed in ref. [17].) The a-dependence of the resulting ex-
pressions for the oscillation probabilities in terms of the approximate running parameters
could be analyzed in a simple manner, facilitating the understanding of matter effects.

The approximation of refs. [42, 43] worked extremely well except when ;3 was very
small, a possibility that could not be ignored until the Daya Bay/RENO measurements. In
this paper, we reintroduce the method with further refinements which improve the accuracy
of the approximation for large 613, while maintaining its ease of use.

This paper is organized as follows. In section 2, we explain our approach to the
matter effect problem, and list all the formulae necessary to calculate the approximate
‘running’ parameters in our approach. Approximate oscillation probabilities are obtained
by replacing the mass-squared differences and mixing angles in the vacuum oscillation
probabilities with their effective ‘running’ values. In section 3, we demonstrate the accuracy
of our approximation at various baseline lengths, different mass hierarchies, and different
values of the CP violating phase §. Comparisons with the approximations of Cervera et
al. [27], Akhmedov et al. [29], Asano-Minakata [32], and Freund [22] are also made. In
section 4, we show how simple calculations using our approximation can be used to derive
the baselines and energies at which the oscillation probabilities exhibit desirable features.
We conclude in section 5. Detailed derivation of our approximation is given in appendices B
and C.

2 The approximation
In the following, we use the conventions and notation reviewed in appendix A.

2.1 Diagonalization of the effective Hamiltonian

If the matter density along the baseline is constant,? the effective Hamiltonian which gov-
erns the evolution of neutrino flavor in matter is given by

00 0 a00
H,=U|06m3, 0 |U'+]000], (2.1)
0 0 &m3 000

where U is the neutrino mixing matrix in vacuum, and

@ =2vV2GrN,E = 7.63 x 107 (cV?) (g/fm3> <G§V> . (2.2)

2At baseline length L = 10690 km or longer, the neutrino beam crosses the core-mantle-boundary and

experiences a sudden jump in matter density. See ref. [46] for treatments of non-adiabatic transitions.
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Figure 1. The dependence of the line-averaged mass density p on the baseline length L based on
the Preliminary Reference Earth Model [45]. The labels on the right edge of the frame indicate the
corresponding values of a/E. The green and red dashed lines indicate pL = 54000 km - g/cm? and
pL = 32000 km - g/cm3, respectively, which are conditions that will be discussed in section 4.

Here, N, is the electron number density, p the matter mass density along the baseline,
and FE the neutrino energy. The above term appearing in the ee-component of H, is
due to the interaction of v, with the electrons in matter via W-exchange, and eq. (2.2)
assumes N, = N, = N,, in Earth matter. It also assumes F < My since the W-exchange
interaction is approximated by a point-like four-fermion interaction. Z-exchange effects are
flavor universal and only contribute a term proportional to the unit matrix to H,, which
can be dropped.

If we write the eigenvalues of H, as \; (i = 1,2,3) and the diagonalization matrix as
U, that is

>

fnoo]
H,=U|0 X 0|U, (2.3)
0 0

>

3

then the neutrino oscillation probabilities in matter are obtained by simply taking their

expressions in vacuum and replacing the elements of the mixing matrix U and the mass-

2

;; with their effective ‘running’ values in matter [9-11]:

square differences dm

~

Um‘ — Um‘, 577112] — 5/\1‘]' = )\i — )\j . (2.4)

Note that a is E-dependent, which means that both U «i and 0);; are also E-dependent.
They also depend on the baseline length L since the average matter density p along a
baseline varies with L. The L-dependence of the average p and the corresponding value of
a/E are shown in figure 1.



For anti-neutrino beams, the flavor-evolution Hamiltonian in matter is

0 O 0 —a 00
H,=U"|06m3, 0 |[U"+|000]. (2.5)
0 0 dom3 000

In comparison to eq. (2.1), the CP violating phase ¢ in U and the matter-effect term a
both acquire minus signs. Let us write the eigenvalues of H, as \; (i = 1,2,3) and the

diagonalization matrix as (7, that is

~T
U . (2.6)

R
H,=U |0 X\
00
Note that the tilde above U here is flipped to distinguish it from U in eq. (2.3). The anti-
neutrino oscillation probabilities in matter are then obtained by making the replacements

“

Uai = Uqis  0mi; — 6Xij = Xi — Aj, (2.7)
in the vacuum expressions.

2.2 Effective running mixing angles

While it is possible to write down exact analytical expressions for ﬁai and 6)\;;, as well as
their anti-neutrino counterparts [16], simpler and more transparent approximate expres-
sions are often desirable. One popular approach is to expand the probability formulae in
terms of small parameters such as dm3,/|0m3;| and 613. Our approach, however, utilizes
the Jacobi method [44]. Instead of obtaining approximations for the probabilities directly,
we derived the approximations for the effective mixing parameters. In the following two
sections, we list the expressions necessary to calculate the effective running mixing angles
and the effective running mass-squared differences for the neutrino and anti-neutrino cases
separately. Detailed derivation of our approximation is given in appendix B.

2.3 Neutrino case

We first recognize that the mixing matrix in matter can be parameterized in the same
fashion as in the vacuum case:

U = Ray(023,0) Ri3(013, 6) R12(012,0) . (2.8)
The effective mixing angles can be approximated by

~
~ /
013 ~ 013,

523 ~ a3,
~§, (2.9)

(o9



where 0, and 6}5 are given by

(6m3,/c33) sin 2019
(6m3,/c33) cos 2612 —a’
(6m3, — dm3,s3,) sin 20;3

tan 261, =

tan 2605 = (2.10)

(6m3, — om3 s%,) cos 2613 —a

while the angle 023 and the CP-violating phase ¢ at kept at their vacuum values [17].
The eigenvalues \; (i = 1,2,3) of H, are also given approximate running expressions:

/
)\1%)\7,

"
)\2%)\:;:,

A3~ M\, (2.11)

where the upper(lower) sign is for the normal(inverted) hierarchy, with

(0m3, + acly) £ v/ (0md; — acly)? + dactys,om3,

Ny

Y

2
2
" [Ny + (0m3) + asty)] + \/[X+ — (0m3; + asts)]” + da?sth cfy sy
N = 5 . (212)

and s = sin?6],. For the inverted hierarchy case, dm3; < 0, the above expressions
simplify to

Nom N~ N, AN =dmd <0. (2.13)
Thus, to take matter effects into account when calculating neutrino oscillation probabilities,
all that is necessary is to take their expressions in terms of the mixing angles and CP-phase
in vacuum as is, and replace the two angles as well as the mass-squared differences with
their effective running values in matter: 612 — 015, 613 — 013, dmg; = dAij = A — Aj. This
simplifies the calculation considerably, and allows for a transparent understanding of how

matter-effects affect neutrino oscillation by looking at the a-dependence of the effective
parameters.

2.4 Anti-neutrino case

Similarly, in the anti-neutrino case, the mixing matrix can be parameterized by:
U = Ra3(623,0)R13(013, 6)Ri2(012,0) . (2.14)

Note that the sign in front of the matter effect parameter «a is flipped relative to the neutrino
case, so these effective mixing angles will be different. Our approximation is given by

- —/
912 ~ 912,
- —/
913 ~ 913,

52§ ~ a3,
0~ 90, (2.15)



where

(6m3,/c35) sin 2019
(6m3,/c23) cos 26012 +a’
(6m3, — 6m3,s%,) sin 263

tan 265 = : 2.16
e (6m3, — dm3,s3,) cos2613 +a (2.16)

tan 2532 -

Again, 653 and § are unaffected while 815 and 6,3 are replaced by their effective running
values in matter.

The eigenvalues \; (i=1,2,3) of H, are given approximate running expressions as in
the neutrino case. The three eigenvalues of the effective Hamiltonian are approximated by

Xl%)\
Xg%)\+,
X3 A Ay, (2.17)

where the upper(lower) sign is for the normal(inverted) hierarchy, with

(5m%1 - ac%:&) + \/(5m§1 + ac%3)2 - 4“%35%257”%1

N, =
+ ) )
~/ ~ -
o B mdy —ashy) £ I - (6md, - ashy)? + 42y o,
AL = ,  (2.18)
2
and 7% = cos? 5112. For the normal hierarchy case, dm3; > 0, the above expressions
simplify to
AN A, A3 ~ X:/L ~ om3; . (2.19)

Thus, the calculation of matter effects for anti-neutrino beams entails the replacements
= = _ o

2.5 The (§-dependence of mixing parameters

We show plots depicting how our various effective parameters run with the matter-effect

parameter a. Due to the wide separation in scale between dm3, and dm%;, we find it

convenient to introduce the parameter § via®

a om
- _ 21
B o=

m =c ~ 0.17, (2.20)
and plot our effective running parameters as functions of 8 instead of a. Here 5 = 0
corresponds to a = |[dm3,], B = —2 to a = dm3;, and so on. The dependence of the
effective mixing angles on 8 are shown in figure 2 and that of the sines of twice these angles
in figure 3. The -dependence of approximate eigenvalues of the effective Hamiltonian are
shown in figure 4.

3We avoid the use of the symbols o or A since they often respectively denote dm3;/dm3; and a/ém3;
in the literature.
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Figure 3. The [-dependences of the sines of twice the effective mixing angles for the neutrino
(a) and antineutrino (b) cases. The difference in the behavior of the effective 613 mixing angle for
normal and inverted hierarchies will allow us to determine which is chosen by nature.

3 Demonstration of the accuracy of the approximation

In this section, we plot neutrino oscillation probabilities in several scenarios to demonstrate
the accuracy of our approximation. As seen in the previous section, our formulae for both
the neutrino and anti-neutrino cases are fairly compact and easy to code. In particular,
the effective mixing angles for the neutrino and anti-neutrino cases can be calculated with
the same code by simply flipping the sign of the matter-effect parameter a, cf. egs. (2.10)
and (2.16). The same can be said of X, and X/i defined in egs. (2.12) and (2.18). In the
case of \'| and Xl, one also needs to make the swap X, <> A_ but otherwise the code
will be essentially the same. For the vacuum values of the mixing angles and mass-squared
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Figure 4. Dependence of the approximate eigenvalues of the effective Hamiltonian on [
—log_(a/|6m3,|) for the (a) neutrino normal hierarchy, (b) neutrino inverted hierarchy, (c) anti-
neutrino normal hierarchy, and (d) anti-neutrino inverted hierarchy cases.

om3, 7.5 x 1070 eV?
om3, 2.47 x 1073 eV?
sin2 923 0.5
sin? 619 0.3
sin? 0,3 0.023

Table 1. Best-fit values of oscillation parameters taken from ref. [41].

differences, we use the global fit values from ref. [41] listed in table 1. All plots are generated
assuming constant Earth matter density.

We begin by comparing our approximation to eq. (16) of Cervera et al. [27], eq. (3.5)
of Akhmedov et al. [29], sum of egs. (4.2) to (4.4) of Asano and Minakata [32], and eq. (36)
of Freund [22]. Note that both Cervera et al. and Akhmedov et al. expand the oscillation
probabilities to the same order, so their expressions are quite similar except for a minor
difference: eq. (16) of Cervera et al. is the same as eq. (38) of Freund, while eq. (3.5) of

Akhmedov et al. is obtained from the same by setting cos @3 = 1 while keeping sin 6;3
NON-ZETo.



L=4000 km, 6=0, Normal Hierarchy L=4000 km, 6=0, Normal Hierarchy

0.20 T T T T ] 0.03 T T T
] --- Exact — Freund
= 0021 — This work Akhmedov et al.
0.151 1 €
a — Cervera et al.
s 001 1
’E --- Exact 5% A/\ —— Asano—Minakata
=9
11 0.10} — This work 18 ook —
& —— Cervera et al. g H v V
— Asano—Minakat g -001r ]
005 L sano nakata \é
/\ — Freund & _p02f ]
M | \ Akhmedov et al. ]
ool ™M —~003 . . . | .
2 4 6 8 10 12 2 4 6 8 10 12
E (Gev) E (Gev)
(a) (b)

Figure 5. Comparison of the approximation formulae of Cervera et al., Akhmedov et al., Asano-
Minakata, Freund, and this work at L = 4000km. In left panel, the dashed line gives the exact
numerical result assuming the line-averaged constant matter density of p = 3.81g/cm?. This has
been estimated using the PREM profile of the Earth [45].

In figure 5(a), we plot the approximate v, — v, oscillation probabilities calculated
using these three approximations against the exact numerical result for the baseline length
L = 4000 km. This is the distance used by Asano and Minakata in ref. [32] to demonstrate
the strength of their formula. The line-averaged constant Earth matter density* for this
baseline is 3.81g/cm? which has been estimated using the Preliminary Reference Earth
Model (PREM) [45]. We consider the normal hierarchy case, dm3, > 0, with the CP
violating phase ¢ set to zero. The differences between the exact and approximate formulae
are plotted in figure 5(b). As can be seen, at this baseline, both the Asano-Minakata
formula and our approximation work much better than the Cervera et al. or the Akhmedov
et al. formulae. The Freund formula works well in the energy range F < 8GeV, but
leads to a kink at F ~ 8 GeV due to some terms in the expression changing sign at
a = |dm?3;| cos 2613.

The comparison at a shorter baseline length of L = 810 km, which is the distance from
Fermilab to NOvA, is shown in figure 6. There, all five approximations work well, with
our approximation being the most accurate.

The situation changes at the longer baseline length of L = 8770km, which is the
distance from CERN to Kamioka [47], as can be seen in figure 7. There, the Cervera et
al. and the Akhmedov et al. formulae greatly overestimate P(v, — v.), while the Asano-
Minakata formula leads to negative probability for £ ~ 4GeV. The Freund formula is
accurate up until E ~ 7GeV where a kink occurs at a = |§m?2;] cos 2613. In comparison,
our approximation remains accurate for all energies.

The accuracy of our approximation for both the neutrino and anti-neutrino cases, and
both mass hierarchies, for different values of the CP violating phase §, is demonstrated in
figures 8 and 9 for the two baselines L = 1300 km and L = 2300 km, respectively. These

4All the results presented in this paper have been derived assuming the line-averaged constant Earth
matter density (based on the PREM profile) for a given baseline.
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Figure 6. Comparison of the approximation formulae of Cervera et al., Akhmedov et al., Asano-
Minakata, Freund, and this work at L = 810 km, which is the distance from Fermilab to NOvA.
In left panel, the dashed line gives the exact numerical result assuming the line-averaged constant
matter density of p = 2.80 g/cm?®. This has been estimated using the PREM profile of the Earth [45].
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Figure 7. Comparison of the approximation formulae of Cervera et al., Akhmedov et al., Asano-
Minakata, Freund, and this work at L = 8770 km, which is the distance from CERN to Kamioka.
In left panel, the dashed line gives the exact numerical result assuming the line-averaged constant
matter density of p = 4.33 g/cm?®. This has been estimated using the PREM profile of the Earth [45].
Note that the Asano-Minakata formula gives negative probability for £ ~ 4 GeV.

distances correspond to those between Fermilab and Homestake (1300 km), and CERN
and Pyhésalmi (2300 km) [48]. As is evident, our approximation maintains its accuracy
for all energy ranges and mass densities.

~10 -
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Figure 8. Comparison of our approximation formulae (colored) to the exact numerical results
(black, dashed) for various values of the CP violating phase ¢ at L = 1300km. The line-averaged
constant matter density for this baseline length is p = 2.87 g/cm?®.

4 Applications

4.1 Determination of the mass hierarchy from v, oscillations
Consider the v, survival probability in matter which is given by
P(ve — ve)

- A - - A
= 14U (17 U oo )sm 2 —4|Uef? (17 |U63|2) sin? =

~ ~

+2 ][762\2][763\2 4 sin® % sin? % + sin Km sin 331
= — 438 (1- 0'1235’122) sin? 3221 — sin?(26}3) sin® 3231
+ s sin?(26)3) | 2sin? %21 sin? % % sin Agq sin A
512~1 1 —sin?(26}5) | sin® &— + sin? A— — 2sin? &— n? ﬁ — }sin Agy sin Agy
2 2 2 2
= 1 —sin%(26)3)sin® %’2 , (4.1)
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Figure 9. Comparison of our approximation formulae (colored) to the exact numerical results

(black, dashed) for various values of the CP violating phase § at L = 2300km. The line-averaged
constant matter density for L = 2300km is p = 3.54 g/cm3.

where we have assumed that a > dm3, so that s}, ~ 1 is a good approximation. Similarly,
we find:

P(ve — 1)
N o~ A ~ o~ A
2 2 . 2821 2 2 . 9 A31
= 4‘U€2| ’UM2| sin T+4|U63| |Uﬂ3| sin® ——
~* o~ 9 A 2 A
+2R (U63UN3U62U ) 4 sin —— +sin A21 sin A31
~ . z21 N . 331 .
+4 J (e, sin? —,sin Agq — sin? —, sin Aoy (4.2)
5 Mgy A
2 .2 1o . 2 .2 2 231
- 4 812613 (612023 + 312813823 2812612313023823 COS 5) Sln 72 + 4 313013823 Sln
. £21 . z31 N
425158135 503 (clacag cos§ — s9s]3s93) | 4 sin? — sin? —~ + sin Ag; sin Agg
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: CWAS Y 9 Ag
—4 8458155 593¢03 5in 6 | sin? —, sin Az — sin? —, sin Aoy (4.3)

~ A
512—> 524 sin?(26}5) sin? 232 , (4.4)
P(ve = v;)

N A N A
= 4‘Ue2‘2’U7—2‘2$in2%—|—4‘U@3‘2‘U7—3‘28in2i

~k 9 A A
+2% (U€3U73U62U72) 4sin? 221 sin? 23 —i—smAgl smA31

N N X
+4 J(w) sin? % sin Ag; — sin? % sin Ao

~ ~

9 Aoy A
2 2 2 2 2 2 2 231
== 4 812613 (612823 + 312813023 2812612313323623 COS 5) Sln 72 + 4 313013023 Sln
. &21 . g31 .x .
—25’125’130’123023 (0'12323 cosd + 5/128/13623) 4sin® —~ sin? 5 + sin Agq sin Agg

~ ~

: ERAY 9 Ag
+4 8151 9813¢ 5 523¢03 8In 6 | sin® —, sin Asz; — sin® —, sin Agy

~

sho~l Agy

27 ¢34 sin?(20]3) sin? == (4.5)

From figure 3, it is clear that the factor sin®(20);) in these expressions behaves quite
differently depending on the mass hierarchy. For normal hierarchy sin2(29’13) will peak
around a ~ dm3; but for the inverted hierarchy case it will not. This will become manifest

if the factor sin2(£32 /2) also peaked at or near the same energy.’

For the normal hierarchy case, when a ~ §m3; we have

g2 =N =\ ~ \/[)‘,—&- — (0m3, + as?y)|? + 4a?clys3; = 2s13a. (4.6)

SIf we expand the running parameters in our eq. (4.4) in powers of the vacuum s13 and a = ém3; /dm3;,
the leading order term expressed using the notation of Freund [22] takes the form

P(ve — v,,) = 533 sin”(2613) sin” ﬁ = 535 flsi sin’ [(A — 1)A] +
2 (A—1)2

where A = a/ém?; and A = ém?%, L/4E. This is the same as eq. (38a) of Freund with sin® 26,3 replaced
by 4s?5, and agrees with the corresponding term of Akhmedov et al. [29]. The enhancement discussed in
the main text can be seen to occur at A = 1, that is @ = ém2;, which is possible only when ém3; > 0.
However, the formulae of Cervera et al. [27], Akhmedov et al. [29], Asano and Minakata [32], and Freund [22]
compared in the previous section all suffer in accuracy around the resonance region A ~ 1. This is not the
case for our expression, which has a smooth transition across the resonance. The fact that the CP-phase
dependent terms are negligible at the relevant energies and baselines is also clear in our approach.
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Figure 10. Comparison of the exact oscillation probabilities P(v. — v,) between the normal and
inverted hierarchies at (a) L = 10000km (p = 4.53 g/cm?), and (b) L = 8770km (p = 4.33 g/cm?)

Therefore,

Asy  0As 5130 5 p L
2 4F 2F ( 910 ) g/cm? km

T pL
T2 <54000 (km - g/cm3)> ' (47)

From figure 1, it is clear that pL < 54000 (km - g/cm?) as long as the neutrino beam

does not enter the core of the Earth, at which point the constant average matter density
approximation breaks down. Therefore, in order to take 132 /2 as close as possible to 7/2
while preventing the beam from entering the Earth’s core, we need L ~ 10000 km.

For instance, if we take L = 10000km for which p = 4.53g/cm®, we have pL =~

45300km - g/cm3. The value of £32/2 at resonance a ~ dm3,; is then

45300
54000

g x = 0427, (4.8)
leading to an oscillation peak /dip factor of sin’ (£32 /2) = 0.94. Using eq. (2.2), the neutrino
beam energy at which a ~ §m2, is found to be

E (6m3, /eV?) (2.47 x 1073)

GoV ~ (7.63 < 105) x (p/ (/o) ~ (763 x 107) < (a53) =~ 49

Indeed, in figure 10(a) we show the exact v, survival probabilities at L = 10000 km for
both hierarchies, and we can see that the normal hierarchy case dips by over 95% around
E ~ 6.5GeV. Thus, our rough estimates give a highly reliable result.

If we take a somewhat shorter baseline of L = 8770 km, which is the distance between
CERN and Kamioka [47], we have p = 4.33 g/cm?, and pL ~ 38000 km - g/cm?. The value

of Asz/2 at resonance a ~ §m3; is then

38000
54000

g x = 0.357, (4.10)
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leading to an oscillation peak/dip factor of sin2(132 /2) = 0.8, which is still fairly prominent.
Using eq. (2.2), the neutrino beam energy at which a ~ ém2, is found to be
E (6m3, /eV?) (2.47 x 1073)

GeV — (7.63 x 10°5) x (p/(a/om®)) — (7.63 x 10°5) x (4.33) = " (411)

The actual oscillation peak occurs slightly off resonance around £ = 6.5 GeV as can already
be seen in figure 7. Comparison of P(v, — v.) at L = 8770km with § = 0 for the normal
and inverted hierarchies are shown in figure 10(b). P(v. — v,,) is compared in figure 11(b).

The differences between the normal and inverted hierarchies for both baselines is mani-
fest, indicating that measuring these oscillation probabilities at this baseline would allow us
to determine the mass hierarchy easily. (We consider the dependence on the CP violating
phase § in the next section.) Egs. (4.1), (4.4), and (4.5) also suggest that the measurement
may provide a better determination of sin? ;3.

4.2 The “magic” baseline

The “magic” baseline is the baseline at which the dependence of P(v, — 1v,) on the CP
violating phase & vanishes [49].5 Looking at eq. (4.2), the only term without -dependence

is the ]5 63\2]5 u3/% term. To make every other term vanish, we must have
Aoy a1
in— =sin| —=L ) =0. 4.12
sin — sin < 15 (4.12)
Therefore, the magic baseline condition is

dAa1
— . 4.1
o L =nm, nez (4.13)

If we are in the energy and mass-density range such that ém3; < a < [dm3,|, we can see
from figure 4 that d\o1 =~ a = 2v/2GrN,E, and the above condition reduces to

V2GpN,L ~ 2nr (4.14)

which is the usual magic baseline condition. Using eq. (2.2), this condition for the n = 1

case becomes

Kgl a _5 ) L
— =~ —L=(9. 1 — | = 4.1
> ~apt T O o ) G ) T (4.15)
that is I
p
— =~ 32 . 4.1
km - g/om? 32000 (4.16)

This is satisfied for L ~ 7500km as can be read off of figure 1. Indeed, in figure 11(a) we
plot the bands that P(v. — v,) at L = 7500 km sweeps for both mass hierarchies when &
is varied throughout its range of [0, 27]. We can see that the dependence on ¢ is very weak.

6 An illuminating discussion on the physical meaning of the “magic baseline” can be found in ref. [50].
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Figure 11. The dependence of the exact oscillation probability P(v. — v,) on the CP violating
phase § at (a) L = 7500km (p = 4.21 g/cm?), and (b) L = 8770 km (p = 4.33 g/cm?) for the normal
(red) and inverted (green) mass hierarchies.

However, if we look at eq. (4.3) carefully, it is clear that all terms that include the CP
violating phase § are multiplied by ¢}, which goes to zero when a > ém3;. Indeed, this
was why ¢ did not appear in eq. (4.4). The condition a > §m3,; demands

(g/gm?’) (GSV) >1, (4.17)

which is clearly satisfied around the oscillation peak for the L = 8770 km case just discussed

in the previous section. Thus, P(v, — v,) for this baseline is also only very weakly
dependent on § as shown in figure 11(b). We can conclude that, in general, as long as
eq. (4.17) is satisfied, one does not need to be at a specific “magic” baseline to suppress
the d-dependence of P(v. — v,).

5 Summary

We have presented a new and simple approximation for calculating the neutrino oscillation
matter effects. Our approximation was derived utilizing the Jacobi method [44], and we
show in the appendix that at most two rotations are sufficient for approximate diagonal-
ization of the effective Hamiltonian. The two rotation angles are absorbed into effective
values of 615 and 613.

As explained in detail in the appendix, the approximation works when 615 = O(e),
where € = \/5m%1/|5m§1 = 0.17, a condition which has been shown to be satisfied by Daya
Bay [33] and RENO [35]. Our formulae are compact and can easily be coded as well as be
manipulated by hand. The application of our method to finding the v, — v, v, resonance
conversion condition, and that to the determination of the ‘magic’ baseline [49, 50] have
been demonstrated.

In this paper, only the matter effect due to Standard Model W exchange between
the neutrinos and matter was considered. New Physics effects which distinguish between
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neutrino flavor would add extra terms to the effective Hamiltonian, which would require
further rotations for diagonalization. This has been discussed previously in ref. [43], and the
potential constraints on New Physics from long baseline neutrino oscillations experiments
in refs. [51-53]. Updates to these works will be presented in future publications.
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A Conventions, notation, and basic formulae

Here, we collect the basic formulae associated with neutrino oscillation in order to fix our
notation and conventions.

A.1 The PMNS matrix

Assuming three-generation neutrino mixing, the flavor eigenstates |v,) (a0 = e, u,7) are
related to the three mass eigenstates |v;) (j = 1,2,3) via the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix [54-56]

(VeMmNS)aj = (Valvs) (A1)
that is,
i) = Y ) (valv) = D (Veuns)ag [Va)
a=e,,T a=e,,T . (AQ)
Vo) = Y ) wilva) = D (Veuns)h; vi) -
Jj=12.3 j=1,2,3

The standard parametrization is given by
Veuns =UP, (A.3)
with”

U = Ra3(623,0)R13(613, ) R12(612,0)

1 0 0 C13 0 81367i5 c1a Si12 0
= 0 C23 S23 0 1 0 —S812 C12 0
0 —S8923 C23 —8136“S 0 C13 0 01

"Cervera et al. in ref. [27] use a different convention in which the sign of § is flipped.
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c12€13 512€13 s13€%0
_ i i
= | —512C23 — C12513523€"°  C12C23 — 512513523€" 13523 |

i i
812523 — €12513C23€"° —C12523 — $12513C23€" C13C23

P = diag(1, e'*21/2 gios1/2) (A.4)

Here, R;;(6,0) denotes a rotation matrix in the ij-plane of clockwise rotation angle ¢
with phases +0 on the off-diagonal ji and ij-elements, respectively, and s;; = sin6;;,
cij = cosby;. Without loss of generality, we can adopt the convention 0 < 6;; < 7/2,
0 < < 27 [57]. Of the six parameters in this expression and the three neutrino masses,
which add up to a total of nine parameters, neutrino — neutrino oscillations are only

sensitive to six:

e the three mixing angles: 619, 093, 013,

e two mass-squared differences: dm3,, dm3,, where ém?2, = m? — m?

7 s and

e the CP-violating phase: §.

The Majorana phases, a1 and as;, only appear in lepton-number violating processes
such as neutrinoless double beta decay, and cannot be determined via neutrino—neutrino
oscillations. The absolute scale of the neutrino masses also remain undetermined since

neutrino oscillation is an interference effect.

A.2 Neutrino oscillation

If a neutrino of flavor « is created at x = 0 with energy F, then the state of the neutrino
at x =01is

3
Va,0(z = 0)) = |va) = Z VPMNS )aj V) - (A.5)
J=1

At x = L, the same state is

3 3
Vao(e = L)) = eP" (Vonns )i lvs) = €5 @ POb (Vonns)s vy) - (AL6)
j=1 j=1

Assing m; < E we can approximate

2

D = Ez_mizE_%Jr... (A.7)
so that )
Pj — P1 —5;21 , 6m§1 = m? — m%, (A.8)
and we find
, 3 om?
Vao(z = L)) = et ; exp <—i el L> (Veains)iy 15) - (A.9)
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Therefore, the amplitude of observing the neutrino of flavor g at x = L is given by (dropping
the irrelevant overall phase)

Apga = (vslvao(r = L))

3
[Z (vi| (VPmns) s ] [ZGXP<—Z 5% ) (VPMNS)Zj|Vj>]

k=1
3 5 21
= Z(VPMNS>,B] exp( QEJ, ) (VPMNS )
j=1

I
'M“

_5m?1 .
2 Ugjexp| —1t Yo L) U,

SM?
[Uexp( ’L2E L>U]5a

. Hy
= [exp(—zwL>Lm , (A.10)
where
0 0 0
SM?*=|06m3, 0 |, (A.11)
0 0 dm3
and
Hy=U?éM?>U'. (A.12)

Thus, the probability of oscillation from |v,) to |vg) with neutrino energy E and baseline
L is given by

P(vg — vg) = ’Aﬁa |2

om 2 ’
— ZUBJ exp( 2E )U*
A; £\
= 045_42% U,@l U,B])Sln 7—1—22 U,BZU ]Uﬁ])smAU,
1>7 >7
(A.13)
where®
om? om GeV
= U 2 — 2 2
AVY 5 L =2 534( V2 >( T ><km)’ omi; = m; —mj. (A.14)
Since
Azy = Az — Aoy, (A.15)

8Note that our notation differs from that of Cervera et al. in ref. [27]. There, the symbol A;; is defined
without the factor of L, that is, A;; = 6m?j /2E. Tt also differs from that used by Freund in ref. [22] where
A = ém2,, and A= dm3, L/AE. Huber and Winter in ref. [49] define A = §m3; L/4F, which is also used
in ref. [58]. So care is necessary when comparing formulae.
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only two of the three A;;’s in eq. (A.13) are independent. Eliminating Ags from eq. (A.13)
for the a = 8 case yields

P(vg = vg) = 1 —4|Uas|? (1 — |Ua2/?) sin? % — 4|Uqs/? (1 = |Uas|?) sin® %
+ 2 |Un2*|Uas? (4 sin? % sin? % + sin Ag; sin A31> , (A.16)
and for the a # § case we have
P(va = vg) = 4|Uq2/|*|Ugol|? sin® % + 4 |Uqs|*|Ugs|? sin® %
+21R (U;3U53Ua2U§2) <4 sin? % sin? % + sin Aoy sin A31>
+4 J(a,8) <sin2 % sin Az; — sin? % sin A21> ) (A.17)

where J(, g) is the Jarlskog invariant [59]:

J(a’g) = +%(U;1UI31U@2UEQ) = +%(U;2U52UQ3UE3) = +%(U;3U53UQ1UEI)
NY

= —S(Ua2Up2UarUp1) = =S(Ug1Up1UasUps) = —S(Ua3UpsUa2Us,)
= —J(ga)- (A.18)
In the parametrization given in eq. (A.4), we have
ey = =Jiew = Jer) = =Jre) = o = ~Jur) = T sind, (A.19)
with
J= 5120125130%3523023- (A.20)

The oscillation probabilities for the anti-neutrinos are obtained by replacing U,; with its
complex conjugate, which only amounts to flipping the sign of § in the parametrization
of eq. (A.4). It is clear from eq. (A.16) that P(U, — Us) = P(Va — Va), which is to be
expected from the CPT theorem. For flavor changing oscillations, only the Jarskog term
in eq. (A.17) changes sign.

A.3 Matter effects

If the matter density along the baseline is constant, matter effects on neutrino oscillations
can be taken into account by replacing the PMNS matrix elements and mass-squared
differences with their “effective” values in matter:

Ay — zij , Uni = Ugis (A.21)

where U is the unitary matrix that diagonalizes the modified Hamiltonian,

Ao 00 0 a00
Hy=U|0X 0|U =U|06m% 0 |U+]000], (A.22)
0 0 A3 0 0 om} 000
= JM?
= Hy
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and 5\
Ajj = TEJ L, Shij =N — Ay (A.23)

The factor a is due to the interaction of the |v.) component of the neutrinos with the
electrons in matter via W-exchange:

a=2V2GpN,E. (A.24)

Assuming N, = N, ~ N,, in Earth matter, IV, for mass density per unit volume of p can
be expressed using Avogadro’s number Ny = 6.02214129 x 1023 mol ! as

p
N, = N, ~ pNa/2 = (3.011 x 10 /em?) x (g/cm3> . (A.25)

Thus, putting back powers of Ac to convert from natural to conventional units, we find

a = 2V2GpN.E x (hc)?

— (7.63 x 1077 eV?) (g /§m3> ( G§V> . (A.26)

For anti-neutrino beams, a is replaced by —a in eq. (A.22). Note that a is E-dependent,

which means that both U and Zij are also F-dependent. It is also assumed that E < My
since the W-exchange interaction is approximated by a point-like four-fermion interaction

in deriving this expression.

B Jacobi method

B.1 Setup

As mentioned in the introduction, it is possible to write down exact analytical expressions
for &ij and U i [16]. However, simpler and more transparent approximate expressions can
be obtained using the Jacobi method as will be shown in the following.
We introduce the matrix
Q = diag(1,1,€"), (B.1)

and start with the partially diagonalized Hamiltonian:

H' = Q'UTH,UQ

0 0 0 a00
=of{loom2 o |+U'|0o00|U}Q
0 0 o&m3 000
0 0 0 UnUet U Ueo U Ues
=0M|0om3, 0 |Q+aQ|UkU. ULUsm UhUe | ©
0 0 dm3 UlUe1 UUe2 UZ3Ues
0 0 0 0%20%3 0128126%3 C12C13513
=106m3 0 +a | c12819¢3;  $35C33  S12C13513
0 0 dm3 C12€13813 S12C13813  S13
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2 2 2
a012013 ac12512€73 ac12C13513
_ 2 2 2 2
= | ac12812¢13 as{sCi3 + (5m21 aS12C13513 . (B.2)
2 2
aci2Ci3s13  asi2c13Siz asj3 + omg;

The matrix Q serves to rid H) of any reference to the CP violating phase 6. The strategy
we used in our previous papers [42, 43] was to approximately diagonalize H|, through the
Jacobi method using

~0.17, (B.3)

as the parameter to keep track of the sizes of the off-diagonal elements. We argued that
approximate diagonalization was achieved when the off-diagonal elements were of order
0(62813 |5m§1 ’)

Note that our ¢ differs from Asano and Minakata’s € in ref. [32] where

2L ~0.03. (B.4)

That is, € = 2. So care is necessary when comparing formulae.

B.2 Diagonalization of a 2 x 2 matrix

Recall that for 2 x 2 real symmetric matrices, such as

M=1%P|,  aBrer, (B.5)
By
diagonalization is trivial. Just define
2
R= Cw Sw] , where €, = Cosw, S, = sinw, tan 2w = b ,  (B.6)
—8w Cw v -«
and we obtain
A1 O
R'MR = , B.7
5 AJ (B.7)
with
ack —vst (a+y) F o (a—7)? + 452
Al - 2 2 - )
cs — 8Z, 2
2 _ .2 + — 2 1432
ct — 84 2

where the upper and lower signs are for the cases a < v and «a > =, respectively. The
Jacobi method [44] entails iteratively diagonalizing 2 x 2 submatrices of a larger matrix
in the order that requires the largest rotation angle at each step. In the limit of infinite
iterations of this procedure, the matrix will converge to a diagonal matrix.

In the case of H] given in eq. (B.2), at most two iterations are sufficient to achieve
approximate diagonalization, neglecting off-diagonal elements of order O(g?s13|6m3,]), re-
gardless of the size of a. We demonstrate this in this appendix.
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B.3 Neutrino case
B.3.1 Mixing angles and mass-squared differences

Let us first evaluate the sizes of the sines and cosines of the three vacuum mixing angles
in comparison to the parameter e defined in eq. (B.3). The current best fit values for the
mass-squared differences and mixing angles are listed in table 1. The sines and cosines of
the central values of the mixing angles are

593 = 0.71 s C23 = 0.71 s
S12 = 0.55, C12 = 0.84, (B.Q)
S$13 = 0.15, C13 = 0.99.

Therefore, s13 is O(e) while all other sines and cosines are O(1).

B.3.2 First rotation

The effective hamiltonian we need to diagonalize is

aC%QC%Z’, a6125120%3 ac12€13513
H, = | acizsiacty asfocts +0m3,  asizcizsis
| aC12€13513  AS12€13513 asly + om3,
[aO(1)  aO(1) a0(e)
= [ a0(1) aO(1) +0m3;  aO(e) : (B.10)

| aO(e) aO(e) aO(e?) 4 om3,

Of the off-diagonal elements, the 1-2 element is the largest regardless of the size of a.
Therefore, our first step is to diagonalize the 1-2 submatrix.

Define
o Sp 0
V=|-s,¢,0/, (B.11)
0 01
where
2 .
acya sin 26019 T
C, =CO0SY, §,=sinyw, tan2p= 13 , (0< <—). B.12
v 4 v 4 4 dm3, — ac?; cos 201y =¥=7 ( )

Using V, we find

!/ /
A 0 ac15C13513
HC/L/ = VTH;V = 0 )\/_‘_ CLS/12013813 y (Bl?))
/ / 2 2
aC}9C13513 GS15C13513 AST3 + 0m3
where
/ / / . / / J—
C19 = COS 912 s S19 = SI 912 s 912 = 012 + @, (B14)
and

/ (0m3, + acly) £ \/(6md) — acty)? + daciystyom3,
| = ) . (B.15)

~ 93 -



SE

w
w
N

|
|

NS

~log, |A/6m,|

B

(a) (b)

Figure 12. (a) The dependence of 6], on 3 = —log, (a/|6m3,]). (b) The 3-dependence of ..

The angle 0], = 012 + ¢ can be calculated directly without calculating ¢ via

dm2, sin 2019 T
tan 260, = 21 , (9 <#,< 7) B.16
= dm3; cos 2012 — ac?y =712 =5 ( )
The dependences of 07, and Xy on 8 = —log, (a/|6m},|) are plotted in figure 12. Note

that 6], increases monotonically from 612 to m/2 with increasing a. The [-dependence

of s}y = sinf), and ¢}, = cosf, are shown in figure 13(a). For a > dm3, s}, and ¢},
behave as

2 2 2\ 2
1o 1 126 omyy 4o
S12 = ) )
2 acys

/ dm3, 2 2 dm3, ?
Cl19 = S12€12 5 + 512612(012 — 512) —- + - (B.17)
(IC13 a013

Therefore, for a > dm3; we have as}y, =~ a while acjy ~ md siacia/cly =
€2|6m3, |s12c12/ ¢33 = 0.014 [0m2;| = O(£2|0m3,]). This behavior is shown in figure 13(b).
Note that ac}, never grows larger than O(e?|0m%,|) for any a.

The values of X/, away from the level crossing point a ~ dm3; for the a < §m3; case
are given by

2 2\ 2
/92 2 2 acys 2 /2 2 acys
AL = aciseiy |1 =87y | = | — s12(cia — s12) 5 ]
oms, oms,
2 2 ac%?, 2 2 aC%s ? 2 2,2 2 ac%3 ’
!
AL = 0my; |1+ 87y 2. + 512012 2. + s79c12(CTa — 812) S, +-0 0,
may Moy may
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Figure 13. (a) The dependence of s}, = sin#, and ¢}, = cos, on 8 = —log, (a/|0m3;]). (b)
The dependence of asi, and acj, on B. The values are given in units of |§m%;|. The asymptotic
value of aciy is dm3;s12c12/c35 ~ 0.014 |dm3,| = O(2|dm%,]).

and those for the a > dm3, case by

Sm2 om2,\ 2
-, (m) (S — ) (’") .

! 2 2
AZ = 0mj iy

acys acys
2 2\ 2 2 \3
;2 o [ 0m3y 9 o [0m3 2 2,2 2 dmy,
Ny =acys |1+81g | —5 | +512C12 | —5 | +sTacialcia —87a) | —5— | +
acys acys acys

(B.19)

We will use this expansion for X/, later. Thus, the asymptotic values of A are X’ —
acscly, N — dm3; in the a — 0 limit, and N — dm3,cly, N, — acly in the a — oo limit.

B.3.3 Second rotation

The effective hamiltonian after the first rotation was given by eq. (B.13). When a < dm3,,
both non-zero off-diagonal elements are of order O(ea) < O(e3|dm3,]), since s}, and c},
are both O(1) in that range as can be discerned from figure 13(a). However, as a increases
beyond ém?, and 0}, approaches 7/2, we have as}, — a, acjy — O(2|6m?;|) and the 2-3
element becomes the larger of the two. Therefore, a 2-3 rotation is needed next.

We define

1 0 0
W=10 cyp 51| (B.20)
0 —S¢ Cop

where

ro
as}9sin 2013

cp=Ccosp, Sp=sing, tan2p= (B.21)

2 2 /o
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Figure 14. (a) The S-dependence of ¢ for the normal and inverted hierarchies. (b) The j-
dependence of the difference ¢’ — ¢.

The angle ¢ is in the first quadrant when 5m§1 > 0, and in the fourth quadrant when
ém3; < 0. Then,

! / /
AL —AaC19C13513S¢ AC19C13513Cyp
H" =WTH'W = —acd|5C135138 4 pus 0 , (B.22)
/ "
aC19C13513C¢ 0 )‘:I:

where the upper(lower) sign corresponds to the normal(inverted) hierarchy case with

N+ 6m3y +asty) ] £/ [N, — 03y + asty) |+ da2sid oy sty
N = 5 . (B.23)

The [-dependences of X[ and ¢ are shown in figure 4 ((a) and (b)), and figure 14(a),
respectively, for both mass hierarchies. For the normal hierarchy case, (5m§1 > 0, the
values of X'| away from the level crossing point a ~ (5m§1 are approximately

)‘{i/- ~ 5m§1 + a5%3 )
Nom N (B.24)

when a < ém3,, and

[/ 2 2 2 2 2
>\+ ~ a-+ 813(5m31 + 013812(5m21 y
"o 2 2 2 .2 2
)\_ ~ 013(5m31 =+ 813312(5m21 s (B25)

when a > dm3;. For the inverted hierarchy case, §m3; < 0, where there is no level crossing,
the values of \| are approximately

N omomi <0,  No~N., (B.26)

for all a.
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At this point, we argue that the angle ¢ defined in eq. (B.21) is well approximated by
the angle ¢’ which we define via

asin 26013

tan2¢’ = (B.27)

(6m3, — om3,s3,) — acos26013
This approximation is obtained by first noting that ¢ is significantly different from zero
only when a > dm3,. The expansion of N\ in the denominator of the right-hand-side of
eq. (B.21) in powers of §m3,/a was given in eq. (B.19). Keeping only the first two terms,
and noting also that s}, ~ 1 to the same order when a > dm32; (cf. eq. (B.17)) we obtain
eq. (B.27). The B-dependence of the difference ¢’ — ¢ is plotted in figure 14(b), and we can
see that the disagreement is at most O(e*). Thus, we replace ¢ with ¢ in the following.

Now, the effective Hamiltonian after the second rotation was given by eq. (B.22). Note
that all of the non-zero off-diagonal elements include the factor ac},, which is never larger
than O(e%|6m%,|) regardless of the value of @ as discussed above. They also all include
a factor of sj3, which is O(e) as we have seen in eq. (B.9). Therefore, all off-diagonal
elements of H!' are of order O(g2s13/0m2,|) = O(e3|6m3;]) or smaller regardless of the
size of a. Note that had the value of sj3 been smaller, the sizes of the neglected terms
would have been proportionately smaller also. We conclude that, at this point, off-diagonal
elements are negligible and a third rotation is not necessary.

B.3.4 Absorption of ¢’ into 63

From the above consideration, we conclude that the matrix which diagonalizes H!,
eq. (B.2), is given approximately by VW, and that the effective neutrino mixing matrix

becomes
[7 ~ UQVW = R23<923, 0)R13(913, 5)R12(912, 0) Q ng(go, O) R23(¢,, 0) . (B.28)
—_—— ——
U |4 w

Using

R12(012,0)Q = QR12(012,0),

R13(6013,0)Q = QR3(013,0), (B.29)
we find

=k
22

R23(023,0)R13(013, ) R12(612,0)Q Ri2(¢p, 0) Ras (¢, 0)
R23(923, 0)Q R13(013,0)R12(012,0) R12(p, 0) Ra3(¢', 0)
R23(623,0)Q Ri3(613,0)R12(612 + ¢, 0)Ras (¢, 0)
Ra3(023,0)Q Ri3(013,0) Ri2(072,0) Ra3(4', 0) . (B.30)

Here, we argue that

Ri2(0}2,0)Ra3(¢',0) ~ Ri3(¢',0) R12(67,0), (B.31)
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that is, the 2-3 rotation becomes a 1-3 rotation when commuted through Ri2(65,0). This
is due to the fact that ¢’ only becomes non-negligible when a > dm?, where s}, ~ 1 and
iy &~ 0, which means

010
R12(015,0)~ | =100 | , (B.32)
0 01
and it is straightforward to see that
010 1 0 0 ciﬁ 0 Sib 010
-100( |0 c;/ 5%5 = 0, 1 0/ -100|, (B.33)
0 01 0 —sy ¢, =5, 0 ¢y 0 01

where s, = sin ¢ and Cib = cos¢’. Intherange a < ém3;, the angle ¢’ is very small and both
Ro3(¢’,0) and Ry3(¢’,0) are approximately unit matrices and eq. (B.31) is trivially satisfied.
Curiously, this approximation breaks down around a ~ dm3; for the normal hierarchy case
when 63 is O(g?) or smaller, as is discussed in appendix C. However, given that the current
experimentally preferred value of 613 is O(g), the approximation is valid. Thus,

U~ Ry 3(023,0)Q Ri3(613,0) Ri2(012, )R23(¢/ 0)
~ Ro3(023,0)Q R13(013,0)Ri3(¢’, )ng( 12,0)
= R3(023,0)Q Ri3(013 + ¢',0) R12(615, 0)
= Ra3(023, )QR13( 13 0) R12(615,0)
= Ra3(023,0) R13(0'3,0) R12(012,0)Q, (B.34)

where we have defined
013 =013+ ¢ (B.35)
This angle can be calculated directly without calculating ¢’ via

(6m3, — dm3, s3,) sin 2613

tan 26075 = (B.36)

(6m3; — dm3;s3,) cos 2013 —a
The diagonal phase matrix Q appearing rightmost in the above matrix product can be
absorbed into the redefinition of the major phases and can be dropped. Thus, we arrive at
our final approximation in which the vacuum mixing angles are replaced by their effective
values in matter

12 — 019 = b12 + ¢,
13 — 013 =013+ ¢,
o3 — a3,
d— 4, (B.37)

and the eigenvalues of the effective Hamiltonian are given by

Ao~ N
)\ )\//
A3 & X/ (B.38)

Note that of the mixing angles, only 615 and 613 are shifted. 623 and § stay at their
vacuum values.
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B.4 Anti-neutrino case
B.4.1 First rotation

For the anti-neutrino case, the matter effect parameter a acquires a minus sign. Thus, the
effective hamiltonian to be diagonalized is

—CLC%QC% —a0128126%3 —acC12C13513
Hg = —aclzslgc%g —CLS%QC%:)) + (5m%1 —as812€13513
| —acici3s13 —as12¢13813 —asig, + 6m§1
[—aO(1) —aO(1) —a0(e)
= | —aO(1) —aO(1) + ém3, —a0(e) . (B.39)
—a0(e) —a0(e) —aO(e?) + om3,

The largest off-diagonal element is the 1-2 element. Therefore, our first step is to diagonalize
the 1-2 submatrix.

Define
Cp S 0
0 01
where
2 .
. acya sin 26019 ™

Cp=cOSP, B,=sinp, tan2p=— - ) <_*<7<0>' Bl
Cp =COSP, S, =sinp an 2o dm3, + ac?; cos 2015 2 =¥ ( !

Using V' we find

~/

I A_ B *CLE/12613813
H, =V'H)V = 0 4 —asiycizs1s | s (B.42)
—aE’12013513 —CL§’12613813 —CLS%S + (5m§1
where
Ty = cos 512 , Slp= sin@llz , 5/12 =0+, (B.43)
and ) )
N, = (6m3, — acys) & \/(5m%1 + ac%s)Q - 4GC%33%257”§1 (B.44)
:l: = 2 . .

The angle 5,12 can be calculated directly without going through © via

5m%1 sin 2912

tan 20}, = (0 <7, < 912) . (B.45)

2 3
dm3; cos 2012 + acis

The S-dependences of 5/12 and X/i are shown in figure 15. Note that in contrast to the
neutrino case, there is no level crossing. 5/12 decreases monotonically toward zero as a is
increased. For a > dm3,, 3, and ¢, behave as

2

dm2 dm?2

— 21 2 2 21
S12 = S12C12 (aCQ — s12¢12(¢ly — 512) — ] +,

acys

2
=1 5T2¢T <5m%1> g, (B.46)

~ 99 —



[SEEY
[SYE

w
N
w
N

|
=

ENTEY
>
©
N

~log,|A/6m, |

(b)

Figure 15. (a) The dependence of 5/12 on = —log_(a/|6m3,|). (b) The S-dependence of X/i.

and we see that, this time, we have a?j, ~ a and a8}, ~ dm3;s12c12/cly = O(2|6mb|).
These [-dependences of s/, €}, as),, and a¢), are shown in figure 16(a) and (b).
In the range a < dm3, X/i can be expanded as

2 2 2
5N 2 2 2 acys 2 /2 2 acys
— = —acy3ciy |1+ 575 <5 5~ | — sTa(cla — s12) 52 +- 0,
may may
5/ 2 2 ac%a 2 2 00%3 ? 2 2,2 2 ac%s ’
)\+ = dmy; |1 —s7y 2 + 512012 sm2. ) $79C12(CTy — S72) o2 +o ]
may may may
(B.47)
while in the range a > dm3,, we obtain
2 2\ 2 2\ 3
AV 2 o [O0m3 o o (0m3 9 o [0m3y
AL = —acyz |1 — 81 <2 T8¢ | =5 | —S1eCl2| == t- |
acys acys acys
2 2\ 2
5/ 2 o [ 0m3y 2 /2 2 dmi,
AL = dmyiciy |1+ 879 | —5— | — s1a(ciy — s1a) 5 +oee (B.48)

. ~ ~ . o
The asymptotic values are thus A}, — dm3;, A_ — —acisci,y, in the limit a — 0, and
~ N . -

ANy = 3y6my, A_ — —aci,, in the limit a — oco.

B.4.2 Second rotation

After the first rotation, the effective hamiltonian was given by eq. (B.42). When a < dm3,,
both non-zero off-diagonal elements are of order O(ea) < O(e®|0m3,|). In contrast to the
neutrino case, as a increases beyond (5m§1, the angle 5/12 approaches 0, and it is the 1-3
element that becomes the larger of the two. Therefore, a 1-3 rotation is needed next.

We define

o Co @
W=|0 10|, (B.49)
—§¢ 0 Co
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Figure 16. (a) The S-dependence of 5}, = singllz and ¢j, = cos?lm. (b) The S-dependence of
a3y, and ac),. The asymptotic value of a3}, is dm3;s12¢12/c35 ~ 0.014 |dm3,| = O(?|0m3,]).

where o
acyy sin 2013

—. (B.50)

Cp = cos ¢, Sy = cosp, tan2p= —
dm3, —asi; — A

The angle ¢ is in the fourth quadrant when §m3; > 0, and the first quadrant when dm3; <
0. Using W, we find

=

7/ p—
; )\:F a519C13513S5¢ 0
B _ _ = B B
H, =W H,W = | as}5c1351354 AL —as)5€13513C4 | > (B.51)
_ _ 1
0 —as19C13513C¢ )‘i

where the upper(lower) sign corresponds to normal(inverted) mass hierarchy with

/ ! 2 —
T = [X_ + (0m3, —asty) | £ \/ﬁ— — (0m3; — asts) ]” + da?Tiycissty

"= 5 (B.52)

The B-dependence of Xl and ¢ are shown in figure 4 ((c) and (d)), and figure 17(a),
respectively, for both normal and inverted mass hierarchies. For the normal hierarchy case,
5m§1 > 0, there is no level crossing, and Xi are well approximated by

/i

A~ om3; , oA (B.53)

Level crossing occurs for the inverted hierarchy case, dm%; < 0, in which we have
< ~/
Ay R,

XN —0m3, — asis, (B.54)

Q

when a < dm3;, and

Y o 2502 2 25 2
Ay R —cizdmyy + sT3s790myy

- 2 ¢ 9 9 2 < 9

R —a — s130m3) + 1351203 (B.55)

2
when a > dmg;.
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Figure 17. (a) The §- dependence of ¢ for the normal and inverted hierarchies. (b) The B-
dependence of the difference qﬁ o.

Here, as in the neutrino case, we approximate ¢ with the angle 5’ defined via

a sin 2913

tan2¢ = (B.56)

(6m3, — s350m3,) + acos? 20,3
which is obtained by using egs. (B.46) and (B.48) on eq. (B.50). The difference between
a and ¢ is shown in figure 17(b), and it is clear that the difference is negligible.

Now, the effective Hamiltonian after the second rotation was given by eq. (B.51). Note
that all of the non-zero off-diagonal elements include the factor as},, which is never larger
than O(e2?|dm3,|) regardless of the value of a as discussed above. They also all include a
factor of s13, which is O(e) as we have seen in eq. (B.9). Therefore, all off-diagonal elements
of F;N are of order O(g2s13|0m3,|) = O(3|6m3,|) or smaller regardless of the size of a. We
conclude that, at this point, off-diagonal elements are negligible and a third rotation is not
necessary.

B.4.3 Absorption of 5/ into 6013

From the above consideration, we conclude that the matrix which diagonalizes H;,

eq. (B.39), is given approximately by VW, and that the effective anti-neutrino mixing

matrix becomes

U~ UQVW = Ry3(0a3,0) R13(613, 6) R12(612,0) Q Ria(0,0) Ri3(¢,0) . (B.57)
Vv w

As in the neutrino case, we find

U = Ra3(023,0)R13(013,0)R12(012, )QR12(¢;0)R13(¢70)
= R23(923, 0)Q R13(013,0)R12(012,0)R12(®, 0) R13 (¢70)
= Ry3(023, )Q313(913,0)R12(912+90, )R 3(4',0)
= Ro3(63,0)Q Ru3(613,0) Ri2(815, 0) Ri3(, 0) . (B.58)
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Here, we argue that
Ri2(05,0)R13(8,0) ~ Ri3(6, 0) R12(615,0) (B.59)

that is, the 1-3 rotation passes through R12(§,12, 0). This is due to the fact that 5’ only
becomes non-negligible when a > dm?, where 3}, ~ 0 and &, ~ 1, which means

100
R12(0)5,0)~ [010] , (B.60)
001

thus any matrix will commute with ng(gllz, 0). In the range a < dm2,, the angle ¢’ is very
small and both Ra3(¢’,0) and Ri3(¢’,0) are approximately unit matrices and eq. (B.59) is
trivially satisfied. The accuracy of this approximation is discussed in appendix C. There-
fore,

—/

023,0)Q Ri3(613,0) R12(,5,0) R13(', 0)
Q Ri3(013,0)Raz (', 0) Ri(6)5,0)

9313(913+¢/ )312(9,12= 0)

QR13(9137 )R12(912, 0)

Ros(
(023,0
= Ra3(023,0
(023,0
(623, 0) R13(0y5, ) R12(612,0)Q (B.61)

)
)
)
)
where we have defined

Ol3=013+¢ . (B.62)
This angle can be calculated directly without calculation 5’ via

(6m3; — dm3,s%,) sin 2013

tan 26, = (B.63)

(6m3, — dm3,s3,) cos 2013 +a
The phase matrix Q appearing rightmost in the above matrix product can be absorbed
into the redefinition of the major phases and can be dropped. Thus, we arrive at our final
approximation in which the vacuum mixing angles are replaced by their effective values in
matter

012 = 0o = 012+ 7,
b3 — O3 =013+ ,
o3 — 023,
0— 0, (B.64)

and the eigenvalues of the effective Hamiltonian are given by

Ns ~ )\i. (B.65)

Note that of the mixing angles, only 612 and 3 are shifted. f23 and ¢ stay at their vacuum
values.
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Figure 18. (-dependence of ¢}, 1 — 75, s and 1 —c;, for (a) normal and (b) inverted hierarchies.

The behaviors of ¢j, and 1 — s}, are common to both.

C Commutation of R;3 and Rs3 through R,

In the derivation of our approximation formulae above, eqs. (B.31) and (B.59) played crucial
roles in allowing the second rotation angle to be absorbed into #13. In this appendix, we
evaluate the validity of these approximations.

C.1 Neutrino case

The difference between the two sides of eq. (B.31) is given by

6R = Ri2(015,0)Ra3(¢’,0) — Ri3(¢’,0)R12(613,0)

cia(1 — ) 0 —(1 = s19)s5
= 0 —cho(1 —c)) hasy, . (C.1)
chosy  —(1—shy)sy 0

It is clear that §R will vanish in the two limits a — 0 where s}y — s12, ¢}y — c12, s; — 0,
and ¢, — 1, and @ — oo where s}, — 1, ¢j5 = 0, s, — c13(—s13), and ¢, — si3(c13) for
normal(inverted) hierarchy. The question is whether 6 R will stay negligible in between as
iy runs from syo to 1, ¢, from c1a to 0, 3; from 0 to c¢13 (normal) or —s13 (inverted),
and ¢, from 1 to s13 (normal) or ci3 (inverted) as shown in figure 18. The dependence of
the non-zero elements of R on 8 = —log,(a/|0m3;]) is shown in figure 19. The bumps at
a ~ ém3, for both hierarchies, and that at a ~ dm3; for the normal hierarchy, happen due
to the 67, factor competing with the ¢’ factor as one of them goes through a resonance
while the other damps to zero. The heights of the bumps depend on the narrowness of the
resonances.

For the case shown in figure 19, which was generated with the numbers in table 1 as
input, all elements of §R are O(e?) or smaller for the entire range of a, with the maximum
value of ~ 0.01 & 2e® occurring in 0/123&) near a ~ dm3, in the normal hierarchy case. Since
the size of the third rotation angle we neglected in the Jacobi procedure was O(g2s13),
eq. (B.31) is valid to the same order provided s;3 = O(e).
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Figure 19. S-dependence of the non-zero elements of § R for (a) normal and (b) inverted hierarchies.
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Figure 20. B-dependence of the non-zero elements of R for different values of s13 with normal
hierarchy. (a) s13 = 0.03 = O(¢2), (b) s13 = 0.005 = O(&%).

For smaller values of s;3, the resonance at a ~ 5m§1 would have been narrower, and
the peaks in cjys;, and cjy(1 — ) higher. This is illustrated in figure 20. In the limit
s13 — +0, s and 1 — ¢}, will become step functions at 8 ~ 0, and the maximum height of
the peak will be

cia(a ~ dm3;)) = s1acie? = 0462 = 0.014, (C.2)

as can be discerned from eq. (B.17). This is the same as the asymptotic value of ac},/dm3,
discussed earlier. While this value may not seem particularly large, only a factor of 3/2
larger than the peak in figure 19(a), it is parametrically O(¢?). On the other hand, the
third rotation angle neglected in the Jacobi procedure was O(g2s13). Thus, using eq. (B.31)
would lead to dropping terms that are larger than the ones we keep when s13 = O(g?) or
smaller. Also, the sudden change in the accuracy of eq. (B.31) across a ~ 5m§1, as can be
seen in figure 20, will lead to kinks in the resulting oscillation probabilities.
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Figure 21. 8-dependence of 5|5, 1 —7¢),, s;) and 1— c’¢ for (a) normal and (b) inverted hierarchies.
The behaviors of s}, and 1 — ¢}, are common to both.

C.2 Anti-neutrino case

The difference between the two sides of eq. (B.59) is given by

SR = Ri2(0}9,0)Ri3(¢,0) — Ri3(4,0)Ri2(0}5,0)

0 Sp(1-7) —(1-7)p)5
= | 512(1 =) 0 —5125, . (C.3)

(1 =7C1)3y 3125, 0

It is clear that 6 R will vanish in the two limits a — 0 where 35 — s12, ¢}y — c12, 5, — 0,
and E:b — 1, and a — oo where s}y, — 0, T, — 1, E; — —s13(c13), and Eib — c13(s13) for
normal(inverted) hierarchy. The question is whether R will stay negligible in between as
3§15 runs from s12 to 0, ¢, from ¢12 to 1, Eib from 0 to —s13 (normal) or ¢35 (inverted), and
¢y from 1 to c13 (normal) or s13 (inverted) as shown in figure 21.

The dependence of the non-zero elements of R on 8 = —log.(a/|0m3,|) is shown in
figure 22, which was generated with the numbers in table 1 as input. We can see that all
elements of 6R are O(g3) or smaller for the entire range of a, with the maximum value of
~ 0.01 ~ 2¢3 occuring in 195, near a ~ dm3, in the inverted hierarchy case. Since the size
of the third rotation angle we neglected in the Jacobi procedure was O(e2s;3), eq. (B.59)
is valid to the same order provided s13 = O(¢).

For smaller values of si3, the resonance at a ~ 5m§1 would have been narrower, and
the peaks in 51,5, and 85(1 — ) higher. This is illustrated in figure 23. In the limit
s13 — +0, 3 and 1 — ¢ will become step functions at § ~ 0, and the maximum height
of the peak will be the same as eq. (C.2), and the asymptotic value of as)y/|0m3|, as
can be discerned from eq. (B.46). This is parametrically O(e?), while the third rotation
angle neglected in the Jacobi procedure was O(g%s13). Thus, using eq. (B.59) would lead
to dropping terms that are larger than the ones we keep when s13 = O(g?) or smaller.
Also, the sudden change in the accuracy of eq. (B.59) across a ~ 5m§1, as can be seen in
figure 23, will lead to kinks in the resulting oscillation probabilities.
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