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Abstract: We study the radiative process of two entangled two-level atoms uniformly ac-
celerated in a thermal bath, coupled to a massless scalar field. First, by using the positive
frequency Wightman function from the Minkowski modes with a Rindler transformation we
provide the transition probabilities for the transitions from maximally entangled symmetric
and anti-symmetric Bell states to the collective excited or ground state in (1+1) and (1+3)
dimensions. We observe a possible case of anti-Unruh-like event in these transition proba-
bilities, though the (1+1) and (1+3) dimensional results are not completely equivalent. We
infer that thermal bath plays a major role in the occurrence of the anti-Unruh-like effect,
as it is also present in the transition probabilities corresponding to a single detector in this
case. Second, we have considered the Green’s functions in terms of the Rindler modes with
the vacuum of Unruh modes for estimating the same. Here the anti-Unruh effect appears
only for the transition from the anti-symmetric state to the collective excited or ground
state. It is noticed that here the (1 + 1) and (1 + 3) dimensional results are equivalent, and
for a single detector, we do not observe any anti-Unruh effect. This suggests that the en-
tanglement between the states of the atoms is the main cause for the observed anti-Unruh
effect in this case. In going through the investigation, we find that the transition proba-
bility for a single detector case is symmetric under the interchange between the thermal
bath’s temperature and the Unruh temperature for Rindler mode analysis; whereas this is
not the case for Minkowski mode. We further comment on whether this observation may
shed light on the analogy between an accelerated observer and a real thermal bath. An
elaborate investigation for the classifications of our observed anti-Unruh effects, i.e., either
weak or strong anti-Unruh effect, is also thoroughly demonstrated.
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1 Introduction

Quantum entanglement is one of the most distinguishing features that differentiates quan-
tum physics from the classical. The fact that an entangled state of a collective system
cannot be separated into the product states of the subsystems, acts as the essence of en-
tanglement. It ensures that measurements of a physical observable on entangled particles
are not independent of each other. The existence of quantum entanglement is experimen-
tally verified in systems with photons, electrons, etc., see [1, 2]. Moreover, the application
of quantum entanglement in quantum communications, cryptography, and computing [3, 4]
has made it a more active and desirable field to venture further.

Furthermore, the realization and application of entanglement in flat and curved space-
times through the usage of quantum field theory is considered to be the most enthralling
recent outcomes, and there has been a growing interest in studying these relativistic quan-
tum entanglement effects in recent times, see [5–16]. Another interesting phenomena is
harvesting vacuum entanglement [6, 11, 17–19], i.e., quantum fields can be source for
entanglement for atoms interacting with it. The degradation of entanglement due to un-
controlled coupling to the external field, resulting from the influence of the field-atom
interaction, is also an actual physical problem in a realistic experimental situation. Then
it becomes imperative to understand the reasons of these degradation, so that sincere pre-
dictions can be provided. All these reasonings motivated the developments on studying
the transition rates between different states of entangled atoms in different trajectories,
which are thriving with many new ideas and possibilities, see [20–35]. In this purpose the
concept of two-level atomic Unruh-deWitt detectors are essential. These point-like atomic
detectors, whose internal states are coupled to the external field, were conceptualized to
understand the Unruh effect [36, 37].1 To be specific, the Unruh effect proclaims that
the Minkowski vacuum as perceived by a uniformly accelerated observer will present a
Planckian distribution of particles, with the temperature proportional to the acceleration

1The Unruh-deWitt detector setup has been used to investigate whether a freely falling observer can
detect particles in Boulware vacuum, both for black hole [38, 39] as well as Friedmann-Lamaître-Robertson-
Walker [39] spacetimes. Moreover, Unruh effect has also been used to verify the quantum memory of the
spacetime [40, 41].
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of the observer. There are plenty of works predicting the possibility of generating entangled
states in systems of these two-level atoms interacting with bosonic and other fields [42–44],
further enriching the plausibility of these experiments. It is to be noted that there are
articles discussing the transition probabilities of entangled atoms in different scenarios for
the static or accelerated observers. Like, in [24] the radiative process of the static atoms are
discussed in the presence of mirrors. While in [20] the finite time effects of acceleration are
analyzed. These studies motivates one to study the similar radiative process for entangled
atoms accelerated in thermal bath, which is not there in literature up to our knowledge.

In this work we are going to study the radiative process of two entangled accelerated
atoms, coupled to a background scalar field, in a thermal bath. The transition probability
corresponding to single accelerated observers in thermal bath are estimated in [45, 46],
considering two-level Unruh-deWitt detectors (where in [47] the scenario for a rotating
detector in thermal bath is considered). In the derivation of [46] the Green’s function, which
is essential for the calculation, is constructed from the Minkowski modes with a Rindler
coordinate transformation. These Green’s functions are not time translation invariant and
one cannot provide the notion of transition probability per unit time out of them. However,
one can get the idea about the transition probability for certain field mode frequency from
these estimations. We have considered this particular procedure to study the transition
probability of entangled atoms accelerated in thermal bath in (1+1) and (1+3) dimensions.

On the other hand, we have also constructed the Green’s functions out of the
Rindler modes with the Unruh operators, i.e., with vacuum for Unruh modes(which is
the Minkowski vacuum here), corresponding to accelerated observers in thermal bath, in
both (1 + 1) and (1 + 3) dimensions. These Green’s functions are time translational in-
variant and one can get the notion of transition probability per unit time out of them. In
both of the cases with the Minkowski and Rindler modes we considered studying the tran-
sition probabilities for the transitions form the symmetric and anti-symmetric Bell states
to the collective excited or ground state. We observed that these transition probabilities
decreases with increasing detector acceleration in certain cases, the so called anti-Unruh(-
like) effect2 [48, 49] (this will be discussed later elaborately). We have further provided a
thorough study about this effect in this work and tried to understand the source of this
effect in our case. For the case with the Minkowski modes we inferred that the presence
of the thermal bath, not the entanglement between the detectors, has a significant contri-
bution in the occurrence of this anti-Unruh-like effect. On the other hand, for the case
with the Rindler modes, where the anti-Unruh effect arises only for the transition from
the anti-symmetric Bell state to the collective excited or ground state, the investigations
suggest that the entanglement has the major role in the occurrence of the anti-Unruh phe-
nomenon. Interestingly, while for the Minkowski mode case features of the results in (1+1)

2We mention that one cannot provide the notion of transition probability per unit time here for the
case with the Minkowski modes as the Wightman function is not time translational invariant. On the other
hand, the Unruh or anti-Unruh effect notion is always associated with a transition rate. Therefore, for
Minkowski modes, we term them as Unruh-like and anti-Unruh-like effects to make a distinction from the
usual notion. Whereas, for Rindler modes, as we will see later, one can provide transition rate expressions.
Therefore, for this later discussion we reserve the phrases Unruh and anti-Unruh.
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and (1 + 3) dimensions are not completely identical with each other, in the Rindler mode
case the features are common in both dimensions. The consideration of these particular
Rindler modes then provides further insights into the picture.

On the other hand, it is well known that the Minkowski vacuum fluctuations as seen
by an uniformly accelerated observer has striking resemblance with that of the thermal
fluctuations of a static observer in thermal bath. In this regard, there are many works
in the direction of understanding the distinguishability and indistinguishability between
them, see [46, 50–55]. In [52] the analogy between the two was pointed out by show-
ing the satisfaction of the fluctuation dissipation theorem by the force due to radiation
as measured by the accelerated frame (see [53] for this analogy in de-Sitter, Friedmann-
Lamaître-Robertson-Walker background and [56] for the consideration of anomalous stress
tensor). Furthermore, in [46, 50, 51] the indistinguishability is proclaimed in certain sce-
narios. In particular, two different observers one accelerated in thermal bath and another
with double acceleration, i.e., in the Rindler-Rindler frame, are shown to be analogous by
studying the spectrum of observed particles. Here Bogoliubov transformation is utilized
to obtain the spectrum of particles seen by a Rindler-Rindler observer in the Minkowski
vacuum state and the detector response is studied to get spectrum of particles for an ob-
server accelerated in a thermal bath. In [54] some significant dintinguishabilities between
the observer static in thermal bath and the one with uniform acceleration are provided
by studying different components of the renormalized stress energy tensor, and comparing
them for Rindler-Rindler to Thermal-Rindler cases. All these analysis suggest the absence
of a straight resolution out of this issue. We expected our analysis to shed some light on
this matter too. In particular, we observed that in the calculation of obtaining the tran-
sition probabilities corresponding to the two-atom system there are also quantities that
resemble the situation signifying the case of a single two-level detector accelerated in a
thermal bath interacting with a scalar field. Namely we shall be denoting these quantities
by the transition coefficients F11 for the Minkowski mode case and R11 for the Rindler
mode case. We observed that the quantity F11 is not symmetric under the interchange
between the temperature of the thermal bath and the Unruh temperature. However, for
the case with the Rindler modes with the vacuum of Unruh modes R11 is symmetric under
the same interchange. Thus suggesting this particular case may be the ideal representation
for an accelerated observer, where the analogy with a thermal bath is prominent.

In section 2 we begin with a brief discussion of our model set-up, the two entangled
two-level atoms coupled with the vacuum scalar field. In this section by perturbatively
expanding the time evolution operator up to first order in the coupling constant the ex-
pression of the transition amplitude is provided. From the expression of these transition
amplitudes and subsequently from the transition probabilities the role of the Green’s func-
tions corresponding to the detectors will be evident. Next, in section 3 the expressions of
the Green’s functions corresponding to uniformly accelerated observers in thermal bath are
given considering the Minkowski modes. In section 4 the expressions of Green’s functions
for the same systems, considering the Rindler modes (with Unruh creation and annihila-
tion operators), are given. In section 5 we have estimated the transition probabilities for
the transitions from the entangled states to the collective excited state in the two-atom
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system considering the Green’s functions of section 3. Subsequently, in section 6 we have
considered the Green’s functions from section 4 and estimated the transition probabilities
for the same transitions. In section 7 we have studied the anti-Unruh(-like) effect resulting
in the transition probabilities from the both cases considering the Minkowski and Rindler
modes. We have concluded this article with a discussion of our results in section 8.

2 Radiative process of two entangled atoms: a model set-up

We begin our analysis elucidating on the radiative process of two entangled Unruh-DeWitt
detectors. This model has been taken up earlier in several situations [20, 24, 25]. Since
we need this, a brief review of it will be presented here in order to make the discussion
self-sufficient. Also this will help us to have a clear picture of the notations which we will
introduce in order to define different quantities in the analysis.

The detectors are composed of point like two-level atoms, which are interacting with a
massless, minimally coupled scalar field Φ(X) through monopole interaction. The Hamilto-
nian of this system of two two-level detectors interacting with the scalar field is expressed as

H = HA +HF +Hint , (2.1)

where, HA denotes the atomic Hamiltonian free of any interaction, HF is the free scalar
field Hamiltonian, and Hint is the interaction between the atoms and the scalar field. As
provided by Dicke [20, 57] one may express the two-atom Hamiltonian corresponding to
the proper time as

HA = ω0

[
Sz1 ⊗ 12

dτ1
dτ

+ 11 ⊗ Sz2
dτ2
dτ

]
, (2.2)

where, Szj = (1/2) (|ej〉〈ej | − |gj〉〈gj |) denotes the energy operator, with |gj〉 and |ej〉
respectively representing the ground and excited states of the jth atom with j = 1, 2 here.
In eq. (2.2), 1j denote identity matrices, and ω0 the transition frequency corresponding
to the collective two atom system. In particular for two identical atomic detectors the
two-atom system has energy eigenvalues and the corresponding eigenstates, see [24], as

Ee = ω0 , |e〉 = |e1〉|e2〉 ;

Es = 0 , |s〉 = 1√
2

(|e1〉|g2〉+ |g1〉|e2〉) ;

Ea = 0 , |a〉 = 1√
2

(|e1〉|g2〉 − |g1〉|e2〉) ;

Eg = −ω0 , |g〉 = |g1〉|g2〉 ; (2.3)

where, |g〉 and |e〉 respectively correspond to the ground and excited states of the collective
system and |s〉, |a〉 denote the symmetric and anti-symmetric maximally entangled Bell
states. A pictorial representation of them is shown in figure 1.

In (2.2), τ1 and τ2 are proper times corresponding to the frames attached with the first
and second atomic detectors, respectively while τ denotes that for our observer who will
measure the transition amplitudes.
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ω0

0

−ω0
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1√ 2
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(
1√

2 ,
1√

2
) ( 1√ 2

,−
1√ 2

)

(
−

1√
2 ,

1√
2

)

1

Figure 1. The energy levels corresponding to the eigenstates of the collective two-level two-atom
system is depicted in this diagram. This figure has been taken from [25]. The contributions from
the monopole moment for each transition are also noted.

In Minkowski spacetime the free Hamiltonian of the massless scalar field is

HF = 1
2

∫
d3X

[(
Φ̇(X)

)2
+ |∇Φ(X)|2

]
, (2.4)

where, the overhead dot denotes differentiation with respect to the time coordinate, and ∇
denotes the vector differential operator. The monopole interaction Hamiltonian is given by

Hint(τ) =
2∑
j=1

µjκj(τj(τ))mj(τj(τ))Φ (Xj(τj(τ))) dτj(τ)
dτ

, (2.5)

where, µj denote the individual coupling between the detectors and the scalar field. On
the other hand, κj(τj(τ)) and mj(τj(τ)) respectively denote the switching function, and
the detector monopole operators. For identical atomic detectors the coupling constants
between different detectors and the scalar field can be assumed to be the same, i.e.,
µ1 = µ2 = µ. With this consideration the time evolution operator can be expressed as

U = T exp
{
−i
∫ ∞
−∞

dτµ

[
κ1(τ1(τ))m1(τ1(τ))Φ (X1(τ1(τ))) dτ1(τ)

dτ
(2.6)

+ κ2(τ2(τ))m2(τ2(τ))Φ (X2(τ2(τ))) dτ2(τ)
dτ

]}
,

where T signifies that time ordering is done.
We consider |ω〉 to be some collective initial state of the two detector system, and |Ω〉

some collective final state. It is also considered that the initial state |ω〉 is prepared in the
Minkowski vacuum state |0M 〉 of the scalar field, and the final state |Ω〉 evolves to some
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field state |Θ〉. Then the transition amplitude from the state |ω; 0M 〉 to |Ω; Θ〉, at the first
order perturbation level of the coupling constant µ, will be

A|ω;0M 〉→|Ω;Θ〉 = 〈Ω; Θ|U |ω; 0M 〉 (2.7)

≈ −iµ〈Ω; Θ|
∫ ∞
−∞

dτ

[
κ1m

1Φ (X1) dτ1
dτ

+ κ2m
2Φ (X2) dτ2

dτ

]
|ω; 0M 〉 .

From this transition amplitude one can obtain the transition probability for all possible
field states {|Θ〉} as

Γ|ω〉→|Ω〉 =
∑
{|Θ〉}

A∗|ω;0M 〉→|Ω;Θ〉A|ω;0M 〉→|Ω;Θ〉 ≈ µ2
2∑

j,l=1
mj∗

Ωωm
l
Ωω Fjl (∆E) , (2.8)

where ∆E = EΩ − Eω, and mj
Ωω = 〈Ω|mj(0)|ω〉. The monopole moment operator is

defined as
mj(0) = |ej〉〈gj |+ |gj〉〈ej | , (2.9)

and one can utilize this expression to acquire the contributions due to individual transi-
tions through the monopole moments in the expression of the transition probability. In
particular one can find out m1

se = m2
se = 1/

√
2, m1

ae = −m2
ae = −1/

√
2, which respectively

denote the contributions from the monopole moments due to the transitions from the
symmetric and anti-symmetric states to the collective excited state. On the other hand,
the contributions due to the transitions from the symmetric and anti-symmetric states
to the collective ground state are m1

sg = m2
sg = 1/

√
2, and m2

ag = −m1
ag = −1/

√
2. It

can be observed that the transition from the collective excited to the ground state or
reverse is not possible as in that case mj

eg = 0 = mj
ge. One can look into figure 1, taken

from [25], for a diagramatic representation of the energy levels and for the monopole
operator expectation values corresponding to different transitions.

Let us now shift our attention to the transition coefficients in eq. (2.8), the explicit
form of which is given by

Fjl (∆E) =
∫ ∞
−∞

dτdτ ′ e−i(τj(τ)−τl(τ ′))∆EG+
jl

(
τj(τ), τl(τ ′)

) dτj
dτ

dτl
dτ ′

κjκl , (2.10)

where, the positive frequency Wightman function is defined as

G+
jl

(
τj(τ), τl(τ ′)

)
= 〈0M |Φ [Xj(τj(τ))] Φ

[
Xl(τl(τ ′))

]
|0M 〉 . (2.11)

Later we shall evaluate these transition coefficients specifically considering the first detector
to be the place where our observer is located, i.e., then τ shall become τ1. It will result
in a factor of dτ2(τ1)/dτ1 when one considers the contribution of the second detector,
see [20, 25]. Now we shall proceed to evaluate the transition probabilities for the detectors,
uniformly accelerating with different accelerations, in a thermal bath. For this the explicit
expression for the Wightman function is required which we will discuss in the next couple
of sections. Since the field mode functions with respect to uniformly accelerated frame can
be represented by using Minkowski as well as Rindler decomposition, below both will be
discussed. We also mention that in our subsequent analysis we are going to consider the
switching function κj = 1.

– 6 –
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3 Thermal Wightman function corresponding to Minkowski mode

In this section we first consider a quantum statistical system of finite temperature and
evaluate the Wightman function corresponding to positive frequency mode of free massless
real scalar field with respect to Minkowski coordinates. We call these modes as Minkowski
modes and with respect to them the vacuum is the usual Minkowski vacuum. Then we
discuss about the Rindler spacetime, which corresponds to a uniformly accelerated object.
We complete the section with consideration of the accelerated detectors in a thermal bath
and by constructing the required form of Wightman functions, necessary for the evaluation
of the transition probability in these trajectories.

3.1 An observer in a thermal bath

We take an observer to be in equilibrium with a thermal bath characterized by the param-
eter β = 1/(kBT ), with kB being the Boltzmann constant and T the temperature of the
thermal bath. In this background we further consider a massless minimally coupled scalar
field Φ(X) = Φ(T,X). Then one can obtain the thermal Green’s (Wightman) function by
taking Gibbs ensemble average of the operator Φ(X2)Φ(X1) as

G+
β (X2;X1) = 〈Φ(X2)Φ(X1)〉β = 1

Z
Tr
[
e−βHΦ(X2)Φ(X1)

]
, (3.1)

where, X1 and X2 are two events in the spacetime and Z = Tr[exp(−βH)] denotes the
partition function. Here H is the Hamiltonian of free massless scalar field (earlier we de-
noted this as HF in (2.4)). In Minkowski spacetime, using the standard Fock quantization,
the scalar field can be expressed in terms of the annihilation and creation operators an, a†n
and the positive and negative frequency mode functions as

Φ(X) =
∑
k

fk(X)√
2ωk

(
ake
−iωkT + a†ke

iωkT
)
. (3.2)

In Fourier domain the scalar field Hamiltonian acts as a sum of infinitely many sim-
ple Harmonic oscillators. Then one can consider Hk = a†kakωk as the Hamiltonian
operator corresponding to the kth excitation, and express the partition function to be
Z = Tr

[
e−βH

]
=
(
1− e−βωk

)−1
. Furthermore, the thermal Wightman function [54, 58, 59]

from eq. (3.1) can be expressed as

G+
β (X2;X1) =

∑
k

fk(X2)f∗k (X1)
2ωk

[
eiωk∆T

eβωk − 1 + e−iωk∆T

1− e−βωk

]
, (3.3)

where, ∆T = T2 − T1, and T2 ≥ T1 is considered. From this expression the notion of
positive frequency Green’s function is implicit.

In a (1 + 1) dimensional spacetime the mode functions are fk(X) = (1/
√

2π)eikX , and
taking the discrete to continuous momentum limit one can express the thermal Green’s
function as

G+
β (X2;X1) =

∫
dk

4πωk

[
eik∆X+iωk∆T

eβωk − 1 + eik∆X−iωk∆T

1− e−βωk

]
. (3.4)

– 7 –
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One can explicitly perform the momentum integration in the expression of this Green’s
function, see [54] (we give this in appendix A; see eq. (A.1)).

Similarly, in (1 + 3) dimensions the mode functions are fn(X) = (1/
√

(2π)3)eik.X, and
taking the discrete to continuous momentum limit the thermal Green’s function becomes

G+
β (X2;X1) =

∫
d3k

(2π)32ωk

[
eik.∆X+iωk∆T

eβωk − 1 + eik.∆X−iωk∆T

1− e−βωk

]
. (3.5)

Here also the momentum integration can be explicitly carried out to provide a position
space representation of the (1 + 3) dimensional thermal Green’s function, see [54] (see
eq. (A.2) of appendix A). Below we shall express this in the frame of an uniformly accel-
erated observer. Since the Wightman functions are scalar quantities, one needs to just use
coordinate transformations in order to obtain the same in accelerated frame.

3.2 An accelerated observer in a thermal bath

The coordinates of a uniformly accelerated object are confined to specific regions in
Minkowski spacetime. These specific regions constitute the Rindler wedges [60] in a
Minkowski spacetime. Like Minkowski spacetime these Rindler wedges also make up for
static globally hyperbolic spacetimes. The motion of a uniformly accelerated observer is
studied considering these Rindler frames.

Let us first consider a (1 + 1)-dimensional Minkowski spacetime denoted by the coor-
dinates (T,X), with the line element

ds2 = −dT 2 + dX2 . (3.6)

The transformation to the coordinates (η, ξ) in the right Rindler wedge (RRW), i.e., the
region |T | < X in the Minkowski spacetime, is

T = eaξ

a
sinh aη

X = eaξ

a
cosh aη . (3.7)

In a similar manner one can also define a coordinate transformation suitable to the left
Rindler wedge (LRW), confined in a region |T | < −X of the Minkowski spacetime. The
line-elements corresponding to both of the right and left Rindler wedges are expressed as

ds2 = e2aξ
[
−dη2 + dξ2

]
. (3.8)

It should be noted that the generalization of this (1 + 1) dimensional Rindler transfor-
mation (3.7) and (3.8) to (1 + 3) dimensions, when the observer is accelerating along
X-direction, is quite simple. The Minkowski Y and Z coordinates remain the same for an
observer accelerated in the X direction.

In Rindler spacetime the proper time can be estimated to be τ = eaξη and proper
acceleration b = ae−aξ. One can express the coordinate transformation from eq. (3.8) in

– 8 –
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terms of the proper time and proper acceleration as

T = 1
b

sinh bτ

X = 1
b

cosh bτ . (3.9)

As one considers ξ = 0, then η and a respectively denote the proper time and acceleration
of an accelerated observer.

Now we are going to consider accelerated observers in thermal background. The ac-
celerated observers will be described by the Rindler coordinates. We begin by looking into
the Green’s function in this case. It can be seen that one can just use the Rindler transfor-
mation from eq. (3.9) and put the expressions of ∆T , ∆X in eq. (A.1) and eq. (A.2) to get
the Green’s function in (1 + 1) and (1 + 3) dimensions for accelerated observers in thermal
background. However, up to our knowledge, these forms of Green’s functions, as not time
translation invariant in accelerated frame, are not suitable to compute the transition coef-
ficients of eq. (2.10). To circumvent this issue the Green’s functions (3.4) and (3.5), where
the momentum integration are not yet carried out, are considered (see e.g. [46], where this
trick has been used).

In a (1 + 1)-dimensional thermal background one can express the thermal two-point
function (3.4) in a different form with the consideration ωk = |k| for a massless scalar field,
which will be convenient for our calculations, as

G+
β (Xj ;Xl) =

∫ ∞
0

dωk
4πωk

[
eiωk(∆Tjl−∆Xjl) + eiωk(∆Tjl+∆Xjl)

eβωk − 1 (3.10)

+ e−iωk(∆Tjl−∆Xjl) + e−iωk(∆Tjl+∆Xjl)

1− e−βωk

]
.

From eq. (3.9) one can obtain

∆Tjl −∆Xjl = − 1
bj
e−bjτj + 1

bl
e−blτl

∆Tjl + ∆Xjl = 1
bj
ebjτj − 1

bl
eblτl , (3.11)

where, ∆Tjl = Tj,2−Tl,1 and ∆Xjl = Xj,2−Xl,1. Here j, l are the notations corresponding
to different detectors and the subscript 1, 2 denote different spacetime points. On the other
hand, one can also consider the (1 + 3) dimensional thermal Green’s function as given in
eq. (3.5) and get

G+
β (Xj ;Xl) =

∫ π

0
sin θdθ

∫ ∞
0

ωkdωk
2(2π)2

[
eiωk(∆Xjl cos θ+∆Tjl)

eβωk − 1 + eiωk(∆Xjl cos θ−∆Tjl)

1− e−βωk

]
, (3.12)

where, ∆Tjl and ∆Xjl are given by the previously mentioned expressions, and we have
taken ∆Yjl = 0 = ∆Zjl as the detectors are considered to be moving on the same X − T
plane. In particular, using the coordinate transformation from eq. (3.9) one can obtain

Xj cos θ + Tj = 1
2bj

(
δ1 e

bjτj − δ2 e
−bjτj

)
Xj cos θ − Tj = 1

2bj

(
−δ2 e

bjτj + δ1 e
−bjτj

)
, (3.13)
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where, δ1 = 1 + cos θ and δ2 = 1 − cos θ. One can put these expressions in eq. (3.12)
to get the Green’s function corresponding to accelerated observers in (1 + 3) dimensional
thermal bath. These expressions (eq. (3.10) and (3.12)) will be used for our later purpose.
It should be mentioned that the (1 + 1) dimensional Green’s function of eq. (3.10) after
the transformations (3.11) and the (1 + 3) dimensional Green’s function of eq. (3.12) with
the transformations (3.13) do not remain time translation invariant. In the next section
we are going to discuss about the Green’s function for accelerating observers in thermal
bath constructed considering the Rindler modes.

4 Thermal Wightman function corresponding to Rindler modes

The field can also be decomposed with respect to modes, defined in Rindler coordinates.
The Rindler vacuum is the vacuum for these Rindler modes. Below we will find the thermal
positive frequency Wightman function corresponding these modes in vacuum of the Unruh
modes which is here Minkowski vacuum.

4.1 (1 + 1) dimensions

Let us start our discussion in (1 + 1) dimensions. In terms of the Rindler coordinates
the equation of motion for a minimally coupled, massless free scalar field Φ is �Φ =
e−2aξ(−∂2

ηΦ + ∂2
ξΦ) = 0. The solution of this equation suggests a set of modes each in the

right and left Rindler wedge as [61, 62]

Ruk = 1√
4πω

eikξ−iωη in RRW

= 0 in LRW
Luk = 1√

4πω
eikξ+iωη in LRW

= 0 in RRW. (4.1)

In terms of these Rindler modes the scalar field can be expressed, see [61], as

Φ(X) =
∞∑

k=−∞

[
bRk

Ruk + bR
†

k
Ru∗k + bLk

Luk + bL
†

k
Lu∗k

]
, (4.2)

where, superscript L and R denote modes and the operators corresponding to the left and
the right Rindler wedges respectively. The operators correspond to Rindler vacuum |0R〉,
i.e. bRk |0R〉 = 0 = bLk |0R〉. In particular, in the right Rindler wedge where the field modes
Luk = 0 the scalar field takes the form

ΦR(X) =
∞∑

k=−∞

[
bRk

Ruk + bR
†

k
Ru∗k

]
. (4.3)

We shall use this scalar field decomposition to obtain the Green’s function with respect
to the Minkowski vacuum for an accelerated observer described in the RRW. However,
it should be noted that the operators bRk and bR

†
k in eq. (4.3) correspond to the Rindler

vacuum |0R〉. To circumvent this issue and to obtain the desired Green’s function we seek
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help of a prescription provided by Unruh [36]. In the following discussions we are going to
delineate this prescription namely the Unruh modes and the operators.

As defined in eq. (4.1) the field modes are separately non-vanishing in the two different
Rindler wedges of the Minkowski spacetime. Unruh in 1976 provided a prescription out
of these different modes which are valid in the whole region of the Minkowski spacetime.
They are obtained from the combination of the Rindler modes Ruk + e−πω/a Lu∗−k and
Ru∗−k + eπω/a Luk. In terms of these modes the scalar field can be expressed as [61]

Φ(X) =
∞∑

k=−∞

1√
2 sinh πω

a

[
d1
k

(
e
πω
2a Ruk + e−

πω
2a Lu∗−k

)
(4.4)

+ d2
k

(
e−

πω
2a Ru∗−k + e

πω
2a Luk

)]
+ h.c. .

Here h.c. stands for Hermitian conjugate. It is observed that the Unruh modes have the
positive frequency analyticity property corresponding to the Minkowski time, same as the
Minkowski modes. Then the annihilation operators from the two sets of Unruh operators
(d1
k, d

1†
k ) and (d2

k, d
2†
k ) annihilate the Minkowski vacuum

d1
k|0M 〉 = d2

k|0M 〉 = 0 . (4.5)

Because of this particular feature of eq. (4.5) it is now quite less cumbersome to obtain
any Minkowski state expectation value. This can be achieved by transforming Rindler
operators in terms of these Unruh operators, see [61], using the relations

bLk = 1√
2 sinh πω

a

[
e
πω
2a d2

k + e−
πω
2a d1†
−k

]

bRk = 1√
2 sinh πω

a

[
e
πω
2a d1

k + e−
πω
2a d2†
−k

]
, (4.6)

which is similar to the Bogoliubov transformation. Then putting this transformation
in eq. (4.3) one can get the expression of the field in the RRW in terms of the Unruh
operators as

ΦR(X) =
∞∑

k=−∞

1√
2 sinh πω

a

[
d1
k e

πω
2a Ruk + d2

k e
−πω2a Ru∗−k

]
+ h.c. . (4.7)

This expression of the scalar field in RRW is the same as the representation of eq. (4.4)
with Luk taken to be zero.

First let us evaluate the Green’s function for a single accelerated detector, without
any thermal bath, considering the scalar field in RRW, i.e., the field decomposition from
eq. (4.3) with Unruh operators. The field modes are expressed by eq. (4.7). Then one can
obtain the Green’s function, with ω = ωk = |k| considering the massless scalar field, for an
accelerated observer with respect to the Rindler modes as

G+
R (∆ξ,∆η) =

∫ ∞
−∞

dk

4πωk

[
eik∆ξ−iωk∆η

1− e
−2πωk
a

+ eik∆ξ+iωk∆η

e
2πωk
a − 1

]
. (4.8)
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In the above vacuum has been chosen to be that of Unruh mode, which is Minkowski
vacuum here. For a derivation of this expression one can consider looking into appendix B.
Comparing this expression (4.8) with that of the thermal Green’s function (3.4), we notice
that they are exactly the same with β is now identified as 2π/a, and ∆ξ and ∆η resemble
∆T and ∆X. Therefore, one can clearly proclaim that an accelerated observer with the
Rindler modes in RRW mimics the thermal background.

On the other hand, one can obtain the Green’s function corresponding to accelerated
observers, with respect to Rindler modes, in a thermal bath in a similar manner. We
consider the Hamiltonian corresponding to the kth excitation to be Hk = (d1†

k d
1
k+d2†

k d
2
k)ωk

(as the vacuum under study is that of Unruh mode) to evaluate the Green’s function,
defined by eq. (3.1) in a thermal background. This turns out to be

G+
βR

(∆ξjl,∆ηjl) =
∫ ∞
−∞

dk

8πωk
√

sinh πωk
aj

sinh πωk
al

(4.9)

×
[

1
1− e−βωk

{
eik∆ξjl−iωk∆ηjl e

πωk
2

(
1
aj

+ 1
al

)

+ eik∆ξjl+iωk∆ηjl e
−πωk2

(
1
aj

+ 1
al

)}

+ 1
eβωk − 1

{
e−ik∆ξjl+iωk∆ηjl e

πωk
2

(
1
aj

+ 1
al

)

+ e−ik∆ξjl−iωk∆ηjl e
−πωk2

(
1
aj

+ 1
al

)}]
,

where, ∆ξjl = ξj,2 − ξl,1 and ∆ηjl = ηj,2 − ηl,1. For a derivation of this expression one can
look into appendix C. It should be noted that eq. (4.8) corresponds to the Green’s function
of a single accelerated observer expressed in terms of the Rindler modes. Whereas, eq. (4.9)
corresponds to accelerated observers, generally considered to be of different accelerations, in
thermal bath expressed in terms of the Rindler modes. In particular, when aj = al = a and
β →∞ we get back the expression of eq. (4.8). Furthermore, one may consider ξj = 0 then
the proper accelerations of the observers are bj = aj and the proper times τj = ηj . Then
one may also notice the clear difference of eq. (4.9) from its counter part eq. (3.10) after
the transformation (3.11) corresponding to the Minkowski mode. The Green’s function,
coming from Rindler mode, is time translation invariant, whereas for the Minkowski modes
it was not. We are going to use eq. (4.9) also to obtain the transition probabilities later.

4.2 (1 + 3) dimensions

In this subsection we talk about Rindler mode decomposition of the massless real scalar field
in (1 + 3) dimensions. The positive frequency mode solutions of the scalar field equation
of motion �Φ = 0 in (1 + 3) dimensions in terms of the Rindler coordinates in the right
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and the left Rindler wedges are

Ruω,kp = 1
2π2

√
sinh

(
πω
a

)
a

K
[
iω

a
,
|kp|eaξ

a

]
e−iωη+i ~kp.~x in RRW

= 0 in LRW

Luω,kp = 1
2π2

√
sinh

(
πω
a

)
a

K
[
iω

a
,
|kp|eaξ

a

]
eiωη+i ~kp.~x in LRW

= 0 in RRW , (4.10)

where, K [n, z] denotes the modified Bessel function of the second kind of order n, and ~x
is perpendicular to the direction of acceleration, i.e., in the Y − Z plane, see [41, 60, 63].
Here ~kp denotes the transverse wave vector in the Y −Z plane. Like the (1+1) dimensional
case here also one can decompose the scalar field confined to the right Rindler wedge as

ΦR(X) =
∞∑
ω=0

∞∑
kp=−∞

[
bRω,kp

Ruω,kp + bR
†

ω,kp
Ru∗ω,kp

]
. (4.11)

where, the operators correspond to Rindler vacuum |0R〉, i.e. bRω,kp |0R〉 = 0. Here also our
main aim is to obtain the Green’s function using the field decomposition of eq. (4.11) with
respect to the Minkowski vacuum, which corresponds to an accelerating observer. In this
regard, similar to the (1 + 1) dimensional case one can utilize the concepts of the Unruh
modes and operators. In particular, one can obtain the modes Ruω,kp + e−πω/a Lu∗ω,−kp
and Ru∗ω,−kp + eπω/a Luω,kp in terms of the Rindler modes which are valid in the whole
Minkowski spacetime and have the positive frequency analyticity property with respect to
the Minkowski time. In terms of these modes the scalar field is

Φ(X) =
∞∑
ω=0

∞∑
kp=−∞

1√
2 sinh πω

a

[
d1
ω,kp

(
e
πω
2a Ruω,kp + e−

πω
2a Lu∗ω,−kp

)
(4.12)

+d2
ω,kp

(
e−

πω
2a Ru∗ω,−kp + e

πω
2a Luω,kp

)]
+ h.c. .

Here also the lowering operators from the two sets of Unruh annihilation and creation
operators (d1

ω,kp
, d1†
ω,kp

) and (d2
ω,kp

, d2†
ω,kp

), annihilate the Minkowski vacuum

d1
ω,kp |0M 〉 = d2

ω,kp |0M 〉 = 0 . (4.13)

Then it will be helpful to express the scalar field in the RRW from eq. (4.11), using a
relation analogous to eq. (4.6), in form

ΦR(X) =
∞∑
ω=0

∞∑
kp=−∞

1√
2 sinh πω

a

[
d1
ω,kpe

πω
2a Ruω,kp + d2

ω,kpe
−πω2a Ru∗ω,−kp

]
+ h.c. , (4.14)

in terms of the Unruh operators. It should be mentioned that like the (1 + 1) dimensional
case here also this field decomposition is exactly same as the Unruh field decomposition
from eq. (4.12) with the Rindler mode corresponding to the left Rindler wedge Luω,kp con-
sidered to be zero. Like before we evaluate the Green’s function for accelerated detectors
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considering the field decomposition of eq. (4.14), where the accelerating observer is con-
sidered to be in the right Rindler wedge. Then the Green’s function for an accelerated
observer without thermal bath with respect to the Rindler modes is obtained as

G+
R (∆ξ,∆η) =

∫ ∞
0

ωdω

(2π)2

[
e−iω∆η

1− e
−2πω
a

+ eiω∆η

e
2πω
a − 1

]
e−2aξ0 . (4.15)

In deriving this expression in (1 + 3) dimensions we have considered that the accelerated
detector to be positioned at a fixed Rindler ξ coordinate, ξ = ξ0.

In a similar manner, one can obtain the Green’s function corresponding to accelerated
observers, with respect to Rindler modes in a thermal bath in (1 + 3) dimensions. We
use the RRW field decomposition from eq. (4.14) and take the Hamiltonian to be Hω,kp =
(d1†
ω,kp

d1
ω,kp

+d2†
ω,kp

d2
ω,kp

)ω to evaluate the Green’s function, defined by eq. (3.1) in a thermal
background. This Green’s function is

G+
βR

(∆ηjl) =
∫ ∞

0
dω

∫
d2kp
(2π)4

2
√
ajal

×

e−iω∆ηjl e
πω
2

(
1
aj

+ 1
al

)
+ eiω∆ηjl e

−πω2

(
1
aj

+ 1
al

)
1− e−βω

+ eiω∆ηjl e
πω
2

(
1
aj

+ 1
al

)
+ e−iω∆ηjl e

−πω2

(
1
aj

+ 1
al

)
eβω − 1


×K

[
iω

aj
,
|kp|eajξj
aj

]
K
[
iω

al
,
|kp|ealξl
al

]
, (4.16)

where, ∆ηjl = ηj,2 − ηl,1 and ξj is the fixed Rindler spatial coordinate corresponding to
the jth detector. Note again that the above one is time translational invariant. We are
going to utilize these above mentioned considerations to obtain the transition probabilities
of eq. (2.8) for two accelerated atoms immersed in a thermal bath considering the Rindler
modes in (1 + 3) dimensions.

5 Transition probability for accelerated atoms in thermal bath with re-
spect to Minkowski modes

In this section we are going to estimate the transition probability from eq. (2.8) for two
entangled atoms accelerated in a thermal bath. We shall consider here the (1 + 1) and
(1 + 3) dimensional Green’s functions (3.10) and (3.12) with the coordinate transforma-
tions (3.11) and (3.13), which correspond to accelerated detectors in thermal background
with respect to the Minkowski modes. Our observer is considered to be co-moving with the
first accelerated detector, and we perform all of our evaluations with respect to this first
frame. The proper time of the first atom τ = τ1 will be used to carry out the integration
in eq. (2.10) to evaluate the transition coefficients. We consider for both of the atoms the
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Rindler parameter a to be the same. Then for different atoms with different constant ξ the
proper accelerations b1 and b2 will be different with different proper times. This provides
a spatial separation between them in the X-direction. Now if one considers both of the
observers with respect to the same Rindler time η one can obtain a relation between the
proper times as

τ2 = b1
b2
τ1 . (5.1)

See [20] and appendix D for details. We shall use this relation to evaluate the transition
coefficients.

5.1 (1 + 1) dimensions

To evaluate the transition coefficients in (1 + 1) dimensions for two entangled atoms ac-
celerated in a thermal bath considering the Minkowski modes we consider the Green’s
function (3.10) and put it in eq. (2.10) with the coordinate transformation (3.11). Let us
denote αj = (b1/b2)δ2,j , where δi,j denotes the Kronecker delta with detector’s indices i
and j. Then the proper time of the jth atom, by eq. (5.1), is given by τj = αjτ1. One can
then express the coefficient functions Fjl (∆E) as

Fjl (∆E) =
∫ ∞

0

dωk
4πωk

αjαl

[I1(bj) I∗1 (bl) + I2(bj) I∗2 (bl)
eβωk − 1 (5.2)

+ I3(bj) I∗3 (bl) + I4(bj) I∗4 (bl)
1− e−βωk

]
,

where

I1(bj) =
∫ ∞
−∞

dτ1e
−i∆Eτj exp

(
− iωk
bj
e−bjτj

)

I2(bj) =
∫ ∞
−∞

dτ1e
−i∆Eτj exp

(
iωk
bj
ebjτj

)

I3(bj) =
∫ ∞
−∞

dτ1e
−i∆Eτj exp

(
iωk
bj
e−bjτj

)

I4(bj) =
∫ ∞
−∞

dτ1e
−i∆Eτj exp

(
− iωk
bj
ebjτj

)
. (5.3)

To simplify these integral expressions one can make change of variables e−bjτj = y and
ebjτj = z, and we also use of the relation τj = αjτ1 between the proper times corresponding
to two differently accelerated observers. Then the integrals become

I1(bj) = 1
bjαj

∫ ∞
0

dz z
−1+ i∆E

bj e
− iωk

bj
z = 1

bjαj

(
ωk
bj

)− i∆E
bj

e
π∆E
2bj Γ

(
i∆E
bj

)
= I∗2 (bj)

I3(bj) = 1
bjαj

∫ ∞
0

dz z
−1+ i∆E

bj e
iωk
bj
z = 1

bjαj

(
ωk
bj

)− i∆E
bj

e
−π∆E

2bj Γ
(
i∆E
bj

)
= I∗4 (bj) . (5.4)

To perform the above integration we have used the formula∫ ∞
0

dx xs−1e−bx = e−s ln b Γ(s) , (5.5)
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with the conditions Re(b) > 0 and Re(s) > 0. To ensure the convergence of our integrals the
standard prescription has been adopted here (see e.g. [64] for details). Using these results
one can express the coefficient functions in eq. (5.2) as Fjl (∆E) =

∫∞
0 dωk Fjl (∆E,ωk).

Here Fjl (∆E,ωk) denote the transition coefficients corresponding to each mode with wave
number k. These transition coefficients are given by

Fjl (∆E,ωk) = Re [C1(bj , bl)]
2πωkbjbl

e
π∆E

2

(
1
bj

+ 1
bl

)
eβωk − 1 + e

−π∆E
2

(
1
bj

+ 1
bl

)
1− e−βωk

 , (5.6)

where

C1(bj , bl) =
(
ωk
bj

)− i∆E
bj
(
ωk
bl

) i∆E
bl Γ

(
i∆E
bj

)
Γ
(
− i∆E

bl

)
. (5.7)

From (5.6) and (5.7) one can obtain the expression of the transition coefficient F11(∆E,ωk)
as

F11 (∆E,ωk) = 1
ωk∆Eb1

[
1

eβωk − 1
1

1− e
−2π∆E
b1

+ 1
1− e−βωk

1

e
2π∆E
b1 − 1

]
, (5.8)

where, we have used the Gamma function identity Γ(iz)Γ(−iz) = π/(z sinh πz). Also
eq. (5.6) and (5.7) shows that for equal acceleration b2 = b1 all the transition coefficients
Fjl (∆E,ωk) become equal to F11 (∆E,ωk). It should be mentioned that for a single
detector, accelerated in thermal background, F11 (∆E,ωk) corresponds to the required
transition probability. The same has been obtained earlier in [46]. Note that it is not
symmetric under the exchange β ↔ (2π)/b1 due to the over all multiplicative factor (1/b1).
This originates in our calculation as it is based on the Minkowski mode. Later we will
notice that Rindler modes do not give rise to this asymmetric property.

Now we shall evaluate the transition probability between different states of the two-
atom system using eq. (2.8). For instance the transition probability from the symmetric
entangled state |s〉 to the collective excited state |e〉 comes out to be Γse =

∫∞
0 dωk γse,

where the expression of γse is given by,

γse = µ2

2 [{F11(ω0, ωk) + F22(ω0, ωk)}+ {F12(ω0, ωk) + F21(ω0), ωk}] . (5.9)

Whereas the same between the anti-symmetric state |a〉 to the excited state |e〉 is provided
by

γae = µ2

2 [{F11(ω0, ωk) + F22(ω0, ωk)} − {F12(ω0, ωk) + F21(ω0, ωk)}] . (5.10)

It should be noted that in both of the above cases the change in energy level of the collec-
tive system is ∆E = ω0−0 = ω0. Furthermore, for the transitions from the symmetric and
anti-symmetric states to the ground state one has ∆E = 0 − (−ω0) = ω0. Then one can
find out the transition probabilities from the symmetric and anti-symmetric states to the
ground state, also provided by the γse and γae, respectively. Also note that for equal proper
acceleration of the two atoms the transition probability from the anti-symmetric state to
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the collective excited state or to the collective ground state becomes zero. The transi-
tion probability corresponding to the transition from the symmetric and anti-symmetric
entangled states to the collective excited state as a function of b1 are depicted in figure 2.

It should be noted that in this figure we have plotted the quantities from eq. (5.9)
and (5.10) per unit µ2/2. Furthermore, in the subsequent studies also we shall take the
same consideration. Here since the observer is attached with the first atom, we show the
variation with respect to first atom’s proper acceleration b1. For the symmetric case, the
entanglement between the states of atoms, acts as enhancement in the transition probabil-
ity (the cross terms, e.g. F12 and F21 are added), whereas in the anti-symmetric situation
entanglement provides decrease of transition probability. Interesting point to be noted from
the figure that in both of the cases the transition coefficients at first tend to decrease with in-
creasing acceleration b1 of the first observer, giving rise to a possible case of the anti-Unruh-
like effect, and then increases with it. Later, before providing our concluding remarks, we
shall elaborately discuss about this phenomena of anti-Unruh-like effect in this scenario.

5.2 (1 + 3) dimensions

To estimate the transition coefficients between different states of a collective system of
two entangled atoms accelerated in a thermal bath in (1 + 3) dimensions one can put the
expression of the Green’s function (3.12) in eq. (2.10). With this and the substitution of
coordinate transformations (3.13) one obtains

Fjl (∆E) =
∫ ∞

0
dωk

∫ π

0

ωk sin θ
2(2π)2 dθ αjαl

[
I13D(bj) I∗13D(bl)

eβωk − 1 +
I23D(bj) I∗23D(bl)

1− e−βωk

]
. (5.11)

The integrals I13D(bj) can be evaluated to be

I13D(bj) =
∫ ∞
−∞

dτ1 e
−iτj∆E eiωk(Xj cos θ+Tj) = 2 e

π∆E
2bj

bjαj

(
δ1
δ1

) i∆E
2bj K

[
i∆E
bj

,
ωk
√
δ1δ2
bj

]
,

(5.12)
and integrals I23D(bj) as

I13D(bj) =
∫ ∞
−∞

dτ1 e
−iτj∆E eiωk(Xj cos θ−Tj) = 2e−

π∆E
2bj

bjαj

(
δ1
δ2

)− i∆E2bj K
[
i∆E
bj

,
ωk
√
δ1δ2
bj

]
,

(5.13)
where, δ1 = 1 + cos θ, δ2 = 1 − cos θ, and K [n, z] denotes the modified Bessel function
of the second kind of order n. Then one express the coefficient functions like before as
Fjl (∆E) =

∫∞
0 dωk Fjl (∆E,ωk), where

Fjl (∆E,ωk) =
∫ π

0
sin θ dθ ωk

2π2bjbl
C2(θ, bj , bl)

e
π
2

(
∆E
bj

+ ∆E
bl

)
eβωk − 1

(
δ1
δ2

) i∆E
2

(
1
bj
− 1
bl

)
(5.14)

+ e
−π2

(
∆E
bj

+ ∆E
bl

)
1− e−βωk

(
δ1
δ2

)− i∆E2 ( 1
bj
− 1
bl

) .
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Figure 2. (1 + 1) dimensions: (a) The transition probability from the symmetric state to the
collective excited state denoted by the solid blue line. (b) The transition probability from the
anti-symmetric state to the collective excited state denoted by the solid red line. In both of the
plots the sum of the transition coefficients (F11 + F22) for the transitions from the symmetric or
anti-symmetric states to the excited state are denoted by orange dashed lines. The sum of the
transition coefficients (F12 + F21) for the transitions from the symmetric or anti-symmetric states
to the excited state are denoted by gray dotted lines. In all of the above cases b2 = 1 is kept fixed
and b1 is varied. The value of the other parameters are ∆E = 0.1, ωk = 0.1 and β = 2π.
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and the quantity C2(θ, bj , bl) is given by

C2(θ, bj , bl) = K
[
i∆E
bj

,
ωk
√
δ1δ2
bj

](
K
[
i∆E
bl

,
ωk
√
δ1δ2
bl

])∗
. (5.15)

We found it to be suitable to perform this θ integration numerically and then to plot the
resulting transition probabilities. However, for equal proper accelerations one can perform
this θ integral analytically to express the transition coefficient F11 (∆E,ωk) as

F11 (∆E,ωk) = ωk
4πb21

[
1

eβωk − 1
1

1− e
−2π∆E
b1

+ 1
1− e−βωk

1

e
2π∆E
b1 − 1

]
C3(b1) , (5.16)

where the expression of C3(b1) is given by

C3(b1) = b1
∆E 2

F3

(
1
2 , 1; 3

2 , 1−
i∆E
b1

,
i∆E
b1

+ 1; ω
2
k

b21

)
(5.17)

+2 cosh
(
π∆E
b1

)
Im

[
Γ
(
−2i∆E

b1
− 1

)(
ωk
b1

) 2i∆E
b1

×1F2

(
i∆E
b1

+ 1
2; i∆E

b1
+ 3

2 ,
2i∆E
b1

+ 1; ω
2
k

b21

)]
.

Here pFq (m;n; z) denotes the generalized hypergeometric function. Note again that the
above expression is not symmetric under the interchange β ↔ (2π)/b1 and as we mentioned
earlier, it is due to our choice of mode which is Minkowski here.

One can get the transition probability for the transitions from the symmetric and anti-
symmetric states to the excited and ground states in this case as well. The expressions
will be given by (5.9) and (5.10) again, but in this case Fjl are determined by (5.14). The
Transition probabilities are depicted in figure 3.

Note again that the entanglement provides enhancement in transition for the symmetric
case whereas decrement to that for anti-symmetric situation. Here also the anti-Unruh-like
effects are evident and we shall properly discuss about it later in this paper. But there is a
distinct difference in the features of transition coefficients compared to (1 + 1) dimensional
case. Here γse shows anti-Unruh-like phenomenon for all values of b1 while this is not true
in (1 + 1) dimensions in same parameter range. It should also be noted that all of the
transition coefficients become equal to F11 (∆E,ωk) in the equal acceleration case b2 = b1
and the transition probabilities from the anti-symmetric state to the collective excited or
ground states become zero.

6 Transition probability for accelerated atoms with the Rindler modes
in a thermal background

The scalar field in terms of the Rindler modes in RRW are meant to resemble the thermal
characteristics with respect to Minkowski vacuum for an accelerated observer. From the
(1 + 1) and (1 + 3) dimensional field decompositions (4.4) and (4.12), and the Green’s
functions (4.8), (4.9) and (4.15), (4.16) it can be observed that they are all represented in
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Figure 3. (1 + 3) dimensions: (a) The transition probability from the symmetric state to the
collective excited state denoted by the solid blue line. (b) The transition probability from the
anti-symmetric state to the collective excited state denoted by the solid red line. In both of the
cases b2 = 1 is kept fixed and b1 is varied. The orange dashed and gray dotted lines denote the
contributions from (F11 +F22) and (F12 +F21) respectively. We have considered the values of the
other parameters to be ∆E = 0.1, ωk = 0.1 and β = 2π.
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terms of the Rindler parameters aj and the Rindler coordinates ηj , ξj . To evaluate the
transition coefficients using these Green’s functions one has to move to the proper time and
proper acceleration which will be quite convoluted in this case. On the other hand, one
can approach this issue in a more straight forward manner, where the convenient way is to
keep these quantities in terms of aj , ηj , and ξj as they are. Then consider the same system
of two accelerated observers in a different manner so that the transformation from these
coordinates to the proper time and acceleration follows easily. In this regard we consider
the parameters are different a1 6= a2 corresponding to the two observers. The proper
accelerations and proper times are given by bj = aje

−ajξj and τj = ηje
ajξj , respectively.

Now as one considers ξj = 0 the proper accelerations and proper times become bj = aj
and τj = ηj . Then for observers with equal Rindler time, the proper times are also equal
(a discussion on this has been presented in appendix D). We have seen from our previous
analysis that the exact form of the proportionality constant in the relation between the
proper times has no role in the transition probabilities. Therefore, it should not be absurd
to take the previous consideration of equal proper time.

We are going to utilize these above mentioned considerations to obtain the transition
probabilities of eq. (2.8) for two accelerated atoms immersed in a thermal bath considering
the Rindler modes. Then one can use ∆ξjl = 0 and ∆ηjl = ∆τjl = τj,2 − τl,1 in the
Green’s function of eq. (4.9) and (4.16). It should be noted that these Green’s functions
here are time translation invariant. Then one may perform the integration in eq. (2.10)
by switching to the coordinates, ujl = τj,2 − τl,1 and vjl = τj,2 + τl,1. After dividing the
transition coefficients by, (µ2 ∫∞

−∞ dvjl) one can get the response functions, which signify
the transition probabilities per unit time, as

Rjl(∆E) =
∫ ∞
−∞

dujl e
−iujl∆E G+

βR
(ujl) . (6.1)

In the subsequent analysis we shall use the above one here to find the transition probabil-
ities.

6.1 (1 + 1) dimensions

In (1 + 1) dimensions using the Green’s function from eq. (4.9) we evaluate these response
functions (6.1) and get

Rjl(∆E) =
∫ ∞

0

dωk

4ωk
√

sinh πωk
aj

sinh πωk
al

δ(ωk −∆E)


e
−πωk2

(
1
aj

+ 1
al

)
1− e−βωk + e

πωk
2

(
1
aj

+ 1
al

)
eβωk − 1


+δ(ωk + ∆E)


e
πωk

2

(
1
aj

+ 1
al

)
1− e−βωk + e

−πωk2

(
1
aj

+ 1
al

)
eβωk − 1


 . (6.2)

Here δ(x − a) denotes the Dirac delta distribution. In both of our considered transitions
from the symmetric and anti-symmetric entangled states to the collective excited or the
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ground state the transition energy ∆E > 0. In the previous equation ωk could only take
positive values. Then from eq. (6.2) considering ∆E > 0 we get

Rjl(∆E) = 1
4∆E

√
sinh π∆E

aj
sinh π∆E

al

e
−π∆E

2

(
1
aj

+ 1
al

)
1− e−β∆E + e

π∆E
2

(
1
aj

+ 1
al

)
eβ∆E − 1

 . (6.3)

For j = l = 1 we get the expression of the response function R11(∆E) to be

R11(∆E) = 1
2∆E

[
1

eβ∆E − 1
1

1− e
−2π∆E
a1

+ 1
1− e−β∆E

1

e
2π∆E
a1 − 1

]
. (6.4)

Note that, contrary to Minkowski mode analysis, here R11, which is regarded as the single
detector’s response function, is symmetric under the exchange β ↔ (2π)/a1. This probably
provides a justification in replacing thermal bath by a uniformly accelerated observer with
respect to Rindler mode (with Unruh operators), rather than Minkowski mode.

With the help of these response functions one can obtain the transition probabilities
per unit time γRse and γRae, between different atomic states in a similar manner as done in
eq. (5.9) and (5.10), as

γRse = [{R11(ω0, ωk) +R22(ω0, ωk)}+ {R12(ω0, ωk) +R21(ω0), ωk}] ,

and

γRae = [{R11(ω0, ωk) +R22(ω0, ωk)} − {R12(ω0, ωk) +R21(ω0, ωk)}] . (6.5)

These have been depicted in figure 4.
It should be noted that we have ignored the 1/2 factor coming from the expectation

value of the monopole moments, as it will not affect any qualitative prediction. It should
also be mentioned that these transition probabilities (6.5) are qualitatively different from
the previous ones (5.9) and (5.10). In the previous case the transition probability corre-
sponded to certain mode frequency whereas here it corresponds to unit time.

From this figure, one can observe that the transition probability for the transition
from the symmetric state to the collective excited state has no anti-Unruh effect for the
considered values of the fixed parameters. For the transition from the anti-symmetric state
to the collective excited state, there is a visible occurrence of the anti-Unruh effect for the
same considered values of the fixed parameters. We will again take up this issue in the
next section.

6.2 (1 + 3) dimensions

In a similar fashion as done in the (1+1) dimensional case we consider the Green’s function
from eq. (4.16), which corresponds to two accelerated atoms in a thermal bath described
with respect to the Rindler modes. Using this Green’s function we evaluate the response
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Figure 4. (1 + 1) dimensions: (a) The transition probability from the symmetric state to the
collective excited state for two observers with the Rindler modes, immersed in a thermal bath. The
transition probability is denoted by solid blue line. (b) The transition probability from the anti-
symmetric state to the collective excited state for two observers with the Rindler modes, immersed
in a thermal bath, denoted by solid red line. In both of the cases a2 = 1 is kept fixed and a1 is
varied. The other parameters are ∆E = 0.1, and β = 2π. The orange dashed and gray dotted lines
denote the contributions from (R11 +R22) and (R12 +R21) respectively.
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functions of eq. (6.1) and get

Rjl(∆E) =
∫ ∞

0
dω

∫
d2kp
(2π)3

2
√
ajal

δ(ω −∆E)


e
−πω2

(
1
aj

+ 1
al

)
1− e−βω + e

πω
2

(
1
aj

+ 1
al

)
eβω − 1


+ δ(ω + ∆E)


e
πω
2

(
1
aj

+ 1
al

)
1− e−βω + e

−πω2

(
1
aj

+ 1
al

)
eβω − 1




×K
[
iω

aj
,
|kp|
aj

]
K
[
iω

al
,
|kp|
al

]
, (6.6)

where, we have considered ξj = 0 for both of the observers. Here δ(x − a) denotes the
Dirac delta distribution. From this eq. (6.6) considering ∆E > 0 we get

Rjl(∆E) = 2
(2π)2√ajal

e
−π∆E

2

(
1
aj

+ 1
al

)
1− e−β∆E + e

π∆E
2

(
1
aj

+ 1
al

)
eβ∆E − 1


×
∫ ∞

0
kpdkp K

[
i∆E
aj

,
|kp|
aj

]
K
[
i∆E
al

,
|kp|
al

]
. (6.7)

The expression of the response function R11(∆E) is obtained from this equation with
j = l = 1 as

R11(∆E) = ∆E
2π

[
1

eβ∆E − 1
1

1− e
−2π∆E
a1

+ 1
1− e−β∆E

1

e
2π∆E
a1 − 1

]
, (6.8)

which signifies the contribution of a single detector accelerated in a thermal bath described
in terms of the Rindler modes. This also exhibits the β ↔ (2π)/a1 symmetry.

With the help of the response functions of eq. (6.7) and using eq. (6.5), one can obtain
the transition probabilities per unit time γRse and γRae, between different atomic states in
(1 + 3) dimensions. These have been depicted in figure 5.

Note that the features of the transition probabilities are identical to (1+1) dimensional
case. For both dimensions, γRse shows no anti-Unruh effect while γRae contains anti-Unruh
phenomenon. This similarity was not there in Minkowski mode analysis. Furthermore,
the expressions of the response functions (6.4) and (6.8) corresponding to a single detector
with Rindler modes correctly provides those for an accelerated detector [61] in a zero
temperature (i.e., β →∞ limit) Minkowski background. Whereas that is not apparent in
the case with the Minkowski modes (see eq. (5.8) and (5.16)). Such consistency probably
indicates a preference of choosing Rindler modes (with Unruh operators) over Minkowski
ones in mimicking thermal behaviour by accelerated observer. But to be concrete, further
investigations are needed.

7 Detailed investigation of observed anti-Unruh(-like) phenomenon

In our previous discussions we observed that several transition probabilities are decreasing
with the increase of acceleration of the observer within a particular range. It is usually,
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Figure 5. (1 + 3) dimensions: (a) The transition probability from the symmetric state to the
collective excited state denoted by the solid blue line. (b) The transition probability from the anti-
symmetric state to the collective excited state denoted by the solid red line. In both of the cases
the Rindler modes are considered. In both of the cases a2 = 1 is kept fixed and a1 is varied. The
value of the other parameters are ∆E = 0.1, and β = 2π.
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as observed earlier in [48, 49] for a different situation, called as anti-Unruh effect. In this
section, the observed anti-Unruh(-like) effect for our model in the previous sections, will
be further investigated in the light of required conditions for the same. In particular, we
observed that for accelerated detectors in thermal bath considering the Minkowski modes
there are anti-Unruh-like effects in (1 + 1) and (1 + 3) dimensions for both transitions
from the symmetric and anti-symmetric states to the collective excited state. On the other
hand, considering the same setup in terms of the Rindler modes with Unruh operators
in (1 + 1) and (1 + 3) dimensions we observed that there is no anti-Unruh effect for the
transition from the symmetric state to the collective excited state for the similar set of
fixed parameters as the Minkowski modes. However, we observed that there is anti-Unruh
effect for the transition from the anti-symmetric state to the collective excited state for
the same values of the fixed parameters. Below we study them thoroughly and balustrade
these facts by verifying the consistency with the required anti-Unruh conditions.

7.1 Anti-Unruh effect: the conditions

Let us first briefly summarise the conditions of anti-Unruh effect. In article [48] it was first
shown that for short times the transition probability of an accelerated particle detector
decreases with increasing acceleration, a phenomena better known as the anti-Unruh effect
from then. In subsequent article [49] by the same authors the existence of the anti-Unruh
effect for infinite time was also confirmed. The statement of the anti-Unruh effect goes
like, “a uniformly accelerated particle detector coupled to the vacuum can cool down as its
acceleration increases.” To mathematically realize the existence of the anti-Unruh effect,
done in [49], there are two particular conditions which have to be satisfied. These conditions
are first mentioned below corresponding to our system of analysis.

7.1.1 Weak anti-Unruh effect

In our case the weak anti-Unruh effect is defined by the condition when the transition
coefficients (Fjl), transition probabilities (γωΩ) or response functions (Rjl) decrease with
increasing acceleration of the atoms with all other parameters of the system fixed [49], i.e.,

∂b1Fjl < 0 ; ∂b1γωΩ < 0 ; ∂a1Rjl < 0 . (7.1)

Note that here we have also considered taking the differentiation of the transition coeffi-
cients and response functions rather than only the transition probabilities, because these
particular coefficients F11 and R11 signify the transition probability of the single accel-
erated detector in thermal background. We also specify that the differentiation is taken
with respect to the proper acceleration of the first detector as we have performed all of our
calculations with respect to this particular frame.

7.1.2 Strong anti-Unruh effect

To talk about this condition a definition of excitation to de-excitation ratio (EDR) for the
transition coefficients, transition probabilities and response functions is needed. The EDR
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corresponding to the transition coefficient Fjl(∆E), the transition probability γΩω(∆E)
and the response function Rjl(∆E) are defined as [49]

RF (∆E) = Fjl(∆E)
Fjl(−∆E) ;

Rγ(∆E) = γΩω(∆E)
γΩω(−∆E) ;

RR(∆E) = Rjl(∆E)
Rjl(−∆E) . (7.2)

The corresponding EDR inverse temperature can be defined as [49]

BEDR = − 1
∆E ln (R) . (7.3)

The condition for strong anti-Unruh effect is met when the EDR temperature decreases
with increasing detector acceleration. The mathematical representation of the strong anti-
Unruh effect is characterized by the condition of

∂b1BEDR(∆E, b2, ωk) > 0 . (7.4)

Below we shall check whether our observed phenomena are consistent with these men-
tioned conditions. This will not only provide a verification of our aforesaid claim, but
also provide a classification of the anti-Unruh(-like) phenomenon. Before proceeding fur-
ther, it may be noted that satisfaction of strong anti-Unruh condition implies automatic
satisfaction of weak condition; while the reverse is may not be true (see [49] for details).
The strong anti-Unruh effect always refers to the occurrence of the weak anti-Unruh effect
unless the conditions

∂b1F(−∆E) > 0 , and ∂b1F(∆E) > 0 ; (7.5)

are satisfied simultaneously, see [49]. Here F(∆E) can be considered to be any of the
Fjl(∆E), γωΩ(∆E) or Rjl(∆E), while for Rjl(∆E) the derivative is taken with respect to
a1. The occurrence of strong anti-Unruh effect, when one of these conditions or both of
them are violated signifies the definite satisfaction of the weak condition. On the other
hand, when both of these conditions (7.5) are simultaneously satisfied, the satisfaction
of the strong condition will not imply the satisfaction of the weak condition and in that
case one cannot comment about the nature of this phenomena. We shall check both the
conditions from eq. (7.1) and (7.4), and accordingly categorise the phenomenon as either
weak or strong anti-Unruh effect.

7.2 Case I: Minkowski mode

7.2.1 (1 + 1)-dimensions

We have seen from our analysis that in the system of two entangled atoms accelerated
in a thermal background, considering the (1 + 1) dimensions and Minkowski modes, as
one estimates the transition probability between different states one first gets a decreasing
probability with increasing proper acceleration b1, signifying anti-Unruh-like effect. Then
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Figure 6. The quantity ∂b1γse is plotted with respect to varying b1 for accelerated atoms in thermal
background in (1+1) dimensions, depicted by dash-dotted blue line. The quantity ∂b1γae is plotted
with respect to varying b1 for accelerated atoms in thermal background in (1 + 1) dimensions,
depicted by red line.

one gets an increasing transition probability with increasing acceleration b1 signifying the
Unruh-like effect. These phenomena can be understood from figure 2. Here we are going
to check whether the transition coefficients and transition probabilities satisfies the weak
and strong conditions of the so called anti-Unruh effect. After analyzing the results we
shall like to predict some possible source of origin behind it.

First, to check the weak condition for certain values of the parameters ωk = 0.1,
∆E = 0.1, and b2 = 1 we plot ∂b1γωΩ VS b1 in figure 6 corresponding to transitions from
the symmetric and anti-symmetric states to the collective excited state (here we take the
same values of parameters as taken in figure 2 in order to have a proper comparison).

These plots are meant to provide confirmation in support of the existence of the weak
anti-Unruh effect when the functions have negative values. We observe that this is the case
in the lower regimes of the proper acceleration b1 — in the case of γse for b1 less than 0.5
and in the case of γae for b1 less than 1. Note that these are the values of b1 up to which
the transition probabilities were decreasing (see figure 2).

Now to check whether this is complied with strong condition, in figure 7 we have plotted
the differentiation of EDR inverse temperature with respect to b1 for the same two transi-
tions. Note that for both the cases ∂b1BEDR are always negative throughout the range of b1
and so it does not satisfy the strong condition. Hence here we have weak anti-Unruh effect.

Now the question arises what is the origin of this anti-Unruh-like phenomena in these
transition probabilities γse and γae? Is it happening solely because of the entanglement
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Figure 7. The quantity ∂b1βγse
is plotted with respect to varying b1, depicted by dash-dotted blue

line. The quantity ∂b1βγae
is plotted with respect to varying b1, depicted by red line.
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Figure 8. The transition coefficient F11(∆E) with respect to varying b1 for accelerated atoms
in thermal background considering Minkowski modes. The solid violet line with the left vertical
axis denotes this particular case. The transition coefficient F11(∆E) in the same scenario with the
temperature of the thermal bath now zero denoted by the dotted green line with right vertical axis.

between the atoms? In this regard, we want to mention that this phenomena is not only
visualized in γse and γae, but also in the transition coefficient F11(∆E), figure 8.

It is to be noted that the transition coefficient F11(∆E) signifies the situation when
a single detector is accelerated in a thermal bath. In that case the entanglement do not
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Figure 9. Differentiation of the transition coefficient F11(∆E) with respect to b1 plotted against
varying b1 for accelerated atoms in thermal background, denoted by the dash-dotted green line. The
negative value of this quantity ∂b1F11(∆E) gives the condition for weak anti-Unruh effect. Here
the quantity ∂b1βF11 is also plotted with respect to varying b1 and it is denoted by the solid violet
line. The positive value of this quantity gives the strong condition for the anti-Unruh-like effect.

play any role into the picture and one can assert that the source of the anti-Unruh-like
effect is not from entanglement, at least in this case. Then the attention is bound to be
shifted towards the effects of the thermal bath as a possible origin of the anti-Unruh-like
phenomena. In this regard, in the same figure 8 we have also plotted the F11(∆E) in the
limit of β → ∞ or for zero temperature of the thermal bath. Interestingly it shows no
anti-Unruh-like effect, which suggests one reason behind the anti-Unruh-like effect to be
the non zero temperature of the thermal bath in which the atoms are accelerating.

Subsequently, we have studied the nature of the anti-Unruh-like phenomenon arising in
F11(∆E). We can observe that the transition coefficient F11(∆E) satisfies the condition for
the weak anti-Unruh effect, but do not agree with the condition for the strong anti-Unruh
effect (see figure 9).

7.2.2 (1 + 3)-dimensions

Next we consider the case for entangled atoms accelerated in a thermal bath as seen with
respect to the Minkowski modes in a (1 + 3) dimensional spacetime. For the same set
of values of the parameters ωk = 0.1, ∆E = 0.1, and b2 = 1 as taken in figure 3 we
have plotted, see figure 10, the ∂b1γse and ∂b1γae with respect to b1, which respectively
correspond to transitions from the symmetric and anti-symmetric states to the collective
excited state. For symmetric case, ∂b1γse is negative for all selected values of b1 while for
other case it is negative till b1 = 1. These exactly comply with figure 3 and thereby provide
confirmation in support of the satisfaction of the weak anti-Unruh condition.
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Figure 10. The quantity ∂b1γse is plotted with respect to varying b1 for accelerated atoms in
thermal background in (1+3) dimensions, depicted by dash-dotted blue line. The quantity ∂b1γae is
plotted with respect to varying b1 for accelerated atoms in thermal background in (1+3) dimensions,
depicted by solid red line.

In figure 11 we have plotted the differentiation of EDR inverse temperature with respect
to b1 for the same two transitions, which provide the condition for the occurrence of the
strong anti-Unruh effect for positive values. We observed that for the transition from the
symmetric entangled state to the collective excited state the quantity ∂b1BseEDR has negative
value up to around b1 = 3 and then it gets a small positive value and tends to decrease
to zero for further increase in b1. On the other hand, for the transition from the anti-
symmetric entangled state to the collective excited state the quantity ∂b1BaeEDR has positive
value around b1 = 0.25 and then it becomes negative and remains so for further increase in
b1. These analysis suggest that while the condition for weak anti-Unruh effect is satisfied
for a wide range of the parameter b1, the condition for strong anti-Unruh effect is satisfied
in a much smaller range residing inside that of the weak case. Therefore, for the parameter
values of b1 when strong anti-Unruh effect is satisfied the weak anti-Unruh effect is always
satisfied, consistent with our previous assertions.

Here also like the previous (1 + 1) dimensional case we have tried to understand the
origin of the anti-Unruh-like effect. In this direction in figure 12 we have plotted the
transition coefficient F11 in (1+3) dimensions considering the same sets of parameters. This
particular transition coefficient signifies the situation if there were only one two-level atomic
detector accelerating in the thermal bath. Like the (1+1) dimensional case here also we have
observed the anti-Unruh-like phenomenon, discarding any possibility of entanglement being
the sole origin of this effect. Furthermore, in figure 13 we have studied whether the anti-
Unruh-like effect for F11 is of weak or strong origin. From this figure we observed that in
(1+3) dimensions it satisfies the condition for weak anti-Unruh effect but not the strong one.
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Figure 11. (a) The quantity ∂b1BseEDR
is plotted with respect to varying b1 for accelerated atoms

in thermal background in (1 + 3) dimensions, depicted by dash-dotted blue line. The quantity
∂b1BaeEDR

is plotted with respect to varying b1 for accelerated atoms in thermal background in
(1 + 3) dimensions, depicted by solid red line. (b) The same plot as depicted in the previous sub-
figure with the x− range in the initial region now emphasized.
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Figure 12. The transition coefficient F11(∆E), plotted with respect to varying b1 for accelerated
atoms in thermal background considering Minkowski modes and (1 + 3) dimensions.
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Figure 13. The derivative of the transition coefficient F11(∆E), plotted with respect to varying b1
for accelerated atoms in thermal background considering Minkowski modes and (1 + 3) dimensions,
denoted by dash-dotted green line. In this figure the quantity ∂b1BEDR

is also plotted, which is
denoted by the solid line.
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Figure 14. The quantity ∂a1γ
R
se is plotted with respect to varying a1 for accelerated atoms in

thermal background considering Rindler modes, depicted by dash-dotted blue line. The quantity
∂a1γ

R
ae is plotted with respect to varying a1 for accelerated atoms in thermal background considering

Rindler modes, depicted by solid red line.

7.3 Case II: Rindler mode

7.3.1 (1 + 1)-dimensions

To understand the anti-Unruh effect for the transition probabilities considering the Rindler
modes, we have plotted ∂a1γ

R
se and ∂a1γ

R
ae with respect to varying a1 in figure 14. In

obtaining this figure we have kept the other parameters fixed ∆E = 0.1, a2 = 1, same as
in the figure 4. We observed that for transitions from the symmetric entangled state to the
collective excited state there is no weak anti-Unruh effect, confirmed from figure 14. On
the other hand, for transition from the anti-symmetric state to the collective excited state
there is weak anti-Unruh affect up to the value of a1 = 1, complied from figure 14.

In figure 15 we have plotted the quantity ∂a1BseEDR and ∂a1BaeEDR with respect to the
acceleration a1 considering the Rindler modes. These quantities correspond to the variation
of the inverse EDR temperature for transitions from the symmetric and anti-symmetric
states to the collective excited state with respect to a1. These plots are meant to provide
confirmation in support of occurrence of any strong anti-Unruh effect. We mention that
while for the transition from the symmetric to excited state ∂a1BseEDR is always negative
and there is no sign of strong anti-Unruh effect, the case for anti-symmetric to excited state
is different. In that case ∂a1BaeEDR is positive in the whole region compared to a smaller
region where weak condition is valid. From figure 16 and figure 14 one can observe that
∂a1γ

R
ae(−∆E) and ∂a1γ

R
ae(∆E) are both positive for values of a1 above a1 = 1, and from

eq. (7.5) it is to be noted that in that case strong anti-Unruh effect does not refer to the
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Figure 15. The quantity ∂a1BseEDR
is plotted with respect to varying a1 for accelerated atoms

in thermal background considering Rindler modes, depicted by dash-dotted blue line. The quan-
tity ∂a1BaeEDR

is plotted with respect to varying a1 for accelerated atoms in thermal background
considering Rindler modes, depicted by solid red line.

satisfaction of weak condition. Therefore, there is no shortcomings in the analysis. Then
we note that the anti-Unruh effect occurring in this case is of both strong and weak nature
below the value a1 = 1, and above it there is no anti-Unruh effect.

Like the Minkowski mode case here also we have tried to understand the origin of the
anti-Unruh effect. As discussed earlier the particular response function R11(∆E) signifies
the contribution of a single two-level atomic detector, accelerated in a thermal background.
Therefore, we consider the contribution from the response function R11 for ∆E > 0 from
eq. (6.4) and observe

∂a1R11(∆E) =
π
(
eβ∆E + 1

)
e

2π∆E
a1

a2
1
(
eβ∆E − 1

) (
e

2π∆E
a1 − 1

)2 , (7.6)

which is positive for all positive values of ∆E, thus giving no anti-Unruh effect.
This response function R11(∆E) in (1 + 1) dimensions considering the Rindler modes

is plotted in figure 17, where we observed that there is no visible case of anti-Unruh effect
for the same set of values of the parameters. It should be noted that this is in contrary to
the case considering the Minkowski modes. Therefore, in this case entanglement must have
played a significant role to provide this outcome. In fact one may plot the differentiation of
the transition probability ∂a1γ

R
ae with respect to a1 in the β →∞ limit, the zero tempera-

ture case, to check that the anti-Unruh effect is present there too. Furthermore, in figure 18
we have checked the conditions for weak and strong anti-Unruh effect for R11(∆E) and
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Figure 16. The quantity ∂a1γ
R
ae(−∆E) corresponding to the transition from the anti-symmetric

state to the collective excited state is plotted with respect to varying a1 for accelerated atoms in
thermal background with Rindler modes. This quantity is positive for values above a1 = 1, like the
∂a1γ

R
ae(∆E) previously depicted in figure 14.

0

50

100

150

200

250

0 2 4 6 8 10

T
ra

n
si

ti
o
n

co
effi

ci
en

t
R

1
1

a1

1

Figure 17. The response function R11(∆E), plotted with respect to varying a1 for accelerated
atoms in thermal background considering the Rindler modes in (1 + 1) dimensions.
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Figure 18. The differentiation of the response function R11(∆E), plotted with respect to varying
a1 for accelerated atoms in thermal background considering the Rindler modes in (1 + 1) dimen-
sions, denoted by dash-dotted green line. In this figure the quantity ∂a1BEDR

corresponding to the
response function is also plotted, which is denoted by the solid line.

we confirm the absence of any anti-Unruh effect in that parameter range. This reconfirms
that entanglement is crucial for anti-Unruh phenomenon in case of Rindler mode analysis.

7.3.2 (1 + 3)-dimensions

In figure 19 we have plotted ∂a1γ
R
se and ∂a1γ

R
ae, i.e., the derivatives of the transition prob-

abilities corresponding to transitions from the symmetric and anti-symmetric states to the
collective excited state considering the Rindler modes, with respect to varying a1. The other
parameters are kept fixed ∆E = 0.1, a2 = 1, same as in the figure 5. Like earlier these plots
denote the conditions for weak anti-Unruh effect. In particular, we observed that for tran-
sition from the symmetric entangled state to the collective excited state there is no weak
anti-Unruh effect for these particular parameter values, see figure 19. However, for the same
parameter values for the transition from the anti-symmetric state to the collective excited
state there is weak anti-Unruh affect up to the value of a1 = 1 also seen from figure 19.

In figure 20 we have plotted the quantity ∂a1BseEDR and ∂a1BaeEDR with respect to the
acceleration a1 to understand the strong anti-Unruh effect in this case. These quantities cor-
respond to the variation of the inverse EDR temperature for transitions from the symmetric
and anti-symmetric states to the collective excited state with respect to a1. These plots are
meant to provide confirmation in support of the occurrence of any strong anti-Unruh effect.
From this figure we observed that for both the transitions from the symmetric and anti-
symmetric states to the collective excited state there is no sign of strong anti-Unruh effect.

Like the previous cases here also we have tried to understand the origin of these anti-
Unruh effect. In this regard, we have plotted the response function R11(∆E) in (1 + 3)
dimensions considering the Rindler modes in figure 21. Here also we observed that there
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Figure 19. The quantity ∂a1γ
R
se is plotted with respect to varying a1 for accelerated atoms in

thermal background considering Rindler modes, depicted by dash-dotted blue line. The quantity
∂a1γ

R
ae is plotted with respect to varying a1 for accelerated atoms in thermal background considering

Rindler modes in (1 + 3) dimensions, depicted by solid red line.
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Figure 20. The quantity ∂a1BEDR
is plotted with respect to varying a1 for accelerated atoms in

thermal background considering Rindler modes in (1 + 3) dimensions. For the transition from the
symmetric state to the collective excited state the curve is given by the dash-dotted blue line. On
the other hand, for the transition from the anti-symmetric state to the collective excited state the
curve is given by the solid red line. The positivity of these curves are expected to provide the
condition for strong anti-Unruh effect.
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Figure 21. The response function R11(∆E), plotted with respect to varying a1 for accelerated
atoms in thermal background considering the Rindler modes in (1 + 3) dimensions.

is no visible case of anti-Unruh effect for the selected set of values of the parameters, thus
discarding the effects of the thermal bath in the occurrence of this anti-Unruh effect. It is in
contrary to the case considering the Minkowski modes. Therefore, here also entanglement
should be considered to be the significant contributor to the origin of the perceived anti-
Unruh phenomena, which can also be observed by plotting the ∂a1γ

R
ae in the β →∞ limit.

In figure 22 we have further checked the conditions for weak and strong anti-Unruh effect
for R11(∆E), and found the absence of the same in the considered parameter range.

7.4 Summarizing the outcomes regarding the anti-Unruh(-like) effect

In this part we summarize the results that we have arrived on, while studying the anti-
Unruh effect considering two entangled atoms accelerated in a thermal bath. For the
convenience of understanding the results will be tabulated below in a case by case manner.
We shall first tabulate the results for the case with the Minkowski modes. Then we shall
tabulate the results corresponding to the case with the Rindler modes.

In table 1 we have tabulated the results corresponding to the case with the Minkowski
modes. On the other hand, in table 2 we have tabulated the results for the case with the
Rindler modes.

In both of the cases the set of parameters signify the similar scenarios and are consid-
ered to be in the same range.

8 Discussion

In this work we have attempted to understand the radiative process of two entangled
accelerated atoms interacting with a massless scalar field in a thermal bath. In particular,
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Figure 22. (a) The derivative of the response function R11(∆E), plotted with respect to varying
acceleration a1 for accelerated atoms in thermal background considering the Rindler modes in
(1 + 3) dimensions, denoted by dash-dotted green line. (b) In this figure the quantity ∂a1BEDR

corresponding to the response function is also plotted, which is denoted by the solid line.
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Transitions Anti-Unruh-like effect Nature
(1 + 1) dimensions γse Yes Entirely weak

γae Yes Entirely weak
F11 Yes Entirely weak

(1 + 3) dimensions γse Yes Mostly weak, strong in some region
γae Yes Mostly weak, strong in some region
F11 Yes Entirely weak

Table 1. The case with the Minkowski modes.

Transitions Anti-Unruh effect Nature
(1 + 1) dimensions γRse No —

γRae Yes Both strong and weak
R11 No —

(1 + 3) dimensions γRse No —
γRae Yes Entirely weak
R11 No —

Table 2. The case with the Rindler modes.

the transitions form the symmetric and anti-symmetric entangled states to the collective
excited or ground states are studied. It is to be noted that vacuum fluctuations effects acts
as the cause for these transitions. In section 5 we have provided the estimations of the
transition probabilities considering the Green’s function, constructed from the Minkowski
modes with a Rindler coordinate transformation, in both (1 + 1) and (1 + 3) dimensions.
These transition probabilities correspond to certain frequencies of the field modes and they
do not resemble the transition probabilities for unit time. In this case we observed that
for both (1 + 1) and (1 + 3) dimensions there are visible cases of anti-Unruh-like effect
in the transition probabilities. However, the (1 + 1) dimensional results are qualitatively
different from the (1 + 3) dimensional one. For the transition from the symmetric state
to the collective excited state we observed that in (1 + 1) dimensions there is first anti-
Unruh-like effect and then Unruh-like effect, see from figure 2. However, for the same
transition in (1 + 3) dimensions there is only anti-Unruh-like effect in the same parameter
range, see figure 3. Therefore, there is a bit of difference between the (1 + 1) and (1 + 3)
dimensional results. Another evidence of this mismatch is observed when the nature of
the anti-Unruh-like effect is studied. In section 7 we observed that in (1 + 1) dimensions
the anti-Unruh-like effect is of purely weak nature in the considered parameter range. On
the other hand, in (1 + 3) dimensions in the same parameter range we observed that there
are also some regions where strong condition is satisfied. The regions where the strong
condition is satisfied are always contained inside the regions for the weak condition. We
have further plotted the quantities F11 and observed the anti-Unruh-like effect here also,
suggesting that in the Minkowski mode case entanglement do not play a significant role in
the occurrence of the anti-Unruh-like effect, i.e., thermal background plays the major role.
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Furthermore, in section 6 we have considered the Green’s functions in terms of the
Rindler modes, obtained using the Unruh operators in the Unruh Vacuum, for the esti-
mation of the transition probabilities. These transition probabilities are time translation
invariant and a unit time prescription can be provided for them. Unlike the Minkowski
mode case here the (1+1) and (1+3) dimensional results are in agreement with each other,
see figure 4 and 5. For this case the occurrence of the anti-Unruh effect is confirmed only
for the transition from the anti-symmetric state to the collective excited state, section 7.
However, the quantities R11, which signify the contribution if a single detector were accel-
erated in the thermal bath, do not show any anti-Unruh effect in the selected parameter
range. Thus suggesting that here entanglement has a significant role in the occurrence of
the anti-Unruh effect.

Subsequently, the transition coefficients F11 considering the Minkowski modes are not
symmetric under the interchange between the temperature of the thermal bath and the
Unruh temperature, i.e., under β ↔ 2π/b. However, for the case with the Rindler modes
with Unruh operators R11 is symmetric under the interchange β ↔ 2π/b (see appendix. A
for qualitative difference in terms of time translation invariance, between the Green’s func-
tions considering the Minkowski and Rindler modes). Then the later case of Rindler modes
with Unruh operators give a much more suitable representation for an accelerated observer,
where the analogy with a thermal bath is concerned.

In summary through this work we have not only studied the radiative process of en-
tangled atoms accelerated in a thermal bath but also provided understandings as to when
an accelerated observer is invariably comparable to a static observer in thermal bath.
These calculations and understandings motivate one to pursue other entanglement related
studies [21, 22, 26] such as entanglement dynamics, which includes rate of variation of the
atomic energy, generation and decay of entangled states due to the contributions of vacuum
fluctuations and radiation reaction, etc., for accelerated atoms in thermal bath.
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A Different Green’s functions and the consequence of their consideration

The fact that an accelerated observer in a Minkowski spacetime resembles an inertial
observer in a thermal background is widely debated in literature. There are some stud-
ies [46, 50, 51] in favour of this resemblance and there also articles pointing out some very
crucial contradictions [54]. The discourse is still open and here we are going to provide
some insightful results in this regard. Here we are going to point out the similarities and
dissimilarities between observers in a thermal bath or in a non-inertial motion with uniform
acceleration at the Green’s function level.
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A.1 Analogy between Green’s functions of uniformly accelerated and static
in thermal bath observers

We mention that the momentum integral in eq. (3.4) can be explicitly carried out to provide
a position space representation of the (1 + 1) dimensional thermal Green’s function as

G+
β (X2;X1) = − 1

4π
(
ln
[
1− e−

2π
β

(∆T−∆X)
]

+ ln
[
1− e−

2π
β

(∆T+∆X)
])
. (A.1)

Similarly in (1+3) dimensions also the thermal Green’s function of eq. (3.5) can be explicitly
evaluated in position space, see [54], as

G+
β (X2;X1) = 1

8πβ|∆X|

[
coth

(
π

β
(∆T + |∆X|)

)
− coth

(
π

β
(∆T − |∆X|)

)]
. (A.2)

In the following discussions we are going to study these Green’s functions in different limits
and scenarios.

(1 + 1) dimensions. One can take the expression of thermal Green’s function in (1 + 1)
dimensions from eq. (A.1) and represent it in a more suitable manner for the subsequent
analysis as

G+
β (X2;X1) = − 1

4π ln

sinh
(
π
β (∆T −∆X)

)
sinh

(
π
β (∆T + ∆X)

)
(
π
β

)2

 1
2π ln

(2π
β
e
−π∆T

β

)
.

(A.3)
From this expression of the Green’s function one can arrive at the (1 + 1) dimensional
Minkowski Green’s function as the limit β →∞ is taken. The corresponding expression is

G+
M (X2;X1) = 1

4π ln [(∆T −∆X)(∆T + ∆X)]. (A.4)

However, it should be mentioned that this entire expression comes from the first term
on the right hand side of eq. (A.3). The second term provides an infinite contribution,
which is neglected out of convenience. Then neglecting this second term of eq. (A.3) one
can observe that as one takes the limit ∆X → 0 the (1 + 1) dimensional thermal Green’s
function reduces to

G+
β (X2;X1) = − 1

2π ln
[
β

π
sinh

(
π ∆T
β

)]
, (A.5)

which gives the Green’s function corresponding to a static observer in thermal bath in
(1+1) dimensions. On the other hand, from the expression of (1+1) dimensional Minkowski
Green’s function from eq. (A.4), and using the Rindler transformation of eq. (3.9) one can
get the Green’s function for an accelerated observer in (1 + 1) dimensions as

G+
M (X2;X1) = − 1

2π ln
[2
b

sinh
(
b ∆τ

2

)]
. (A.6)

It can be observed that the Green’s functions from eq. (A.5) and eq. (A.6) are the same
with ∆T and β replaced by ∆τ and 2π/b.
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(1 + 3) dimensions. We note that in eq. (A.2) as one takes |∆X| → 0, one shall get

G+
β (X2;X1) = − 1

4 β2
1

sinh2 (π ∆T/β)
. (A.7)

On the other hand, as one takes 1/β → 0 in the expression of the Green’s function from
the same eq. (A.2), one can obtain the Minkowski Green’s function

G+
M (X2;X1) = 1

4π2
1

(−∆T 2 + |∆X|2) , (A.8)

which for an accelerated observer in terms of the Rindler proper time (3.9) can be
expressed as

G+
M (X2;X1) = − b2

16π2
1

sinh2 (b ∆τ/2)
. (A.9)

It should be noted that this Green’s function and the thermal Green’s function from
eq. (A.7) have the exact same expression with ∆T and β now replaced by ∆τ and 2π/b.
We have tabulated characteristics of these different Green’s functions corresponding
to static observer in thermal bath or uniformly accelerated observer in non-thermal
background in table 3.

A.2 Analogy between Green’s functions of accelerated atoms in thermal bath
considering the Minkowski or Rindler modes, and atoms with double
acceleration

Accelerated observer in thermal bath. From eq. (3.10) with the coordinate transfor-
mation of eq. (3.11) one can find out the Green’s function corresponding to an accelerated
observer in a thermal bath in (1 + 1) dimensions with respect to the Minkowski modes.
Similarly, in (1 + 3) dimensions the Green’s function corresponding to an accelerated ob-
server in thermal bath with respect to the Minkowski modes is given by the expression of
eq. (3.12) with the coordinate transformation of eq. eq. (3.13). It should be noted that
none of these Green’s functions are time translation invariant with respect to the proper
time of the accelerated observer.

On the other hand, the (1+1) and (1+3) dimensional Green’s functions corresponding
to accelerated observers in thermal bath with respect to the Rindler modes are given by
eq. (4.9) and (4.16). It is to be noted that these Green’s functions are time translation
invariant. We further briefly discuss about the Green’s function in a Rindler-Rindler frame.

Rindler-Rindler. In the first Rindler spacetime defined by the coordinate transforma-
tion of eq. (3.7) if one considers another analogous coordinate transformation, one can form
the so called Rindler-Rindler spacetime. This coordinate transformation is

η = ea
′x

a′
sinh a′t

ξ = ea
′x

a′
cosh a′t , (A.10)
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Green’s function Time
translation
invariance

Analogous Green’s
function

(1 + 1) dimensions Thermal static Yes Uniformly accelerated
with Minkowski modes
Uniformly accelerated
with Rindler modes

Uniformly accelerated
with Minkowski modes

Yes Uniformly accelerated
with Rindler modes
Thermal static

Uniformly accelerated
with Rindler modes

Yes Uniformly accelerated
with Minkowski modes
Thermal static

(1 + 3) dimensions Thermal static Yes Uniformly accelerated
with Minkowski modes
Uniformly accelerated
with Rindler modes

Uniformly accelerated
with Minkowski modes

Yes Uniformly accelerated
with Rindler modes
Thermal static

Uniformly accelerated
with Rindler modes

Yes Uniformly accelerated
with Minkowski modes
Thermal static

Table 3. Characteristics of different Green’s functions (observers with uniform acceleration or
static in thermal bath).

which enables one to express the line element as

ds2 = e2a′x exp
{2a
a′
ea
′x cosh a′t

}[
−dt2 + dx2

]
. (A.11)

It should be mentioned that here a and a′ denote the acceleration parameters corresponding
to the first and the second Rindler transformations. The relation between the Minkowski
coordinates (T,X) and thees Rindler-Rindler coordinates (t, x) is

T = X̃

a
sinh T̃ e

−a/a′

2a

{
exp

[
a

a′
ea
′(x+t)

]
− exp

[
a

a′
ea
′(x−t)

]}
X = X̃

a
cosh T̃ = e−a/a

′

2a

{
exp

[
a

a′
ea
′(x+t)

]
+ exp

[
a

a′
ea
′(x−t)

]}
. (A.12)

Here X̃ = exp
[
a
a′ e

a′x cosh a′t
]
and T̃ = a

a′ e
a′x sinh a′t. Then we have the expression of

T +X = e−a/a
′

a
exp

[
a

a′
ea
′(x+t)

]
T −X = −e

−a/a′

a
exp

[
a

a′
ea
′(x−t)

]
, (A.13)
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Green’s function Time translation
invariance

Analogous Green’s
function

(1 + 1) dimensions Accelerated in
thermal bath with
Minkowski modes

No —

Accelerated in
thermal bath with
Rindler modes

Yes —

Double acceleration — —
(1 + 3) dimensions Accelerated in

thermal bath with
Minkowski modes

No —

Accelerated in
thermal bath with
Rindler modes

Yes —

Double acceleration — —

Table 4. Characteristics of different Green’s functions (observers with uniform acceleration in
thermal bath or with double acceleration).

which can be used to obtain the (1 + 1) and (1 + 3) dimensional Green’s functions from
eq. (A.4) and (A.8) corresponding to an observer in a Rindler-Rindler frame with respect
to the Minkowski modes. It should be mentioned that in a Rindler-Rindler frame the exact
expression of the proper time is not yet known up to our knowledge. Then it is not readily
possible to comment about the time translational invariance for this Green’s function.
However, structure wise it can be observed that it is different than the thermal-Rindler
case. We have tabulated characteristics of different Green’s functions, corresponding to
accelerated observers in thermal bath or observer in Rindler-Rindler frame, and the analogy
between them in table 4.

B Green’s function of accelerated observer considering Rindler modes

To obtain the Green’s function of an accelerated observer considering the Rindler modes
we first take the definition of the Green’s function

G+
R(X2, X1) = 〈0M |ΦR(X2)ΦR(X1)|0M 〉 . (B.1)

In this expression we put the expression of the scalar field from eq. (4.7), which denotes
the scalar field decomposition in the right Rindler wedge. We also assume that for both
of the spacetime points acceleration is the same a. Then the above Green’s function (B.1)
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becomes

G+
R = 〈0M |

∞∑
k,k′=−∞

1

2
√

sinh πωk
a sinh πω

k
′

a

×
[(
d1
ke

πωk
2a Ruk + d2

ke
−πωk2a Ru∗−k

)(
d1†
k′
e
πω
k
′

2a Ru∗
k′

+ d2†
k′
e−

πω
k
′

2a Ru−k′

)]
|0M 〉

=
∞∑

k=−∞

1
2 sinh πωk

a

[
e
πωk
a

Ruk
Ru∗k + e−

πωk
a

Ru∗−k
Ru−k

]
, (B.2)

where, we have used the commutation relation [djk, d
j†

k′
] = δk,k′ . Now by putting the ex-

pression of the modes Ruk from eq. (4.1) one can obtain the Green’s function to be

G+
R =

∞∑
k=−∞

1
4πωk

[
eik∆ξ−iωk∆η

1− e
−2πωk
a

+ eik∆ξ+iωk∆η

e
2πωk
a − 1

]
, (B.3)

which, in the continuum momentum limit yields the desired expression of the Green’s
function for an accelerated observer in terms of the Rindler modes as given in eq. (4.8).
Note that this evaluation is done for (1+1) dimensions. A similar evaluation can be done in
the (1 + 3) dimensions also considering the scalar field expansion in RRW from eq. (4.14)
and putting it in eq. (B.1) and then using the expressions of the mode from eq. (4.10)
to evaluate the Green’s function corresponding to an accelerated observer in terms of the
Rindler modes, the expression of which is given in eq. (4.15).

Next we construct the Green’s function in the Minkowski vacuum considering the field
decomposition given by eq. (4.4), i.e., in terms of the Unruh modes and Unruh operators
in (1 + 1) dimensions. This Green’s function is obtained as

G+
U (X2, X1) = 〈0M |Φ(X2)Φ(X1)|0M 〉 = G+

R(X2, X1)+G+
L (X2, X1)+G+

RL(X2, X1) , (B.4)

where the expressions G+
R(X2, X1)and G+

L (X2, X1)correspond to accelerated observers in
the right and in left Rindler wedges respectively, and G+

RL(X2, X1)denotes the cross term.
The expression of G+

R(X2, X1)is already given in eq. (B.2) and the other two quantities are
given by

G+
L (X2, X1) =

∞∑
k=−∞

1
2 sinh πωk

a

[
e
πωk
a

Luk
Lu∗k + e−

πωk
a

Lu∗−k
Lu−k

]
, (B.5)

G+
RL(X2, X1) =

∞∑
k=−∞

1
2 sinh πωk

a

[
RuLku−k +L u∗−k

Ru∗k +L uRk u−k +R u∗−k
Lu∗k

]
.

One can use the explicit expressions of the Rindler field modes Ruk and Luk from eq. (4.1)
and obtain the expression of G+

R(X2, X1)same as given in eq. (B.3) and other expressions
of G+

L (X2, X1)and G+
RL(X2, X1)in a similar manner. A (1 + 3) dimensional representation

of this Green’s function can be obtained in a similar manner.
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C Green’s function of accelerated observer in thermal bath considering
Rindler modes

Considering Gibbs ensemble average definition from eq. (3.1), and Rindler mode decom-
position of the scalar field from eq. (4.7) we obtain the Green’s function of an accelerated
observer in a thermal bath as

G+
βR

(Xj,2,Xl,1)=
∞∑

k,k′=−∞

1
2
√

sinh πωk
aj

sinh πω
k
′

al

(C.1)

×
〈[
d1
kd

1†
k′
e
π
2

(
ωk
aj

+
ω
k
′

al

)
Rujk

Rul ∗
k′

+d1†
k d

1
k′
e
π
2

(
ωk
aj

+
ω
k
′

al

)
Ruj ∗k

Rul
k′

+d2
kd

2†
k′
e
−π2

(
ωk
aj

+
ω
k
′

al

)
Ruj ∗−k

Rul−k′ +d2†
k d

2
k′
e
−π2

(
ωk
aj

+
ω
k
′

al

)
Ruj−k

Rul ∗−k′

]〉
β

.

Here 〈Ô〉β denotes the Gibbs ensemble average and the superscript j(or l) denotes the
jth(or lth detector) which corresponds to the second(or first) spacetime point. We mention
that the observer is considered to be confined in the right Rindler wedge. Furthermore,
we consider the Hamiltonian corresponding to the kth excitation to be Hk = (d1†

k d
1
k +

d2†
k d

2
k)ωk.Then the Gibbs ensemble average of the operators 〈djkd

j†

k′
〉β = δk,k′/(1−e−βωk)and

〈dj
†

k d
j

k′
〉β = δk,k′/(eβωk−1).These results can be used along with the expression of the modes

Ruk from eq. (4.1) to obtain the desired expression of the Green’s function from eq. (4.9).
Here also this evaluation is provided for (1 + 1) dimensions. One can evaluate the Green’s
function corresponding to accelerated detectors in thermal bath for (1 + 3) dimensions
considering the Rindler modes as given in eq. (4.16) in a similar manner. However, in the
later case the scalar field expansion in RRW and the expression of the Rindler modes are
taken from eq. (4.7) and (4.10).

Next we consider the Gibbs ensemble average definition from eq. (3.1) to obtain the
Green’s function in a thermal bath taking the field decomposition given by eq. (4.4), i.e.,
in terms of the Unruh modes and Unruh operators in (1 + 1) dimensions. This Green’s
function looks like

G+
βU

(Xj,2, Xl,1) = G+
βR

(Xj,2, Xl,1) +G+
βL

(Xj,2, Xl,1) +G+
βRL

(Xj,2, Xl,1) . (C.2)

Here the expressions G+
βR

(Xj,2, Xl,1)and G+
βL

(Xj,2, Xl,1)correspond to accelerated ob-
servers in thermal bath in the right and in left Rindler wedges respectively, and
G+
βRL

(Xj,2, Xl,1)denotes the cross term. The expression of G+
βR

(Xj,2, Xl,1)can be obtained
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from eq. (C.1) and the other two quantities are given by

G+
βL

(Xj,2,Xl,1) =
∞∑

k=−∞

1
2
√

sinh πωk
aj

sinh πωk
al

×
[

1
1−e−βωk

{
e
πωk

2

(
1
aj

+ 1
al

)
Lujk

Lul ∗k +e
−πωk2

(
1
aj

+ 1
al

)
Luj ∗−k

Lul−k

}

+ 1
eβωk−1

{
e
πωk

2

(
1
aj

+ 1
al

)
Luj ∗k

Lulk+e
−πωk2

(
1
aj

+ 1
al

)
Luj−k

Lul ∗−k

}]
,

G+
βRL

(Xj,2,Xl,1) =
∞∑

k=−∞

1
2
√

sinh πωk
aj

sinh πωk
al

×
[

1
1−e−βωk

{
e
πωk

2

(
1
aj
− 1
al

)
Rujk

Lul−k+e
−πωk2

(
1
aj
− 1
al

)
Luj ∗−k

Rul ∗k

+e
πωk

2

(
1
aj
− 1
al

)
Lujk

Rul−k+e
−πωk2

(
1
aj
− 1
al

)
Ruj ∗−k

Lul ∗k

}

+ 1
eβωk−1

{
e
πωk

2

(
1
aj
− 1
al

)
Ruj ∗k

Lul ∗−k+e
−πωk2

(
1
aj
− 1
al

)
Luj−k

Rulk

+e
πωk

2

(
1
aj
− 1
al

)
Luj ∗k

Rul ∗−k+e
−πωk2

(
1
aj
− 1
al

)
Ruj−k

Lulk

}]
. (C.3)

One can use the explicit expressions of the Rindler field modes Ruk and Luk from eq. (4.1)
and further express the quantities G+

βR
(X2, X1), G+

βL
(X2, X1), and G+

βRL
(X2, X1)in terms

of Rindler coordinates. Here also a (1 + 3) dimensional representation of this Green’s
function can be provided in a similar manner.

D Relation between the detector proper times

We take the Minkowski to Rindler coordinate transformation from eq. (3.7) to express the
two accelerated observers. In particular the coordinate transformation corresponding to
our first accelerated observer is

T1 = ea1ξ1

a1
sinh a1η1

X1 = ea1ξ1

a1
cosh a1η1 , (D.1)

and a similar coordinate transformation corresponding to the second accelerated observer is

T2 = ea2ξ2

a2
sinh a2η2

X2 = ea2ξ

a2
cosh a2η2 . (D.2)
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T

X

T

X

T

X

ea1ξ1/a1
ea2ξ2/a2

η = const.

1

Figure 23. Here the trajectories of two observers with two different proper accelerations are
depicted in the right Rindler wedge.

From these coordinate transformations one can observe that ηj = (1/aj) tanh−1(Tj/Xj)
and eajξj/aj = (X2

j −T 2
j )−1/2. It means constant Rindler times signify straight lines in the

Minkowski T −X plane, see figure 23. On the other hand observers with constant proper
accelerations bj = aje

−ajξj follow the hyperbolic trajectories, also depicted in the figure 23.
Now the scenario of constant proper acceleration can be achieved in a few different ways.
One can take two accelerated observers with the same Rindler parameter a1 = a2 and
keep them in two different Rindler spatial points ξ1 6= ξ2. On the other, hand one can
also take the a1 6= a2 from the beginning with the consideration of ξ1 = ξ2. In both of
the cases the observers have different proper acceleration, i.e., they signify two different
hyperbolic trajectories in the Minkowski T − X plane. Interestingly in both of the cases
these trajectories can be cut by a single η = const. line. It is noticed that if one considers
both of the observers to be described by equal Rindler time η then a relation between the
proper times of the two different observers can be obtained.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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