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1 Introduction

The discovery of a Higgs boson of mass 125GeV at the CERN Large Hadron Collider [1, 2]
has completed the particle spectrum of the Standard Model (SM) of particle physics, and
has established the Higgs sector as the origin of electroweak symmetry breaking (EWSB).
Nevertheless, numerous open questions remain unsolved by the SM, and point to the need
for Beyond-the-Standard-Model (BSM) physics. Among these issues, one can mention, on
the theory side, for instance the hierarchy problem, the lack of a description of quantum
gravity, or inflation. Additionally, a number of experimental results have contradicted prior
assumptions — upon which the SM was built — such as for example (to cite only a few)
the need to realise baryogenesis, the evidence for dark matter and dark energy, or the
discovery that neutrinos have tiny masses.

There is no doubt that the Higgs boson plays a central role in new physics, as well
as in searches for it. Indeed, many (if not most) problems of the SM can be related
to Higgs physics. In order to address these, BSM theories commonly feature a Higgs
sector with extended particle content or modified dynamics — as there is no compelling
argument for it to be minimal. Therefore, shedding light on the structure of the Higgs
sector is one of the most pressing tasks for particle physicists. Unfortunately, for the
time being, all measurements of Higgs properties seem to be in excellent agreement with
SM predictions [3, 4], and this forces us to investigate how new physics can appear to
solve problems of the SM while simultaneously evading detection. A first, but unexciting,
possibility is decoupling — i.e. that all new states are well beyond our experimental reach
and their contributions to SM(-like) observables are vanishingly small due to the decoupling
theorem [5]. Another more interesting option is alignment without decoupling [6], which
occurs1 when the couplings of the 125-GeV Higgs boson to fermions and gauge bosons are

1Alignment is usually defined in models with several Higgs doublets, and is then the limit in which one of
the CP-even mass eigenstates is colinear in field space with the total electroweak vacuum expectation value.
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SM-like at tree level, possibly because of some mechanism or symmetry of the Lagrangian
— see for instance refs. [7–14]. We will return to this latter case in the following.2

Among the issues of the SM, one that has received considerable attention is the (gauge)
hierarchy problem [16], or in other words the need for a mechanism to stabilise the mass of
the Higgs bosonMh at the electroweak (EW) scale. Because the Higgs boson is a scalar, its
mass is in the SM not protected by any symmetry, meaning that it typically receives huge
— quadratically divergent — radiative corrections. In turn, this implies that a cancellation
of tremendous — and unrealistic — accuracy would have to occur between tree-level and
loop-level contributions toMh. Solutions to the hierarchy problem usually involve some new
symmetry or mechanism that protects the Higgs mass. For example, supersymmetry [17]
introduces a new symmetry between bosons and fermions, so that scalar masses become
protected by the chiral symmetry. Meanwhile, in composite Higgs models [18, 19], there
are no fundamental scalars and the Higgs boson appears as a composite state of elementary
fermions. But because new physics has so far eluded discovery, experimental constraints on
most popular BSM scenarios have become more stringent (see for instance refs. [20, 21] and
references therein) and the need to explore new avenues of research is increasingly evident.

Another interesting possibility to address the hierarchy problem, which we will consider
in this paper, comes from the concept of classical scale invariance (CSI), first proposed by
Bardeen in ref. [22]. The idea of CSI is to forbid all mass terms in the Lagrangian, so
that the theory is scale invariant at the tree (i.e. classical) level. Of course, as this is
only imposed at tree level, scale invariance is explicitly broken by radiative corrections,
and EWSB can occur radiatively, via the Coleman-Weinberg mechanism [23] — which was
extended to multi-scalar cases by Gildener and Weinberg in ref. [24]. The Higgs vacuum
expectation value (VEV) v and all particle masses (proportional to v) are then generated
via dimensional transmutation. If the CSI model is taken to be UV complete, or in other
words if scale invariance is assumed at the Planck scale, the absence of a tree-level Higgs
mass parameter together with the generation of the Higgs mass entirely at loop level can
ensure that there is no hierarchy problem — see for instance refs. [22, 25–31]. On the
other hand, models in which scale invariance is imposed at the EW scale can often not
be extended up to the Planck scale, because of Landau poles appearing in the running of
dimensionless parameters. However, even if a Landau pole appears at some intermediate
scale Λ and thus requires the existence of some further new physics beyond Λ, tree-level
scalar masses are prohibited up to this scale thanks to the CSI. Therefore there is no
hierarchy problem up to the scale Λ, and a problem only remains between Λ and the
Planck scale — arguably a less severe issue than in the SM. The hierarchy problem is thus
not entirely solved in such theories, although it can be somewhat alleviated.

Nonetheless, motivated by a number of phenomenological considerations, we restrict
our attention in this paper on the latter type of CSI models, defined with extended scalar
sectors at the EW scale. A first interesting feature of such models is that, in the absence of
any (BSM) mass term, new states cannot be decoupled, nor very heavy, and hence should

2Slightly non-alignment cases will be almost completely surveyed and, if nothing appears, will be ex-
cluded by the synergy of the HL-LHC and future precision measurements of the Higgs boson couplings such
as at the ILC, FCCee, CEPC, CLIC, etc. [15].
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be found in a foreseeable future — if they exist. Additionally, in CSI models, the 125-GeV
Higgs boson, which corresponds in the language of ref. [24] to the “scalon” direction along
which EWSB is radiatively realised, is automatically aligned at tree level — as pointed
out in ref. [32] for a CSI variant of the Two-Higgs-Doublet Model (2HDM) — thereby
explaining current experimental results.

A further discriminative characteristic of CSI models comes from the Higgs trilinear
coupling λhhh. This coupling is of great importance as it controls the shape of the Higgs
potential, and in turn, the nature and strength of the EW phase transition (EWPT).
In particular, one of the requirements to make the scenario of electroweak baryogenesis
work [33–35] is for the EWPT to be of strong first order. In turn, a large deviation of the
Higgs trilinear coupling from its SM prediction is one of the main signs of a strong first-
order EWPT — for massive models, a deviation of at least 20% was found to be necessary
in refs. [36, 37] — together with the special spectrum of gravitational waves that would be
produced by bubble collisions during the EWPT [38].

Couplings of the Higgs boson — and especially its trilinear coupling — can potentially
differ significantly from their SM values in BSM theories with extended scalar sectors,
because of non-decoupling effects from loop corrections involving the BSM states — this
was found at one loop, first in the 2HDM in refs. [39, 40], and later in various BSM
models with extra singlets [41–44], doublets [44–47], or triplets [48]. The limit when these
BSM corrections are maximal is when the BSM scalars acquire large masses exclusively
from the Higgs VEV (rather from some BSM mass parameter). Incidently, this is exactly
what happens in CSI models, and as a matter of fact, the Higgs trilinear coupling has
been found [49–51] to be at one loop (λCSIhhh)(1) = 5/3(λSMhhh)(0) in any CSI model (without
mixing), where (λSMhhh)(0) is the tree-level SM prediction for λhhh — in other words (λCSIhhh)(1)

deviates by ∼ 67% from (λSMhhh)(0). The universality of this prediction is a particularly
strong and unique property of CSI models, and follows (as we will see in section 2) from
the especially simple form that the effective potential takes at one-loop order along the
“scalon” direction. This value of (λCSIhhh)(1) also means that the EWPT is always of strong
first order in CSI theories — this, together with the synergy between the measurements of
gravitational waves and of the Higgs trilinear coupling was investigated in ref. [52] (for the
example of O(N)-symmetric CSI models).

One may then naturally wonder what is the current experimental status for the deter-
mination of λhhh as well as future perspectives. It turns out that large deviations of λhhh
from its SM prediction are still allowed by experiments: indeed, at the present time the
most stringent limits on the trilinear coupling come from the ATLAS collaboration using
single-Higgs production searches with LHC Run 2 data and give −3.2 < λhhh/λ

SM
hhh < 11.9

at 95% confidence level (CL) [53] (see also refs. [54, 55] and [56, 57] respectively for ATLAS
and CMS results using double-Higgs production). However, these limits will be greatly im-
proved at future colliders, thus making λhhh an ideal target to search for BSM effects. We
refer the interested reader to ref. [58] for a detailed discussion of the current prospects for
the determination of λhhh at upcoming experiments, and we only summarise here some of
the main results. First of all, the high-luminosity upgrade of the LHC (HL-LHC) is ex-
pected to reach an accuracy of about 50− 60% with 3 ab−1 of data [59] (see also ref. [60])
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while a high-energy extension (HE-LHC) might — optimistically3 — be able to attain an
O(15%) precision [62] at 68% CL. Turning next to potential lepton colliders, the high-
energy stages of the ILC can access the value of λhhh respectively to 27% accuracy at
500GeV (with 4 ab−1 of data) and 10% at 1TeV (8 ab−1 of data) [63] — both values being
once again at 68% CL. Independently, CLIC could achieve a precision of approximately
10% (at 68% CL) by combining the data from all phases (up to 3TeV) [64–66]. Finally, a
possible 100-TeV hadron collider would be able to determine λhhh to a level of accuracy of
5–7% at 68% CL using 30 ab−1 of data [59, 62, 67].

The universality of the value of λhhh in CSI models at one loop also raises the question
of the impact of two-loop corrections. Indeed, as the form of the effective potential is
changed at two loops — with new squared-logarithmic terms appearing, see e.g. refs. [68–
70] — one may expect the effective Higgs trilinear coupling derived from it to be modified as
well. Moreover, two-loop corrections to λhhh have already been investigated in a number of
extension of the SM with enlarged scalar sectors,4 namely in the Inert Doublet Model [73–
75], in the 2HDM [74, 75], and in a real-singlet extension of the SM [75] (this last model
actually corresponds to the N -scalar theory we will consider in this work for N = 1). It is
therefore also important to compute two-loop corrections to λhhh in the CSI theories, to
match the accuracy achieved in non-CSI scenarios and allow precise comparisons, as the
computational method differs between the two types of models.

In this paper, we have performed the first explicit5 calculation of dominant two-loop
corrections to λhhh in theories with CSI: we extend the known one-loop (effective-potential)
calculation to two loops, so as to include the same level of corrections as in our previous
works on non-CSI models [74, 75]. We investigate in particular two types of BSM scenarios:
first, O(N)-symmetric CSI models, and second, a CSI variant of the 2HDM [76]. Moreover,
we include the renormalisation scheme conversion, from the MS scheme (in which the
effective potential is obtained) to the OS scheme, in order to express our results in terms of
physical quantities — note that we will be referring to the MS and OS results respectively as
λhhh and λ̂hhh to avoid confusions. We also take into account the requirement of generating
the 125-GeV mass of the Higgs boson correctly, at the two-loop order. This yields a relation
between the masses of all the states in the CSI models, which we use to constrain the BSM
parameters (masses and couplings) appearing in our calculations. We also ensure that
perturbative unitarity is maintained and that the EW vacuum remains the true vacuum
of the effective potential for the parameter points we consider. As mentioned already,
the Higgs trilinear coupling has a universal prediction at one loop in all CSI models —
(λCSIhhh)(1) = 5/3(λSMhhh)(0) — and our main result in this paper is finding that the inclusion
of two-loop corrections breaks this universality. Through our detailed numerical studies,

3Note that this result depends on the treatment of backgrounds — see the discussions in refs. [61, 62].
4For completeness, we must also mention refs. [71, 72] in which the leading two-loop O(αsαt) cor-

rections to λhhh are computed, respectively for the Minimal-Supersymmetric-SM and Next-to-Minimal-
Supersymmetric-SM, for the purpose of matching the precision at which the Higgs mass is calculated in
these models.

5A study including two-loop corrections to the effective potential, and its derivatives, via renormalisation-
group improvement were performed in ref. [49].
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we observe that the different theoretical constraints we impose on the considered scenarios
limit the allowed range of values for λhhh at two loops — the strongest constraint coming
from the requirement of correctly reproducing the 125-GeV Higgs mass. Nevertheless, the
two-loop Higgs trilinear coupling retains dependence on the parameters of the BSM scalar
sectors, and may provide an opportunity to distinguish different BSM scenarios with CSI.

This paper is organised as follows: in section 2 we present general results, applicable
to a wide range of CSI models, and we illustrate our calculational scheme with the example
of the CSI Standard Model. Next, in sections 3 and 4, we study the Higgs trilinear cou-
pling and the relation between masses in scenarios of N -scalar models with O(N) global
symmetries and also in a CSI variant of the 2HDM. We discuss implications of our present
in section 5, before concluding in section 6. A number of appendices provide details about
our computations and some results we deemed too long for the main text. Definitions of
one- and two-loop functions are given in appendix A, complementary expressions for the
O(N)-symmetric models are provided in appendix B, and results in the CSI-2HDM for
general masses are presented in appendix C. Finally, we provide in appendix D generic
results for the coefficients in the effective potential that can be applied for any CSI model
without mixing.

2 Generalities about classically scale-invariant theories

We begin this paper by recalling known features of CSI models, before deriving some new
results applicable for all such models.

2.1 Classically scale-invariant theories

Classically scale-invariant models arise from the assumption that at some energy scale —
which we will in this paper consider to be at or near the EW scale — the scalar potential
exhibits scale invariance, by which we mean that all mass-dimensionful quantities vanish at
the classical (i.e. tree) level. Radiative corrections explicitly violate the CSI and allow the
EW gauge symmetry to be broken dynamically, giving rise to a mass scale via dimensional
transmutation. This mechanism to realise spontaneous EWSB radiatively was first studied
for a model of a single scalar by S. Coleman and E. Weinberg [23]. However, it is known
that it is impossible to explain the Higgs boson mass in this simplest single-scalar case:
neglecting the top-quark effects, the original paper of Coleman and Weinberg [23] predicted
a scalar of mass less than 10GeV, and including the top quark renders the (one-loop)
potential unstable. In order to reproduce the 125-GeV Higgs mass in models with CSI, it is
therefore necessary to consider extended scalar sectors. The treatment of this general case
of multi-scalar theories requires more care as one must also identify the direction in field
space along which the EW gauge symmetry is broken. This is the purpose of the method
devised by E. Gildener and S. Weinberg [24], which we will review briefly now.

2.2 The Gildener-Weinberg method

The tree-level scalar potential of a generic CSI theory with scalars {ϕi} takes the form

V (0)({ϕi}) = Λijklϕiϕjϕkϕl , (2.1)

– 5 –
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where the Λijkl are (dimensionless) quartic couplings — tadpole, mass, and trilinear terms
all have a non-zero mass dimension and must therefore vanish. Clearly, this potential
does not admit any other minimum than the origin {ϕi} = 0 and in order for the EW
gauge symmetry to be broken spontaneously using the Coleman-Weinberg mechanism, it
is necessary that the tree-level potential vanish along a ray in field space. This particular
flat direction corresponds to the SM-like Higgs boson ϕh (called scalon in ref. [24]) which
carries the EW vacuum expectation value (VEV) v and acquires a mass of 125GeV at
loop level.

Along the flat direction, the scalar potential is generated at one-loop order, and it can
be written as a function of the order parameter (i.e. the Higgs field) h ≡ ϕh − v using the
supertrace formula [77]

Veff(h) = 1
64π2

{
tr
[
M4
S(h)

(
log M

2
S(h)
Q2 − 3

2

)]
− 4 tr

[
M4
f (h)

(
log

M2
f (h)
Q2 − 3

2

)]

+ 3 tr
[
M4
V (h)

(
log M

2
V (h)
Q2 − 5

6

)]}
, (2.2)

where MS,f,V (h) denote respectively the scalar, fermion, and gauge-boson field-dependent
mass matrices (at tree level), and Q is the renormalisation scale. Note that, this expression
is given in the MS renormalisation scheme. Additionally, compared to the paper of Gildener
and Weinberg [24], we have kept here all the terms of the supertrace formula, rather than
just the logarithmic terms. As we will see in the next section, this has no impact on any
physical quantity or discussion.

Due to the absence of any mass term in CSI models, the field-dependent masses of
all particles in theory — scalars, fermions, gauge bosons — can be related to the field-
independent masses as

m2
X(h) = m2

X

(
1 + h

v

)2
. (2.3)

We can exploit this particularity of CSI models to write the one-loop effective potential
under the simple form

Veff(h) = κ

[
A(1) (v + h)4 +B(1) (v + h)4 log (v + h)2

Q2

]
, (2.4)

where κ is the loop factor defined in eq. (A.1) and

A(1)≡ 1
4v4

{
tr
[
M4
S

(
log M

2
S

v2 −
3
2

)]
−4tr

[
M4
f

(
log

M2
f

v2 −
3
2

)]
+3tr

[
M4
V

(
log M

2
V

v2 −
5
6

)]}
,

B(1)≡ 1
4v4

(
tr
[
M4
S

]
−4tr

[
M4
f

]
+3tr

[
M4
V

])
. (2.5)

We will discuss in the following how two-loop corrections modify this form of Veff, however,
first we will review the one-loop result for the effective Higgs trilinear coupling that is
computed with this potential.
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2.3 The Higgs trilinear coupling at one-loop order

We study in this paper corrections to an effective Higgs trilinear coupling, calculated as
the third derivative of the effective potential with respect to the Higgs field, and evaluated
at its minimum

λhhh ≡
∂3Veff
∂h3

∣∣∣∣
h=0

. (2.6)

In such a computation based on the effective potential, lower derivatives of the potential
also play an important role. First of all, from the first derivative of Veff we obtain the
tadpole equation

∂Veff
∂h

∣∣∣∣
h=0

= 2κv3
(

2A(1) +B(1) + 2B(1) log v2

Q2

)
= 0 , (2.7)

which allows us — as v 6= 0 — to eliminate6 the quantity A(1)

A(1) = −B(1)
(

1
2 + log v2

Q2

)
. (2.8)

Next, the second derivative of Veff defines the effective-potential, or curvature, mass of the
Higgs boson, which we denote [M2

h ]Veff . We have that

[M2
h ]Veff ≡

∂2Veff
∂h2

∣∣∣∣
h=0

= 2κv2
(

6A(1) + 7B(1) + 6B(1) log v2

Q2

)
= 8κv2B(1) . (2.9)

This equation has a very important consequence, unique to models with classical scale
invariance: it relates on the left-hand side the Higgs curvature mass, close to its known
pole mass of 125GeV, to the tree-level masses of all particles in the theory through the
quantity B(1) on the right-hand side. If the model we consider contains no extra fermions
and gauge bosons but only additional scalars, we obtain [24, 50, 76, 78] using eq. (2.5)

4v4B(1) = 8π2v2[M2
h ]Veff = tr[M4

S ]− 12m4
t + 6m4

W + 3m4
Z , (2.10)

or equivalently
tr[M4

S ] = 8π2v2[M2
h ]Veff + 12m4

t − 6m4
W − 3m4

Z , (2.11)

having taken into account the Nc = 3 colour factor for the top quark and with mt, mW , and
mZ the tree-level masses of the top quark and of the W and Z bosons respectively. Once
one considers specific scenarios for the particle contents of BSM CSI theories, it becomes
possible to obtain constraints on the masses of the new states — as studied for example in
refs. [32, 50, 79]. We will return to this type of relations among masses in the following,
when we consider particular BSM models.

Returning now to the one-loop potential (cf. eq. (2.4)) we find that the only two
parameters on which it depends — A(1) and B(1) — are fixed by the tadpole equation and
the knowledge of the Higgs mass. This implies that if we take further derivatives of the

6This confirms our earlier statement: a finite shift to the quantity A(1) plays no role physically, as A(1)

is anyway eliminated using the tadpole equation.
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one-loop potential, the computed quantities are also fixed in terms of the Higgs curvature
mass. Indeed, the effective Higgs trilinear coupling is at one-loop order

λhhh ≡
∂3Veff
∂h3

∣∣∣∣
h=0

= 4κv
(

6A(1) + 13B(1) + 6B(1) log v2

Q2

)
, (2.12)

and using equations (2.7) and (2.9), we can eliminate A(1) and B(1), and rewrite λhhh in
terms of the tree-level result for λhhh in the Standard Model as [50]

λhhh = 40κvB(1) = 5[M2
h ]Veff
v

= 5
3(λ(0)

hhh)SM . (2.13)

Similarly, we can compute a one-loop (effective) quartic coupling λhhhh

λhhhh = ∂4Veff
∂h4

∣∣∣∣
h=0

= 4κ
(

6A(1) + 25B(1) + 6B(1) log v2

Q2

)
= 88κB(1)

= 11[M2
h ]Veff
v2 = 11

3 (λ(0)
hhhh)SM . (2.14)

Note that for these two last equations, we made use of the known tree-level results for the
Standard Model

(λ(0)
hhh)SM = 3m2

h

v
, and (λ(0)

hhhh)SM = 3m2
h

v2 . (2.15)

The predictions in equations (2.13) and (2.14) deviate significantly from the usual SM
values — for the case of λhhh this effect is sufficiently large to be observed already at the
HL-LHC. A further crucial aspect of these results is that, in CSI models, the Higgs trilinear
and quartic coupling are, at one loop, completely independent of the particle content of the
theory. However, as we will see now, this universality is lost when two-loop corrections are
included in the effective potential.

2.4 Two-loop corrections to the Higgs trilinear coupling

At two loops, corrections to the effective potential are obtained by computing one-particle
irreducible vacuum bubble diagrams. In addition to logarithmic and non-logarithmic terms
— as are present at one loop — such two-loop diagrams also contain squared logarithms,
meaning that the effective potential takes the form

Veff(h) = A (v + h)4 +B (v + h)4 log (v + h)2

Q2 + C (v + h)4 log2 (v + h)2

Q2 , (2.16)

where the coefficient C appears only at two-loop order. Expanding this expression in terms
of one- and two-loop quantities, it becomes

Veff(h)≡ κV (1)(h)+κ2V (2)(h)+O(κ3)

= κ

[
A(1) (v+h)4+B(1) (v+h)4 log (v+h)2

Q2

]
(2.17)

+κ2
[
A(2) (v+h)4+B(2) (v+h)4 log (v+h)2

Q2 +C(2) (v+h)4 log2 (v+h)2

Q2

]
+O(κ3) .
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While A(1) and B(1) are exactly the quantities given in eq. (2.5), A(2), B(2), and C(2) must
be derived from the two-loop diagrams contributing to the effective potential — and will
depend on the model one is considering.

Before investigating specific models, it is enlighting to repeat the procedure of the
previous section, and derive general expressions for the derivatives of Veff, using now the
two-loop form in eq. (2.16). First, the tadpole equation reads

∂Veff
∂h

∣∣∣∣
h=0

= 2v3
[
2A+B + 2(B + C) log v2

Q2 + 2C log2 v
2

Q2

]
= 0 , (2.18)

from which we can isolate A as

A = −1
2B − (B + C) log v2

Q2 − C log2 v
2

Q2 . (2.19)

Next, the Higgs curvature mass is, after eliminating A

[M2
h ]Veff = ∂2Veff

∂h2

∣∣∣∣
h=0

= 8v2
[
B + C + 2C log v2

Q2

]
, (2.20)

so that B can be rewritten in terms of [M2
h ]Veff and C

B = [M2
h ]Veff

8v2 − C
(

1 + 2 log v2

Q2

)
. (2.21)

Equation (2.20) is also important as it constitutes the two-loop version of the relation
between masses in CSI models — which we first encountered at one loop in the previous
section. Once we consider particular BSM models in sections 3 and 4, we will see that this
relation places stringent constraints on the allowed BSM mass and parameter ranges.

Now, if we compute the effective Higgs trilinear coupling, we obtain at two loops

λhhh = ∂3Veff
∂h3

∣∣∣∣
h=0

= 5[M2
h ]Veff
v

+ 32Cv , (2.22)

once A and B are replaced using eqs. (2.19) and (2.21). We see here that because of the
new term C, appearing from two loops in Veff, non-universal, model-dependent corrections
arise in the expression of λhhh. In practice we will be computing C from the two-loop
diagrams contributing to Veff and use this result to obtain λhhh at two loops. However, we
note that we can formally use the last equation to determine C in terms of [M2

h ]Veff and
λhhh, as

C = 1
32v

(
λhhh −

5[M2
h ]Veff
v

)
, (2.23)

We can finally use this expression of C to compute λhhhh at two loops in terms of [M2
h ]Veff

and λhhh only

λhhhh = ∂4Veff
∂h4

∣∣∣∣
h=0

= 11[M2
h ]Veff
v2 + 192C = 6λhhh

v
− 19[M2

h ]Veff
v2 . (2.24)
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Figure 1. Dominant two-loop diagrams contributing to the SM effective potential.

This equation implies that once λhhh is measured, the Higgs quartic coupling can be pre-
dicted in a universal way for all CSI theories, up to two loops. This being said, once
three-loop corrections are included, we can expect this universality to be lost because of
log3 terms appearing in Veff — similarly to what happens with λhhh once two-loop effects
are taken into account.

2.5 Results for the classically scale-invariant Standard Model

We end this section by calculating the leading two-loop contributions to Veff and λhhh for
the classically scale-invariant version of the SM, which will also provide an occasion to
present the renormalisation scheme conversion that we perform to obtain expressions in
terms of physical quantities. We must emphasise that the CSI-SM is already known not to
be a valid theory of Nature as it cannot reproduce the Higgs mass correctly [23], however,
its simplicity makes it the ideal setting to explain our calculational setup.

The tree-level scalar potential of the CSI-SM does not contain a mass term, and
reads simply

V (0) = λ|Φ|4 , (2.25)

where the Higgs doublet Φ is defined as

Φ =
(

G+

1√
2(v + h+ iG)

)
. (2.26)

G and G± are respectively the neutral and charged would-be Goldstone bosons, while h
is the 125-GeV Higgs boson. At tree level, the field-dependent masses of the Higgs and
Goldstone bosons read

m2
h(h) = 3λ(v + h)2 , and m2

G(h) = λ(v + h)2 , (2.27)

while the top-quark mass is (like for the usual SM)

mt(h) = yt√
2

(v + h) . (2.28)

The need for a flat direction in the tree-level potential imposes λ = 0, which is also the
result of solving the tree-level tadpole equation.
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The dominant contributions to the CSI-SM two-loop effective potential arise from the
diagrams shown in figure 1 and involving the SU(3)c gauge coupling g3 and the top Yukawa
coupling yt — the two EW gauge couplings g2 and gY , and the light fermion Yukawa
couplings are negligible in comparison. These contributions read (in the MS scheme)

V (2)(h) =− 4g2
3m

2
t (h)

(
4J(m2

t (h))− 8m2
t (h)− 6J(m2

t (h))2

m2
t (h)

)
,

+ 3y2
t

[
2m2

t (h)I(m2
t (h),m2

t (h), 0) +m2
t (h)I(m2

t (h), 0, 0) + J(m2
t (h))2

]
, (2.29)

where J and I are respectively one- and two-loop functions, for which definitions7 and
useful limits are given in appendix A.

In the previous section, we found that to obtain the two-loop corrections to λhhh, we
need to compute C, i.e. the coefficient of the log2 term in Veff. For the CSI-SM, after
expanding the expression in equation (2.29), we find

C(2) = 24g2
3m

4
t

v4 − 9m6
t

v6 . (2.30)

Using then equation (2.22), we obtain for the effective Higgs trilinear coupling in the CSI-
SM, to leading two-loop order,

λhhh = 5[M2
h ]Veff
v

+ 1
(16π2)2

[
768g2

3m
4
t

v3 − 288m6
t

v5

]
. (2.31)

At this point, we should also discuss the choice of renormalisation scheme for the parameters
appearing in the results presented in this work. As the effective potential, from which we
derive λhhh, is calculated in the MS scheme, the expression in equation (2.31) should be
understood as being written in terms of MS parameters. In the following, we will however
choose to convert MS expressions into on-shell (OS) ones — i.e. written in terms of physical
quantities and including also finite corrections from wave-function renormalisation (WFR).
An OS version of the Higgs trilinear coupling can be obtained as

λ̂hhh =
(
ZOS
h

ZMS
h

) 3
2

λhhh =
(

1 + 3
2κ
dΠ(1)

hh

dp2

∣∣∣∣
p2=0

+O(κ2)
)
λhhh , (2.32)

where ZOS
h and ZMS

h are respectively the on-shell and MS scheme Higgs WFR constants,
Π(1)
hh is the finite part of the one-loop Higgs boson self-energy, and with λhhh expressed

in terms of physical quantities. Note that it suffices to compute the WFR constants to
one-loop order, because λhhh is generated at one loop.

In the two-loop result for λhhh in eq. (2.31), mt and g3 only enter at two loops, and
therefore they require no scheme conversion here — this would only produce corrections
at three-loop order. However, it is necessary to include a one-loop scheme conversion for

7Note also that the function we denote as J is the same as the Passarino-Veltman function A. We choose
the notation J as e.g. in refs. [69, 70] to avoid confusion with the quantity A in the effective potential —
cf. eq. (2.16).
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the Higgs MS VEV v and curvature mass [M2
h ]Veff , both appearing from one loop. First,

the MS VEV can be related to the Fermi constant at (leading) one loop as

v2 = 1√
2GF

+ 3M2
t

16π2

(
2 logM2

t − 1
)
. (2.33)

For notational convenience, we also define an OS Higgs VEV as v2
OS ≡ (

√
2GF )−1. Next,

we recall that the Higgs pole (i.e. physical) and curvature masses are related by the
following formula

M2
h =

[
M2
h

]
Veff

+ Πhh

(
p2 = M2

h

)
−Πhh

(
p2 = 0

)
. (2.34)

In the CSI-SM, the Higgs mass is generated at loop level, and thus this relation simpli-
fies into

M2
h = [M2

h ]Veff + M2
h

16π2

[
2M2

t

v2
OS

(
2 + 3 logM2

t

)]
. (2.35)

Combining all these intermediate results together, we obtain finally

λ̂hhh = 5M2
h

vOS
+ 1

16π2
35
2
M2
hM

2
t

v3
OS

+ 1
(16π2)2

[
768g2

3M
4
t

v3
OS

− 288M6
t

v5
OS

]
. (2.36)

It is important to note that, because M2
h is generated at loop level, the second term, which

is proportional to κM2
hM

2
t /v

3
OS, is formally of two-loop order — only the first term in this

expression is of one-loop order.
Taking from the PDG [80], the following values for the physical inputs

Mh = 125.10 GeV , Mt = 172.4 GeV , GF = 1.1663787·10−5 GeV−2 , αs(MZ) = 0.1179 ,
(2.37)

We find numerically

5M2
h

vOS
= 317.8 GeV

5M2
h

vOS
+ 1

16π2
35
2
M2
hM

2
t

v3
OS

+ 1
(16π2)2

[
768g2

3M
4
t

v3
OS

− 288M6
t

v5
OS

]
= 323.6 GeV , (2.38)

or in other words, the two-loop corrections to λhhh yield a positive shift of the order of 2%.

3 N -scalar models

3.1 Model definitions

The first class of BSM CSI theories that we consider are extensions of the SM with N

additional real singlet scalar states. We will furthermore assume that these models are
endowed with a global O(N) symmetry, under which only the singlet scalars are charged
while the SM particles do not carry any charge. Although this assumption greatly simplifies
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the expressions we obtain — by reducing the number of different masses and coupling
constants — it is important to note that it does not significantly affect our discussion
about corrections to the Higgs trilinear coupling. Such O(N)-symmetric CSI models have
been discussed in many references — see refs. [81–85] — from various points of view.
In particular, the exact O(N) symmetry provides a symmetry to stabilise dark matter
candidates in these models. It was found in ref. [82] that there is an upper bound on
the value of N if one considers direct dark matter search results. However, in this paper,
we choose to study O(N) models exclusively from the point of view of Higgs physics and
corrections to λhhh, and we do not consider potential dark matter aspects of these models.
In other words, we consider here O(N) as a phenomenological symmetry — which greatly
simplifies the study of Higgs physics in N -scalar theories — rather than a symmetry to
stabilise dark matter.

We can write the scalar potential of O(N)-symmetric models with CSI as

V (0) = λ|Φ|4 + λΦS ~S
2|Φ|2 + 1

4λS
(
~S2
)2

, (3.1)

where Φ is the SM-like Higgs doublet — same as that shown in eq. (2.26) — and ~S =
(S1 , S2 , · · ·SN ) is a real scalar, singlet under the SM gauge groups and belonging to an N -
dimensional representation of the global O(N) symmetry group — another way to see this is
to think of N real scalar singlets. Only the neutral component of the Higgs doublet acquires
a non-zero VEV — the singlets do not as this would break the global O(N) symmetry.

The scalar masses at tree-level are

m2
h(h) = 3λ(v + h)2 , m2

G(h) = λ(v + h)2 , m2
Si

(h) = λΦS(v + h)2 ≡ m2
S(h) .

(3.2)

and the tree-level tadpole condition simply gives λ = 0. Finally, it follows immediately
from this equation that we can replace λΦS by the tree-level BSM scalar mass mS , as
λΦS = m2

S/v
2.

3.2 Dominant two-loop corrections to the Higgs trilinear coupling

We can obtain for the leading BSM contributions to V (2) by considering the new diagrams
involving λΦS and λS , shown in figure 2. Their expressions are

V (2) = V
(2)
hSS + V

(2)
SS ,

with V
(2)
hSS =−Nλ2

ΦS(v + h)2I(m2
S(h),m2

S(h), 0) ,

V
(2)
SS = 1

4N(N + 2)λSJ(m2
S(h))2 . (3.3)

The squared-logarithm terms in these two-loop contributions are, in turn

C
(2)
hSS = Nm6

S

v6 ,

C
(2)
SS = 1

4N(N + 2)λSm
4
S

v4 . (3.4)
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V
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hSS V

(2)
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h

Si

Si
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Figure 2. Leading two-loop BSM diagrams contributing to the effective potential of the O(N)-
symmetric CSI model — in addition to the leading SM diagrams of figure 1.

Using once again equation (2.22), we can obtain the leading two-loop order MS result
for λhhh

λhhh = 5[M2
h ]Veff
v

+ 1
(16π2)2

[
768g2

3m
4
t

v3 − 288m6
t

v5 + 32Nm6
S

v5 + 8N(N + 2)λSm
4
S

v3

]
. (3.5)

Among the terms in the brackets, the first two (those involving mt) are the SM-like con-
tributions, while the last two are the new BSM effects. Note that, like in the SM case,
mS and λS only enter the expression of λhhh at two loops, and hence we do not need to
specify their renormalisation scheme. If we want to express the one-loop result in terms
of M2

h and vOS we must however include scheme conversions for both [M2
h ]Veff and v and

take into account WFR effects — as discussed already in section 2.5. The only difference
we must consider arises from the new momentum-dependent term in the Higgs self-energy
in the O(N)-symmetric model, which reads

Π(1)
hh (p2) ⊃ −2Nm4

S

v2 B0
(
p2,m2

S ,m
2
S

)
, (3.6)

where the one-loop Passarino-Veltman function [88] B0 is defined in appendix A. Adding
this additional term, we find the OS expression for λ̂hhh at leading two loops to be

λ̂hhh = 5M2
h

vOS
+ 1

16π2
5M2

h

v3
OS

[7
2M

2
t −

1
6NM

2
S

]

+ 1
(16π2)2

[
768g2

3M
4
t

v3
OS

− 288M6
t

v5
OS

+ 32NM6
S

v5
OS

+ 8N(N + 2)λSM
4
S

v3
OS

]
. (3.7)

Once again, we emphasise that the terms in the first pair of brackets — proportional to
κM2

h/v
3
OS — are formally of two-loop order.

In principle the above result for λ̂hhh involves 3 BSM parameters, namely MS , λS ,
and N . However, the classical scale invariance produces a further constraint on the BSM
parameters, by relating the masses of the particles in the theory, as we will see in the
following section.
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3.3 Mass relation

When investigating derivatives of the effective potential in general CSI models in section 2.4,
we had found that the curvature mass of the Higgs boson is related to the B and C

coefficients in Veff. In terms of one- and two-loop quantities, this relation reads

8π2[M2
h ]Veff = 4v2B(1) + 4v2

16π2

[
B(2) + C(2)

(
1 + 2 log v2

Q2

)]
. (3.8)

As we have computed the effective potential in O(N)-symmetric CSI models, it is a simple
matter to derive all the necessary ingredients to apply this relation to this class of models.
In addition to C(2), which was given in the previous section, we also need the logarithmic
terms at one and two loops — B(1) and B(2). Including both SM-like and BSM terms,
these are

B(1) = 1
4v4

(
Nm4

S − 12m4
t + 6m4

W + 3m4
Z

)
,

B(2) = 4g2
3m

4
t

v4

[
12 log m

2
t

v2 − 16
]

+ 6m6
t

v6

[
−3 log m

2
t

v2 + 8
]

+ Nm6
S

v6

[
2 log m

2
S

v2 − 4
]

+ 1
2N(N + 2)λSm

4
S

v4

[
log m

2
S

v2 − 1
]
. (3.9)

Inserting these into equation (3.8), we obtain in terms of MS-renormalised parameters

8π2v2[M2
h ]Veff = Nm4

S − 12m4
t + 6m4

W + 3m4
Z

+ 4m4
t

16π2

[
g2

3

(
48 log m

2
t

Q2 − 40
)

+ m2
t

v2

(
−18 log m

2
t

Q2 + 39
)]

+ 4m4
S

16π2

[
Nm2

S

v2

(
2 log m

2
S

Q2 − 3
)

+ 1
2N(N + 2)λS

(
log m

2
S

Q2 −
1
2

)]
.

(3.10)

The first line is simply the one-loop result, while the second and third lines are respectively
the SM-like and BSM two-loop corrections to the relation between masses.

In order to convert this result in terms of physical masses for the SM and BSM states,
we require the Higgs and BSM scalar self-energies — provided in appendix B.1 — as well
as equation (2.33) for the Higgs VEV. We obtain finally

4
√

2π2

GF
M2
h = NM4

S−12M4
t +6M4

W +3M4
Z (3.11)

+M2
h

[7
2M

2
t −

1
6NM

2
S

]
+ 3M4

t

8π2

[
16g2

3−
6M2

t

v2
OS

]
+NM4

S

16π2

[
(N+2)λS+ 4M2

S

v2
OS

]
.

If one considers this relation from the point of view of computing MS in terms of λS , N ,
and the known SM inputs, the two-loop corrections decrease the extracted value of MS .
However, in our numerical investigations, we will instead use this relation to compute λS
as a function of MS and N .
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Figure 3. BSM deviation δR — defined in eq. (3.12) — of the Higgs trilinear coupling λ̂hhh

computed in the O(N)-symmetric CSI model with respect to its prediction in the usual (i.e. non-
CSI) SM. The blue (green) curves show the results at two loops for N = 1 (N = 4). Solid and
dashed curves are plotted respectively for λS = 0 and λS = 2. The red dot-dashed line shows the
one-loop result — i.e. comparing the one-loop CSI result of 5M2

h/vOS to the one-loop (non-CSI)
SM result. The black dotted line corresponds to the comparison of the one-loop CSI result for λhhh

to the SM result at tree level — i.e. the 67% deviation mentioned in the introduction.

3.4 Numerical study

At this point, we have derived all the analytical results necessary to study the possible
magnitude of the leading two-loop corrections to the Higgs trilinear coupling in the O(N)-
symmetric CSI model. Rather than examining the absolute value of λ̂hhh, we prefer to
investigate by how much it deviates from the prediction in the (non-CSI) Standard Model,
at the same leading two-loop order. Therefore, we present in the following results for the
BSM deviation δR, defined as

δR ≡ λ̂BSMhhh − λ̂SMhhh
λ̂SMhhh

, (3.12)

where λ̂hhh is the leading two-loop result for the Higgs trilinear coupling in the OS scheme
and the SM — its analytical expression can be found for instance in ref. [75] (see also
refs. [73, 74]). Taking the same input values as in eq. (2.37), we obtain numerically
λ̂SMhhh ' 177.4 GeV.

We present in figure 3 our results for δR using only the expressions from section 3.2
— in other words, we do not impose the relation between masses from eq. (3.11) yet.
The red dot-dashed line shows the one-loop result, comparing the one-loop CSI result
(λ̂hhh)(1) = 5M2

h/vOS to the (leading) one-loop expression in the SM — see for instance
ref. [40]. We should point out here that this result differs from the ∼ 67% mentioned in
the introduction, and shown with the black dotted curve: we have (δR)(1) ' 82%. This is
because the value of ∼ 67% is obtained by comparing the one-loop (λ̂CSIhhh)(1) to the tree-level

– 16 –



J
H
E
P
0
3
(
2
0
2
1
)
2
9
7

SM result for (λ̂SMhhh)(0), but once we include the one-loop contribution from the top quark
in the SM expression we obtain a smaller value for (λ̂SMhhh)(1) < (λ̂SMhhh)(0), and hence a larger
deviation. We must emphasise that with our definition of (δR)(1) we are comparing one-
loop effective-potential results, which do not include any dependence on external momenta.
It should however be noted that, as studied in ref. [40], the momentum dependence in the
SM result can be quite significant, and could modify significantly the value of the BSM
deviation. In ref. [85], momentum-dependent corrections were also included in the study
of the Higgs trilinear coupling in O(N)-symmetric CSI models, and were found to be non-
negligible. Nevertheless, we still choose to define (δR)(1) in terms of effective Higgs trilinear
couplings, as this allows simpler comparisons with our new two-loop results, calculated with
the effective potential. The result we find for (δR)(1) = (λ̂CSIhhh)(1)/(λ̂SMhhh)(1) − 1 remains
totally independent of the particle content of the CSI model.

Next, the blue and green curves in figure 3 are the values of δR at two loops, for
different choices of N and λS : blue and green curves correspond respectively to N = 1
and N = 4; solid curves are made for λS = 0 while the dashed ones are for λS = 2. For
the lowest values of MS — i.e. where the BSM effects are the smallest — the two-loop
deviation (δR)(2) is only slightly larger than at one loop, however, as one increases MS , the
BSM contributions grow rapidly. This growth is stronger for larger values of N and λS ,
and, crucially, the universality of the BSM shift found at one loop is entirely lost at two
loops. Looking at concrete numerical values of (δR)(2), for example for MS = 500 GeV,
we have on the one hand for N = 1 and λS = 0 a deviation of ∼ 94%, while on the other
hand for N = 4 and λS = 2 we find (δR)(2) ∼ 168%. Anticipating a little on the discussion
in the next pages, we note that all parameter points in this figure 3 fulfill the criterion of
tree-level perturbative unitarity [52, 89].

Another interesting comparison we can perform is to investigate the difference in the
BSM deviation in λ̂hhh between CSI and non-CSI versions of O(N)-symmetric models.
For this purpose, we derive in appendix B.2 the dominant two-loop corrections to λ̂hhh
in a non-CSI variant of the O(N)-symmetric model, and for generic values of N — this
calculation follows the procedure developed in refs. [74, 75] (note also that the case of N = 1
was already treated in ref. [75], under the name of “Higgs singlet model”). We present in
figure 4 a comparison of our results for the BSM deviation δR computed with respect to
the SM result in both CSI and non-CSI O(N)-symmetric models, for N = 1 (left side) and
for N = 4 (right side). Note that, as there is no mass term in the CSI O(N)-symmetric
model, we must set µ̃S = 0 in the result for the non-CSI version of the model in order to
be able to compare both variants consistently. The solid curves in figure 4 are obtained for
the versions of the models with CSI, while the results for the non-CSI variants are given by
the dashed curves. Additionally, in both plots, the red curves show one-loop values, while
the blue and black (green and brown) curves are the two-loop results for N = 1 (N = 4)
for λS = 0 and λS = 2.

One clearly notices that CSI and non-CSI variants of this BSM model behave quite
differently. First, for low BSM masses, the BSM deviation in the non-CSI case is minute,
while in the CSI case the deviation is already large (80% or so) — this is because of the
difference between the normal SM and CSI SM. Then, when MS increases, the non-CSI
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Figure 4. Comparison of the BSM deviations δR computed in O(N)-symmetric models, with (solid
curves) and without (dashed curves) CSI, as a function of the pole mass MS of the BSM scalars.
Results for N = 1 and N = 4 are shown respectively in the left- and right-hand plots. Red curves
are one-loop values, blue and green curves are two-loop results for λS = 0 (respectively for N = 1
and N = 4), and black and brown curves are two-loop results for λS = 2 (respectively for N = 1
and N = 4).

corrections grow much faster than their CSI counterparts, as in the non-CSI models the
one-loop corrections are proportional to M4

S — cf. equation (B.9).
Until this point, we have not taken into account the mass relation — as derived in

section 3.3 — nor the theoretical constraint from unitarity. For the latter, we choose to use
as our criterion tree-level8 perturbative unitarity [89], and we can for the O(N)-symmetric
model employ the results given in ref. [52], in particular equation (22) therein. We show in
figure 5 the regions of parameter space — in the MS-λS plane — allowed (light green) and
excluded (light red) under this criterion of tree-level perturbative unitarity, for both N = 1
(left) and N = 4 (right). Moreover, we superimpose on top of this plane the curves obtained
when computing λS as a function of MS (and N) using the mass relation we derived in
eq. (3.11) — the blue line is for N = 1 while the red one is for N = 4. We recall also that
negative values of λS are forbidden, otherwise the potential would not be bounded from
below. Although a wide range of BSM masses seems to be allowed by unitarity, once one
takes into account the relation between masses in the CSI model — or in other words once
one imposes that Mh = 125 GeV — only a narrow interval remains. Concretely, we find
for N = 1 that 509 GeV .MS . 524 GeV, and for N = 4 that 365 GeV .MS . 375 GeV.

8We want to constrain the values of λS and MS , both of which appearing in λ̂hhh only at two-loop
order. Therefore, the difference from including higher-order (instead of tree-level) perturbative unitarity
constraints should be formally a three-loop effect, and thus within the expected theoretical uncertainty of
our result.
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Figure 5. Regions of the MS and λS parameter space of the O(N)-symmetric CSI model allowed
(light green) and excluded (light red) by the requirement of tree-level perturbative unitarity — fol-
lowing ref. [52]. Additionally, the blue and red curves give the values of λS computed at respectively
one and two loops using equation (3.11) as a function of MS . The left pane is for N = 1, while the
right one is for N = 4.

In fact, at one-loop order — see the first line of eq. (3.11) — only a single value of MS is
allowed for a given N , however once two-loop contributions are included the presence of a
new parameter λS allows moderate variations of MS . Conversely, as it only appears from
two loops, λS is not constrained very severely: indeed values as large as λS = 7.4 (3.7) are
possible for N = 1 (N = 4).

Another important criterion that we use to verify the validity of the parameter points
we consider is the true-vacuum condition [90] — i.e. the requirement that the EW vacuum
is the true minimum of the (two-loop) potential and corresponds to a lower value of Veff
than the origin of the potential (at ϕh = v + h = 0). In CSI theories, as all states acquire
their masses entirely from their coupling to the Higgs boson, all masses vanish at the origin
v + h = 0, and hence Veff(ϕh = 0) = 0 and we only need to make sure that Veff(ϕh = v)
is negative. The effective potential depends not only on the field ϕh, but also on the
renormalisation scale Q and therefore we examine the value of Veff(ϕh = v) for Q = v and
Q = MS — the two choices that we believe to be the most natural. We find for N = 1
(where MS ∼ 515 GeV) that the true-vacuum condition is fulfilled for Q = MS but not for
Q = v, while for N = 4 (where MS ∼ 370 GeV) the condition is verified for both values of
Q. As it is unclear which value of Q would be optimal (both values being around the EW
scale anyway), the case of N = 1 is not conclusively excluded by this criterion.

Finally, we present in figure 6 the BSM deviations δR we obtain once we take into
account the mass relation and the constraint from perturbative unitarity. As for previous
figures, the left and right panes are for N = 1 and N = 4 respectively, and the red dot-
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Figure 6. BSM deviation δR — defined in eq. (3.12) — of the Higgs trilinear coupling λ̂hhh

computed at two loops in the O(N)-symmetric CSI model with respect to its usual (i.e. non-CSI)
SM prediction. The blue curve (left side) is the two-loop result obtained for N = 1, while the green
curve (right side) is the two-loop result for N = 4. Moreover, for this figure, λS is calculated as a
function of MS (for N = 1 on the left side and N = 4 on the right side) using equation (3.11). The
red dot-dashed line shows the one-loop result for δR, while the black dotted line is the comparison
of the one-loop CSI result with the tree-level SM one. Finally, the light-red shaded regions are
excluded by tree-level perturbative unitarity.

dashed lines show the one-loop result for δR — independent of MS and N . The blue and
green curves give the two-loop results for N = 1 and N = 4. We emphasise that there is
now only a single result for δR at two loops because once MS and N are fixed, the only
remaining parameter — λS — is fixed via equation (3.11). The ranges ofMS for these plots
correspond to λS varying between 0 and 4π, but the light-red shaded regions are excluded
by the criterion of tree-level perturbative unitarity, as discussed above.

Taking into consideration all these theoretical constraints, we find that the two-loop
BSM deviation to λ̂hhh must be within the intervals from ∼ 99% to∼ 114% and from ∼ 93%
to ∼ 109% respectively for N = 1 and N = 4. This means that while the universality
found at one loop for (δR)(1) is lost at two loops, only a limited range of values of (δR)(2)

is possible. Moreover, our computation finds the Higgs trilinear coupling in CSI O(N)-
symmetric model to be about twice as large as in the SM — (δR)(2) ∼ 100% ± 10% —
and is larger than what is obtained at one loop, which makes the BSM deviation easier to
access in experimental searches.

Before ending our discussion of the CSI O(N)-symmetric models, it is also important
to comment on the experimental status of the parameter points we have considered. We
have verified using HiggsBounds [91–95] that the points allowed by under the theoretical
criteria discussed above are also allowed from the point of view of collider searches. The
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input values for HiggsBounds are produced by using the Mathematica package SARAH [96–
100] to create a SPheno-based [101, 102] spectrum generator for the CSI O(N)-symmetric
models, with N = 1 as well as N = 4.

4 CSI Two-Higgs-Doublet Model

4.1 Model definition

We now turn to the case of a CSI version of the Two-Higgs-Doublet Model, as devised in
ref. [76] (see also ref. [103]). We will be assuming here that CP is conserved in the Higgs
sector, and thus we can write the tree-level potential of the model in terms of two SU(2)L
doublets Φ1 and Φ2 of hypercharge 1/2 as

V (0) = 1
2λ1|Φ1|4 + 1

2λ2|Φ2|4 + λ3|Φ1|2|Φ2|2 + λ4|Φ†1Φ2|2 + 1
2λ5

(
(Φ†1Φ2)2 + (Φ†2Φ1)2

)
,

(4.1)

where all the quartic couplings λi are real. To prevent the occurrence of tree-level flavour-
changing neutral currents, we impose a discrete Z2 symmetry [104, 105] under which the
scalar doublets transform as

Φ1
Z2−→ Φ1 , Φ2

Z2−→ −Φ2 , (4.2)

while the fermions remain unaffected.
We expand the two doublets as

Φi =
(

w+
i

1√
2(vi + hi + izi)

)
, i = 1, 2 , (4.3)

where vi (i = 1, 2) are the vacuum expectation values of the neutral components of the
doublets. These can be taken to be real — owing to the assumption of CP conservation —
and furthermore verify the relation v2

1 + v2
2 = v2 ' (246 GeV)2. From the ratio of v1 and

v2, we can also define the usual quantity tan β ≡ v2/v1.
Requiring both VEVs to be non-vanishing, we find for the tree-level tadpole equations

λ1v
2
1 + λ345v

2
2 = 0 ,

λ2v
2
2 + λ345v

2
1 = 0 , (4.4)

with the shorthand notation λ345 ≡ λ3 + λ4 + λ5. These equations can be solved as

λ1 = −λ345 tan2 β , and λ2 = −λ345 cot2 β , (4.5)

or equivalently as

λ1
λ2

= tan4 β , and λ1λ2 = λ2
345 . (4.6)
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Next, mass eigenstates are obtained by rotating the gauge eigenstate fields with the
angle β(

w±1
w±2

)
= R(β)

(
G±

H±

)
,

(
z1
z2

)
= R(β)

(
G

A

)
,

(
h1
h2

)
= R(β)

(
h

H

)
, (4.7)

having defined

R(x) ≡
(

cosx − sin x
sin x cosx

)
. (4.8)

Among these fields, h,H are CP-even Higgs boson, A is a CP-odd Higgs boson, and H±

is the charged Higgs boson. As in the SM, G and G± are respectively the neutral and
charged would-be Goldstone bosons.

In this new basis, the tree-level scalar mass eigenvalues can be found to be

m2
G = m2

G± = m2
h = 0 ,

m2
H = −λ345v

2 , m2
A = −λ5v

2 , m2
H± = −1

2(λ4 + λ5)v2 . (4.9)

Interestingly, and to the difference of the usual (non-CSI) 2HDM, the CP-even mass matrix
is already diagonal after the rotation of angle β. In other words, no additional rotation of
angle α− β is necessary, and the CSI-2HDM is naturally aligned (at tree level). Moreover,
finding mh = 0 also tells us that h is indeed the flat direction along which we want to work
in what follows.

We also follow the common choice of trading the free Lagrangian quartic couplings
λ3, λ4, λ5 for the tree-level masses of the scalars. From eq. (4.9), one has

λ3 = −
m2
H − 2m2

H±

v2 , λ4 =
m2
A − 2m2

H±

v2 , λ5 = −m
2
A

v2 . (4.10)

We should note also that in the following, we neglect loop-induced deviations from the
alignment found at tree level. Such effects have been studied for instance in ref. [32] in the
CSI 2HDM (see also ref. [106] for the usual 2HDM) and were found to be relatively small
for most of the parameter space, so that we consider them subleading before the two-loop
corrections from the BSM scalar states. This enables us to write the effective potential
under the form of equation (2.16) and thus to follow the calculational procedure described
in section 2.

As in the usual 2HDM, the two scalar doublets in the CSI-2HDM can couple to quarks
and leptons. Under the Z2 symmetry, four types of coupling assignments are possible,
corresponding to the four types of 2HDMs [107–109]. We note however that, for the major
part of the discussion in this section, we do not need to specify a type as we only consider
effects from the top quark — only when verifying experimental constraints do we assume
interactions of type I in order to have less severe limits from flavour physics than for
instance for types II and Y [110].
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Figure 7. New dominant two-loop BSM diagrams contributing to the effective potential of the
CSI-2HDM — in addition to the leading SM diagrams of figure 1. The diagrams in the second line
all vanish in the limit of degenerate BSM scalar masses.

4.2 Dominant two-loop corrections to the Higgs trilinear coupling

At one loop, the result for λhhh is model-independent and was discussed in section 2. We
can now consider the dominant two-loop contributions to the effective potential, and in
turn to the Higgs trilinear coupling. We choose in this section to present results for the
case of degenerate BSM scalar masses MH = MA = MH± ≡ MΦ, because the expressions
for general values of the BSM scalar masses are quite long and cumbersome, and moreover
because this will not affect the physics we discuss here. We provide the complete expressions
for V (2), λhhh, and λ̂hhh in appendix C.1. We should also note that as the BSM scalar
masses will only appear in the Higgs trilinear coupling starting from the two-loop order, it
does not make a difference whether we use pole or tree-level masses for the BSM scalars
— the difference in λhhh from using one or the other is formally of three-loop order.

The BSM diagrams contributing to leading order to V (2) are shown in figure 7. In the
limit of degenerate masses, their expressions read

V
(2)
SSS(h) =−4m4

Φ(v+h)2

v4 I(m2
Φ(h),m2

Φ(h),0)− 6m4
Φ cot2 2β(v+h)2

v4 I(m2
Φ(h),m2

Φ(h),m2
Φ(h)) ,

V
(2)
SS (h) = 12m2

Φ cot2 2β
v2 J(m2

Φ(h))2 ,

V
(2)
FFS(h) = 6m2

t cot2β

v2

[
J(m2

t (h))2−3J(m2
Φ(h))J(m2

t (h))+(m2
t (h)−m2

Φ(h))I(0,m2
Φ(h),m2

t (h))

+(2m2
t (h)−m2

Φ(h))I(m2
Φ(h),m2

t (h),m2
t (h))

]
. (4.11)

From these equations we can extract the BSM logarithm-squared terms, and including also
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the SM-like contributions, we find in total for C(2)

C(2) = 24g2
3m

4
t

v4 − 9m6
t

v6 + m6
Φ
v6 (4 + 21 cot2 2β) + 6m2

t cot2 β

v6

(
m4

Φ − 3m2
Φm

2
t −

3
2m

4
t

)
.

(4.12)

Applying equation (2.22), we obtain the dominant two-loop corrections to λhhh, involving
g3, mt, mΦ, and tan β as

λhhh = t
5[M2

h ]Veff
v

+ 1
(16π2)2

[
768g2

3m
4
t

v3 − 288m6
t

v5 + 32m6
Φ

v5 (4 + 21 cot2 2β)

+ 192m2
tm

4
Φ cot2 β

v5

(
1− 3m2

t

m2
Φ
− 3m4

t

2m4
Φ

)]
. (4.13)

Lastly, we can — like in the previous sections — express the one-loop result 5[M2
h ]Veff/v

in terms of the Higgs pole mass and the physical Higgs VEV, and take into account finite
WFR effects, to obtain an OS result. The only 2HDM-specific corrections come from the
momentum-dependent BSM scalar contributions to the Higgs self-energy. These can be
found to be

Π(1)
hh (p2) ⊃ −

∑
Φ=H,A,H±

2nΦm
4
Φ

v2 B0(p2,m2
Φ,m

2
Φ) , (4.14)

where nH,A = 1 and nH± = 2. From this, we have

dΠ(1)
hh

dp2

∣∣∣∣
p2=0

⊃ −1
3
∑

Φ=H,A,H±

nΦm
2
Φ

v2 . (4.15)

Finally, we obtain in terms of OS-renormalised parameters

λ̂hhh = 5M2
h

vOS
+ 1

16π2
5M2

h

vOS

[
7
2
M2
t

v2
OS
− 2

3
M2

Φ
v2
OS

]

+ 1
(16π2)2

[
768g2

3M
4
t

v3
OS

− 288M6
t

v5
OS

+ 32M6
Φ

v5
OS

(4 + 21 cot2 2β)

+ 192M2
tM

4
Φ cot2 β

v5
OS

(
1− 3M2

t

M2
Φ
− 3M4

t

2M4
Φ

)]
. (4.16)

4.3 Mass relation

Next, we also consider the mass relation for the case of the CSI-2HDM, which will serve
to relate the BSM scalar masses MH , MA, MH± and tan β. As in the previous section,
we present here only expressions in the limit of degenerate scalar masses, and leave the
complete results for appendix C.2. To derive corrections to λhhh, we have already used the
expression of C(2) given in eq. (4.12). We must now also derive results for B at one- and
two-loop orders. First, at one loop it is straightforward to calculate

B(1) = 1
4v4

(
4m4

Φ − 12m4
t + 6m4

W + 3m4
Z

)
. (4.17)
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At two loops, we have

B(2) = 4g2
3m

4
t

v4

[
12 log m

2
t

v2 − 16
]

+ 6m6
t

v6

[
−3 log m

2
t

v2 + 8
]

+B
(2)
SS +B

(2)
SSS +B

(2)
FF̄S

, (4.18)

where the first two terms are SM-like contributions and the latter three — B
(2)
SS , B

(2)
SSS ,

B
(2)
FF̄S

— are the BSM ones. These can be found to be in the limit of degenerate BSM
masses

B
(2)
SS = 24m6

Φ cot2 2β
v6

(
log m

2
Φ
v2 − 1

)
,

B
(2)
SSS = 2m6

Φ
v6 (4 + 9 cot2 2β)

(
log m

2
Φ
v2 − 2

)
,

B
(2)
FF̄S

= 6m2
t cot2 β

v6

{
2m4

Φ

(
log m

2
Φ
v2 − 2

)
− 6m2

tm
2
Φ

(
log m

2
Φ
v2 − 1

)
−m4

t

(
3 log m

2
t

v2 − 8
)}

.

(4.19)

Applying equation (3.8), the mass relation at two loops is, in terms of MS-renormalised
quantities,

8π2v2[M2
h ]Veff = 4m4

Φ − 12m4
t + 6m4

W + 3m4
Z

+ m4
t

4π2

[
g2

3

(
48 log m

2
t

Q2 − 40
)

+ m2
t

v2

(
−18 log m

2
t

Q2 + 39
)]

+ 1
4π2

{
24m6

Φ cot2 2β
v2

(
log m

2
Φ

Q2 −
1
2

)
+ 2m6

Φ
v2 [4 + 9 cot2 2β]

(
log m

2
Φ

Q2 −
3
2

)

+ 6m2
t cot2 β

v2

[
2m4

Φ

(
log m

2
Φ

Q2 −
3
2

)
− 6m2

tm
2
Φ

(
2 log m

2
Φ

Q2 −
1
2

)

−m4
t

(
3 log m

2
t

Q2 −
13
2

)]}
. (4.20)

The first line in this equation is the one-loop result, while the additional lines are the two-
loop corrections. Among these, the first (square) brackets are the SM-like contributions,
and the remains terms (in the curly brackets) are the BSM terms, proper to the CSI-2HDM.

To convert equation (4.20) from the MS to the OS scheme, we require as previously
the correction to the Higgs VEV — c.f equation (2.33) and the top-quark and Higgs-boson
one-loop self-energies, as well as the self-energies for the BSM scalars H, A, H± (also at
one loop). All necessary expressions are provided in appendix C.2. With these, we are able
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Figure 8. BSM deviation δR — defined in eq. (3.12) — of the Higgs trilinear coupling λ̂hhh

computed at one loop (dot-dashed line) and at two loops (solid and dashed curves) in the CSI-
2HDM with respect to its SM prediction as a function of the degenerate mass of the BSM scalars
MΦ = MH = MA = MH± . The different grey, teal, blue, and green two-loop curves correspond
respectively to tan β equal to 1, 1.1, 1.2, and 1.4. As in the previous section, the black dotted line
is obtained by comparing the one-loop CSI result for λhhh to the SM tree-level result.

to obtain the following result, in terms only of physical parameters

4
√

2π2

GF
M2
h = 4M4

Φ−12M4
t +6M4

W +3M4
Z+M2

h

[7
2M

2
t −

2
3M

2
Φ

]
+ 3M4

t

8π2

[
16g2

3−
6M2

t

v2
OS

]

+ M6
Φ

4π2v2
OS

[
4+3

(
7−2
√

3π
)

cot2 2β
]

+ 3M2
t cot2β

2π2v2
OS

{
−M4

Φ−3M2
tM

2
Φ+ 13

2 M
4
t

−2M2
t (M2

Φ−2M2
t )Re

fB
 M2

Φ
2M2

t

−
√
M2

Φ
4M4

t

−1

+fB

 M2
Φ

2M2
t

+
√
M2

Φ
4M4

t

−1


−M2

Φ(M2
Φ−2M2

t )Re

[
fB

(
1
2−

√
1
4−

M2
t

M2
Φ

)
+fB

(
1
2 +

√
1
4−

M2
t

M2
Φ

)]}
, (4.21)

where the function fB is defined in equation (A.6), and Re[x] denotes the real part of a
given quantity x.

4.4 Numerical study

We have now derived all the results we require to study numerically the leading two-loop
corrections to the Higgs trilinear coupling in the CSI-2HDM. We follow here the same
outline as we did for the O(N)-symmetric model, and we provide results for the same type
of BSM deviation δR — as defined in eq. (3.12) — comparing the prediction for the Higgs
trilinear coupling in the CSI-2HDM to that in the usual (non-CSI) SM. Moreover, we will
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Figure 9. Comparison of the BSM deviations δR computed in versions of the 2HDM, with (solid
curves) and without (dashed curves) CSI, as a function of the degenerate pole mass MΦ of the BSM
scalars. Red curves present one-loop values, while grey and green curves are two-loop results for
tan β = 1 and tan β = 1.4 respectively.

consider the three BSM scalars H, A, H± to be degenerate in mass — this ensures that the
ρ parameter remains close to one, and furthermore this conveniently reduces the number
of BSM mass scales to one.

We present first in figure 8 the deviation δR at one loop (red line) and two loops (grey,
teal, blue, and green curves) for different values of tan β. We employ here the expression
in equation (4.16), without for now taking into account the relation between masses. As
we had seen for the N -scalar model, while at one loop the BSM deviation in λ̂hhh has a
universal value of δR ∼ 82%, the two-loop corrections introduce new dependences on both
MΦ and tan β, thereby spoiling the universality of δR. We consider in this plot different
values of tan β, ranging from tan β = 1 to tan β = 1.4, which we find to be the largest
value of tan β for which tree-level perturbative unitarity [89, 111] is maintained all the way
to MΦ = 500 GeV — see figure 10 and the discussion in the following. Considering for
instance MΦ = 500 GeV, we find (δR)(2) = 134% for tan β = 1, and (δR)(2) = 162% for
tan β = 1.4, in stark contrast to the one-loop result.

At this point, we should comment briefly on our interpretation of the quantity tan β.
While tan β is originally defined as the ratio of the VEVs of the two scalar doublets in the
model, it appears in two-loop corrections to the Higgs trilinear coupling via the dependence
of four-point scalar interactions at tree level and of the coupling between BSM scalars and
the top quark. It should be emphasised however that because tan β appears only from
the two-loop order, any scheme difference in how its value could be extracted from some
experimental data (in the event a 2HDMHiggs sector is discovered) only has an impact from
three-loop order and beyond — i.e. below the level of accuracy to which we are working.
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Figure 10. Regions of the tan β and MΦ parameter space of the CSI-2HDM allowed (light green)
and excluded (light red) by the requirement of tree-level perturbative unitarity [111]. Additionally,
the red and blue curves give the values of MΦ computed at respectively one and two loops using
equation (4.21) as a function of tan β. The right-hand side plot is an enlargement of the left-
hand one.

Next, it is also interesting to compare predictions for the Higgs trilinear coupling in
variants of the 2HDM with or without CSI. For this purpose, we present in figure 9 the
BSM deviations in λ̂hhh computed with respect to the usual-SM prediction in both variants
of the 2HDM. For the usual 2HDM, we use the analytic expression for λ̂hhh derived in
refs. [74, 75] — see specifically equation (5.15) in ref. [75] — in which we set the mass term
M̃ (representing the scale of the soft breaking of the Z2 symmetry acting on the Higgs
doublets) to zero to allow the comparison with the CSI scenario.

We can observe that the Higgs trilinear coupling behaves very differently in CSI and
non-CSI versions of the 2HDM. The main discrepancy occurs at one-loop level: indeed,
while in the CSI-2HDM (δR)(1) is constant, in the usual (non-CSI) 2HDM, one-loop cor-
rections involving the BSM scalars are minute in the low-mass range, but grow rapidly
(as M4

Φ) and reach ' 240% for MΦ = 500 GeV. At two loops, the radiative corrections
to λ̂hhh behave quite similarly in the CSI and non-CSI scenarios — the main difference
arising from effects due to the scheme conversion of the one-loop BSM corrections in the
non-CSI 2HDM case (cf. ref. [75]).

At this point, we should discuss the theoretical constraints on the BSM parameters
— MΦ and tan β — coming from unitarity and from the mass relation in eq. (4.21). For
the former, we choose to take tree-level perturbative unitarity [89] as our criterion, and we
employ results from ref. [111] (see also ref. [112]). figure 10 shows the allowed (light green)
and excluded (light red) regions of the CSI-2HDM parameter space, in the MΦ − tan β
plane. Additionally, the values of MΦ that are extracted from the equation (4.21) are given
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Figure 11. BSM deviation δR — defined in eq. (3.12) — of the Higgs trilinear coupling λ̂hhh

computed at two loops in the CSI-2HDM with respect to its SM prediction as a function of the
degenerate mass of the BSM scalars MΦ = MH = MA = MH± . The value of tan β in the point
in this figure is computed as a function of MΦ using equation (4.21). Finally, the maximal value
of MΦ (equivalently the maximal value of tan β) in this plot is constrained by the requirement of
tree-level perturbative unitarity — cf. figure 10. The red dot-dashed and black dotted lines show
the comparison of the one-loop CSI value of λhhh with respectively the one-loop effective-potential
and tree-level results in the SM.

by the dashed red (at one loop) and solid blue (at two loops) curves. On the one hand,
at one loop tan β does not appear in the mass relation and hence at a constant value is
found for MΦ. On the other hand, at two loops, the result for MΦ obtained from eq. (4.21)
becomes a function of tan β. Along the two-loop (blue) curve, we find that the maximal
possible value of tan β is 1.855, which corresponds to a maximal value of the degenerate
mass of the BSM scalars MΦ ≤ 382.2 GeV. As for the O(N)-symmetric models, we have
also verified that the true-vacuum condition is respected in the CSI-2HDM: we have found
that the value of the two-loop potential is, at the EW minimum, indeed lower than the
value of the potential at the origin, and this is true both for Q = v and Q = MΦ ∼ 378 GeV.

Having considered the constraints on MΦ and tan β, we can finally investigate the
theoretically-allowed values of the Higgs trilinear coupling. figure 11 therefore presents our
results for the deviation δR at one loop (red dot-dashed line) and at two loops (blue solid
curve), once tan β is extracted as a function of MΦ from the mass relation in eq. (4.21).
As can be seen in figure 10, the possible values of MΦ are all within the narrow interval
from 373.9 GeV to 382.1 GeV. We find that δR varies between 89.9% at the lowest, and
112.5% at most. In other words, as for the O(N)-symmetric model earlier, we obtain a
larger deviation of λ̂hhh from its deviation at two loops, and the total BSM deviation is
(approximately) in the range 100± 10%.
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We have verified that the corresponding parameter points are not excluded by experi-
mental searches for BSM scalars. Assuming Yukawa interactions of type I (to benefit from
less severe constraints from flavour physics than for types II or Y, see e.g. ref. [110]), we cre-
ate a SPheno-based spectrum generator for the CSI-2HDM using SARAH, which we in turn
used to provide inputs for HiggsBounds to verify the experimental status of the parameter
choices we took. We ensured that the Lagrangian inputs provided to SPheno yielded the
corrected spectrum of scalar masses — a 125-GeV SM-like Higgs boson and BSM scalars
at 374GeV, with an allowed error of 1GeV — using the Mathematica package SSP [113].

5 Discussion

The computations presented in this paper allow studying the Higgs trilinear coupling in
models with classical scale invariance to the same level of accuracy as for non-CSI extensions
of the SM — as done for instance in refs. [73–75] (and appendix B.2 of this work). Classical
scale invariance is an attractive concept for model building, and may relate to the solution
to the hierarchy problem. It is therefore of paramount importance to find new ways to
investigate CSI models, in complement of collider and dark matter searches — see e.g.
refs. [32, 79, 81–87].

Due to the simple form of the potential at one loop, containing only two free quantities
— recall equation (2.4) — λ̂hhh is found to be predicted universally at the one-loop level, in
all CSI models. This universality of (λ̂hhh)(1) is lifted by the inclusion of two-loop effects,
which thus allows distinguishing different scenarios of CSI models. We found that the
new corrections at two loops are quite significant, leading to a further 5–30% deviation
of λ̂hhh from the (non-CSI) SM prediction, compared to the one-loop CSI result. We
should emphasise that this is by no means a problem from the point of view of the validity
of the perturbative loop expansion: indeed the two-loop corrections to λ̂hhh involve new
parameters that are not present at one loop — namely MS , λS , N for the O(N)-symmetric
models and MH , MA, MH± , tan β in the CSI-2HDM. Furthermore, as there are numerous
arguments in favour of extended scalar sectors, it is interesting to note that the two-loop
contributions to the Higgs trilinear coupling receives from scalars are always positive, which
makes it deviate further from the SM value so that it is more easily accessible in collider
searches than what is expected from the one-loop result.

We have also paid particular attention to the relation among masses arising in theories
with CSI, which is often over-looked in the literature. More than being simply bounded
from above, the masses of BSM states in CSI models are actually strongly constrained by
the requirement of reproducing the correct 125-GeV mass of the Higgs boson — which is
entirely generated at loop level. In the scenarios considered in the main text of this paper,
we imposed additional constraints — a global O(N) symmetry for the N -scalar model,
and mass degeneracy of the BSM scalars in the CSI-2HDM — which resulted in severe
bounds on the allowed BSM masses.9 In turn, this allows us to find predictions for λ̂hhh

– 30 –



J
H
E
P
0
3
(
2
0
2
1
)
2
9
7

within a narrow range: in both types of BSM models, we obtain 90% . (δR)(2) . 115%.
Looking back at figures 4 and 9, it is worth noting that the values obtained for (δR)(2)

for the allowed BSM mass ranges are very close to those found for the same masses in the
non-CSI counterparts of the scenarios. Taking the example of the 2HDM, while in the CSI
version of the model we have 90% . (δR)(2) . 110%, in the non-CSI variant and taking
the non-decoupling limit (i.e. M̃ = 0) the value of (δR)(2) computed at MΦ ' 374 GeV
varies from ∼ 90% (for tan β = 1) to 105% (for tan β = 1.9, close to the upper limit from
perturbative unitarity). This implies that the magnitude of a potential BSM deviation in
the Higgs trilinear coupling may not provide a clear indication of whether the associated
new physics exhibits classical scale invariance — instead, a better criterion might come
from whether masses and couplings fulfill the mass relations imposed by CSI.

Rather than considering only a single type of observable, a powerful strategy to inves-
tigate CSI theories, and to discriminate theories with or without CSI, would be to study
the correlation between several observables. In particular, synergies between measurements
of the Higgs trilinear coupling and direct searches of new particles at colliders may prove
crucial to ascertain whether Nature exhibits classical scale invariance or not. Indeed, we
should recall that due to the relation among masses in CSI models, the new BSM states
cannot be arbitrarily heavy (even in non-degenerate scenarios) and will be within reach of
experiments in a foreseeable future (see for instance the discussions for the CSI-2HDM in
refs. [32, 79]). In the eventuality that a new scalar state is found in direct searches, deter-
mining the value of the Higgs trilinear coupling and verifying whether the relation among
masses is fulfilled or not can potentially provide clear evidence of the CSI nature of the
underlying theory. Furthermore, if one considers a model with charged scalars (e.g. H± in
the CSI-2HDM), sizeable one-loop corrections to the Higgs-to-two-photon (hγγ) coupling
can also be expected, as studied in ref. [50]. Such effects could also help confirm the ex-
istence (or absence) of CSI in BSM models. In this context, depending on the achieved
accuracy of the determination of the hγγ coupling at future colliders — possibly down to
percent level, see e.g. refs. [63, 114] for prospects at the ILC — it may become important (if
not unavoidable) to compute theory predictions for this coupling at two-loop level in order
to match the precision of experimental results and allow consistent comparisons between
theory and experiment. We leave this endeavour for future work.

A caveat that should be mentioned is that the scenarios considered in this work re-
quire relatively large scalar quartic couplings — once again, this comes from the need to
generate the correct mass of the Higgs boson, in the absence of any BSM mass term in
the Lagrangian. Consequently, under renormalisation-group running, we can expect these
couplings to grow rapidly and encounter Landau poles well before the Planck scale — in
a similar way as what occurs in the non-decoupling limit of (non-CSI) extensions of the
SM. This is consistent with our expectation that the assumption of CSI at the electroweak
scale can a priori not be extended up to the Planck scale, and therefore does not solve the
hierarchy problem by itself.

9Admittedly, if these restrictions were to be loosened (as e.g. in appendix C), there would be more
freedom to vary the BSM scalar masses. Nevertheless, the masses would remain related so as to ensure the
correctness of the Higgs mass.
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Finally, we should also point out the importance of computing the Higgs trilinear
coupling to high precision when studying the behaviour of a number of BSM phenomena
occuring in models with extended scalar sectors — in particular the possibility of a strong-
first order electroweak phase transition and the spectrum of gravitational waves that may
be produced during the former. In complementarity with collider searches, the future
measurement of primordial gravitational waves (GW) at the LISA and DECIGO space-
based interferometers will provide a new way to probe the value of the Higgs trilinear
coupling and the shape of the Higgs potential. The synergy between the two — collider
and GW measurements — was studied at one loop for O(N)-symmetric CSI models in
ref. [52] (see also refs. [115–117] for similar studies in non-CSI theories). Given the large
deviation from the SM in the one-loop predictions for λhhh, one expects in CSI models the
EWPT to be of strong first order (cf. ref. [37]). However, two-loop corrections to the Higgs
trilinear coupling certainly affect the strength of the EWPT to some extent, although for
the time being this type of effects have only been studied for a non-CSI IDM in ref. [73]
— the EWPT was then found to be slightly weaker once two-loop corrections to λ̂hhh
where included. In turn, this also modifies the spectrum of gravitational waves produced
during the EWPT if it is of strong first-order nature. There is therefore strong motivation
to consider two-loop corrections to the Higgs trilinear coupling at finite temperatures in
CSI theories.

6 Summary

In this paper, we have performed the first explicit calculation of leading two-loop corrections
to the Higgs trilinear coupling in models with classical scale invariance, using the effective-
potential approximation. For the wide range of CSI models in which the scalon/Higgs
direction does not mix with other states — so that we can compute Veff as in eq. (2.16) —
we have derived general two-loop results relating the coefficients of the effective potential
to the corrections to the Higgs trilinear coupling. Importantly, we find that while at one
loop the prediction for λ̂hhh is the same in all CSI theories, this is not any more the case
at two loops.

We focused our investigations on two particular types of CSI theories: first an N -
scalar model with a global O(N) symmetry (where we took either N = 1 or N = 4
for numerical applications), and next a CSI-2HDM. For both models, we computed the
leading corrections at two loops involving the BSM scalars — and in the CSI-2HDM, the
top quark as well. Because these expressions are derived from V (2), which is computed
in the MS scheme, results are obtained at first in the MS scheme. Therefore, we have
included the necessary scheme conversion to rewrite the corrections to the Higgs trilinear
coupling in terms of physical parameters (pole masses and physical Higgs VEV) and to
take into account the effects from finite WFR. Once we turn to the numerical study of
these models, we observe that the two-loop corrections clearly lift the degeneracy in λ̂hhh
among different BSM masses and parameters. Furthermore, the results for λ̂hhh in CSI and
non-CSI variants of the same model strongly differ in their theoretical behaviours, mainly
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because of the difference at one loop — constant (mass-independent) value in the CSI case,
and corrections proportional to the fourth power of the BSM mass(es) in the non-CSI case.

However, when we also consider the constraints on the allowed ranges of the BSM
parameters coming from the criterion of tree-level perturbative unitarity and from the
mass relation in CSI theories, the possible values of λ̂hhh become quite restricted, namely
90% . (δR)(2) . 110 − 115%. In other words, while the Higgs trilinear coupling at two
loops is not universally predicted in all CSI models (without mixing), its allowed values
are still severely limited by the classical scale invariance. Nevertheless, the additional
positive deviation of order 5 − 30% of the Higgs trilinear coupling from its SM prediction
at two loops can make the BSM discrepancy easier to find at future experiments, and is
of the same order of magnitude as the expected accuracy of the determination of λhhh at
future colliders (as discussed in the introduction). Therefore, two-loop calculations will
in the future prove necessary for CSI theories in order to consistently compare theoretical
predictions with experimental results.

While it may be difficult to distinguish between CSI scenarios and non-CSI scenarios
(in the non-decoupling limit) simply from the size of the Higgs trilinear coupling, our
work demonstrates the important role of the mass relation that strongly constrains masses
and parameters in CSI theories, and may prove to be one of the most powerful tools to
probe the CSI nature of a potential BSM discovery. Additionally, as we have mentioned
in the previous section, the synergy of the measurement of the spectrum of primordial
gravitational waves produced during the EWPT together with that of the Higgs trilinear
coupling can also help distinguish scenarios with or without CSI [52].

Finally, in appendix D we have provided generic MS results for the coefficients B(2)

and C(2) (see eq. (2.16)) applicable to all CSI models without mixing, and which served to
cross-check some of our calculations. We hope these can be of use for the community to
study further CSI scenarios.
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A Loop functions

This appendix summarises notations and definitions of loop functions used throughout
this paper.

First of all, the loop factor is defined as

κ = 1
16π2 . (A.1)
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Next, we denote the regularisation and renormalisation scales respectively µ and Q. These
two scales are related as

Q2 = 4πe−γEµ2 , (A.2)

where γE ' 0.577 is the Euler constant. For convenience, we also make extensive use of
the notation

logx ≡ log x

Q2 . (A.3)

A.1 One-loop functions

At one-loop order, we employ the following two integrals

J(x) ≡ −16π2 µ2ε

i(2π)d
∫
k

ddk

k2 − x
,

B(p2, x, y) ≡ 16π2 µ2ε

i(2π)d
∫
k

ddk

(k2 − x)((p− k)2 − y) , (A.4)

defined in dimensional regularisation, with d = 4 − 2ε. Their finite (and ε-independent)
part yield the usual Passarino-Veltmann functions [88]

J(x) ≡ lim
ε→0

[
J(x) + x

ε

]
= x(logx− 1) ,

B0(p2, x, y) ≡ lim
ε→0

[
B(p2, x, y)− 1

ε

]
= − log p2 − fB(x+)− fB(x−), (A.5)

where

fB(x) = log(1− x)− x log
(

1− 1
x

)
− 1 ,

x± = p2 + x− y ±
√

(p2 + x− y)2 − 4p2x

2p2 . (A.6)

Some simple limits of particular interest include

B0(x, 0, 0) = B0(x, 0, x) = 2− logx ,

B0(x, x, x) = 2− π√
3
− logx ,

B0(x, 0, y) = 2− log y +
(
y

x
− 1

)
log

(
1− x

y

)
. (A.7)

Finally, when computing contributions from finite WFR, it is useful to expand the B0
function for low momentum p2 with the relation

B0(p2, x, x) =
p2�x

− logx+ p2

6x +O
(
p4

x2

)
. (A.8)
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A.2 Two-loop functions

When considering two-loop corrections to the effective potential, we also come to encounter
the sunrise integral I (see e.g. ref. [69]) defined as

I(x, y, z) ≡
(
16π2

)2 µ4ε

(2π)2d

∫
k1

∫
k2

ddk1d
dk2

(k2
1 − x)(k2

2 − y)((k1 + k2)2 − z)
. (A.9)

Its finite part is

I(x, y, z) ≡ lim
ε→0

[
I(x, y, z)− J(x) + J(y) + J(z)

ε
− 1

2

( 1
ε2
− 1
ε

)
(x+ y + z)

]
, (A.10)

with J the one-loop integral from eq. (A.4). Expressions for I, equivalent up to relations
among dilogarithms can be found in many references (see for instance refs. [69, 70, 118,
119]). Ref. [119] provides the result in a convenient way, which we reproduce here

I(x, y, z) = 1
2
[
(x− y − z) log y log z + (y − z − x) logx log z + (z − x− y) logx log y

]
+ 2

[
x logx+ y log y + z log z

]
− 5

2(x+ y + z)− ∆(x, y, z)
2z Φ(x, y, z) , (A.11)

with

∆(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz) , (A.12)

Φ(x, y, z) = 1
λ(x, y, z)

[
2 logX+ logX− − log x

z
log y

z
− 2

(
Li2(X+) + Li2(X−)

)
+ π2

3

]
.

(A.13)

Li2(z) ≡ −
∫ z

0 log(1− t)/tdt is the dilogarithm function, and

λ(x, y, z) = 1
z

[(
z − x− y

)2 − 4xy
]1/2

,

X± = 1
2

[
1± x− y

z
− λ(x, y, z)

]
. (A.14)

Note that the definition of the function Φ in eq. (A.13) is only valid for x, y < z, and the
other branches of the function can be found with the relations

Φ(x, y, z) = Φ(y, x, z) , and x Φ(x, y, z) = z Φ(z, y, x) . (A.15)

Furthermore, a number of useful limits are included in refs. [118, 120], among which

I(x, x, x) = 3
2x
[
− log2

x+ 4 logx− 5− i√
3

(
π2

9 − 4 Li2

(
1
2 −

i
√

3
2

))]
,

I(x, x, 0) = x
[
− log2

x+ 4 logx− 5
]
,

I(x, 0, 0) = 1
2x
[
− log2

x+ 4 logx− 5− π2

3

]
. (A.16)
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B Detailed results for the N -scalar model

B.1 With classical scale invariance

We present in this appendix intermediate results that we employed for the MS to OS
scheme conversion of our expressions for the CSI O(N)-symmetric model. The different
parameters we need conversions for are v, mt, [M2

h ]Veff , and mS . First of all, for the Higgs
VEV, we can use the same result as in the SM, cf. equation (2.33).

Next, the one-loop self-energy of the top quark is the same as in the SM (the BSM
singlet scalars do not couple to it) and it reads

Π(1)
tt (p2 = m2

t ) = 4
3g

2
3m

2
t

(
8− 6 logm2

t

)
+ m4

t

v2

(
−8 + 3 logm2

t

)
. (B.1)

For the conversion from the Higgs curvature to pole mass and the Higgs WFR, we
only require the momentum-dependent contributions to the one-loop Higgs self-energy —
momentum-independent terms cancel out when taking the difference Πhh(p2 = m2

h) −
Πhh(p2 = 0) and moreover their derivative with respect to p2 is also zero of course. The
momentum-dependent corrections are

Π(1)
hh (p2)

∣∣∣∣
p2-dep.

= 6m2
t

v2

[
(4m2

t − p2)B0(p2,m2
t ,m

2
t )
]
− 2Nm4

S

v2 B0
(
p2,m2

S ,m
2
S

)
, (B.2)

where the first term is the SM-like correction from the top quark and the second term is
the BSM contribution from the scalars Si.

Finally, we find for the one-loop self-energy of the BSM scalars

Π(1)
SS(p2) = (N + 2)λSJ(m2

S)− 4λ2
ΦSv

2B0(p2, 0,m2
S) . (B.3)

B.2 Without classical scale invariance

In order to compare predictions for the Higgs trilinear coupling in O(N)-symmetric models
with and without CSI, we derive in this appendix the leading two-loop contributions to
λ̂hhh in the non-CSI version of these models. Note that the case for N = 1 was already
considered in ref. [75] — where it was referred to as the “Higgs-Singlet Model” (HSM).

If we do not impose classical scale invariance, the tree-level scalar potential in a theory
invariant under a global O(N) symmetry reads

V (0) = µ2|Φ|2 + 1
2µ

2
S
~S2 + λ|Φ|4 + λΦS ~S

2|Φ|2 + 1
4λS

(
~S2
)2

. (B.4)

Due to the unbroken O(N) symmetry, the singlets Si do not acquire VEVs, and the only
tadpole equation gives at tree level

µ2 = −λv2 . (B.5)

The field-dependent tree-level masses read

m2
h(h) =µ2+3λ(v+h)2 , m2

G(h) =m2
G±(h) =µ2+λ(v+h)2 , m2

Si
(h) =µ2

S+λΦS(v+h)2 .

(B.6)
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The dominant two-loop contributions to the effective potential in this model are the same
as shown in figure 2, and the expressions are (like for the CSI version of the model):

V (2) = V
(2)
hSS + V

(2)
SS

V
(2)
hSS =−

N∑
i=1

λ2
ΦS(v + h)2I(0,m2

Si
(h),m2

Si
(h))

=−Nλ2
ΦS(v + h)2I(m2

S(h),m2
S(h), 0)

V
(2)
SS =

N∑
i=1

1
8λSiSiSiSiJ(m2

Si
(h))2 +

N∑
i=1

N∑
j=1,j 6=i

1
8λSiSiSjSjJ(m2

Si
(h))J(m2

Sj
(h))

= 1
4N(N + 2)λSJ(m2

S(h))2 (B.7)

Following the calculation method explained in detail in ref. [75] and using the differential
operator D3 defined therein, we find for the dominant two-loop BSM corrections to the
Higgs trilinear coupling λhhh

δ(2)λhhh = 1
(16π2)2D3V

(2)∣∣
min.

= 1
(16π2)2

{
16Nm4

S

v5

(
1− µ2

S

m2
S

)4 [
−m2

S − 2µ2
S + (2m2

S + µ2
S) logm2

S

]

+ 4N(N + 2)λSm4
S

v3

(
1− µ2

S

m2
S

)3

[1 + 2 logm2
S ]
}
. (B.8)

For the leading one-loop BSM corrections, we have simply

δ(1)λhhh = 1
16π2D3V

(1)∣∣
min. = 1

16π2
4Nm4

S

v3

(
1− µ2

S

m2
S

)3

. (B.9)

To convert this result to the on-shell scheme, we need the one-loop self-energy of the scalars
Si, given in eq. (B.3), as well as the finite counter-term for µ2

S (to ensure proper decoupling
of the OS result when taking µ̃2

S → ∞ as discussed at length in ref. [75]). The latter can
be obtained straightforwardly by adapting the result in eq. (5.29) of ref. [75] (originally for
the HSM) to our case. We find

δOSµ2
S = 1

16π2 (N + 2)λSµ̃2
S(logM2

S − 1) . (B.10)

Combining all these results, we obtain for the dominant one-loop and two-loop BSM con-
tributions to the Higgs trilinear coupling, expressed in the OS scheme

(16π2)δ(1)λ̂hhh = 4NM4
S

v3
OS

(
1− µ̃2

S

M2
S

)3

−NM
2
SM

2
h

2v3
OS

(
1− µ̃2

S

M2
S

)2

,

(16π2)2δ(2)λ̂hhh = 48NM6
S

v5
OS

(
1− µ̃2

S

M2
S

)4

+ 12N(N+2)λSM4
S

v3
OS

(
1− µ̃2

S

M2
S

)3

+ 42NM4
SM

2
t

v5
OS

(
1− µ̃2

S

M2
S

)3

+ 24NM2
SM

4
t

v5
OS

(
1− µ̃2

S

M2
S

)2

− 2N2M6
S

v5
OS

(
1− µ̃2

S

M2
S

)5

.

(B.11)
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The last three terms (i.e. the second line) come from WF and VEV renormalisations.
Setting N = 1 and taking into account the slightly different convention for λS , we do
recover the same result as in equation (5.31) of ref. [75].

C Detailed results for the CSI-2HDM

In this appendix, we generalise the results of the section 4 for the case where the masses
of the three BSM scalars are not degenerate.

C.1 Results for V (2) and λ̂hhh

First of all, the leading two-loop BSM corrections to Veff of the CSI-2HDM read

V
(2)
SSS(h) =

−
∑

Φ=H,A,H±

nΦm
4
Φ(v+h)2

v4 I(0,m2
Φ(h),m2

Φ(h))

−
∑

Φ=A,H±

nΦm
4
H cot2 2β(v+h)2

v4 I(m2
H(h),m2

Φ(h),m2
Φ(h))

− 3m4
H cot2 2β(v+h)2

v4 I(m2
H(h),m2

H(h),m2
H(h))

− (v+h)2

2v4

[
(m2

H−m2
A)2I(m2

H(h),m2
A(h),0)+2(m2

H−m2
H±)2I(m2

H(h),m2
H±(h),0)

+2(m2
A−m2

H±)2I(m2
A(h),m2

H±(h),0)
]

(C.1)

V
(2)
SS (h) =

m2
H cot2 2β
v2

[
3
2J(m2

H(h))2+ 3
2J(m2

A(h))2+4J(m2
H±(h))2+J(m2

A(h))J(m2
H(h))

+2J(m2
H(h))J(m2

H±(h))+2J(m2
A(h))J(m2

H±(h))
]

(C.2)

V
(2)
FFS(h) =

− 3
2y

2
t c

2
β

[
2J(m2

t (h))J(m2
H(h))−J(m2

t (h))2−(4m2
t (h)−m2

H(h))I(m2
H(h),m2

t (h),m2
t (h))

]
− 3

2y
2
t c

2
β

[
2J(m2

t (h))J(m2
A(h))−J(m2

t (h))2+m2
A(h)I(m2

A(h),m2
t (h),m2

t (h))
]

−3y2
t c

2
β

[
J(m2

t (h))J(m2
H±(h))−(m2

t (h)−m2
H±(h))I(m2

H±(h),m2
t (h),0)

]
(C.3)

– 38 –



J
H
E
P
0
3
(
2
0
2
1
)
2
9
7

Turning next to the log2 terms C(2), we have first for the scalar sunrise diagrams

C
(2)
SSS =

m6
H +m6

A + 2m6
H±

v6 + m4
H cot2 2β
v6

[
6m2

H +m2
A + 2m2

H±
]

+ 1
4

(m2
H −m2

A)2(m2
H +m2

A)
v6 + 1

2
(m2

H −m2
H±)2(m2

H +m2
H±)

v6

+ 1
2

(m2
A −m2

H±)2(m2
A +m2

H±)
v6 (C.4)

Second, for the eight-shaped diagrams we have

C
(2)
SS = m2

H cot2 2β
2v6

[
3m4

H + 3m4
A + 8m4

H± + 2m2
Hm

2
A + 4m2

H±(m2
H +m2

A)
]
. (C.5)

Finally, for the diagrams with top quarks, we find

C
(2)
FF̄S

= 3m2
t cot2 β

2v6
[
m4
H +m4

A + 2m4
H± − 2m2

t

(
3m2

H +m2
A + 2m2

H±
)
− 6m4

t

]
. (C.6)

Grouping all these results together, and using eq. (2.22), we find

λhhh = 5[M2
h ]Veff
v

+ 1
(16π2)2

[
768g2

3m
4
t

v3 − 288m6
t

v5 +
56m6

H + 56m6
A + 96m6

H±

v5

−
8m4

Hm
2
A + 8m2

Hm
4
A + 16m4

Hm
2
H± + 16m2

Hm
4
H± + 16m4

Am
2
H± + 16m2

Am
4
H±

v5

+ 32m4
H cot2 2β
v5

(
6m2

H +m2
A + 2m2

H±
)

+ 16m2
H cot2 2β
v5

(
3m4

H + 3m4
A + 8m4

H± + 2m2
Hm

2
A + 4m2

H±(m2
H +m2

A)
)

+ 48m2
t cot2 β

v5
(
m4
H +m4

A + 2m4
H± − 2m2

t

(
3m2

H +m2
A + 2m2

H±
)
− 6m4

t

)]
. (C.7)

By taking mH = mA = mH± = mΦ, we can straightforwardly recover eq. (4.13).
In order to convert this expression from the MS to the OS scheme, we need to take

into account the finite renormalisation of the Higgs VEV — as given in equation (2.33),
as well as the correction to the Higgs mass and the effect of finite WFR. The latter two
are calculated from the momentum-dependent part of the Higgs self-energy, which in the
CSI-2HDM receives new contributions from each of the BSM scalars. In total, it reads

Π(1)
hh (p2)

∣∣
p2-dep. =

6m2
t

v2

[
(4m2

t−p2)B0(p2,m2
t ,m

2
t )
]

− 2m4
H

v2 B0(p2,m2
H ,m

2
H)− 2m4

A

v2 B0(p2,m2
A,m

2
A)−

4m4
H±

v2 B0(p2,m2
H± ,m2

H±) .

(C.8)
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This enables us to obtain finally in the OS scheme

λ̂hhh = 5M2
h

vOS
+ 1

16π2
5M2

h

vOS

[7
2
M2
t

v2
OS
− 1

6
M2
H+M2

A+2M2
H±

v2
OS

]
+ 1

(16π2)2

[768g2
3M

4
t

v3
OS

− 288M6
t

v5
OS

+
56M6

H+56M6
A+96M6

H±

v5
OS

−
8(M4

HM
2
A+M2

HM
4
A+2M4

HM
2
H± +2M2

HM
4
H± +2M4

AM
2
H± +2M2

AM
4
H±)

v5
OS

+ 32M4
H cot2 2β
v5
OS

(
6M2

H+M2
A+2M2

H±
)

+ 16M2
H cot2 2β
v5
OS

(
3M4

H+3M4
A+8M4

H± +2M2
HM

2
A+4M2

H±(M2
H+M2

A)
)

+ 48M2
t cot2β

v5
OS

(
M4
H+M4

A+2M4
H±−2M2

t

(
3M2

H+M2
A+2M2

H±
)
−6M4

t

)]
.

(C.9)

C.2 Results for the mass relation

C.2.1 Expression in the MS scheme

Finally, we also consider the mass relation for the CSI-2HDM with general BSM scalar
masses, and therefore we start by deriving expressions for the quantities C(2), B(1), B(2).
First of all, we have that

C(2) = 24g2
3m

4
t

v4 − 9m6
t

v6 + C
(2)
SS + C

(2)
SSS + C

(2)
FF̄S

, (C.10)

with C(2)
SS , C

(2)
SSS , and C

(2)
FF̄S

given respectively in equations (C.4), (C.5), and (C.6). Next,
B(1) is simply

B(1) = 1
4v4

(
m4
H +m4

A + 2m4
H± − 12m4

t + 6m4
W + 3m4

Z

)
. (C.11)

The expression for B(2) is significantly longer, and can be written as

B(2) = 4g2
3m

4
t

v4

[
12 log m

2
t

v2 − 16
]

+ 6m6
t

v6

[
−3 log m

2
t

v2 + 8
]

+B
(2)
SS +B

(2)
SSS +B

(2)
FF̄S

, (C.12)
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with

B
(2)
SS = 3m6

H cot2 2β
v6

(
log m

2
H

v2 − 1
)

+ 3m2
Hm

4
A cot2 2β
v6

(
log m

2
A

v2 − 1
)

+
8m2

Hm
4
H± cot2 2β
v6

(
log

m2
H±

v2 − 1
)

+ m4
Hm

2
A cot2 2β
v6

(
log m

2
H

v2 + log m
2
A

v2 − 2
)

+
2m4

Hm
2
H± cot2 2β
v6

(
log m

2
H

v2 + log
m2
H±

v2 − 2
)

+
2m2

Hm
2
Am

2
H± cot2 2β
v6

(
log m

2
A

v2 + log
m2
H±

v2 − 2
)
,

B
(2)
SSS = 2m6

H

v6

(
log m

2
H

v2 − 2
)

+ 2m6
A

v6

(
log m

2
A

v2 − 2
)

+
4m6

H±

v6

(
log

m2
H±

v2 − 2
)

+ 12m6
H cot2 2β
v6

(
log m

2
H

v2 − 2
)

+ 2m4
Hm

2
A cot2 2β
v6

(
log m

2
A

v2 − 2
)

+
4m4

Hm
2
H± cot2 2β
v6

(
log

m2
H±

v2 − 2
)

+ 1
2v6

{
(m2

H −m2
A)2

[
m2
H

(
log m

2
H

v2 − 2
)

+m2
A

(
log m

2
A

v2 − 2
)]

+ 2(m2
H −m2

H±)2
[
m2
H

(
log m

2
H

v2 − 2
)

+m2
H±

(
log

m2
H±

v2 − 2
)]

+ 2(m2
A −m2

H±)2
[
m2
A

(
log m

2
A

v2 − 2
)

+m2
H±

(
log

m2
H±

v2 − 2
)]}

, (C.13)

and

B
(2)
FF̄S

= B
(2)
ttH+B(2)

ttA+B(2)
tbH± , with

B
(2)
ttH = 3m2

t cot2β

v6

{
(4m2

t−m2
H)
[
2m2

t

(
2−log m

2
t

v2

)
+m2

H

(
2−log m

2
H

v2

)]

+2m4
t

(
log m

2
t

v2 −1
)
−2m2

tm
2
H

(
log m

2
t

v2 +log m
2
H

v2 −2
)}

= 3m2
t cot2β

v6

{
m4
H

(
log m

2
H

v2 −2
)
−2m2

tm
2
H

(
3log m

2
H

v2 −4
)
−2m4

t

(
3log m

2
t

v2 −7
)}

,

B
(2)
ttA = 3m2

t cot2β

v6

{
−m2

A

[
2m2

t

(
2−log m

2
t

v2

)
+m2

A

(
2−log m

2
A

v2

)]

+2m4
t

(
log m

2
t

v2 −1
)
−2m2

tm
2
A

(
log m

2
t

v2 +log m
2
A

v2 −2
)}

= 3m2
t cot2β

v6

[
m4
A

(
log m

2
A

v2 −2
)
−2m2

tm
2
A log m

2
A

v2 +2m4
t

(
log m

2
t

v2 −1
)]

, (C.14)

B
(2)
tbH± = 6m2

t cot2β

v6

{
m4
H±

(
log

m2
H±

v2 −2
)
−2m2

tm
2
H±

(
log

m2
H±

v2 −1
)
−m4

t

(
log m

2
t

v2 −2
)}

.
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As an intermediate step, we next calculate the sum B(2) + C(2)(1 + 2 log v2/Q2) for the
different contributions — SS, SSS, ttH, ttA, and tbH± — and we denote this quantity as
D(2). We obtain

D
(2)
SS ≡ B

(2)
SS + C

(2)
SS

(
1 + 2 log v2

Q2

)

= 3m6
H cot2 2β
v6

(
log m

2
H

Q2 −
1
2

)
+ 3m2

Hm
4
A cot2 2β
v6

(
log m

2
A

Q2 −
1
2

)

+
8m2

Hm
4
H± cot2 2β
v6

(
log

m2
H±

Q2 −
1
2

)
+ m4

Hm
2
A cot2 2β
v6

(
log m

2
H

Q2 + log m
2
A

Q2 − 1
)

+
2m4

Hm
2
H± cot2 2β
v6

(
log m

2
H

Q2 + log
m2
H±

Q2 − 1
)

+
2m2

Hm
2
Am

2
H± cot2 2β
v6

(
log m

2
A

Q2 + log
m2
H±

Q2 − 1
)
, (C.15)

D
(2)
SSS ≡ B

(2)
SSS + C

(2)
SSS

(
1 + 2 log v2

Q2

)

= 2m6
H

v6

(
log m

2
H

Q2 −
3
2

)
+ 2m6

A

v6

(
log m

2
A

Q2 −
3
2

)
+

4m6
H±

v6

(
log

m2
H±

Q2 −
3
2

)

+ 12m6
H cot2 2β
v6

(
log m

2
H

Q2 −
3
2

)
+ 2m4

Hm
2
A cot2 2β
v6

(
log m

2
A

Q2 −
3
2

)

+
4m4

Hm
2
H± cot2 2β
v6

(
log

m2
H±

Q2 −
3
2

)

+ 1
2v6

{
(m2

H −m2
A)2

[
m2
H

(
log m

2
H

Q2 −
3
2

)
+m2

A

(
log m

2
A

Q2 −
3
2

)]

+ 2(m2
H −m2

H±)2
[
m2
H

(
log m

2
H

Q2 −
3
2

)
+m2

H±

(
log

m2
H±

Q2 −
3
2

)]

+ 2(m2
A −m2

H±)2
[
m2
A

(
log m

2
A

Q2 −
3
2

)
+m2

H±

(
log

m2
H±

Q2 −
3
2

)]}
,

(C.16)

D
(2)
ttH ≡ B

(2)
ttH+C(2)

ttH

(
1+2log v

2

Q2

)

= 3m2
t cot2β

v6

[
m4
H

(
log m

2
H

Q2 −
3
2

)
−6m2

tm
2
H

(
log m

2
H

Q2 −
5
6

)
−6m4

t

(
log m

2
t

Q2 −
11
6

)]
,

(C.17)

D
(2)
ttA ≡ B

(2)
ttA + C

(2)
ttA

(
1 + 2 log v2

Q2

)

= 3m2
t cot2 β

v6

[
m4
A

(
log m

2
A

Q2 −
3
2

)
− 2m2

tm
2
A

(
log m

2
A

Q2 + 1
2

)
+ 2m4

t

(
log m

2
t

Q2 −
1
2

)]
,

(C.18)
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D
(2)
tbH± ≡ B

(2)
tbH± +C(2)

tbH±

(
1+2log v

2

Q2

)

= 6m2
t cot2β

v6

[
m4
H±

(
log

m2
H±

Q2 −
3
2

)
−2m2

tm
2
H±

(
log

m2
H±

Q2 −
1
2

)
−m4

t

(
log m

2
t

Q2 −
3
2

)]
.

(C.19)

The mass relation at two loops, for general masses and in terms of MS parameters, is then

8π2v2[M2
h ]Veff = m4

H +m4
A + 2m4

H± − 12m4
t + 6m4

W + 3m4
Z

+ 4m4
t

16π2

[
g2

3

(
48 log m

2
t

Q2 − 40
)

+ m2
t

v2

(
−18 log m

2
t

Q2 + 39
)]

+ 4v4

16π2

[
D

(2)
SS +D

(2)
SSS +D

(2)
ttH +D

(2)
ttA +D

(2)
tbH±

]
, (C.20)

with the quantities D(2) given in the previous equations.

C.2.2 Intermediate results for the MS→ OS conversion

At this point, we wish to express the result in equation (C.20) in terms of pole masses and
of the physical Higgs VEV.

First, for the conversion from the curvature to the pole mass of the Higgs boson, we
employ again the expression given in eq. (C.8).

Next, for the one-loop self-energy of the top quark, we have

Π(1)
tt (p2 = m2

t ) = 4
3g

2
3m

2
t (8− 6 logm2

t ) + m4
t

v2 (−8 + 3 logm2
t )

− m2
t cot2 β

v2

[
2J(m2

t )− J(m2
H)− J(m2

A)− J(m2
H±) + (4m2

t −m2
H)B0(m2

t ,m
2
t ,m

2
H)

−m2
AB0(m2

t ,m
2
t ,m

2
A) + (m2

t −m2
H±)B0(m2

t , 0,m2
H±)

]
(C.21)

where the terms in the square brackets are BSM contributions involving H, A, and H±.
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Finally, the self-energies of the three BSM scalars can be found to be

Π(1)
HH(p2) = 2m2

H

v2 cot2 2β
[
3J(m2

H) + J(m2
A) + 2J(m2

H±)
]

− 4m4
H

v2 B0(p2, 0,m2
H)− 18m4

H

v2 cot2 2βB0(p2,m2
H ,m

2
H)

− (m2
H −m2

A)2

v2 B0(p2, 0,m2
A)−

2(m2
H −m2

H±)2

v2 B0(p2, 0,m2
H±)

− 2m4
H

v2 cot2 2β
[
B0(p2,m2

A,m
2
A) + 2B0(p2,m2

H± ,m2
H±)

]
− 12m2

t cot2 β

v2

[
J(m2

t )−
(

2m2
t −

p2

2

)
B0(p2,m2

t ,m
2
t )
]
,

Π(1)
AA(p2) = 2m2

H

v2 cot2 2β
[
J(m2

H) + 3J(m2
A) + 2J(m2

H±)
]

− 4m4
A

v2 B0(p2, 0,m2
A)− 4m4

H

v2 cot2 2βB0(p2,m2
A,m

2
H)

− (m2
A −m2

H)2

v2 B0(p2, 0,m2
H)−

2(m2
A −m2

H±)2

v2 B0(p2, 0,m2
H±)

− 12m2
t cot2 β

v2
[
J(m2

t ) + p2

2 B0(p2,m2
t ,m

2
t )
]
,

Π(1)
H+H−(p2) = 2m2

H

v2 cot2 2β
[
J(m2

H) + J(m2
A) + 4J(m2

H±)
]

−
4m4

H±

v2 B0(p2, 0,m2
H±)− 4m4

H

v2 cot2 2βB0(p2,m2
H± ,m2

H)

−
(m2

H± −m2
H)2

v2 B0(p2, 0,m2
H)−

(m2
H± −m2

A)2

v2 B0(p2, 0,m2
A)

− 6m2
t cot2 β

v2
[
J(m2

t ) + (p2 −m2
t )B0(p2, 0,m2

t )
]
. (C.22)

C.2.3 Expression in the OS scheme

Using the previous results, and after some steps of tedious but straightforward algebra, we
obtain for the mass relation in terms of physical parameters

4
√

2π2

GF
M2
h = M4

H +M4
A + 2M4

H± − 12M4
t + 6M4

W + 3M4
Z

+M2
h

[7
2M

2
t −

1
6(M2

H +M2
A + 2M2

H±)
]

+ 3M4
t

8π2

[
16g2

3 −
6M2

t

v2
OS

]

+ 1
4π2v2

OS

[
M6
H +M6

A + 2M6
H±
]

+ 1
16π2v2

OS
(M2

H −M2
A)2(M2

H +M2
A)

+ 1
8π2v2

OS

[
(M2

H −M2
H±)2(M2

H +M2
H±) + (M2

A −M2
H±)2(M2

A +M2
H±)

]
+ Re(ℵS) + Re(ℵt) , (C.23)
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with the quantities ℵS and ℵt defined as

ℵS ≡

M6
H cot2 2β
4π2v2

OS

3
2−3
√

3π−fB

(
1
2−

√
1
4−

M2
A

M2
H

)
−fB

(
1
2 +

√
1
4−

M2
A

M2
H

)

−2fB

1
2−

√
1
4−

M2
H±

M2
H

−2fB

1
2 +

√
1
4−

M2
H±

M2
H


+M4

HM
2
A cot2 2β

2π2v2
OS

[
−1−fB

(
M2
H

2M2
A

−
√
M4
H

4M4
A

−1
)
−fB

(
M2
H

2M2
A

+
√
M4
H

4M4
A

−1
)]

+
M4
HM

2
H± cot2 2β
π2v2

OS

[
−1−fB

(
M2
H

2M2
H±
−
√

M4
H

4M4
H±
−1
)
−fB

(
M2
H

2M2
H±

+
√

M4
H

4M4
H±
−1
)]

+ 3M2
HM

4
A cot2 2β

8π2v2
OS

+
M2
HM

4
H± cot2 2β
π2v2

OS
+
M2
HM

2
AM

2
H± cot2 2β

2π2v2
OS

ℵt≡

3M6
t cot2β

2π2v2
OS

[
log

M2
H±

M2
t

+ 13
2 −

(
M2
H±

M2
t

−1
)

log
(

1− M2
t

M2
H±

)

+4

fB
M2

H±

2M2
t

−

√
M4
H±

4M4
t

−1

+fB

M2
H±

2M2
t

+

√
M4
H±

4M4
t

−1

]

+ 3M2
HM

2
t cot2β

4π2v2
OS

M2
t −

3
2M

2
H+

(
4M2

t −M2
H

)(
fB

(
1
2−

√
1
4−

M2
t

M2
H

)
+fB

(
1
2 +

√
1
4−

M2
t

M2
H

))

−2M2
t

fB
M2

H

2M2
t

−
√
M4
H

4M4
t

−1

+fB

M2
H

2M2
t

+
√
M4
H

4M4
t

−1


+ 3M2

AM
2
t cot2β

4π2v2
OS

[
−5M2

t −
3
2M

2
A−M2

A

(
fB

(
1
2−

√
1
4−

M2
t

M2
A

)
+fB

(
1
2 +

√
1
4−

M2
t

M2
A

))

−2M2
t

fB
 M2

A

2M2
t

−
√
M4
A

4M4
t

−1

+fB

 M2
A

2M2
t

+
√
M4
A

4M4
t

−1


+

3M2
H±M2

t cot2β

2π2v2
OS

[
(2M2

t −M2
H±) log M2

t

M2
H±
−M2

t + 1
2M

2
H±

+(M2
H±−M2

t )
(
M2
t

M2
H±
−1
)

log
(
1−

M2
H±

M2
t

)
+(M2

H±−M2
t )log

(
1− M2

t

M2
H±

)]
.

(C.24)

D Results for generic theories

In this last appendix, we provide generic expressions for the coefficients B(2) and C(2) — cf.
eq. (2.16) — which we extract from the formulae given in ref. [70] for the two-loop effective
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potential in general renormalisable theories (note that we employ the MS expressions).
The expressions presented here can in principle be applied in order to study corrections
to the Higgs trilinear coupling as well as the relation between masses in any CSI theory
where the “scalon” direction does not mix with other states.

The couplings are defined among real scalars φi, Dirac fermions ψI , and gauge bosons
Aaµ (and also ghosts ωa) as follows

LS =− 1
6λijkφiφjφk −

1
24λijklφiφjφkφl ,

LFS =− yIJkψ̄IPLψJφk − (yIJk)∗ψ̄JPRψIφk ,

LV S = 1
2g

abiAaµA
µ bφi + 1

4g
abijAaµA

µ bφiφj + gaijAaµφi∂
µφj ,

LFV = gIJaψ̄I /A
a
ψJ ,

Lgauge = gabcAaµA
b
ν∂

µAcν − 1
4g

abegcdeAaµAbνAcµA
d
ν + gabcAaµω

b∂µωc . (D.1)

Note that we work in the Landau gauge, and hence we do not need to care about couplings
between scalars and ghosts.

Our notations for the different contributions to the effective potential correspond to
those in ref. [70], and we refer the reader to equations (4.2) to (4.21) in this reference for
all definitions. We simply list in the following the results we obtain (in the MS scheme)
for the coefficients B(2) and C(2) for each type of contribution. Note that we do not give
results for A(2) as we do not require at any point in our analysis, and also because they
can be obtained straightforwardly by the replacement Q→ v in the expressions of ref. [70].

D.1 Scalar eight-shaped diagrams V (2)
SS

B
(2)
SS = 1

8λiijj
m2
im

2
j

v4

[
log m

2
i

v2 + log
m2
j

v2 − 2
]
,

C
(2)
SS = 1

8λiijj
m2
im

2
j

v4 . (D.2)

D.2 Scalar sunrise diagrams V (2)
SSS

B
(2)
SSS =− 1

12

(
λijk
v2

)2 {
m2
i

[
2− log m

2
i

v2

]
+m2

j

[
2− log

m2
j

v2

]
+m2

k

[
2− log m

2
k

v2

]}
,

C
(2)
SSS = 1

24

(
λijk
v2

)2 [
m2
i +m2

j +m2
k

]
. (D.3)
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D.3 Scalar-fermion sunrise diagrams V (2)
F F̄S
≡ V (2)

FFS + V
(2)
F̄ F̄ S

B
(2)
FF̄S

= 1
2v4

([
yIJkyJIk + h.c.

]
mImJ + |yIJk|2(m2

I +m2
J −m2

k)
)

×
{
m2
I

(
2− log m

2
I

v2

)
+m2

J

(
2− log m

2
J

v2

)
+m2

k

(
2− log m

2
k

v2

)}

+ |yIJk|
2

2v4

{
m2
Im

2
J

(
log m

2
I

v2 + log m
2
J

v2 − 2
)
−m2

Im
2
k

(
log m

2
I

v2 + log m
2
k

v2 − 2
)

−m2
Jm

2
k

(
log m

2
J

v2 + log m
2
k

v2 − 2
)}

,

C
(2)
FF̄S

=− 1
4v4

([
yIJkyJIk + h.c.

]
mImJ + |yIJk|2(m2

I +m2
J −m2

k)
)[
m2
I +m2

J +m2
k

]
+ |yIJk|

2

2v4

{
m2
Im

2
J −m2

Im
2
k −m2

Jm
2
k

}
. (D.4)

D.4 Scalar-gauge-boson eight-shaped diagrams V (2)
V S

B
(2)
V S = 1

4g
aaiim

2
am

2
i

v4

[
3 log m

2
a

v2 + 3 log m
2
i

v2 − 4
]
,

C
(2)
V S = 3

4g
aaiim

2
am

2
i

v4 . (D.5)

D.5 Sunrise diagrams involving two scalars and a gauge boson V (2)
SSV

B
(2)
SSV = 1

4

(
gaij

v2

)2{
−

∆(m2
i ,m

2
j ,m

2
a)

m2
a

[
m2
i

(
2−log m

2
i

v2

)
+m2

j

(
2−log

m2
j

v2

)
+m2

a

(
2−log m

2
a

v2

)]

+
(m2

i−m2
j )2

m2
a

[
m2
i

(
2−log m

2
i

v2

)
+m2

j

(
2−log

m2
j

v2

)]
+m2

i (m2
j−m2

i−m2
a)
[

log m
2
i

v2 +log m
2
a

v2 −2
]

+m2
j (m2

i−m2
j−m2

a)
[

log
m2
j

v2 +log m
2
a

v2 −2
]

+M2
i m

2
j

(
log m

2
i

v2 +log
m2
j

v2 −2
)

+2m2
a

(
m2
i +m2

j−
1
3m

2
a

)}
,

C
(2)
SSV = 1

4

(
gaij

v2

)2 [∆(m2
i ,m

2
j ,m

2
a)

2m2
a

(m2
i +m2

j+m2
a)−

(m2
i−m2

j )2

2m2
a

(m2
i +m2

j )

+m2
i (m2

j−m2
i−m2

a)+m2
j (m2

i−m2
j−m2

a)+m2
im

2
j

]
. (D.6)
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D.6 Sunrise diagrams involving one scalar and two gauge bosons V (2)
V V S

B
(2)
V V S =

(
gabi

4v2mamb

)2{[
−m4

a−m4
b−m4

i−10m2
am

2
b+2(m2

a+m2
b)m2

i

]
×
(1

2
[
(m2

a−m2
b−m2

i )
(

log m
2
b

v2 +log m
2
i

v2

)
+(m2

b−m2
i−m2

a)
(

log m
2
a

v2 +log m
2
i

v2

)

+(m2
i−m2

a−m2
b)
(

log m
2
a

v2 +log m
2
b

v2

)]
+2
[
m2
a+m2

b+m2
i

])
+(m2

a−m2
i )2
[
m2
a

(
2−log m

2
a

v2

)
+m2

i

(
2−log m

2
i

v2

)]
+(m2

b−m2
i )2
[
m2
b

(
2−log m

2
b

v2

)
+m2

i

(
2−log m

2
i

v2

)]
−m6

i

(
2−log m

2
i

v2

)
+(m2

i−m2
a−m2

b)m2
am

2
b

(
log m

2
a

v2 +log m
2
b

v2 −2
)

+m2
am

2
bm

2
i

(
log m

2
a

v2 +log m
2
i

v2 −2
)

+m2
am

2
bm

2
i

(
log m

2
b

v2 +log m
2
i

v2 −2
)}

+
(
gabi

2v2

)2{1
2m

2
a+ 1

2m
2
b+2m2

i

}
,

C
(2)
V V S =

(
gabi

4v2mamb

)2{1
2
[
m4
a+m4

b+m4
i +10m2

am
2
b−2(m2

a+m2
b)m2

i

][
m2
a+m2

b+m2
i

]
− 1

2(m2
a−m2

i )2(m2
a+m2

i )−
1
2(m2

b−m2
i )2(m2

b+m2
i )−

1
2m

6
i +(3m2

i−m2
a−m2

b)m2
am

2
b

}
. (D.7)

D.7 Fermion-gauge boson diagrams V (2)
FFV and V (2)

F̄ F̄ V

B
(2)
FFV = 1

2
|gIJa|2

m2
av

4

{(
m4
I +m4

J − 2m4
a − 2m2

Im
2
J +m2

Im
2
a +m2

Jm
2
a

)
×
[
m2
I

(
2− log m

2
I

v2

)
+m2

J

(
2− log m

2
J

v2

)
+m2

a

(
2− log m

2
a

v2

)]
− (m2

I −m2
J)2
[
m2
I

(
2− log m

2
I

v2

)
+m2

J

(
2− log m

2
J

v2

)]
+ (m2

I −m2
J − 2m2

a)m2
Im

2
a

(
log m

2
I

v2 + log m
2
a

v2 − 2
)

+ (m2
J −m2

I − 2m2
a)m2

Jm
2
a

(
log m

2
J

v2 + log m
2
a

v2 − 2
)

+ 2m2
am

2
Im

2
J

(
log m

2
I

v2 + log m
2
J

v2 − 2
)}
− 2

(
m2
I +m2

J −
1
3m

2
a

)
m2
a − 2m4

I − 2m4
J ,

C
(2)
FFV = 1

2
|gIJa|2

m2
av

4

{
1
2
(
m4
I +m4

J − 2m4
a − 2m2

Im
2
J +m2

Im
2
a +m2

Jm
2
a

)
(m2

I +m2
J +m2

a)

+ 1
2(m2

I −m2
J)2(m2

I +m2
J) + (m2

I −m2
J − 2m2

a)m2
Im

2
a

+ (m2
J −m2

I − 2m2
a)m2

Jm
2
a + 2m2

am
2
Im

2
J

}
. (D.8)
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B
(2)
F̄ F̄ V

= 1
2

(gIJa)2mImJ

v4

{
3(m2

I −m2
J −m2

a)
(

log m
2
J

v2 + log m
2
a

v2

)

+ 3(m2
J −m2

a −m2
I)
(

log m
2
I

v2 + log m
2
a

v2

)

+ 3(m2
a −m2

I −m2
J)
(

log m
2
I

v2 + log m
2
J

v2

)
+ 8m2

I+ 8m2
J+ 12m2

a

}
,

C
(2)
F̄ F̄ V

=− 3
2

(gIJa)2

v4 mImJ(m2
I +m2

J +m2
a) . (D.9)

D.8 Pure gauge diagrams V (2)
gauge

B(2)
gauge = (gabc)2

48m2
am

2
bm

2
cv

4

{(
−m8

a−8m6
am

2
b−8m6

am
2
c+32m4

am
2
bm

2
c+18m4

bm
4
c

)
×
[
m2
a

(
2−log m

2
a

v2

)
+m2

b

(
2−log m

2
b

v2

)
+m2

c

(
2−log m

2
c

v2

)]

+(m2
b−m2

c)2(m4
b+10m2

bm
2
c+m4

c)
[
m2
b

(
2−log m

2
b

v2

)
+m2

c

(
2−log m

2
c

v2

)]
+m6

a(2m2
bm

2
c−m4

a)
(

2−log m
2
a

v2

)
+
(
m4
a−9m4

b−9m4
c+9m2

am
2
b+9m2

am
2
c+14m2

bm
2
c

)
×m2

am
2
bm

2
c

(
log m

2
b

v2 +log m
2
c

v2 −2
)

+
(

22m2
b+22m2

c−
16
3 m

2
a

)
m2
am

2
bm

2
c

}
+(a↔ b)+(a↔ c) ,

C(2)
gauge =− (gabc)2

96m2
am

2
bm

2
cv

4

{(
−m8

a−8m6
am

2
b−8m6

am
2
c+32m4

am
2
bm

2
c+18m4

bm
4
c

)
(m2

a+m2
b+m2

c)

+(m2
b−m2

c)2(m4
b+10m2

bm
2
c+m4

c)(m2
b+m2

c)+m6
a(2m2

bm
2
c−m4

a)

−2
(
m4
a−9m4

b−9m4
c+9m2

am
2
b+9m2

am
2
c+14m2

bm
2
c

)
m2
am

2
bm

2
c

}
+(a↔ b)+(a↔ c) . (D.10)

Here (a↔ b) and (a↔ c) denote the exchange of indices a and b, or a and c.
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