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1 Introduction

While hadron colliders were traditionally considered discovery machines, one cannot deny
the success of the Large Hadron Collider (LHC) experiments in Standard Model (SM)
precision physics. Already today, differential measurements at sub-percent level precision
are available, a prime example being the transverse-momentum (qT ) spectrum of the Z
boson. A related precision measurement at the LHC is the extraction of the W -boson mass
by the ATLAS collaboration [1], heavily relying on a precise understanding of the charged
lepton transverse-momentum distribution through a template fit.

Transverse-momentum distributions and the experimentally easier to measure, but
closely associated, φ∗ [2] distributions in electroweak boson production are key observables
for SM precision tests. For example, the precise measurements and predictions of Z-boson
transverse-momentum spectra allow for significant constraints on PDFs [3] and might help
to resolve tensions in existing PDF fits. The large data sets of the LHC also allow for in-
creasingly precise diboson production measurements [4–12], which are key to test the gauge
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structure of the SM, as was pointed out a long time ago [13, 14]. Recent theoretical studies
of such processes include refs. [15–18]. To increase sensitivity to Beyond the Standard
Model (BSM) effects it is important to veto QCD radiation. The transverse momentum
can be used as a kinematic variable to veto jets, see e.g. ref. [16], and is therefore relevant
also in the search for BSM physics. It is therefore essential for the physics program at the
LHC that theoretical predictions and associated uncertainties for these processes are under
good control.

Predictions in fixed-order perturbation theory at hadron colliders start with a collinear
factorization theorem involving parton distribution functions and a hard scattering cross
section at a scale Q, corresponding to the invariant mass of the final-state electroweak
bosons. However, when considering the kinematical distributions of transverse momenta
at small values, fixed-order corrections are enhanced by large Sudakov logarithms of scale
ratios Q2/q2

T . To obtain meaningful results, the fixed-order predictions need to be improved
with an all-order resummation of such logarithms. In this paper we address this issue by
combining the fixed-order color-singlet NNLO processes in MCFM [19–22] with the SCET-
based qT resummation at N3LL introduced in refs. [23–26]. The resulting code CuTe-MCFM
will be made publicly available shortly at https://mcfm.fnal.gov.

Transverse-momentum resummation in SCET. The enhanced logarithms for small
transverse momenta are universal and originate from soft and collinear radiation. An all-
order exponentiation theorem for the qT distribution was first obtained in ref. [27] and is
now known as the Collins-Soper-Sterman (CSS) formula.

Two sources of enhanced terms exist. First, logarithms arising due to different scales
associated with the hard process and the soft/collinear radiation, and, secondly, logarithms
generated by the rapidity difference of small-qT emissions from partons flying along the
beams to the left and right. In SCET [28–30]1 the first kind of logarithms are resummed by
solving the renormalization group equations (RGEs) of the derived factorization theorem in
the limit of small qT . This was first considered in refs. [34–36] without accounting for the
rapidity logarithms. Later, both sources of logarithms have been taken into account for
qq̄-initiated processes [23, 24] and for gg-initiated processes [25, 37], and the equivalence
to the CSS formula was established. Instead of a direct exponentiation [23], the rapidity
logarithms can also be resummed by solving rapidity RGEs [37, 38].

Resummation codes. A number of computer codes for transverse-momentum resum-
mation of color-singlet processes have been developed, some of which have been made
publicly available. They differ by the achieved logarithmic precision, the possibility of
fiducial cuts on the final state colorless particles, and in subleading terms through the use
of different resummation and matching formalisms, in particular whether the computations
are performed in momentum or impact parameter space.

Fiducial resummation in Drell-Yan production is available through DYRes [39, 40], its
new implementation DYTurbo [41] and ReSolve [42] at N2LL′, and at N3LL without the pos-

1See [31–33] for reviews.
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sibility for fiducial cuts in CuTe [24, 25].2 In addition, there are codes such as arTeMiDe [43]
and NangaParbat [44], with a special focus on non-perturbative transverse-momentum de-
pendent (TMD) physics. In a recent paper [45] N3LL fiducial results have been presented
based on the private code SCETlib. Fiducial resummation for Higgs production is available
through HRes [46, 47] at N2LL′. Codes for resummation in W±, Z,H, γγ and ZZ from vari-
ous authors and at different accuracies are available under the name Resbos/Resbos2 [48–50].
For WW and ZZ production results at N2LL have been presented in ref. [51].

The above results are based on analytic computations of the ingredients of the factor-
ization theorem for the process at small transverse momentum. An alternative numerical
resummation technique was developed in refs. [52–54]. In this formalism, the higher emis-
sions are computed with Monte-Carlo methods. This numerical approach was generalised
to transverse-momentum resummation in ref. [55] and extended to N3LL in ref. [56]. The
resulting resummation framework (RadISH) has been interfaced to fixed-order codes for
different 2→ 1 and 2→ 2 color-singlet processes [57], which provide matching to order α2

s

at large qT [58, 59] (MATRIX+RadISH), and even to order α3
s for Higgs [56] and W and Z

production [60–62] (RadISH+NNLOJet).
It is of course also common, especially in the experimental collaborations, to rely on

parton showers to dress fixed-order predictions with logarithmically enhanced terms [63].
While these showers typically give a good description of experimentally measured spectra,
they do not systematically include higher logarithmic terms and need to be benchmarked
against analytical resummation results such as the ones in this study.

The modern approach of matching and merging often achieves impressive results in
predicting shapes of distributions, but the low logarithmic accuracy can be problematic.
Cross sections differential in transverse momentum typically peak around small values, so
the bulk of the cross section comes from the region that needs an all-order resummation.
Therefore, it is clear that the fixed-order and logarithmic precision in this bulk region should
be as high as possible. General purpose parton shower codes typically only reach fixed
NLO accuracy and leading logarithmic accuracy in the region of small qT . For normalized
distributions this limitation can amplify and even invalidate the formal NLO perturbative
accuracy achieved in the fixed-order tail regions [64]. It is therefore important to use — or
at least compare with — predictions that have known parametric accuracy and allow for
systematic estimates of uncertainties.

Scheme choices. The product form of the qT -factorization formula arises in transverse
position space, also known as impact parameter space. Following CSS, it is therefore com-
mon to perform the resummation in impact parameter space and then compute the Fourier
integral to obtain the transverse-momentum spectrum. A disadvantage of this procedure is
that one ends up with running couplings that are functions of the impact parameter b, which
is integrated from zero to infinity in the Fourier integral. This makes it necessary to choose
a prescription to avoid Landau pole singularities. In the effective theory approach [23, 24]
based on RG evolution, which we adopt in our work, one instead first carries out the Fourier

2The papers [24, 25] achieved N2LL, but the accuracy was extended in version 2 of the CuTe code, see
https://cute.hepforge.org.
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integral and then sets the boundary conditions of the evolution directly in qT space. The
rapidity logarithms, on the other hand, which do not involve a running of the coupling,
are exponentiated in position space in the formalism of refs. [23, 24]. A method to resum
all logarithms in qT space has been developed in ref. [65], but is challenging to implement.
In any case, performing the resummation in different spaces simply amounts to choosing
different boundary conditions, which induce different subleading terms and different power
corrections.

A second source of subleading differences, on top of the choice of resummation space,
is the matching to the fixed-order predictions [66]. A robust estimation of perturbative
uncertainties therefore benefits from fully matched results in different matching schemes
and resummation formalisms. To some extend these effects can be estimated within one
framework, of course. For example, in our study we use a transition function to match
our resummed results to fixed-order predictions. Varying this function provides a flexi-
ble way to estimate matching uncertainties. One could furthermore deliberately choose
to include different subleading terms in the resummation. Overall our N3LL+NNLO re-
summation framework allows for the estimation of QCD uncertainties through variation of
the renormalization, resummation and factorization scales (“scale uncertainties”), PDF+αs
uncertainties, and matching uncertainties by varying the transition function. The combi-
nation of these should capture the bulk of uncertainties associated with a perturbative
QCD prediction.

Overview of the paper. In this work we present a SCET-derived transverse-momentum
resummation framework and publicly available implementation CuTe-MCFM to calculate
fully matched predictions with fiducial cuts at N3LL+NNLO (α2

s relative to the Born). The
name CuTe-MCFM was chosen to emphasize that the implementation is based on refs. [23,
24] as the earlier public code CuTe. However, while we performed various cross checks
against this earlier code, CuTe-MCFM is a new and completely independent implementation
of the underlying equations. The code follows the same philosophy as ref. [26], in that it uses
an existing fixed-order code to compute the process-dependent parts of the resummation
formula. Interfacing to MCFM provides an efficient way of studying different processes and
allows us to take into account the decays of the electroweak bosons as well as cuts on the
decay products.

While implemented in MCFM, the code written for this study is not closely tied to
MCFM, so that it could easily be reused or integrated in other situations, for example as a
stand-alone extension of the interface to event files used in ref. [26], that is currently limited
to N2LL and quark-antiquark initiated processes. The only essential input ingredients are
the Born matrix element, the hard function at relative order αs or α2

s, and numerically
stable fixed-order predictions at qT > 0 for matching.

Relative to the Born-level boson production process, our framework achieves α2
s ac-

curacy both at small and large qT through a consistent power counting of αs and large
logarithms. We demonstrate our implementation with fully matched kinematical distri-
butions in qT , φ∗, and with distributions in the azimuthal angle difference ∆φ between
bosons. We estimate scale uncertainties, PDF uncertainties and matching uncertainties,
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and also address the impact of fiducial cuts on the size of subleading power corrections
in the qT factorization. We include a detailed discussed of power corrections in processes
involving photons, in which they are enhanced through the required photon isolation cuts.

In section 2 we describe our framework and setup in detail. We discuss the factorization
theorem, the resummation of large logarithms through RG evolution and exponentiation of
rapidity logarithms, the estimation of scale uncertainties and PDF uncertainties, matching
to fixed-order predictions and differences to the code CuTe. We discuss in detail sublead-
ing power corrections from fiducial cuts and photon isolation. In addition, we provide
details about the technical implementation, for example the ability to pre-generate beam-
function grids.

In section 3 we compare with the CuTe code for Z and H production. We then
show results for various processes with fiducial cuts and in comparison with experimental
measurements. For Z production we compare with measurements at 13 TeV and 8 TeV. For
Zγ production we compare with recent experimental data at 13 TeV and show novel results
that have previously only been considered in fixed-order perturbation theory. For diphoton
production we compare against data at 7 TeV and recent data at 8 TeV and improve upon
previous predictions at N2LL. We show results for Higgs production, both inclusively as
part of our comparison with CuTe, and in the H → γγ decay mode with fiducial cuts. We
do not compare against the measured qT distribution for Higgs production that still has
large uncertainties. The comparison would require a careful analysis of multiple production
channels and top-quark mass effects, among other things, which go beyond the scope of our
study. We furthermore compare with one of the few direct W boson transverse momentum
measurements. Resummation for the remaining processes ZH and W±H is prepared in
our code and ready for use. We conclude in section 4 and present an outlook for future
studies based on this work.

2 Resummation framework and implementation

Factorization formula. The qT resummation underlying our framework CuTe-MCFM
has been derived in SCET in refs. [23–25], where large logarithms of argument qT /Q are
resummed through RG evolution of hard function and beam functions, and rapidity loga-
rithms are directly exponentiated through the collinear-anomaly formalism.

The production of multiple weak bosons in this formalism has been detailed in ref. [26].
As in this work, we consider the production of N weak bosons with momenta {q} =
{q1, q2, . . . , qN}. The total boson momentum is denoted by qµ = qµ1 + · · · + qµN and the
resummation formalism is valid in the region where the transverse momentum qT =

√
−q2
⊥

is much smaller than the invariant mass Q2 = q2 of the electroweak final state.
The cross section is a sum of contributions from individual partonic channels i, j ∈

q, q̄, g. Up to terms suppressed by powers of qT , these channels factorize as

dσij(p1, p2, {q}) =
∫ 1

0
dξ1

∫ 1

0
dξ2 dσ0

ij(ξ1p1, ξ2p2, {q})Hij(ξ1p1, ξ2p2, {q}, µ) (2.1)

· 1
4π

∫
d2x⊥ e

−iq⊥x⊥

(
x2
TQ

2

b20

)−Fij(x⊥,µ)

Bi(ξ1, x⊥, µ) ·Bj(ξ2, x⊥, µ) ,
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where p1 and p2 are the incoming hadron momenta. The cross section dσij is fully differ-
ential in the electroweak momenta {q}.

The beam functions Bi and Bj encode the soft and collinear emissions at low transverse
momentum (or more precisely large transverse separation x⊥) and the indices i and j and
the momentum fractions ξ1 and ξ2 refer to the partons which enter the hard process after
these emissions. The hard Born-level process has the differential cross section dσ0

ij and
the hard-function as Hij collects the associated virtual corrections. The collinear anomaly
leads to the Q2-dependent factor within the Fourier-integral over the transverse position
x⊥. The perturbatively calculable anomaly exponent Fij is also referred to as the rapidity
anomalous dimension in the framework of ref. [37]. In case of gluon-gluon initiated processes
(i = j = g), a second product of beam functions is added as required [25, 67]. Lastly, we
have defined b0 = 2e−γE , where γE is the Euler-Mascheroni constant, and x2

T = −x2
⊥.

The hard function and the Born cross section are the only process-dependent ingre-
dients in formula (2.1). Since the hard function corresponds to the MS-renormalized loop
corrections to the Born amplitude and the implementations of NNLO corrections in MCFM
are based upon a SCET-derived factorization for jettiness τ [68], the MS-renormalized hard
functions are readily available. Furthermore, the processes associated with τ > 0 corre-
spond to those with qT > 0 needed for the fixed-order matching, and are already well-tested
and numerically stable in the singular limits.

The hard function involves logarithms of the ratio µ2/Q2, which are minimized with
a choice of µ = µ2

h ∼ Q2, but inside the beam functions the natural choice is µ ∼ qT . To
avoid large logarithms of q2

T /Q
2 one chooses µh ∼ Q in the hard function and then evolves

it down to the resummation scale µ ∼ qT using the RG. This evolution can be solved
analytically to obtain a hard function evolution factor U(Q2, µh, µ) with cusp anomalous
dimension and quark and gluon anomalous dimensions as essential ingredients, see ref. [69]
for details. At N3LL we make use of the recent calculation of the four-loop cusp anomalous
dimension [70–72].

The appearance of the power-like dependence on the hard scale Q2 from a re-
factorization of regularized beam functions has been discussed extensively in refs. [23, 24],
where the associated anomaly exponent Fij was first extracted to two-loop accuracy. For
resummation at N3LL we use the three-loop result of refs. [73, 74].

Improvement at very small qT . It is natural to rewrite the anomaly as a function of
the logarithm L⊥ = log(x2

Tµ
2/b20) and the quantity

ηi = Ciαs(µ)
π

log Q
2

µ2 , (2.2)

where Ci = CF for quark-antiquark initiated processes and Ci = CA for gluon-gluon
initiated processes. For the choice µ ∼ qT , as appropriate for the beam functions, we
should count ηi ∼ 1. In ref. [24] the role of the anomaly exponent inside the x⊥ integral
at very small qT was analyzed in detail. Instead of the Fourier exponential, the large x⊥
behavior of the integrand is driven by the anomaly and by the double logarithms L2

⊥ inside
the beam function. In the limit qT → 0, the x⊥ integral becomes Gaussian and can be

– 6 –
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analyzed with a saddle point approximation, an observation that was made very early by
Parisi and Petronzio [75]. The appropriate value of µ in this limit is denoted by q∗ and
given by the value for which ηi becomes equal to one [24]. Consequently one has

q∗ = Q2 exp (−π/Ci/αs(q∗)) (2.3)

and we solve for q∗ numerically in our setup for each integration “event”. It is the char-
acteristic scale of the process for very small qT and in practice well in the perturbative
regime. The physical picture behind this formalism is that instead of soft radiation recoil-
ing against the high-Q2 system, the radiation for qT → 0 consists of QCD emissions at a
scale q∗ recoiling against each other. For on-shell Z production q∗ is about 2 GeV and for
Higgs production around 8 GeV.

To achieve uniform perturbative accuracy also for qT → 0, it has been observed that
one should count L⊥ ∼ 1/√αs [24]. This was called improved power counting to distinguish
it from the standard counting L⊥ ∼ 1 relevant at moderately small qT . To implement this
power counting, it is important to factor out the enhanced double-logarithmic part of the
beam functions. To this end we work with the functions B̄i which are defined through

Bi(ξi, x⊥, µ) = ehi(L⊥,αs)B̄i(ξi, x⊥, µ) , (2.4)

where hi(L⊥, αs) is provided by the solution of the RGE

d
d logµhi(L⊥, αs) = CiγcuspL⊥ − 2γi(αs) , (2.5)

with boundary condition hi(L⊥, αs) = 0. For the cusp anomalous dimension γcusp and the
quark and gluon anomalous dimensions γi see refs. [69, 76]. The functions B̄i are then
implemented numerically in our code.

The modified beam functions B̄i can be factorized further into a convolution

B̄i(ξ, x⊥, µ) =
∑
j

∫ 1

ξ

dz
z
Īi←j(z, x⊥, µ)fj(ξ/z, µ) , (2.6)

of perturbative kernels Īi←j(z, x⊥, µ) with the standard PDFs fj(ξ, µ). For our resummation
at N3LL we need the kernel function at two loops, which were computed in refs. [77, 78].
After the double-logarithmic part has been removed, the beam functions only depend
polynomially on L⊥. We are therefore able to perform the Fourier integral independently
of the rest of the beam functions over the combined anomaly factor and the relevant
powers of L⊥.

In our code, we expand each individual ingredient to a common accuracy, according
to our improved logarithmic and αs power counting. Explicitly these are the hard function
H, the exponent of the hard function evolution U , the combined collinear anomaly and
double-logarithmic exponent hi, and the product of beam functions Bi · Bj . Overall we
achieve an accuracy of αs relative to Born level for N2LL resummation and α2

s relative to
Born level for N3LL resummation, respectively. In the improved counting √αs ∼ 1/L⊥ ∼ ε,
we include terms up to ε3. To also achieve higher accuracy for very small qT → 0, one
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would need to include additional terms in the beam functions. These terms are predicted
by the RGE and were included in version two of the CuTe code which achieves ε5 accuracy.
Numerically their effect is small.

Matching to fixed order. A simple additive matching prescription

dσN3LL

dqT

∣∣∣∣∣
naively matched to NNLO

= dσN3LL

dqT
+ dσNNLO

dqT
− dσN3LL

dqT

∣∣∣∣∣
exp. to NNLO︸ ︷︷ ︸

matching correction ∆σ

(2.7)

combines the resummed result at small qT with the fixed-order predictions at larger qT ,
but suffers from two problems. First of all, the fixed-order result is only recovered up to
higher-order terms. While formally not a problem, the leftover higher-order terms can
induce unphysical behavior. We should therefore switch off the resummation at large
qT , which we implement using a transition function t(x) with x = q2

T /Q
2. This function is

constructed so that t(x) = 1+O(x) near x = 0 and t(x ≥ 1) = 0. The intermediate behavior
is such that it smoothly switches the resummation off as x→ 1. A similar problem arises
for small qT . The matching corrections are power suppressed, but can become numerically
unstable and suffer from large unresummed logarithms. For this reason, we switch the
matching off at very small qT , below a cutoff scale q0 . 1 GeV. The following modified
matching prescription

dσN3LL

dqT

∣∣∣∣∣
matched to NNLO

= t(x)
(

dσN3LL

dqT
+ ∆σ|qT>q0

)
+ (1− t(x))dσNNLO

dqT
(2.8)

addresses both issues discussed above. Since we match on the level of the differential
cross section, the fully inclusive fixed-order result is only restored within the nominal
perturbative accuracy, and not exactly. For inclusive Z production it was found that the
difference between resumming and matching the spectrum or the cumulant, which would
preserve the integrated fixed-order result, are numerically small [24]. A detailed comparison
of the two approaches can be found in ref. [79].

Choosing an appropriate transition region has to be done in dependence of the process
and the kinematical cuts. This is necessary in order not to include resummation in a region
where it is no longer valid. While it could be considered a drawback to have to manually
choose the transition region and a transition function, we believe that it offers clear advan-
tages: the transition is performed transparently and we can guarantee which parts of the
fully matched resummation are included in which kinematical region. Contributions where
the qT resummation clearly becomes invalid, for example due to kinematical thresholds,
can be fully excluded.

Below, we discuss the matching procedure in detail for the diboson processes γγ and
Zγ where kinematical thresholds require switching off the resummation relatively early. To
choose the transition region, we first evaluate the size of the matching corrections relative
to the (naively) matched result for each process and set of cuts. These relative corrections
should be small in the resummation region, at worst of order one. Comparing results, we
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then try to identify a matching window in which the resummed and fixed-order results
agree well enough that the transition between them can be performed reliably.

Within our setup one can easily implement any desired transition function or even
implement other matching procedures. All our results in this study are obtained with a
suitably parametrized sigmoid function. Following a choice in CuTe, we first define

s(x; l, r, u) =
(

1 + exp
(

log
(1− u

u

)
x−m
w

))−1
, m = (r + l)/2 , w = (r − l)/2 .

The function s(x), parametrized by l, r, u, is defined to be s(l) = 1 − u and s(r) = u. In
terms of this sigmoid, our transition function t(x;xmin, xmax, u), where x = q2

T /Q
2, is then

defined by

t(x;xmin, xmax, u) =


1, for x < xmin

s(x;xmin, xmax, u)
s(xmin;xmin, xmax, u) , otherwise

 . (2.9)

This ensures that below xmin = (qmin
T /Q)2 only the naively matched result is used, and

at xmax for small u � 1 the transition function is approximately u. In practice it makes
sense to set the transition function to zero below a small threshold like 10−3 without a
noticeable discontinuity. This has the advantage that the deteriorating resummation and
matching corrections do not impact the region of large qT at all. Our default choices in
the remainder of this paper are xmin = 0.001, and u = 0.001.

For the fiducial results studied here, we find that without the presence of a threshold
or presence of photons, power-suppressed corrections are of order q2

T /Q
2, and the size of

the matching corrections is well-behaved up to relatively large values of q2
T /Q

2. Concretely,
we find that values of xmax = 0.4 and xmax = 0.6 can be used and allow us to estimate the
effect of the matching. For the processes with photons and with experimental cuts inducing
additional thresholds, we have to start the transition much sooner. This is discussed in
detail in the sections for the γγ and Zγ predictions. We plot all transition functions used
in our study in figure 1.

Power corrections and recoil effects. The factorization theorem in eq. (2.1) is derived
strictly in the limit qT → 0 and is subject to power corrections that scale like q2

T /Q
2 for

fully inclusive production of a large-Q2 system. Through the matching to fixed-order
predictions, the power corrections are automatically included to all powers in qT /Q, but of
course not resummed. Since the factorization theorem is a function of q2

T , it is most natural
to consider the cross section dσ/dq2

T . In fixed-order perturbation theory, the inclusive cross
section for qT > 0 takes the form

dσ

dq2
T

= A

q2
T

+B + . . . , (2.10)

where the coefficients A and B depend logarithmically on q2
T . The leading logarithms at the

n-th order in these coefficients have the form αns (µ) ln2n−1(q2
T /µ

2). The terms contained
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Figure 1. The transition function defined in (2.9) for different values of the parameter xmax which
determines the position of the transition. The x-axis is displayed on a square-root scale to guide
the eye on the quadratic qT -dependence.

in A are captured by the factorization formula, while the contributions in B and all other
power-suppressed terms are added through the matching correction ∆σ.

Resummation cures the divergence of the cross section and the quantity dσ/dq2
T takes

a finite value for qT → 0. A detailed discussion of the intercept for qT → 0 was given
in ref. [24]; in this context the ε-expansion discussed earlier plays a crucial role. Much
less is known about effect of resummation on the power corrections, but first leading-
logarithmic resummed results for power-suppressed contributions indicate that Sudakov
suppression is present also in this case [80–85]. Since we do not resum the power-suppressed
matching corrections, their computation becomes unreliable at low qT because higher-order
terms are enhanced by large logarithms and they can start to numerically compete with
the resummed, Sudakov-suppressed leading-power cross section for qT → 0. We should
therefore switch off the matching at very low qT , which is achieved using a hard cutoff
qT > q0 in eq. (2.8). This is also necessary for numerical stability, as we will discuss in
detail in section 3.

While the power corrections are quadratic in qT for the inclusive cross section, cuts on
the leptonic final state can induce enhanced power corrections, depending on the treatment
of kinematics in the hard function. To understand this effect, consider Z production. Since
the factorization theorem is valid in the limit qT → 0 and the leptons from the Z decay have
hard momenta, we can formally neglect the transverse momentum in the hard function and
evaluate it with Born kinematics. Of course, after the expansion the two leptons then have
vanishing total transverse momentum, so that it is no longer possible to directly access qT
through the leptons. We can however choose one of the two lepton momenta, for example p1,
from the Born-level results and then define the momentum of the other one via momentum
conservation as p2 = q − p1. After this, we can again obtain qT and related observables
through the lepton momenta and we can also impose fiducial cuts on the leptons. While
this procedure is correct in the limit qT , it is not unique and it was pointed out in ref. [40]
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that the ambiguity in this prescription corresponds to a O(qT /Q) power correction. In
ref. [86] it was explicitly demonstrated that the specific prescriptions discussed above leads
to linear power corrections in the presence of fiducial cuts on the lepton momenta, even
for azimuthally symmetric observables. Of course, it is not necessary to approximate the
lepton kinematics and through a careful analysis of the lepton and hadron tensors it was
recently demonstrated in ref. [45] that working with the exact lepton tensor avoids the
occurrence of such linear power corrections.

The analysis in ref. [45] is based on decomposing and analyzing the lepton and hadron
tensors, which would become very involved for multi-boson production. But the physical
picture behind this analysis is simple: linear power corrections can be avoided by keeping
the exact kinematics in the hard function. The easiest way to achieve this is to perform
the factorization analysis in a frame, where the total transverse momentum of the decay
products is zero so that no expansion is performed in the hard function and the decay
kinematics are not altered by the expansion because it is equal to the Born-level kinematics.

In our code we achieve this, by generating the hard function with Born-level kine-
matics and then performing a Lorentz-boost into the lab frame, where the bosons carry
the appropriate transverse momentum. More specifically, following ref. [26], we start by
generating the Born-level phase space and then boost this system to have transverse com-
ponents (qT cosφ, qT sinφ), where we now additionally integrate over the values of qT ≥ 0
and φ ∈ [0, 2π] using Monte Carlo methods. We use the boosted momenta to evaluate
the Born matrix elements and hard function and to perform the kinematical cuts. In the
language of ref. [40], this corresponds to a specific recoil prescription, but the advantage
of using a boost is that we keep the exact hard kinematics. While we will not attempt
to formally prove that our procedure avoids the presence of linear power corrections in
azimuthally symmetric observables, we have numerically verified that such corrections are
absent for the fiducial cuts used in Drell-Yan measurements.

Finally, let us stress that our factorization theorem is fully differential in qµ and the
electroweak momenta. For this reason, we can not only analyze the transverse momentum
spectrum qT , but also related observables. For example, in this study we also present
resummed results for φ∗ [2] in the limit φ∗ → 0, and the azimuthal angle for ∆Φ→ π. Of
course to access such obervables, which are defined purely in terms of electroweak momenta,
one either needs to use momentum conservation to recast them in terms of qµ and hard
momenta as was done in refs. [87–89], or one needs to a adopt prescription to account
for the recoil, as we do by boosting. These prescriptions are equivalent at leading power,
but our specific choice avoids the presence of linear power corrections. When analyzing
observables, such as φ∗ or ∆Φ, we could choose to parametrize the transition function (2.9)
in terms of these, but for simplicity we always write it as a function of q2

T /Q
2.

Enhanced power corrections from photon isolation. To separate direct photon
production from photons arising in hadron decays, experiments impose that photons should
be isolated from hadronic radiation. More precisely, only low-qT hadronic radiation is
allowed inside a cone around the photon. In the limit qT → 0, and at leading power,
photons are automatically isolated since all radiation has low qT . This implies that the
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Figure 2. Power-suppressed matching corrections for pp → H → γγ (left) and pp → γγ (right).
For diphoton production only the uū channel is shown, with cuts qγT > 25 GeV on both photons.
We plot results for the values n = 0.5, 1, 2 of the isolation parameter n. Power corrections not from
photon isolation are shown as purple and blue lines. The dashed lines show the scaling (qT /Q)1/n

derived in ref. [86].

leading-power factorization theorem (2.1) applies also to processes with photons in the
final state.

The photon isolation induces subleading power corrections, that are included via the
matching to fixed-order predictions. However, the nature and size of these power corrections
is different from what we encountered earlier since they are not imposed on the electroweak
final state, but directly affect the hadronic matrix elements.

For our studies of processes with photons, we adopt the smooth-cone isolation intro-
duced by Frixione [90], which fully suppresses the collinear singularity from the q → qγ

splitting in an infrared-safe way, eliminating the need for fragmentation functions. It re-
stricts the transverse energy inside a cone of size R to

Ehad
T ≡

∑
j: d(j,γ)≤r

EjT ≤ E
γ,max
T χ(r) ∀r < R , (2.11)

where d(i, j) =
√

(φi − φj)2 + (ηi − ηj)2 is the separation in azimuthal angle φ and rapidity
η between parton i and photon j. The angular function is

χ(r) =
( 1− cos r

1− cosR

)n
≈
(
r2

R2

)n
, (2.12)

where the approximation is valid for R � 1. The isolation energy Eγ,max
T can either be a

fixed value or a fraction ε of the total photon transverse energy Eγ,max
T = εEγT = ε qγT .

The effects of photon isolation on power-suppressed terms in qT factorization have
been studied in ref. [86]. These authors considered inclusive H → γγ production with
photon isolation cuts and inclusive diphoton production restricted to the qq̄ channel with
photon isolation cuts and photon qT cuts. They showed that the smooth-cone isolation
requirement induces subleading terms scaling as (qT /Q)1/n, where n > 0 is the parameter
in the isolation prescription above. We study this dependence in figure 2 for H → γγ
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and diphoton production. Our numerical results nicely confirm this scaling of the power
corrections. For comparison we also show the matching corrections not associated with
photon isolation as blue and purple lines in figure 2. For pp→ γγ (right panel) we impose
qγT > 25 GeV. For the purple lines, Born-level kinematics are used for the photons, while
for the blue one the recoil is taken into account using the boost prescription detailed above.
We observe that these power corrections scale as the first power without the boost and as
the second power with the boost. The recoil does not play a role for pp → H → γγ (left
panel) since no fiducial cuts are employed.

While we reproduce the result of ref. [86] for the qq̄ partonic channel, we observe a
different behavior if all partonic channels are included, due to fragmentation contributions.
To explain the difference we consider the emission of a single soft particle with momentum
k into the isolation cone. For one emission qT = kT so that the value of the transverse mo-
mentum of the particle is fixed. The momentum dependence of the squared, spin averaged
amplitudes for soft gluon and soft quark emission are

|Mg|2 ∝
p1 · p2

p1 · k p2 · k
= 1
k2
T

and |Mq|2 ∝
1

2pγ · k
, (2.13)

respectively. The momenta p1 and p2 are the momenta of the incoming partons and pγ is
the photon momentum which defines the isolation cone. The result (2.13) shows that gluon
emission is a leading-power effect while soft quark emissions are suppressed by one power
of kT . Writing the phase-space integral in terms of the transverse momentum, rapidity and
azimuthal angle,

d3k

Ek
= dkTkT dy dφ , (2.14)

we see that the soft gluon emission suffers from a soft divergence, while the quark emission
has a collinear pole, which is regularized by the smooth-cone isolation requirement (2.11).
For fixed transverse momentum kT and R� 1, the isolation requirement implies that the
angular distance r2 = d(k, γ)2 = ∆y2 + ∆φ2 must fulfill

r2 ≥ R2
min = R2

(
kT

Eγ,max
T

) 1
n

. (2.15)

The emitted particle can thus no longer be exactly collinear to the photon.
With these considerations we can now easily evaluate the power corrections associated

with gluon and quark emission. Gluon emission is a leading-power effect and the power
corrections are obtained by evaluating the difference between the isolated case and the
inclusive production

∆ dσ
dq2
T

∝
∫

dy dφ [θ(r −Rmin)− 1] |Mg|2

= − 1
q2
T

∫ Rmin

0
dr r = −R

2
min
q2
T

= −R
2

q2
T

(
qT

Eγ,max
T

) 1
n

. (2.16)

This reproduces the result of ref. [86]. Next, let us turn to fragmentation. In this case, the
entire effect is a power correction, so we evaluate

∆ dσ

dq2
T

∝
∫ R

Rmin
dr r|Mq|2 ≈

1
qT p

γ
T

∫ R

Rmin

dr
r

= 1
qT p

γ
T

ln R

Rmin
, (2.17)
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where we approximated 2pγ · k = kT p
γ
T r

2 + O(r4). Here the dependence on the isolation
requirement is logarithmic and the power correction is always first order. Furthermore,
the effect in the gluon channel is suppressed by the cone radius R2, while there is no such
suppression in the fragmentation case. First-order power corrections will thus always be
present and for small cone radius they will numerically dominate over the gluonic power
corrections, even if these are larger than first order for n > 1. We will present numerical
results for the matching corrections for the sum of all partonic channels and including
the fiducial cuts on the photons in section 3. The results in this section will confirm the
presence of first-order power corrections.

Linear or stronger power corrections lead to matching corrections which tend to a
constant or even grow in dσ/dqT for qT → 0 and overwhelm the resummed leading-power
result. This implies that it is not possible to obtain reliable predictions for very small qT
in such cases, at least not without resumming also the power corrections. We will face this
problem in section 3 when studying processes with photons in the final state.

Having discussed the effect of photon isolation on power-suppressed corrections at
small qT , we should mention that photon isolation also leads to logarithmically enhanced
contributions at large transverse momentum, since there is then a region of phase space,
where the radiation is restricted by the isolation requirement. This is a typical situation in
which non-global logarithms arise [91] and their numerical effect in photon-production cross
sections was studied in ref. [92] at leading-logarithmic accuracy. While the argument of
the logarithms is large for the experimentally imposed photon isolation energies, the effect
on the cross section is moderate, since it is suppressed by R2. Similar conclusions were
reached in ref. [59], which studied their size for the Zγ transverse-momentum spectrum.

Implementation. We have implemented the presented framework in a modular For-
tran 2008 code, where hard function evolution, beam functions and Fourier integrals are
calculated separately and assembled to the designated order for resummed result and its
fixed-order expansion. All components are combined with an easy to modify transition
function in the MCFM plotting routines. The phase-space parametrization routine for each
process allows for an efficient integration down to very small qT . Since the essential resum-
mation pieces are only loosely coupled to MCFM, they could easily be reused or integrated
into other codes, for example as a direct stand-alone extension of the interface to event
files [26] to N3LL and gluon-gluon initiated processes.

Resummation parameters that can and should be changed in the input file during
normal use are the integration range for the resummation and its expansion, and the hard
cutoff below which the matching corrections are turned off. Further details on how to use
the code will be made available in the manual together with the code.

The NNLO processes available to be matched with N3LL resummation are
H,Z,W± [19], W±H, ZH [20], γγ [93] and Zγ [21]. Since MCFM implements several
more processes at NLO, these could easily be matched with N2LL resummation and we
would be happy to add these by request. All processes include all leptonic decay channels
and Higgs production includes all major decay channels. Furthermore, for Z production
electroweak corrections have been implemented [94].

– 14 –



J
H
E
P
0
3
(
2
0
2
1
)
1
9
9

Estimation of perturbative truncation uncertainty. We estimate the perturbative
truncation uncertainty by varying the hard, renormalization, factorization and resumma-
tion scales in our calculation with the two multipliers

(kF ; kR) ∈ {(2, 2), (0.5, 0.5), (2, 1), (1, 1), (0.5, 1), (1, 2), (1, 0.5)} . (2.18)

Since we only consider two independent multipliers, some variations are correlated as de-
tailed in the following. For the fixed-order computation and the matching correction we use
µF = kF Q̂ and µR = kRQ̂. We choose the default hard scale as Q̂ = Q for the benchmark
comparison to CuTe, while we also use Q̂ =

√
Q2 + q2

T in other cases, in line with the choice
typically made in fixed-order computations at larger qT . The seven-point prescription for
scale variation resulting from eq. (2.18) is common practice in the fixed-order community.
To set the resummation scale, we first calculate q∗ for each integration phase-space point
(“event”) and then set

µ = max (kF · (qT + q∗ exp(−qT /q∗)) , 2 GeV) . (2.19)

This choice ensures that the scale is always in a perturbative and numerically stable regime,
and for very small qT approaches q∗, while otherwise smoothly transitioning to qT . For the
hard scale, we use µh = kRQ̂. With this prescription, we avoid the introduction of four
different multipliers at the price of correlating some variations in the matching correction
and the resummed result.

At small qT the logarithms resummed up to N3LL dominate, and with the choice in
eq. (2.19) the residual scale dependence can become small at very small qT . In this region
the problem arises that varying the resummation scale leads to very low values of µ for
which the Fourier-integral becomes numerically unstable. To avoid this, we have set a
minimum value of µ = 2 GeV in eq. (2.19), which restricts the scale variation but ensures
that the scale µ always remains in the perturbative regime.

A drawback of this approach is that at very small qT of a few GeV the downwards
variation for the resummation scale vanishes. To address this, one could symmetrize the
uncertainties, if large asymmetries at small qT are observed. We find this not to be an issue
with fiducial cuts since in this case the variation of the hard renormalization scale generates
the bulk of the scale uncertainty. Furthermore, the overall uncertainty budget at such low
values of qT should include non-perturbative effects that are not quantified here. Beyond
that, various approaches have been used in the literature that argue for modifying the scale
variation procedure in combination with resummation [56, 95]. Also in our case further
variations could be considered. In addition to introducing a scale to estimate uncertainties
from different exponentiations of the rapidity logarithms, we could, for example, introduce
an additional evolution step to separate the scale in the perturbative kernels Īi←j in the
beam functions in eq. (2.6) from the PDF scale and then also vary this scale. Of course,
ultimately one should simply compute the higher-order corrections to know their size.

Beam-function grids. While our setup can compute the beam functions on the fly by
evaluating the convolution in eq. (2.6) with the PDFs for the relevant values of ξ and µ, it
is computationally expensive to do so. It is much more effective to pre-compute LHAPDF
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grids [96] for the beam functions. After doing so, the calculation of the resummed com-
ponent is no longer more time consuming than the other components. For each individual
PDF grid five beam function grids are generated corresponding to the beam function co-
efficients of different orders of αs and L⊥. The grid pre-computation is fully parallelized
through OpenMP and MPI or Fortran Coarrays, and if PDF uncertainties are enabled the
eigenvector or replica PDF set members can also be pre-computed accordingly. Through
the infrastructure of MCFM-9, matched results with multiple PDF sets, including their
respective uncertainties, can in this way be computed simultaneously.

Checks. We have extensively compared all of our resummation ingredients at N3LL
against a private prototype implementation in Mathematica that resulted in the code
CuTe [25] as well as against the N2LL implementation in ref. [26] and find full agreement.

Since our implementation is based on MCFM-9, which employs jettiness subtractions
for the NNLO calculations [97, 98], all processes have been extensively checked and IR
cancellations have already been demonstrated to be numerically stable down to the per-
mille level.

For all our presented results we checked that the fixed-order expansion of the resummed
result and the fixed-order predictions agree for qT → 0. We performed this check down
to values of 0.01 GeV with sub-permille precision in the cancellation, depending on the
process and cuts; see the individual process studies presented in the next section. With
that we implicitly also tested numerically that these leftover power corrections to our qT
resummation scale as predicted: for fiducial processes without photons we find that the
power corrections without boosted Born kinematics are O(qT /Q), while they are quadratic
with a boost. For processes with photons we can furthermore check the fixed-order result
and our framework by testing that power corrections due to smooth-cone photon isolation
scale as (qT /Q)1/n, where n > 0 is given as a parameter in the isolation prescription [86].
This asymptotic behavior sets in sufficiently below the photon isolation cone energy Eγ,max

T ,
which is typically just a few GeV.

We also compared our fully inclusive results against the CuTe code: by default CuTe
makes a series of choices that lead to power-suppressed differences. For example, it takes
into account a finite-qT modification of the phase-space. When setting the phase-space
integration to use Born-level kinematics we find full agreement for fixed-order results in
W,Z and Higgs production as well as for the fixed-order expansion of the resummed re-
sult at N3LL. For the resummed part, our results agree with CuTe at N3LL within the
choices available in CuTe for the expansion of the improved power counting scheme, see the
following section.

3 Results

In this section we present resummed and matched results for a wide range of electroweak
final states. As a first step we perform benchmark computations for fully inclusive Z-boson
and H-boson production and compare against the code CuTe.3 The code CuTe is restricted

3CuTe is available at https://cute.hepforge.org/.
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to Z,W and H production and does not allow for fiducial cuts, but is based on the same
formalism and ingredients as our implementation. While the ingredients were individually
cross checked against CuTe, the numerical results for the cross sections differ through terms
beyond the accuracy of the calculation. These include power-suppressed effects associated
with a different treatment of phase space in CuTe, as well as higher-order perturbative
effects from different ways of organising the expansion. Given the different scheme choices,
it is interesting to quantify the resulting differences that, in principle, should be covered
by scale uncertainties.

After this benchmarking exercise, we impose experimental fiducial cuts and directly
compare with measurements from ATLAS and CMS. For Z production we compare with
studies at 8 TeV [99] and 13 TeV [100]. For W±-boson production, we compare with a
transverse-momentum measurement at 8 TeV [101]. A high-precision theoretical description
of the Higgs production process requires a careful inclusion of top-quark mass effects which
go beyond the scope of this study. For the moment, we therefore present results in the strict
heavy-top limit with fiducial cuts that are imposed in an experimental H → γγ analysis.
Currently the experimental uncertainties in the Higgs transverse-momentum spectrum are
still quite large, but it would be interesting to perform a detailed theoretical analysis in
the future. Finally, we turn to diboson processes. For diphoton production we show novel
results at N3LL accuracy going beyond previous results at N2LL. For Zγ production we also
present novel results at N3LL that improve upon previous results limited to fixed order.

In all cases we show fully matched N3LL+NNLO results, but usually refrain from show-
ing results at a lower order or their scale uncertainties. For large qT the lower-order results
are only Born-level accurate and perturbative uncertainties are not properly estimated
solely through the running of αs(µ) and the PDFs, without further intrinsic scale depen-
dence from renormalized loop integrals. Typically the first results that can give reliable
uncertainties at large qT are given by our N3LL+NNLO predictions that include the fixed-
order results at large qT at a subleading order in αs.

Our results in the following are presented for random selections of some NNLO
PDF sets with a fixed value of αs(mZ) = 0.118: ABMP16 [102], CT14 [103],
CT18 [104], MMHT2014 [105], MSTW2008 (this has αs(mZ)=0.117) [106], NNPDF30 [107]
and NNPDF31 [108] interfaced to LHAPDF [96]. We also compute and compare the uncer-
tainties associated with the different PDF sets.

3.1 Benchmark calculations and comparison with CuTe

As mentioned above, the implementations of the resummation formula in CuTe and
CuTe-MCFM differ: the default approach taken in CuTe is to combine hard function and
its evolution factor into a common exponent and expand this exponent to a designated
logarithmic accuracy in αs. This approach thus exponentiates the higher-order corrections
to the hard function. CuTe also implements certain higher-order beam function contribu-
tions which are relevant to obtain ε5 accuracy in the improved counting at very low qT ,
while we only achieve ε3 accuracy, see the discussion in section 2. A second difference
arises because CuTe modifies the phase-space integral to include power-suppressed effects.
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For the parton momentum fractions ξ1,2 =
√
τ e±Y entering the beam functions CuTe uses

τ = (Q2 + q2
T )/s, while we work with the Born-level result τ = Q2/s.

To compare with CuTe we have ensured that all physical input parameters agree and
then checked that the fixed-order predictions and expansion of the resummed cross section
agree. We work with the NNPDF31_nnlo_as_0118 PDF set at

√
s = 13 TeV. To compare

the resummed results, we work at ε4 in the improved power counting in CuTe. This order
resembles most closely our new implementation, since we include some terms beyond ε3.
In CuTe-MCFM we integrate over qT and present the results bin-wise, while CuTe is limited
to evaluating individual qT values. CuTe can also parametrize non-perturbative effects and
has different transition functions to choose from, but here we are only interested in the
subleading differences of the resummed results for benchmarking purposes.

We present benchmark results for Z production as a quark-antiquark initiated process
and for H production for a gluon-gluon initiated process. The other processes available in
CuTe-MCFM are all based on the same resummation ingredients and only differ in the hard
function and Born amplitudes.

3.1.1 Inclusive Higgs production

In figure 3 we compare the resummed result for inclusive Higgs production without fixed-
order matching obtained with CuTe to our new implementation CuTe-MCFM. This com-
parison gives an indication of the uncertainties from subleading terms due to the different
scheme choices. The first panel shows the absolute distribution, while the second panel
shows the ratio to our N3LL resummed result where scale uncertainties are also included.

Overall the predictions of CuTe and CuTe-MCFM are within mutual scale uncertainties
up to 30 GeV. Central values are also are well compatible and captured within one to two
times the scale-uncertainty band of our own N3LL prediction. The discrepancy beyond
30 GeV between CuTe and CuTe-MCFM is solely due to the choice of τ = (Q2 + q2

T )/s for
the phase-space integral in CuTe. Below we analyze this difference in detail for Z produc-
tion. Scale variation does not provide an estimate of the size of these power-suppressed
differences, but performing the matching to fixed order would largely eliminate them.

At large qT one observes almost zero scale uncertainties for CuTe if the expansion is
performed strictly in the exponent. At the same time, one sees a significant increase in the
scale uncertainties at tiny qT , where also the improved expansion order plays a big role. It
is perhaps a bit disconcerting that formally equivalent prescriptions give such different scale
variation bands. It seems that there is an accidental cancellation of scale uncertainties at
play, as evidenced by the fact that these uncertainties increase significantly when we impose
fiducial cuts, see figure 12 below. We also observe that the N3LL results are outside of the
N2LL result. This is a reflection of the well known fact that the Higgs cross section suffers
from large perturbative corrections. If we instead considered the normalized distribution,
the bands would overlap. The small scale uncertainties of CuTe-MCFM at tiny qT are a
consequence of the choice in eq. (2.19) and not indicative of the true uncertainty, which
would also need to include an estimate of non-perturbative effects.

Having discussed the resummation, we now illustrate the numerical difficulties in com-
puting the matching corrections in figure 4. The top panel shows the fixed-order predictions
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Figure 3. Resummed results without matching for inclusive Higgs production at 13 TeV obtained
using CuTe-MCFM and CuTe at different logarithmic orders. For CuTe we show results in two
schemes: expanded in the exponent or on the level of the cross section. The shaded bands display
scale uncertainties. The bottom panel shows the ratio to the N3LL result in CuTe-MCFM.

at αs and α2
s and their behavior towards qT → 0. Note that the α2

s prediction has a zero
around 2 GeV. The matching corrections are shown in second panel. Both cross sections
are displayed as dσ/d log(qT ) = qT dσ/dqT = 2q2

T dσ/dq2
T . Since the matching corrections

are suppressed by O(q2
T ) they should decrease quadratically as qT is lowered and we in-

deed observe this behavior for moderately small qT . However, the fixed-order result for
q2
T dσ/dq2

T and the fixed-order expansion of the resummed result both go to a constant
in the same limit so that we encounter large numerical cancellations when computing the
matching in the region of very small qT .

Indeed the quadratic behavior of the matching corrections is spoiled by numerical prob-
lems for qT .1 GeV. In this region one is limited by the Monte-Carlo integration, where,
typically, relative uncertainties below 10−3 to 10−4 are computationally very expensive.
Around 1 GeV for the N2LL result, the cancellations in the computation of the matching
correction already require a relative uncertainty of 10−4. The bottom panel in figure 4
shows that for qT . 1 GeV the numerical noise in the matching corrections becomes large
relative to the Sudakov suppressed resummed result.

Overall, the above considerations imply that, for practical numerical reasons alone,
one has to turn off the matching corrections below a certain value of qT to not spoil
the results at small qT with an incomplete cancellation. For observables with quadratic
power corrections, imposing this cutoff is completely unproblematic, but we will revisit
the issue when discussing processes with photons, where the power suppression is weaker.
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Figure 4. Top panel: fixed-order prediction at LO and NLO for inclusive Higgs production. Middle
panel: absolute value of the matching corrections to show the cancellation towards qT → 0 and the
resulting loss of numerical accuracy at very small qT . 1 GeV. Bottom panel: matching corrections
relative to the naively matched result.

In any case, the computation of the power-suppressed matching terms using fixed-order
perturbation theory is no longer viable in this region since the power corrections will involve
large logarithms. On top of this, for such low values of qT also non-perturbative effects will
play a role. For the remainder of this paper we switch off the matching corrections below
1 GeV unless otherwise noted.

3.1.2 Inclusive Z production

To benchmark a quark-antiquark initiated process we compare our fully inclusive pre-
dictions for Z production with CuTe. The results for the fixed-order expansion and the
matching are presented in figure 5 and are qualitatively similar to the ones for Higgs pro-
duction in figure 4. However, the matching corrections are significantly smaller and almost
negligible below 10 GeV. Up to 50 GeV they only reach few percent, but rapidly increase
beyond that.

Next, let us look at the resummed results shown in figure 6. For smaller qT , we observe
good agreement between CuTe and CuTe-MCFM, but above 20 GeV there is again no overlap
within scale uncertainties with the results from CuTe. We have argued above that this is
due to the inclusion of power-suppressed terms in the partonic momentum fractions in
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Figure 5. Top panel: fixed-order prediction at LO and NLO for inclusive Z production. Middle
panel: absolute matching corrections to show the cancellation towards qT → 0 and the effect of a
limited numerical accuracy at small qT . Bottom panel: matching corrections relative to the naively
matched result.

CuTe, from setting τ ≡ τ(qT ) = Q2 + q2
T . We verify this by including an additional curve

where we have modified CuTe to switch off the suppressed terms τ(qT = 0) and find good
agreement also at large qT . While both schemes are valid, we observe that the one used in
CuTe leads to larger matching corrections.

Since for Z production the scale q∗ is about 2 GeV and coincides with the minimum
value of the resummation scale that we choose, the downwards scale variation becomes
ineffective in our prescription below scales of ∼3 GeV. This can be clearly seen in the plot.
An easy remedy would be to symmetrize the uncertainty band by taking the maximum
of upper and lower variation, although the upwards variation can also become small with
fiducial cuts. Similar as for the Higgs comparison, at N3LL only the CuTe result with
expansion in the exponent gives a sizable uncertainty below 1 GeV. On the other hand this
uncertainty becomes unrealistically small above 5 GeV compared to the CuTe-MCFM result.

3.2 Fiducial Z production

We now turn to fiducial results, starting with Z production, an experimental and theoretical
standard candle. We compare with Z → l+l− measurements presented in the 8 TeV ATLAS
study in ref. [99] and the 13 TeV CMS study in ref. [100].
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Figure 6. Resummed results without matching for inclusive Z production at 13 TeV obtained using
CuTe-MCFM and CuTe at different logarithmic orders. For CuTe we show results in two schemes:
expanded in the exponent or on the level of the cross section. We furthermore present results with
two different treatments of power-suppressed terms in the phase space related to the choice of τ(qT ),
see text. The shaded band displays scale uncertainties. The bottom panel shows the ratio to the
N3LL result in CuTe-MCFM.

Lepton cuts qlT > 20 GeV, |ηl| < 2.4
Separation cuts 66 GeV < ml+l− < 116 GeV, |yl+l− | < 2.4

Table 1. Fiducial cuts for Z → l+l− at
√
s = 8 TeV, see ref. [99].

3.2.1 ATLAS measurements at 8 TeV

We first compare with the ATLAS 8 TeV measurement [99], which imposes the cuts listed
in table 1.4 All measurements are presented as normalized to the integrated fiducial cross
section. Our predictions are calculated with a dynamic hard scale µh =

√
Q2 + q2

T and the
NNPDF31_nnlo_as_0118 PDF set.

In figure 7 we show our matched prediction in comparison with the measurement. We
re-normalize all data to the qT -integrated cross section with qT > 2 GeV, since the first
bin is likely to receive non-perturbative contributions that we do not model. Including the
first bin for the normalization would therefore skew the results.

4As a side note, we strongly discourage the use of symmetric qT cuts, since this causes instabilities in
higher-order calculations, and a slight asymmetry does not decrease the cross section much, see ref. [22].
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Figure 7. Predicted and measured normalized transverse-momentum distribution of the Z boson
with fiducial cuts as in the ATLAS study at 8 TeV in ref. [99]. The middle panel shows the effect
of varying the transition function, while the bottom panel shows the ratio to data with estimated
scale uncertainties.

The first panel shows the normalized distribution of the data, the N2LL+NLO and
N3LL+NNLO matched distributions with transition functions xmax = 0.4, 0.6, and the fixed-
order prediction. The fixed-order prediction is normalized by the qT -integrated matched
result for qT > 2 GeV with xmax = 0.6.

The middle panel shows the difference between using transition function parameters
xmax = 0.4 and xmax = 0.6 for the matched results at order αs and α2

s. At N2LL+NLO the
matching effects are at the order of 10-25% in the region of 40 GeV to 60 GeV. A transition
function that switches less rapidly than our choice would wash out the effects to a broader
range, so this has to be considered when estimating the size of the matching effects. At
N3LL+NNLO the matching effects are much smaller, as one might expect, and below 10%.

The bottom panel shows the ratio to the experimental data and includes a scale-
uncertainty band for the N3LL+NNLO prediction. Due to the normalization, the experi-
mental uncertainties are at the sub-percent level for qT < 150 GeV and coincide with the
dashed line on the displayed scale. Overall our highest-order prediction at N3LL+NNLO
describes the data very well up to large qT within five to ten percent uncertainties. At the
largest shown qT , relative QCD α2

s effects would increase the cross section, but would have
to be considered in addition to negative electroweak effects [109–111].
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Figure 8. Predicted and measured φ∗ distribution of the Z boson with fiducial cuts as in the
ATLAS study [99] at 8 TeV. The middle panel shows the effect of varying the transition function,
while the bottom panel shows the ratio to data with estimated scale uncertainties.

The fixed-order result has scale uncertainties of about ±10%, which we do not display,
to keep the plot easily readable. Since the fixed-order result agrees well with the resummed
results within mutual uncertainties down to 10 GeV, the transition to fixed-order could be
induced earlier than in range of 40 GeV to 60 GeV that we have used. Nevertheless, the
resummation pushes the central prediction much closer to the data and results in agreement
at the single-percent level. The presence of a large enough window for the matching is
comforting and important to convince ourselves that we can combine the fixed-order and
resummation results consistently and accurately.

The resummation formula in eq. (2.1) is fully differential in the electroweak momenta
and can be used to also resum logarithms in other observables related to qT . An example
is the observable

φ∗ = tan
(
π −∆φ

2

)
sin(θ∗) , (3.1)

with cos(θ∗) = tanh
(

∆η
2

)
, where ∆η is the pseudorapidity difference of the two charged

leptons and ∆φ the azimuthal angle between them. This quantity was introduced in
refs. [2, 89] and has the advantage over qT that it can be extracted purely based on angular
measurements on the leptons.

Since φ∗ ∝ qT at small values, we also achieve full N3LL+NNLO accuracy for the φ∗

distribution as displayed in comparison with the measurement in figure 8. We again exclude
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Lepton cuts qlT > 25 GeV, |ηl| < 2.4
Separation cuts 76.2 GeV < ml+l− < 106.2 GeV, |yl+l− | < 2.4

Table 2. Fiducial for Z → l+l− at
√
s = 13 TeV, see ref. [100].

the region corresponding to small qT and normalize to the integrated result for φ∗ > 0.004.
The conclusions reached for the qT distribution discussed earlier apply also here, both
qualitatively and quantitatively. The effects from the matching are overall smaller than
5% for the N3LL+NNLO prediction, as can be seen from the second panel. The third panel
shows the ratio to the experimental data and demonstrates a fantastic agreement with
our prediction within scale uncertainties. Between φ∗ = 0.1 and 0.5 fixed-order prediction
and resummed prediction have a large window of agreement that indicates a well-behaved
perturbative expansion.

3.2.2 CMS measurements at 13 TeV

As a second example, we directly compare with 13 TeV cross-section data from CMS [100]
in figure 9, without normalizing the results. The applied cuts are presented in ta-
ble 2. We again choose the dynamic hard scale as µh =

√
Q2 + q2

T and use the
NNPDF31_nnlo_as_0118 PDF set.

Overall the conclusions are similar to our findings for the normalized predictions shown
at 8 TeV before. Up to 40 GeV the resummed result (matched with small matching cor-
rections) agrees at the percent level with data. Only in the first bins the small scale
uncertainties and a deviation of up to 10% hint towards non-perturbative effects. Note
that the small scale bands do not cover the true uncertainty, see section 2.

While non-perturbative transverse-momentum effects would be captured by fitting
transverse-momentum dependent PDFs, also the standard PDFs encode non-perturbative
physics. To study the associated uncertainties, we computed the PDF uncertainties for
multiple PDF sets and show the result in figure 10. On a technical level, this demonstrates
the efficient and accurate evaluation of PDF uncertainties in MCFM-9 and consequently
also in our setup CuTe-MCFM.

The minimum scale value of Qmin = 4.47 GeV for the ABMP16 PDF set causes the
predictions to break down when our scale is set to a value lower than this. To fix this issue,
one could, in principle, perform a DGLAP evolution below this scale, or enforce a minimum
scale of Qmin in our resummation code. Instead we deliberately show the result with the
default settings of LHAPDF and our default minimum safety scale of 2 GeV.

The other PDFs broadly predict uncertainties above 10% below qT = 2 GeV, and CT18
even predicts uncertainties of more than 20%. The 10% difference between our prediction
and data in the first bin of figure 9 is therefore well within even just PDF uncertainties.

3.3 Fiducial W production as measured by CMS at 8 TeV

While the transverse-momentum distribution of the charged lepton in W production enters
many precision analyses, the fully reconstructed W boson transverse-momentum distribu-
tion has also been presented by CMS at 8 TeV [101] and at 7 TeV by ATLAS [112].
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Figure 9. Predicted and measured transverse-momentum distribution of the Z boson with fiducial
cuts as in the CMS study [100] at 13 TeV. The middle panel shows the effect of varying the transition
function, while the bottom panel shows the ratio to data with estimated scale uncertainties.
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Figure 11. Comparison to normalized W transverse-momentum data from CMS at 8 TeV with
predictions at N3LL+NNLO including uncertainties associated with scale variation.

Here we compare with the normalized 8 TeV CMS data, where both W− and W+

channels are added. The only applied cuts are a minimum qT of 25 GeV and a maximum
absolute pseudorapidity of 2.5 on the electron/positron. We furthermore choose a cen-
tral hard scale of µh =

√
Q2 + q2

T and the PDF set CT18NNLO. As for Z production, the
resummed logarithms describe the full result at an impressive level with matching correc-
tions that stay just at the few percent-level for qWT . 40 GeV, reaching about 30 percent
for 60 GeV (not shown).

We show our matched results in figure 11, where the first panel shows the normalized
distribution. The second panel shows the ratio to our matched result with xmax = 0.6 to
guide the eye on the difference between the two transition functions with xmax = 0.4, 0.6.
The resulting difference between our two choices of xmax can be seen around 30 GeV to
50 GeV where the two distributions differ by about five percent. This estimates the size
and position of the matching uncertainty.

The third panel shows the ratio to the CMS data and now includes a scale-variation
band for the fixed-order prediction, the fully matched prediction, as well as uncertainties
for the data. While we would have expected to find very good agreement in the region
where the matching corrections are small (. 40 GeV), the overall agreement to the data
is not better than the fixed-order prediction, but overall we find agreement within scale
uncertainties.
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Photon cuts qγT > 40 GeV, 30 GeV, |ηγ | < 2.5

Smooth-cone photon isolation Eγ,max
T = 10 GeV, R = 0.3, n = 1

Table 3. Fiducial cuts for H → γγ at
√
s = 13 TeV.

The most striking difference of 10% between central prediction and data is in the
second bin from 7.5 GeV to 12.5 GeV. This deviation can also be observed in the CMS pub-
lication [101] when the data is compared with N2LL resummed predictions. This difference
and the overall shape of the data for qT . 40 GeV is perhaps indicative a systematic issue
with the experimental analysis at low qT , but it is not possible to make a definite statement
since the results are compatible within mutual uncertainties.

3.4 Fiducial H → γγ benchmark

The Higgs transverse-momentum distribution has been measured by CMS and ATLAS at
8 TeV and 13 TeV in various production and decay channels. But even after a combination
the overall uncertainties are at the order of 40% or worse [113].

For a precise study and prediction, one should at the least take into account top-quark-
mass effects and consider the resummation of π2 terms [114, 115]. Further contributions
like bottom-quark-mass effects have also been studied at low qT [116] and become relevant
at the percent level for the resummation. Within the MCFM framework top-quark-mass
effects have been included throughout NLO accuracy for qT � mt and qT � mt [117–119]
and NNLO corrections have been presented in the EFT for large qT [120, 121]. Including
these mass effects goes beyond the scope of our paper and we only show results in the heavy-
top-quark limit. For now we present results without comparison to data, but include a set
of cuts as used in experiments, see table 3.

In figure 12 we show matched results for the Higgs transverse-momentum distribution
with fiducial cuts as in table 3 using the MMHT2014nnlo68cl PDF set and a central hard scale
of µh =

√
m2
H + q2

T . The second panel shows the effect of the matching to fixed order by
switching between the transition function parameters xmax = 0.4 and 0.6. Matching effects
are about 10 % in the region of 50 GeV to 80 GeV and the resummation stabilizes the fixed-
order predictions below such values. At small values of qT . 2 GeV the cancellations within
the matching corrections are numerically difficult and reflect in the larger fluctuations.

The bottom two panels show the effect of PDF uncertainties relative to our central
prediction. At qT . 5 GeV uncertainties of more than 10 % have to be added to the
already sizeable scale uncertainties. While these uncertainties add up to just give an order
of magnitude prediction, the uncertainties from αs itself, to which gluon fusion Higgs
production is highly sensitive, are not even included yet. The road towards precision Higgs
transverse-momentum measurements and predictions is therefore a long one, but using the
normalized distribution would mitigate some of these additional uncertainties.

3.5 Fiducial γγ production

In this section we present results for fiducial diphoton production. The fixed-order NNLO
result in MCFM is based on ref. [93]. NNLO results have also been presented in ref. [122],
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Figure 12. Higgs transverse-momentum distribution with fiducial cuts as in table 3. The second
panel shows the effect of a different transition function and scale uncertainties, while the bottom
panels show PDF uncertainties for different sets.

which were subsequently interfaced with N2LL qT resummation [123]. Resummation at
N2LL has also been presented in refs. [42, 124–126] matched to NLO.

Perturbative NNLO corrections in diphoton production are large and increase NLO
results by 50-75%, depending on cuts. The gluon-gluon channel, which first appears at
NNLO through a quark-box diagram, also constitutes a noticeable part of these corrections.
Therefore, only at N3LO one has control at the NLO level over all partonic channels. Two-
loop NLO corrections for the gluon-gluon channel have been calculated in refs. [127, 128].
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Figure 13. Diphoton invariant mass distribution at NNLO with qγ,1T > 25 GeV, qγ,2T > 22 GeV and
further cuts specified in table 4.

Photon cuts
qγ,1T > 25 GeV, qγ,2T > 22 GeV
|ηγ | < 2.37, 1.56 < |ηγ | < 1.37

Photon separation ∆R(γ, γ) > 0.4,
Smooth-cone photon isolation Eγ,max

T = 4 GeV, n = 1, R = 0.4

Table 4. Fiducial in diphoton production at
√
s = 7 TeV, see ref. [131].

These have later been implemented in MCFM together with the NNLO corrections to the
qq̄ channel [93] and constitute a part of the N3LO corrections. We also discuss these and
show the effect of including them in the following.

A common requirement for diphoton production is that both photons have specific
minimum transverse momenta, qγ,1T,min (harder) and qγ,2T,min (softer), where qγ,1T,min > qγ,2T,min.
For transverse momenta larger than qγ,1T,min +qγ,2T,min both photons can be aligned in the same
direction and recoil against hadronic radiation. This threshold can be seen for example in
the diphoton invariant mass distribution shown in figure 13, which strongly peaks above ∼
qγ,1T,min+qγ,2T,min = 47 GeV. (As a side remark, we note that the cusp in this distribution could
be removed by an appropriate soft gluon resummation [129, 130].) Transverse-momentum
resummation is no longer valid for qT values above this threshold and becomes numerically
unstable, so that one wants to fully switch to the fixed-order prediction above this threshold.
To not introduce a discontinuity, the transition function has to be chosen to give negligible
contributions from qT > qγ,1T,min + qγ,2T,min. Of course, from the resummation point of view,
it would be best to impose a lower cut on the invariant mass of the two photons, which
would avoid these problems.

3.5.1 ATLAS measurements at 7 TeV

We first compare with the 7 TeV ATLAS diphoton measurement [131]. The fiducial phase
space is defined by the cuts in table 4. Our results here are presented using the PDF set
MSTW2008nnlo68cl [106] and a central hard scale of µh = mγγ , following the choice in the
previous study at N2LL [123].

Our detailed discussion in section 2 (page 11), showed that for smooth-cone isolation
(and n = 1) linear power corrections are present. To account for this, we could modify our
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Figure 14. Matching corrections at N2LL for diphoton production with photon qT and photon
isolation cuts only (left) and all fiducial cuts in table 4 (right). The different colors correspond
to different values of n. The solid lines are the power corrections after accounting for recoil, the
dashed lines are without recoil. The black dotted lines indicate first and second order scaling in qT
to guide the eye.

transition function to be a function of qT /Q without spoiling power corrections. Instead, we
keep it as a function of q2

T /Q
2, but choose a sufficiently smaller parameter xmax determining

the transition region. We find that xmax = 0.1, 0.2 are sufficiently small such that we can
can fully switch to the fixed-order result above 47 GeV, but can also study the effect of the
transition to the fixed-order result.

In figure 2 in section 2, we have discussed the asymptotic scaling of the power correc-
tions with the isolation parameter n and have shown numerical results for the partonic qq̄
channel. We now show the sum of all partonic channels, with and without fiducial cuts,
in figure 14. The behavior is qualitatively different than in the qq̄ channel shown earlier
in figure 2: at least in the qT range we consider, the power corrections are approximately
linear, and relatively insensitive to the choice of n. Furthermore, even for n = 2, where
power corrections scale like √qT in the qq̄ channel, they are somewhat more suppressed
when considering all partonic channels.

The reason for the different behavior is that the power corrections associated with
a gluon radiated inside the cone, as present in the qq̄ channel, are suppressed by R2, in
contrast to the ones associated with the fragmentation correction, see eqs. (2.16) and (2.17).
These two contributions also enter with different signs, so that for non-asymptotic values
of qT cancellation effects occur. Eventually, for n = 2 and sufficiently small qT , the R2

suppression is overcome and the asymptotic behavior should set in and one would expect
to observe √qT scaling again.

As discussed in section 2, the presence of linear power corrections implies that the
matching corrections no longer go to zero in dσ/dqT . We show these corrections at N2LL in
figure 15 relative to the naively matched result. Here, we are interested in larger qT values
of practical relevance and not in the asymptotic behavior. We include different choices
of the photon isolation parameters n and R. The purple curve with n = 1 and R = 0.4
corresponds to the default fiducial cuts in table 4.
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Figure 15. Diphoton maching corrections at N2LL relative to naively matched results with cuts
as in table 4, but for different choices of the photon isolation parameters n and R.

Already at small qT the purple matching corrections start at about 60% and never dip
below 40%. Since the matching corrections go to a constant for qT → 0, a characteristic
of the linear power corrections, and the resummed result approaches zero, the relative
matching corrections eventually approach 100% for qT → 0. Note that this does not
signify an issue with our implementation of the qT resummation. We have checked that
the fixed-order expansion of the resummed result cancels with the fixed-order result down
to the sub per-mille level for very small qT . The correct cancellation can indeed be observed
as the (linearly) vanishing matching corrections in figure 14.

With figure 15 we can now also discuss the effect of cancellations between photon-
isolation power corrections associated with fragmentation and associated with gluon emis-
sion for moderate values of qT . These contributions enter with opposite signs, which has a
peculiar effect on the R-dependence: naively one might expect smaller power corrections
with a smaller R, since the gluon radiation power corrections scale like R2. But these neg-
ative power corrections have to be added to the positive and larger power corrections from
the fragmentation contribution. One therefore observes a cancellation and overall smaller
matching corrections for larger R.

At N3LL the observed large matching corrections do not change qualitatively, as shown
in figure 16. The matching corrections now start just below 50% around qT = 2 GeV and
reach 75% just before the resummation validity threshold of 47 GeV.

Since we do not include matching corrections below 1 GeV for numerical stability, we
neglect sizeable effects below this value. Taken at face value, the matching would amount
to a 50 % effect. A resummation of power-suppressed terms would likely suppress the
matching corrections, but their true size is difficult to estimate. The situation is different
from processes where the matching corrections are quadratic and such a safety cutoff of
1 GeV leads to small effects. While such a hard cutoff is relatively unproblematic for the qT
distribution itself, it is more difficult for other observables that benefit from resummation,
like φ∗ or the azimuthal angle difference between the photons ∆φ. The cutoff may affect a
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Figure 16. Comparison of the naively matched result at N3LL+NNLO, the matching corrections
and the fixed-order result for diphoton production with the cuts used by ATLAS [131], see table 4.
The second panel displays the ratio to the naively matched result to demonstrate the large matching
corrections even at small qT .

broader spectrum for such observables, and not just one bin. Fortunately, at least for φ∗

only low values are affected since φ∗ ≤ qT /Q. To do better than this somewhat arbitrary
cutoff prescription, we would need to determine and include the Sudakov suppression factor
for the power-suppressed terms.

Overall, since the first few GeV in qT are likely to receive non-perturbative effects (see
for example the parametrization of non-perturbative effects in ref. [123]), we can disregard
the first experimental bin (from 0 GeV to 2 GeV) for a meaningful comparison in this study.
For observables like φ∗ or ∆φ similar arguments regarding non-perturbative corrections
hold so that predictions for the regions corresponding to values qT ∼ 0 need to be studied
very carefully.

Having analyzed the matching corrections in detail, we now choose the transition
function with xmax = 0.1, 0.2, as indicated earlier, and present our matched N3LL+NNLO
results in figure 17. The upper panel in this figure shows the absolute N3LL+NNLO matched
distribution with the two choices of xmax, the NNLO fixed-order result, as well as the
measurement.

The second panel shows corresponding ratios to the matched N3LL+NNLO result with
xmax = 0.1. The agreement with data in the region of up to 30 GeV is clearly improved, with
resummation effects of up to 13% around 15 GeV. Beyond ∼ 45 GeV practically only the
fixed-order result contributes. The filled regions denote the experimental uncertainties for
the ATLAS data and uncertainties from scale variation for the matched result, respectively.
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Figure 17. Comparison of 7 TeV ATLAS diphoton results with predictions in various approxima-
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gluon-gluon channel; see text for details. The labels 0.1 and 0.2 in the plots refer to the value of
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Photon cuts
qγ,1T > 40 GeV, qγ,2T > 30 GeV
|ηγ | < 2.37, 1.56 < |ηγ | < 1.37

Photon separation ∆R(γ, γ) > 0.4,
Smooth-cone photon isolation Eγ,max

T = 11 GeV, n = 1, R = 0.4

Table 5. Fiducial cuts in diphoton production at
√
s = 8 TeV, see ref. [132].

For brevity we do not include uncertainties for the fixed-order prediction, which agree
above qγγT & 50 GeV with the matched result and are similarly sized below.

Including the gluon-gluon channel at NLO has been found to be an important contribu-
tion at fixed-order perturbation theory [93]. Therefore, in the third panel we additionally
display the ratios where the gg-channel is included at NLO and N2LL+NLO. The fixed-order
result is obtained by adding the NLO gg-channel gg→ γγg to the NNLO fixed-order result
without the gg-channel. The resummed result is obtained by matching at N3LL with the
NNLO result without gg-channel, and adding the N2LL+NLO resummed gg-channel.

While the fixed-order result indeed receives sizeable corrections from the gg→ γγg
channel in the region up to ∼ 50 GeV, the corrections from the matched result change
little compared to the overall uncertainties and agreement with data. In fact, the improved
fixed-order result (cyan) and improved matched result (yellow) agree above 15 GeV. This
indicates a significant stabilization of the perturbative series through the NLO corrections
in the gg-channel.

Finally, the fourth panel displays the comparatively small PDF uncertainties at the
level of a few percent (with a fixed value of αs).

3.5.2 ATLAS measurements at 8 TeV

Next, we compare against the most recent diphoton ATLAS measurement at 8 TeV [132]
which also considers φ∗ for this process, as defined in eq. (3.1), but using the photon
instead of the lepton directions. For this study we impose the cuts listed in table 5. We
now choose a central hard scale of µh =

√
m2
γγ + (qγγT )2 and NNPDF30_nnlo_as_0118 as

our default PDF set. Given the minimum transverse momenta of the photons we ensured
that our transition function fully switches to the fixed-order result beyond 70 GeV.

Our results for the observables qT , φ∗ and ∆φγγ , the azimuthal-angle difference between
the two photons, are shown in figures 18, 19 and 20, respectively. For each figure the first
panel shows the absolute distribution, the second panel the results in ratio to the matched
result with xmax = 0.1, and the third panel the results in ratio to the experimental data.
The uncertainties associated with the matching to fixed order can be read off from the
second panel and are about 5−10% in the region of 15 GeV to 40 GeV in the qT distribution
and an equivalent amount in the φ∗ distribution around 0.1−0.4. For ∆φγγ they correspond
to a region of ∼ 2.4− 2.8.

The resummation of course stabilizes predictions for all observables in the region below
10 GeV. Beyond that the resummed result improves the agreement with data up to 15%.
For the qT distribution we find agreement of predictions with data within uncertainties be-
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Figure 18. Comparison of the ATLAS measurement of the diphoton transverse-momentum dis-
tribution at 8 TeV with predictions at N3LL+NNLO including uncertainties associated with scale
variation. The labels 0.1 and 0.2 in the plots refer to the value of xmax.

low 20 GeV. Unfortunately at large qT the fixed-order NLO predictions are still insufficient
to fully describe the data. We do not show distributions at the lower precision N2LL+NLO
since these significantly underestimate the size of the cross sections. We therefore expect
that α3

s corrections are necessary to achieve agreement with data in the region of large qT .
Similar conclusions hold for the φ∗ and ∆φγγ distributions.

While our 1 GeV cutoff for the matching corrections (about 40% relative to the matched
result) has a relatively small impact in the 0 GeV to 4 GeV bin, is clearly visible in the first
and last bins of φ∗ and ∆φγγ , respectively. We decided to keep these bins in our plot to
demonstrate this effect which is unavoidable due to the large matching corrections, unless
these can be calculated reliably also at small qT .

Lastly, we show PDF uncertainties for the qT , φ∗ and ∆φ distributions in figure 25 in
the appendix A. Uncertainties are generally at the few percent level for each PDF set, but
when taking into account the span of multiple PDF sets like CT18 and NNPDF3.1 they can
reach up to 10%. The ABMP16 set is undefined below scales of 4.47 GeV and the LHAPDF

– 36 –



J
H
E
P
0
3
(
2
0
2
1
)
1
9
9

0.001

0.01

0.1

1

10

100

1000

10
4

10
5

0.01 0.1 1 2 5 10 20 100

d
σ

d
Φ

*
[f
b

]

ATLAS 1704.03839

N
3
LL+NNLO (0.1)

N
3
LL+NNLO (0.2)

fixed−order NNLO

0.5

1.0

1.5

2.0

0.01 0.1 1 2 5 10 20 100

ra
ti
o

to
N

3
L
L

+
N

N
L

O

0.50

0.75

1.00

1.25

1.50

0.01 0.1 1 2 5 10 20 100

Φ*

ra
ti
o
 t
o
 d

a
ta

Figure 19. Comparison of the ATLAS measurement of the diphoton φ∗ at 8 TeV with predictions
at N3LL+NNLO including uncertainties associated with scale variation.

grid-based prediction therefore breaks down. In principle, as mentioned before, one could
abandon the grid-based approach in this region and DGLAP evolve further downwards or
just set 4.47 GeV as a minimum scale value.

3.6 Fiducial Zγ production

We now present results for fiducial Zγ production in the decay channel Z → e+e− in
comparison with the 13 TeV ATLAS measurement [133]. The fixed-order NNLO result in
MCFM is based on ref. [21], but NNLO results have also been been computed in refs. [134,
135]. Results for qT resummation of Zγ production at the same accuracy considered
here have very recently been presented [59]. They are based on a different resummation
framework [56] implemented in the RadISH code.

We fully reproduce the NLO and NNLO fixed-order fiducial cross sections calculated in
the ATLAS study [133] after applying the parton-to-particle factor Ctheory = 0.934±0.005.5

5While ref. [133] gives a factor of 0.934 when electroweak corrections are included in the partonic pre-
diction and 0.915 when they are not, we find that the former factor reproduces the fixed-order NLO and
NNLO results in ref. [133] table 6. It seems possible that these factors have been mixed-up.
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Figure 20. Comparison of the ATLAS measurement of the diphoton ∆φ at 8 TeV with predictions
at N3LL+NNLO including uncertainties associated with scale variation. The labels 0.1 and 0.2 in
the plots refer to the value of xmax.

We furthermore fully reproduce the presented fixed-order differential distributions at NNLO
when including the differential parton-to-particle factors. Since we consider the use of
parton-to-particle factors problematic, we do not directly include them in our results.

For Zγ production two different contributions arise: an s-channel mode, where the
photon is radiated from the charged leptons in the Z decay, and a t-channel mode, where
the photon is radiated from the initial state. The photon isolation enters differently in
these channels. In the s-channel, the only isolation-cone power corrections are associated
with gluon emission into the cone and suppressed by R2, while the fragmentation part is
absent. On the other hand, the t-channel has fragmentation contributions which are not
suppressed by R2. While the linear power corrections of the fragmentation contribution
are asymptotically smaller than corrections from gluon emission (for isolation parameter
n > 1), they could still predominate for any reasonably small value of qT → 0 when
R � 1, see discussion on page 11 and following. Since neither of these power corrections
are included in our resummation, one expects larger matching corrections when the cuts
allow for significant t-channel contributions.
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Figure 21. Matching corrections for Zγ production at N2LL, relative to the naively matched
results for different choices of smooth-cone photon isolation parameters n and R0. The upper panel
shows the results with s-channel benchmark cuts, see table 7. The lower panel is relevant for the
experimental cuts that enhance the t-channel contribution, see table 6.

Impact of s-channel vs. t-channel contributions. The fiducial cuts chosen in the
ATLAS study, see table 6, almost entirely suppress the s-channel contribution to enhance
the Z peak in ml+l− of the signal. This is primarily achieved by applying a selection cut
ml+l− + ml+l−γ > 182 GeV, which can be nicely seen in figure 2 of ref. [133]. For those
cuts, the matching corrections are large, as elaborated later on. To numerically test the
impact of photon-isolation power corrections from s-channel and t-channel contributions
we consider benchmark cuts as defined in table 7. For these cuts we enhance the s-channel
contribution by reversing the separation cut ml+l− + ml+l−γ < 182 GeV and relaxing the
photon and lepton qT cuts.

In figure 21 we consider the N2LL matching corrections relative to the naively matched
result with s-channel benchmark cuts and experimental cuts for different choices of photon
isolation parameters R and n. For these benchmark cuts one observes exactly the behavior
predicted for the gluonic corrections in eq. (2.16), namely negative effects scaling with
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Leptons qlT > 30 GeV, 25 GeV, |ηl| < 2.47
Photon qγT > 30 GeV and |ηγ | < 2.37
Smooth-cone isolation εγ = 0.1, R = 0.1, n = 2
Separation ml+l− > 40 GeV, ml+l− +ml+l−γ > 182 GeV, ∆R(γ, l) > 0.4

Table 6. Experimental cuts in Zγ production with Z → e+e− decay at a center of mass energy√
s = 13 TeV.

Leptons qlT > 25 GeV, 20 GeV, |ηl| < 2.47

Photon qγT > 20 GeV and |ηγ | < 2.37

Smooth-cone isolation εγ = 0.1, R and n set individually

Separation ml+l− > 40 GeV, ml+l− +ml+l−γ < 182 GeV, ∆R(γ, l) > 0.1

Table 7. Benchmark cuts enhancing the s-channel contribution in Zγ production with Z → e+e−

decay at a center of mass energy
√
s = 13 TeV.

R2. This is different from diphoton production, where no s-channel mode exists and one
cannot easily separate the power corrections associated with soft gluon emission from the
fragmentation contribution.

The experimental cuts almost exclusively select the t-channel contribution. The nature
of the power corrections changes and they become qualitatively similar to what we observed
for diphoton production, except that they are smaller in size, because we only have a single
photon in the final state. Even for R = 0.1 the matching corrections are relatively large and
positive around 10−20% and fully dominate over the Sudakov-suppressed resummed result
towards qT → 0, since they scale linearly in qT and therefore approach a finite constant in
the qT distribution. The matching corrections accidentally decrease for larger R since the
negative gluonic photon-isolation power corrections increase like R2 and cancel against the
fragmentation contributions. In all cases, the n-dependence only becomes relevant below
at small qT < Eγ,max

T . For N3LL the same conclusions hold qualitatively and quantitatively.

3.6.1 ATLAS measurements at 13 TeV

Having demonstrated that matching corrections are at the percent to sub-percent level for
the s-channel benchmark cuts and even moderate qT . 40 GeV, we now compare with the
13 TeV Zγ measurement by ATLAS [133] with fiducial cuts in table 6. We use a central
hard scale of µh =

√
Q2 + q2

T and the CT14nnlo PDF set.
To see the effect of the experimental fiducial cuts at N3LL on the size of the matching

corrections, we show the naively matched result and matching corrections in figure 22.
With a strong suppression of the s-channel contribution, the matching corrections at N3LL
are at the order of 10− 20%. Fortunately the matching corrections are quite a bit smaller
at N3LL than at N2LL for qT values in the few-GeV range.

To mitigate numerical issues due to a root in the matching corrections around 2 GeV
and required cancellations of more than 0.1 per-mille, we save computational resources
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Figure 22. Z(→ e+e−)γ transverse-momentum distribution with experimental fiducial cuts as in
table 6. Shown are results with naive matching, the matching corrections by themselves, and the
fixed-order predictions, each at order αs and α2

s, respectively. The bottom panel shows the ratio of
the matching corrections relative to the naively matched result for each order in αs.

and cut off the matching corrections for the remaining Zγ results below 2 GeV and, as
a consequence, neglect matching corrections of . 5% below this value. The numerical
issues can be seen in figure 22 for qT less than 2 GeV as a discontinuity, or rather larger
numerical noise.

To account for the safety cutoff on the matching corrections at 2 GeV, one should assign
a larger uncertainty for the first few bins in the qT distribution. To estimate the effects for
other variables, one can vary the cutoff value over the range of a few GeV. We have done
so for the ∆φ distribution by increasing the cutoff from 2 GeV to 5 GeV. The resulting
changes are small compared to the other uncertainties which affect this distribution.

qT distribution. In figure 23 we show our predictions for the qllγT distribution in com-
parison with the experimental data. The top panel shows the absolute distributions for
data, resummed predictions matched to NNLO fixed-order results using transition function
arguments xmax = 0.01, 0.1 and xmax = 0.2, and the fixed-order NNLO prediction alone.
The middle panel shows these distributions relative to the matched result with xmax = 0.1
to demonstrate matching effects to fixed order from the transition function. The bottom
panel shows the results relative to the experimental data and includes uncertainties from
scale-variation for the matched prediction (xmax = 0.1) and experimental uncertainties for
the experimental data.

The reason for choosing relatively small xmax for the transition function is that we want
to minimize matching effects beyond ∼ 60 GeV, see figure 22. The choice of xmax = 0.01
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Figure 23. Comparison of N3LL+NNLO predictions with the ATLAS measurement of qllγT at
13 TeV. Note that this plot includes the first three bins individually that are only shown combined
for the NNLO fixed-order comparison in ref. [133]. The labels 0.01, 0.1 and 0.2 in the plots refer to
the value of xmax.

performs the matching in the region of ∼ 10 GeV, where the validity of the fixed-order
result is questionable and is entering the divergent regime. With xmax = 0.1 the transition
region moves to between 30 GeV and 50 GeV, while xmax = 0.2 stretches further into the
region with large matching corrections. Taking xmax = 0.1 as a central choice, we estimate
that the overall matching effects are about five percent around 30 GeV to 50 GeV.

Despite the large matching corrections, the matched N3LL+NNLO predictions show
good agreement with data within scale uncertainties. The results using the resummation
framework RadISH obtained in ref. [59] have similarly sized scale uncertainties and show
a similar agreement with data. But unlike here, where we advocate to switch off the
matching corrections with xmax = 0.1 in the region of 30 GeV to 50 GeV, they state that
resummation and matching are crucial also in the region 40 GeV . qllγT . 200 GeV. While
this choice could potentially have a positive effect on the agreement with data, the matching
corrections and resummation spoil other kinematics, as we will see in the case of the ∆φ
observable. It is possible that the different matching procedure alleviates such issues, but
the ∆φ distribution has not been considered in ref. [59].

In the bottom panel we have additionally indicated the suggested parton-to-particle
factor in the ATLAS study that, when applied, would decrease agreement. Note that
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Figure 24. Comparison of N3LL+NNLO predictions with ATLAS measurement of ∆φ(ll, γ) at
13 TeV. Note that this plot includes the last two bins individually that are only shown combined
for the NNLO fixed-order comparison in ref. [133]. The labels 0.01, 0.1 and 0.2 in the plots refer to
the value of xmax.

in addition to the large scale uncertainties6 of 10 − 20% also PDF uncertainties and un-
known non-perturbative effects contribute, as well as a small effect from neglected matching
corrections.

∆φ distribution. In figure 24 we compare our predictions with ATLAS data for the
∆φ(ll, γ) observable. The first panel shows the absolute distributions, the middle panel
the ratio to our matched prediction with xmax = 0.01, and the bottom panel the ratio
to data with scale uncertainties for our predictions and experimental uncertainties for the
measurement, respectively.

With this observable it becomes clear that with xmax = 0.2 we are tapping into a
region where the resummation breaks down. This is most visible in the first bin, where
the matched results should agree with the fixed-order prediction. Instead one sees a 10%
difference. The first bin corresponds to azimuthally aligned Z and γ, which due to the
fiducial cuts have to recoil against at least ∼ 60 GeV. This is exactly the region where
the resummation breaks down and which a transition function with xmax = 0.2 includes.

6The uncertainty is asymmetric in the first bin because we do not vary the resummation scale into the
non-perturbative regime.
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While this is effect is most prominent for the first bin, also the larger azimuthal angles are
affected at the percent-level. The effect worsens quickly with an even later transition.

The transitions with xmax = 0.1 and xmax = 0.01 ensure that the region where the re-
summation breaks down is excluded with negligible remaining effects. Therefore fixed-order
and matched results agree up to ∆φ = 0.9 · π. The benefits of the qT resummation come
into play in the last two bins, which are stabilized compared to the differentially diverging
fixed-order prediction. Our prediction does not directly agree with the measurement at
large ∆φ, but PDF uncertainties and non-perturbative effects are not yet included. In this
region, the differential parton-to-particle correction used by ATLAS might be used as an
estimate of non-perturbative effects. Including it would lead to better agreement with the
data, at least in this region.

We present PDF uncertainties for the qT and ∆φ distributions in figure 26 in the
appendix A.

4 Conclusions

The transverse momentum of electroweak bosons is one of the cornerstone observables at
the LHC and future colliders. It constitutes a precision probe of the Standard Model and
is therefore one of the key observables to find or constrain new physics. The experimental
precision reached today ranges from the per-mille level for Z production, to the percent level
for many diboson processes. While for Higgs production the uncertainties are currently
still large, also these will diminish with more luminosity in the future. Such high-precision
measurements are a huge challenge for theory that we help addressing with this study.

We presented a framework for qT resummation at N3LL+NNLO for color-singlet pro-
cesses based on a factorization theorem in SCET. Our implementation CuTe-MCFM provides
precise predictions with uniform accuracy at small and large qT through a systematic power
counting in αs and large logarithms. Predictions can be calculated for the boson processes
W±, Z,H , as well as for the diboson processes γγ, Zγ, ZH and W±H. These resummed
and matched predictions are fully differential in the Born kinematics including decays and
therefore also provide predictions for other observables benefiting from resummation at
small qT . Uncertainties from the perturbative QCD truncation, resummation, and PDFs
can be evaluated efficiently using the possibility to pre-generate beam-function grids.

We first benchmarked our predictions for inclusive Z and H production with the code
CuTe and then directly compared with fiducial experimental data for Z, W , γγ and Zγ

production. For γγ our results improve upon previous predictions at a lower logarithmic
accuracy, and for Zγ we presented novel results, previously only available at fixed-order
accuracy. For Z production, we observe excellent agreement at the few-percent level with
the experimental measurements. The agreement is also quite good for W and Zγ pro-
duction, while there are some tensions for diphoton production, which would likely ease
after including α3

s fixed-order corrections at large qT . For Higgs production, where experi-
mental uncertainties in the qT distribution are still large, we have presented results in the
H → γγ decay channel with realistic fiducial cuts as a first application. Furthermore, also
the processes W±H and ZH can be calculated at N3LL+NNLO with our code, which could
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become useful in the high-luminosity phase of the LHC. While observables related to qT
were resummed at higher accuracy for these processes [136–138], transverse momentum
resummation has to our knowledge only been carried out at NLL [139].

All of our results are shown with estimates of higher-order effects through scale vari-
ations of the hard scale, renormalization scale, factorization scale and resummation scale.
We furthermore presented and discussed PDF uncertainties. We transition to fixed-order
predictions at large qT through a simple sigmoid-type function which can easily be var-
ied. Through this variation we estimated the uncertainty on the matching to fixed-order
predictions.

We find that matching corrections are suppressed by q2
T for processes without photon

isolation, if recoil effects are taken into account. For photon processes we showed that the
necessary isolation requirements enhance the matching corrections and studied the form
of the leading-order power corrections analytically and numerically. In the case of soft
gluons radiated into the isolation cone, previous results are available that predict a power
dependence on the smooth-cone isolation parameter n, which we confirm. For the power
corrections associated with quark fragmentation, we find that they are always first order
in qT and are not suppressed by the size of the isolation cone. Therefore, the resulting
presence of large power corrections can make it difficult to find a window in which the
fixed-order and resummed predictions are both valid and can be matched reliably.

While our implementation is part of MCFM, the resummation code is highly modular
and could easily be decoupled and interfaced to other codes supplying the fixed-order
process-dependent pieces, i.e. the hard function for the resummation itself, and the process
with additional radiation recoiling at large qT . Our code CuTe-MCFM will be made publicly
available shortly.

Using our existing framework one could, with limited effort, match with α3
s predictions

at large qT [98, 120, 140–142] to provide predictions at N3LL′+N3LO. To do so, one will
need to implement the recently computed three-loop beam functions [143, 144]. However,
apart from the case of Higgs and Drell-Yan production this would mean neglecting the α3

s

hard function. We could furthermore easily include non-perturbative effects either through
a form-factor modification in the resummation or through swapping out the beam functions
for transverse-momentum dependent PDFs. With this, even fits for these generalized PDFs
can be envisioned as long as precise control over matching corrections is maintained when
they are sizeable at small qT . The inclusion of electroweak effects in the resummation and
in fixed-order results is another issue that should be tackled together with other higher-
order effects. For Higgs production the inclusion of heavy-quark mass effects is another
interesting avenue to pursue.
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A PDF uncertainties

In this appendix we present plots with PDF uncertainties for diphoton and for Zγ

production. We evaluate these for the following NNLO PDF sets with fixed value of
αs(mZ) = 0.118: ABMP16 [102], CT14 [103], CT18 [104], MMHT2014 [105], NNPDF30 [107]
and NNPDF31 [108] interfaced to LHAPDF [96]. Overall the PDF uncertainties are broadly
at the few percent level, but can become larger when taking into account multiple sets. The
individual central values are mostly compatible within mutual uncertainties. The ABMP16
set is not defined below scales of µ = 4.47 GeV and breaks down with the default grid-based
interpolation in LHAPDF. In principle one could switch to DGLAP evolution to circumvent
this or use a larger minimum scale of 4.47 GeV in CuTe-MCFM.
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Figure 25. PDF uncertainties for the qT , φ∗ and ∆φ distributions in figures 18, 19 and 20. The
ABMP16 set is not defined below µ = 4.47 GeV, which can be seen as breakdown in the prediction.
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Figure 26. PDF uncertainties for the qT (a) and ∆φ (b) distributions in Zγ production correspond-
ing to the distributions with experimental selection cuts in figure 23 and figure 24, respectively. The
ABMP16 grid is not defined below µ = 4.47 GeV, which can be seen as breakdown in the prediction.
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