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1 Introduction

The nature of dark matter (DM) and its possible interactions with the fields of the Stan-
dard Model (SM) is an ever-growing mystery. Historically, Weakly Interacting Massive
Particles(WIMPs) [1], which are thermal relics in the ∼ few GeV to ∼ 100TeV mass range
with roughly weak strength couplings to the SM, and axions [2, 3] were considered to be the
leading candidates for DM as they naturally appeared in scenarios of physics beyond the
Standard Model (BSM) that were constructed to address other issues. Important searches
for these new states are continuing to probe ever deeper into the remaining allowed param-
eter spaces of these respective frameworks. However, the null results so far have prompted
a vast expansion in the set of possible scenarios [4, 5] which span a huge range in both
DM masses and couplings. In almost all of this model space, new forces and, hence, new
force carriers must also exist to mediate the interactions of the DM with the SM which are
necessary to achieve the observed relic density [6]. One way to classify such interactions
is via “portals” (see, for example, [7–14]; for a general overview and introduction to this
framework, see [15]) of various mass dimension that result from integrating out some set
of heavy fields; at the renormalizable level, the set of such portals is known to be quite
restricted [7–21]. In this paper, we will be concerned with the implications of the vector
boson/kinetic mixing (KM) portal, which is perhaps most relevant for thermal DM with a
mass in the range of a ∼ few MeV to ∼few GeV and which has gotten much attention in the
recent literature [16–21]. In the simplest of such models, a force carrier (the dark photon, a
gauge field corresponding to a new gauge group, U(1)D under which SM fields are neutral)
mediates the relevant DM-SM interaction. This very weak interaction is the result of the
small KM between this U(1)D and the SM hypercharge group, U(1)Y , which is generated
at the one-(or two)-loop level by a set of BSM fields, called portal matter (PM) [16–27],
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which carry charges under both gauge groups. In the IR, the phenomenology of such mod-
els is well-described by suitably chosen combinations of only a few parameters: the DM
and dark photon masses, mDM,V , respectively, the U(1)D gauge coupling, gD and ε, the
small dimensionless parameter describing the strength of the KM, ∼ 10−(3−4). Frequently,
and in what follows below, this scenario is augmented to also include the dark Higgs bo-
son, whose vacuum expectation value (vev) breaks U(1)D thus generating the dark photon
mass. This introduces two additional parameters with phenomenological import: the dark
Higgs mass itself and the necessarily (very) small mixing between the dark Higgs and the
familiar Higgs of the SM. Successfully extending this scenario to a completion in the UV
while avoiding any potential issues that can be encountered in the IR remains an interesting
model-building problem.

Extra dimensions (ED) have proven themselves to be a very useful tool for building
interesting models of new physics that can address outstanding issues that arise in 4-D [28–
33]. In a previous pair of papers [34, 35], hereafter referred to as I and II respectively, we
considered the implications of extending this familiar 4-D kinetic mixing picture into a
(flat) 5-D scenario where it was assumed that the DM was either a complex scalar, a Dirac
fermion or a pseudo-Dirac fermion with an O(1) mass splitting. In all cases we found
some unique features of the 5-D setup, e.g., the existence of strong destructive interference
between the exchanges of Kaluza-Klein (KK) excitations of the dark photon allowing for
light Dirac DM, which is excluded by CMB [36–38] constraints in 4-D, new couplings of
the split pseudo-Dirac states to the dark photon that avoids co-annihilation suppression
found in 4-D [39, 40], or the freedom to choose appropriate 5-D wave function boundary
conditions, etc., all of which helped us to avoid some of the model building constraints
from which the corresponding 4-D KM scenario can potentially suffer.

The general structure of the model setups considered previously in I and II followed
from some rather basic assumptions: (i) The 5-D space is a finite interval, 0 ≤ y ≤ πR,
that is bounded by two branes, upon one of which the SM fields reside while the dark
photon lives in the full 5-D bulk. This clearly implies that the U(1)D − U(1)Y KM must
solely occur on the SM brane. The (generalization of) the usual field redefinitions required
to remove this KM in order to obtain canonically normalized fields then naturally leads
to the existence of a very small, but negative brane localized kinetic term (BLKT) [41–47]
for the dark photon which itself then leads to a tachyon and/or ghost field in its Kaluza-
Klein (KK) expansion. We are then led to the necessary conclusion that an O(1) positive
BLKT must already exist to remove this problem; the necessity of such a term was then
later shown to be also very useful for other model building purposes. (ii) A simple way
to avoid any significant mixing between SM Higgs, H, and the dark Higgs, S which is
employed in 4-D to generate the dark photon mass, is to eliminate the need for the dark
Higgs to exist. This then removes the necessity of fine-tuning the parameter λHS in the
scalar potential describing the ∼ S†SH†H interaction in order to avoid a large branching
fraction for the invisible width for the SM Higgs, H [48–55].1 As is well known, one can

1We note that this method of avoiding a dark Higgs while maintaining a massive dark photon is hardly
unique. For example, a Stuckelberg mass may be introduced, as discussed in a different region of parameter
space in the second reference of [7–15]. However, the method employed in I and II (and here) affords
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employ appropriate (mixed) boundary conditions on the 5-D dark photon wave function
on both branes to break the U(1)D symmetry and generate a mass for the lowest lying
dark photon KK mode [56, 57] without the presence of the dark Higgs. These boundary
conditions generically have the form (in the absence of BLKTs or other dynamics on either
brane) v(y)|1 = 0, ∂v(y)|2 = 0 where v is the 5-D dark photon wavefunction, y describing
the co-ordinate in the new extra dimension as above and |i implies the evaluation of the
relevant quantity on the appropriate brane. Since the SM exists and the corresponding
KM happens on one of these branes, it is obvious the v cannot vanish there, so we identify
the location of the SM with brane 2. It is then also obvious that the DM itself cannot live
on brane 1 otherwise it would no longer interact with either the dark photon or, through
it, with the SM, so the DM must also reside in the bulk, have its own set of KK excitations
and, for phenomenological reasons, its own somewhat larger BLKT along with constrained
boundary conditions. While allowing us to successfully circumvent some of the possible
problems associated with analogous 4-D setup, this arrangement leads to a rather unwieldy
structure. Can we do as well (or better) with a less cumbersome setup? This is the issue
we address in the current paper.

The complexity of the previously described structure follows directly from (ii), i.e.,
employing boundary conditions to break U(1)D so that there is no dark Higgs-SM Higgs
mixing (as there is no dark Higgs with which to mix). In the present analysis, we consider
an alternative possibility which also naturally avoids this mixing in an obvious way, i.e.,
localizing the dark Higgs as well as the DM on the other, non-SM (i.e., dark) brane with only
the dark photon now living in the full 5-D bulk to communicate their existence to us. Thus,
keeping (i) but with the breaking of U(1)D on the dark brane via the dark Higgs vev, we
eliminate the need for KK excitations of the DM field while also disallowing any tree-level
dark Higgs-SM Higgs mixing, and thus significantly diminishing the phenomenological role
of the dark Higgs itself as we will see below. In what follows, we will separately consider
and contrast both flat as well as the warped [32, 58–61] versions of this setup in some
detail assuming that the DM is a complex scalar field, φ, which does not obtain a vev.
This choice, corresponding to a dominantly p-wave annihilation via the spin-1 dark photon
mediator to SM fermions, allows us to trivially avoid the constraints from the CMB while
still recovering the observed relic density [62–65].2 As we will see, in addition to the IR
parameters noted above and suitably defined here in the 5-D context, only 2(3) additional
parameters are present for the flat (warped) model version, these being the SM brane
BLKT for the dark photon, τ , and size of the mass term, mV . In the warped version, as is
usual, the curvature of the anti-deSitter space scaled by the compactification radius, kR, is
also, in principle, a free parameter. Here, however, the value of this quantity is roughly set

far greater model-building flexibility than a Stuckelberg mechanism construction. We could, for instance,
implement a non-Abelian dark gauge group using the extra-dimensional setup in I and II, which would be
impossible if we assumed a Stuckelberg mass for the dark photon.

2While it was demonstrated in II that under certain conditions, the CMB constraints on s-channel
fermionic DM annihilation might be avoided, these setups are dramatically more complicated than simply
assuming that the DM is a complex scalar. To keep the construction here as simple as possible, we restrict
our discussion to the scalar case and leave a detailed exploration of analogous fermionic DM models with
an s-wave annihilation process to future work.
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by the ratio of the weak scale, ∼ 250GeV, to that associated with the dark photon mass,
∼ 100MeV, i.e., kR ∼ 1.5−2. In what follows, an O(1) range of choices for the values of all
of these quantities will be shown to directly lead to phenomenologically interesting results.
Unlike in the previous setups, now the boundary conditions applied to wavefunction v(y)
will be significantly relaxed so that requirement of at least one of v(y = 0, πR) = 0 is no
longer a problem, and the values of these wavefuctions will be determined by the values of
the parameters mV (τ) on the dark (SM) brane.

The outline of this paper is as follows: in section 2, we present the construction of this
model while remaining agnostic to the specific geometry of the extra dimension, while in
section 3 we specialize our discussion to the case in which the extra dimension is flat and
present a detailed analysis of this scenario. In section 4, we present an analogous discussion
of the model in the case of a warped extra dimension, with appropriate comparison to the
results from the flat case scenario. Section 5 contains a summary and our conclusions.

2 General setup

Before beginning the analysis of the current setup, we will very briefly review the formalism
from I that remains applicable, generalizing it slightly to incorporate either a flat or warped
extra dimension.

2.1 Field content and Kaluza-Klein decomposition

As noted in the Introduction, we consider the fifth dimension to be an interval 0 ≤ y ≤ πR
bounded by two branes; for definiteness we assume that the entirety of the SM is localized
on the y = 0 brane, while the dark matter (DM) field (which we shall refer to as φ) and the
dark Higgs (which we shall refer to as S) are localized on the opposite brane at y = πR.
For a flat extra dimension, this assignment of branes is arbitrary, however we shall see that
it has some physical motivation in the warped case. For clarity, we depict the localization
of the different fields in the model in figure 1. It should be noted that although both φ and
S are complex scalars localized on the dark brane, they must be separate fields. This is in
order to avoid potential pitfalls related to DM stability: if φ were to serve as both the dark
matter and dark Higgs, then the physical DM particle could decay via a pair of virtual dark
photons into SM particles, requiring draconian constraints on DM coupling parameters in
order to maintain an appropriately long lifetime. This phenomenon is discussed in greater
detail in the discussion of Model 2 in I, where the additional complexity added by making
φ a bulk field allows for sufficient model-building freedom to circumvent these constraints.
However, as our DM field φ is brane-localized in this construction, the methods outlined
in that work are not applicable here, and we are forced to assume that φ acquires no vev
and posit a separate dark Higgs, S, to break the dark gauge symmetry.

The metric of our 5-dimensional model is assumed to take the form,

ds2 = f(y)2 ηµνdx
µdxν − dy2, (2.1)

where f(y) is simply some function of the bulk coordinate y: for a flat extra dimension,
f(y) = 1, while for a Randall-Sundrum setup [32], f(y) = e−ky, where k is a curvature
scale. The dark photon, described by a gauge field V̂A(x, y) lies in the full 5-D bulk, and
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y=π R

Brane 1 (Dark)
S, ϕ

y=0

Brane 2 (SM)

SM, KM

V

Figure 1. A simple diagram overviewing the construction of our model. The fields φ and S,
representing the complex scalar dark matter (DM) and the dark Higgs, respectively, are localized
on Brane 1 (the “dark brane”) at y = πR. The Standard Model (SM) and kinetic mixing (KM)
terms are localized on Brane 2 (the “SM brane”) at y = 0. The bulk contains only one field, the
dark photon V .

kinetically mixes with the 4-D SM hypercharge gauge field B̂µ(x) on the SM brane via a
5-D kinetic mixing (KM) parameter ε5D as described (before symmetry breaking) by the
action

S =
∫
d4x

∫ πR

0
dy

[
− 1

4
(
V̂µν V̂

µν − 2f(y)2(∂µV̂y − ∂yV̂µ)(∂µV̂ y − ∂yV̂ µ)
)

(2.2)

+
(
− 1

4B̂µνB̂
µν + ε5D

2cw
V̂µνB̂

µν + LSM

)
δ(y)

]
,

where cw = cos(θw), the weak mixing angle, Greek indices denote only the 4-dimensional
vector parts of the gauge field V̂ , and V̂y denotes the fifth component of this field. Since
spontaneous symmetry breaking takes place on the dark brane via the vev of the dark Higgs,
S, we know [66–68] that in the Kaluza-Klein (KK) decomposition the 5th component of
V̂A (which does not experience KM) and the imaginary part of S combine to form the
Goldstone bosons eaten by V̂ to become the corresponding longitudinal modes. So, we
are free in what follows to work in the Vy = 0 gauge, at least for the flat and Randall-
Sundrum-like geometries that we are considering here. Then the alluded-to relevant KK
decomposition for the 4-D components of V̂ is given by3

V̂ µ(x, y) = 1√
R

∞∑
n=1

vn(y)V̂ µ
n (x) , (2.3)

where we have factored out R−1/2 in order to render vn(y) dimensionless. To produce a
Kaluza-Klein tower, then we will require that the functions vn(y) must satisfy the equation
of motion

∂y[f(y)2 ∂yvn(y)] = −m2
nvn(y) (2.4)

3Note that n = 1 labels the lowest lying excitation appearing in this sum.
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in the bulk, where here the mn are the physical masses of the various KK excitations.
Defining the KK-level dependent quantity εn = R−1/2ε5Dvn(y = 0), which we see explicitly
depends on the values of the dark photon KK wavefunctions evaluated on the SM brane,
we see that the 5-D KM becomes an infinite tower of 4-D KM terms given by∑

n

εn
2cw

V̂ µν
n B̂µν . (2.5)

As discussed in I, the intuitive generalization of the usual kinetic mixing transformations,
B̂µν = Bµν +

∑
n
εn
cw
V µν
n , V̂ µν → V µν , will be numerically valid in scenarios in which

the infinite sum
∑
n ε

2
n/ε

2
1 is approximately . O(10), and ε1 � 1; in other words, ε1 is

sufficiently small and εn shrinks sufficiently quickly with increasing n. Otherwise, terms of
O(ε21) (at least) become numerically significant and can’t be ignored in the analysis, even
if each individual εn remains small.

In both the cases of a warped and flat extra dimension, the sum
∑
n ε

2
n/ε

2
1 is within

the acceptable range as long as there is a sufficiently large positive brane-localized kinetic
term (BLKT) on the same brane as the SM-dark photon kinetic mixing, as was shown for
flat space in I and will be demonstrated for warped space in section 4. So, by selecting
ε1 ∼ 10−(3−4), as suggested by experiment, within our present analysis we can always
work to leading order in the εn’s, and thus the transformations B̂µν = Bµν +

∑
n
εn
cw
V µν
n ,

V̂ µν → V µν will be sufficient for our purposes in removing the KM.
It is interesting to note that we can see the requirement for a positive brane-localized

kinetic term (BLKT) in our setup more immediately from the action of eq. (2.2). In
particular, as noted in I and the Introduction, making the usual substitution in the 5D
theory to eliminate kinetic mixing (that is, V̂ → V and B̂ → B + ε5D

cw
V̂ ) produces the

small negative BLKT ∼ − ε25D
Rc2

w
mentioned in the Introduction. In this 5-D treatment,

the effective BLKT experienced by the V on the SM brane would therefore be equal to
whatever BLKT existed before mixing, shifted by the mixing-induced negative brane term.
This shift is highly suggestive of the necessity of introducing a positive BLKT to the model
before mixing, in order to avoid the pitfalls associated with negative BLKT’s (for example,
in the case of a flat extra dimension, negative BLKT’s such as this are well known to
lead to tachyonic KK modes or ghost-like states); the BLKT before mixing is applied
must be large enough that the effective term after mixing is non-negative. In our explicit
treatment of the model’s kinetic mixing, because we only apply field shifts at the level of
the effective 4-D theory, this negative brane term does not appear, but the requirement for
a positive BLKT instead emerges as a condition to keep the kinetic mixing between the
SM hypercharge boson and an infinite number of KK dark photons small. As will be seen,
such considerations lead to a lower bound on the SM-brane BLKT.

Next, we note that the sum of the brane actions corresponding to the usual (positive)
BLKT for V on the SM brane, which we shall denote by τ , and the corresponding dark
Higgs generated mass term for V on the dark brane, denoted by mV , is given by

Sbranes =
∫
d4x

∫ πR

0
dy

[
− 1

4VµνV
µν · τR δ(y) + 1

2m
2
VR VµV

µ δ(y − πR)
]
, (2.6)

– 6 –



J
H
E
P
0
3
(
2
0
2
1
)
1
7
3

where factors of R have been introduced to make τ dimensionless as usual and for mV

to have the usual 4-D mass dimension. We note that one of the main advantages of our
present setup is that the dark Higgs which generates the brane mass term mV is isolated
from any mixing with the SM Higgs, and as a result, its phenomenological relevance in this
construction is quite limited. Given that it is unstable (from decays via on- or off-shell dark
photons, depending on the dark Higgs and dark photon masses), its most salient effect on
any observables in the theory would be if a process such as φφ† → V (n)∗ → V (m)S were to
dominate the calculation of the DM relic density. While this sort of construction may be
of some interest (for example, [69] discusses a 4D model in a similar parameter space that
may address the recent XENON1T electron recoil excess [70] in which a light dark Higgs
plays such a role4), this effect can be easily suppressed by assuming that the dark Higgs (or
rather, its real component after spontaneous symmetry breaking) has a sufficiently large
mass (slightly greater than twice the DM mass, assuming cold dark matter), rendering
this process kinematically forbidden. As such, for our analysis we can ignore this scalar
and instead simply assume the existence of the brane-localized mass term mV without
further complications. We will define the 4-D gauge coupling of the dark photon to be
that between the DM and the lowest V KK mode as evaluated on the dark brane. The
action Sbranes supplies the boundary conditions, as well as the complete orthonormality
condition, necessary for the complete solutions of the vn. These are(

f(0)2 ∂y +m2
nτR

)
vn(0) = 0,

(
f(πR)2 ∂y +m2

VR
)
vn(πR) = 0 (2.7)

for the boundary conditions, and

1
R

∫ πR

0
dy vn(y)vm(y)(1 + τRδ(y)) = δnm (2.8)

for the orthonormality condition. At this point, once the function f(y) is specified, as
we shall do in sections 3 and 4 for a flat and a warped extra dimension respectively, it is
possible to uniquely determine the bulk wave functions vn(y) for all n given the parameters
R, τ , m2

V , and whatever additional parameters are necessary to uniquely specify f(y).
Beyond discussing characteristics of individual KK modes, we shall find it convenient

at times in our analysis to speak in terms of summations over exchanges of the entire dark
photon KK tower. In particular, the sum

F (y, y′, s) ≡
∑
n

vn(y)vn(y′)
s−m2

n

(2.9)

shall appear repeatedly in our subsequent discussion, where for our purposes here s is
simply a positive number, but in our actual analysis shall denote the Mandelstam variable
of the same name. To evaluate this sum, we can perform an analysis similar to that

4It should be noted that without substantial modifications to our own setup, such as the addition of
mass splitting between the two degrees of freedom of the complex scalar DM field [69] or additional slightly
heavier DM scalars that facilitate the production of boosted φ pairs [71], the XENON1T excess cannot be
explained in the parameter space we are considering. A detailed discussion of how these or other mechanisms
might be incorporated into a 5-D model like that discussed here is beyond the scope of this work.
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of [68, 72]. First, we note that the orthonormality condition of the KK modes in eq. (2.8)
requires that

1
R

∫ πR

0
dy vm(y)vn(y)(1 + τRδ(y)) = δmn (2.10)

→
∑
n

vn(y)vn(y′)(1 + τRδ(y)) = Rδ(y − y′),

where the sum in the second line of this equation is over all KK modes n. We then note
that the equation of motion eq. (2.4) and the y = 0 boundary condition of eq. (2.7) can be
recast in an integral form as

vn(y) = vn(0)−m2
n

∫ y

0
dy1 [f(y1)]−2

∫ y1

0
dy2 vn(y2)(1 + τRδ(y2)) (2.11)

Using this integral form of the equation of motion for vn(y), we can now compute the sum
F (y, y′, s). Combining eqs. (2.10) and (2.11), we can write the integral equation

F (y, y′, s) =
∫ y

0
dy1 f(y1)−2

∫ y1

0
dy2 [Rδ(y2 − y′)− sF (y2, y

′, s)(1 + τRδ(y2))]

+ F (0, y′, s). (2.12)

Eq. (2.12) can be straightforwardly rewritten as a differential equation,

∂y[f(y)2 ∂yF (y, y′, s)] = Rδ(y − y′)− sF (y, y′, s),
∂yF (y, y′, s)|y=0 = −sτRf(0)−2F (0, y′, s), (2.13)

∂yF (y, y′, s)|y=πR = −m2
VRf(πR)−2F (πR, y′, s),

where the y = 0 boundary condition is explicitly in the integral equation eq. (2.12), while
the second is easily derivable from the y = πR boundary condition on vn(y) given in
eq. (2.7). Once a function f(y) (and therefore a metric) has been specified, the function
F (y, y′, s) is then uniquely specified by eq. (2.13).

2.2 Dark photon couplings

With equations of motion for the Kaluza-Klein (KK) modes’ bulk profiles vn(y) and the
summation F (y, y′, s) specified, it is now useful to discuss some general aspects of our
construction’s phenomenology before explicitly choosing a metric. First, we note that the
effective couplings of the nth KK mode of the dark photon to the DM on the dark brane
are given by gDM

n = g5Dvn(y = πR)/
√
R, where g5D is the 5-dimensional coupling constant

appearing in the theory, while recalling that the effective kinetic mixing (KM) parameters
εn are similarly given by εn = ε5Dvn(y = 0)/

√
R. In terms of the value of these parameters

for the least massive KK mode, gD ≡ gDM
1 and ε1, we can then write

gDM
n = gD

vn(y = πR)
v1(y = πR) , (2.14)

εn = ε1
vn(y = 0)
v1(y = 0) .
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Armed with these relationships, our subsequent analysis will treat ε1, gD, and the mass of
the least massive KK dark photon excitation, m1 (which we trade for R), as free parameters
and identify them with the corresponding quantities that appear in the conventional 4-D
KM portal model.

With the dark photon coupling to DM given in eq. (2.14), we now can remind the
reader of the slightly more complex form of the dark photon coupling to SM fermions,
previously derived in I. In particular, once the shift B → B +

∑
n
εn
cw
Vn is applied, the Z

boson undergoes a small degree of mixing with the Vn fields. Once the mass matrix of the
Z boson and the Vn modes is diagonalized again, then to leading order in the ε’s the Vn
fields couple to the SM fermions as

g

cw
twεn

[
T3L

m2
n

m2
Z −m2

n

+Q
c2
wm

2
Z −m2

n

m2
Z −m2

n

]
mn�mZ−−−−−→ eQεn, (2.15)

where Q is the fermion’s electric charge, T3L is the third component of its weak isospin,
mZ is the mass of the Z boson, mn is the mass of the dark photon KK mode Vn, e is the
electromagnetic coupling constant, and cw and tw represent the cosine and tangent of the
Weinberg angle, respectively. As pointed out in I and in eq. (2.15), when mn � mZ , the
coupling in eq. (2.15) simplifies dramatically; we shall find this approximation exceedingly
useful in our subsequent analysis.

We also remind the reader that, as discussed in I, the kinetic and mass mixing of the
dark photon fields with the Z boson results in non-trivial modifications to the Z boson and
SM Higgs phenomenology. In particular, the Z boson gains an O(ε) coupling to the DM,
as well as an O(ε2) correction to its mass. It was pointed out in I that the ε suppression of
these effects keeps them far below present experimental bounds (for example, from precision
electroweak observables for the mass correction and measurements of the invisible Z decay
width for the Z coupling to DM), and given the fact that the Z boson is roughly 102 to 103

times more massive than the lighter dark photon KK modes, this coupling also does not
contribute significantly to the DM relic abundance calculation or direct detection scattering
processes. As a result, we shall ignore these couplings in our subsequent analysis.

Meanwhile, the SM Higgs field H gains two phenomenologically interesting new cou-
plings from this mixing, which may contribute to experimentally constrained Higgs decays
to either a pair of dark photon modes or to a single dark photon mode with a Z. First,
new HZVn couplings emerge of the form,

KHZVn = 2m2
Z

vH

[
twεnm

2
n

m2
Z −m2

n

]
, (2.16)

where vH denotes the SM Higgs vev ∼ 246GeV. Meanwhile, HVnVm couplings emerge of
the form,

KHVnVm = 2m2
Z

vH

[
twεnm

2
n

m2
Z −m2

n

][
n→ m

]
. (2.17)

Notably, the couplings of the Higgs in eq. (2.16) and (2.17) to a given dark photon field Vn
are both proportional to the ratio m2

n/(m2
Z−m2

n), which results in an approximate m2
n/m

2
Z
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suppression when mn � mZ . Given that we are considering the parameter space in which
the lightest dark photon, V1, has a mass of ∼ 100MeV, this term provides extremely strong
suppression of the SM Higgs couplings to the lighter KK modes of V . Given that the εn’s
shrink as n gets very large (as necessitated by the convergence of the sum

∑
n ε

2
n/ε

2
1), and

hence couplings of the Higgs to more massive dark photon KK modes are highly suppressed
by smaller εn’s, the numerical effect of these couplings on the observable physics in the
model is minute, even compared to other ε-suppressed quantities. As a result, and as
discussed in detail for the analogous system in I, the contributions of the couplings in
eqs. (2.16) and (2.17) are many orders of magnitude below the present constraints from
Higgs branching fractions. For example, if we assume that the ε1 = 10−3, m1 = 0.1−1GeV,
our results for the Higgs decay width from processes H → ZVn never exceed O(1) eV for
the model parameter space we discuss in either our flat or warped space constructions.
Meanwhile, the sum of the H → VnVm widths, being doubly suppressed, never achieves a
value of more than O(10−4) eV. Both of these processes represent negligible contributions
to the Higgs decay width, and therefore negligible branching fractions.

2.3 Dark matter phenomenology

To round out our general discussion of this model’s setup and phenomenology, it is useful
to give symbolic results for two quantities that are of particular phenomenological interest
for dark matter within the mass range we are considering, and which can be expressed
in a manner agnostic to the specific functional form of the bulk wavefunctions vn(y) and
the sum F (y, y′, s). In particular, we shall give symbolic expressions for the DM-electron
scattering cross section and the thermally averaged annihilation cross section of DM into
SM particles.5 We note that for the class of models we consider, these represent the
dominant sources of constraints. For example, in [73], constraints from direct detection of
DM particles boosted by cosmic rays are found to be much weaker than conventional DM-
electron scattering constraints in this region of parameter space for a generic 4-D model of
kinetic mixing/vector portal DM.

It should be noted that when performing the computations of the direct detection
scattering and annihilation cross sections, we have made two significant simplifying as-
sumptions: first, we have approximated the coupling of any Kaluza-Klein (KK) dark pho-
ton mode Vn to a given SM fermion species as ≈ eQεn, which, according to eq. (2.15), is
only a valid approximation when mn � mZ , and therefore breaks down if we sum over
the entire infinite tower of KK modes once we reach sufficiently large n. Second, we have
assumed that the contribution of the Z boson exchange to both of these processes is neg-
ligible compared to that of the exchange of KK tower bosons. In practice, both of these
approximations amount to letting mZ → ∞, namely assuming that the Z boson is much
heavier than all KK modes of the dark photon. Numerically, we find that the mZ → ∞
approximation has a negligibly small effect on our results: because the lightest dark photon

5The simple thermal freeze-out treatment here is valid for DM particles of mass & O(MeV), as long as
the force mediator controlling annihilation, in our case the dark photon, is of similarly small mass [75]. In
most of the parameter space this cross section, up to factors of ∼5-40% as we will see below, is identical to
that obtained in well-studied 4-D models.
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modes are approximately 102 to 103 times lighter than the Z boson, and these light modes
also have the numerically largest kinetic mixing, applying the precise dark photon coupling
of eq. (2.15) and including the effects of Z boson exchanges in these computations serves
only to significantly complicate our symbolic expressions while altering the numerical re-
sult at well below the percent level. As such, for the purposes of these computations we
confidently work in the limit where mZ →∞.

First, we note that in the limit where the DM particle φ’s mass mDM is far greater
than the mass of an electron, we can approximate the DM-electron scattering cross section
for direct detection as

σφe = 4αemm
2
e(gDε1)2

∣∣∣∣ F (0, πR, 0)
v1(πR)v1(0)

∣∣∣∣2. (2.18)

To ensure that our DM candidate produces the correct relic abundance, we also must
compute the thermally averaged annihilation cross section for DM into SM particles (which
we shall denote by the symbol σ), weighted by the Møller velocity of the DM particle pair
system vMøl in the cosmic comoving frame [74]. We are careful to note that σ here refers to
the Lorentz-invariant cross section. To find this average, we must integrate σvMøl weighted
by the two Bose-Einstein energy distributions, f(E), of the complex DM fields in the
initial state. As noted in [74], if the freeze-out temperature, TF satisfies xF = mDM/TF &
3− 4 as it will below, we can approximate these Bose-Einstein distributions with Maxwell-
Boltzmann ones, and can employ the following formula to express the thermal average as
a one-dimensional integral,

< σvMøl >= 2xF
K2

2 (xF )

∫ ∞
0

dε ε1/2(1 + 2ε)K1(2xF
√

1 + ε)σvlab, (2.19)

where Kn(z) denotes the modified Bessel function of the second kind of order n, vlab is
the relative velocity of the two DM particles in a frame in which one of them is at rest,
and ε ≡ (s− 4m2

DM)/(4m2
DM), i.e., the kinetic energy per unit mass in the aforementioned

reference frame. This integral can be performed numerically; in our numerical evaluations
here we will assume xF = 20 but note that other values in the 20-30 range give very similar
results. We can proceed now by computing the cross-section for the annihilation of a DM
particle-antiparticle pair into a pair of SM fermions of mass mf and electric charge Qf , in
which case we invoke the following expression for the cross-section of a 2→ 2 process,

σvlab =

√
s(s− 4m2

f )
s(s− 2m2

DM)

∫
dΩ |M|2

(64π2) , (2.20)

where s is the standard Mandelstam variable, mDM is the mass of the DM particle, Ω is the
center-of-mass scattering angle and M is the matrix element for the annihilation process
we are considering. When s is far from any KK mode resonances, we arrive at the result

σvlab = 1
3
g2
Dε

2
1αemQ

2
f

v1(πR)2v1(0)2

(s+ 2m2
f )(s− 4m2

DM)
√
s(s− 4m2

f )
s(s− 2m2

DM)
|F (0, πR, s)|2. (2.21)
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In practice, for both of the specific cases we shall discuss in our analysis, we shall find it
necessary to consider regions of parameter space such that DM annihilation through the
first KK mode enjoys some resonant enhancement [76, 77]. In order to accommodate this
scenario, we have to modify eq. (2.21) slightly, arriving at

σvlab = 1
3
g2
Dε

2
1αemQ

2
f

v1(πR)2v1(0)2

(s+ 2m2
f )(s− 4m2

DM)
√
s(s− 4m2

f )
s(s− 2m2

DM)
(2.22)

×
∣∣∣∣∣F (0, πR, s)− v1(πR)v1(0)

( 1
s−m2

1
− 1
s−m2

1 + im1Γ1

)∣∣∣∣∣
2

,

where Γi is the total width of Vi which we need to calculate as a function of mi. We
note that V1 in particular will be very narrow as Γ1/m1 ' αε21/3 ∼ 10−10 when decays
to DM pairs are not kinematically allowed. Physically, we have simply subtracted the
contribution of the lowest-lying KK mode from the sum F (0, πR, s), where its propagator
appears with its pole mass, and added this contribution again with the Breit-Wigner mass
instead. Since the annihilation of two complex scalars into a pair of fermions through a
vector gauge boson is a p-wave process, and so is v2

rel suppressed at later times (i.e., at lower
temperatures when the DM is moving slowly), we are safe from the previously mentioned
strong constraints on DM annihilation during the CMB at z ∼ 103 [65]. We further note
that if mDM > m1, then we would expect the s-wave process φφ† → 2V1 to be dominant
for unsuppressed values of gD. In order to avoid this possibility, we must then require
that mDM < m1 and this will be reflected in our considerations below. We note that if
m1 > 2mDM then the O(g2

D) decay V1 → φφ† will dominate, otherwise, V1 will decay to
SM fermions with, as noted above, a suppressed O(αε21) decay partial width.

3 Flat space model setup

In order to further explore the phenomenology of our construction, we must now specify the
geometry of the extra dimension, namely by selecting a specific function f(y) in eq. (2.1).
With this determined, we can then straightforwardly find the spectrum of Kaluza-Klein
(KK) gauge bosons Vn, their bulk wavefunctions vn(y), and concrete expressions for the
cross sections of eqs. (2.18) and (2.22). Initially, we shall consider the case of a flat extra
dimension, i.e., f(y) = 1. The equation of motion for the bulk profile vn(y) is then
straightforward; from the generic case given in eqs. (2.4) and (2.7), we quickly arrive at

∂2
yvn(y) = −m2

nvn(y), (3.1)

(∂y +m2
nτR)vn(y)|y=0 = 0,

(∂y +m2
VR)vn(y)|y=πR = 0.

which when combined with the orthonormality condition eq. (2.8) quickly yields the
expressions

vn(y) = An(cos(xFn (y/R))− τxFn sin(xFn (y/R))), (3.2)

An ≡
√

2
π

(
1 + (xFn τ)2 + (1− (xFn τ)2)sin(2πxFn )

2πxFn
+ 2τ

π
cos2(πxFn )

)− 1
2
,

xFn ≡ mnR, aF ≡ mVR,
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where we have defined the dimensionless quantities xFn and aF from combinations of di-
mensionful parameters for the sake of later convenience.6 The allowed values of xFn (and
hence the mass spectrum of the KK tower) are given by the solutions to the equation,

tan(πxFn ) = (a2
F − (xFn )2τ)
xFn (1 + a2

F τ)
. (3.3)

Given the results of eqs. (3.2) and (3.3), we can now examine the behavior of a number of
phenomenologically relevant quantities. To begin, it is useful to get a feel for the numerics
of xF1 , the lowest-lying root of the mass eigenvalue equation eq. (3.3). Since we are free
to choose m1 within the ∼ 0.1− 1GeV mass range of interest, the lowest root xF1 = m1R

tells us the value of the compactification radius R within this setup, hence, the value of
xF1 (aF , τ) is important to consider. In I, where boundary conditions were used to break
U(1)D, the parameter aF is, of course, absent. However, it was found that xF1 in that case
was a decreasing function of τ , as is typical for the effect of brane-localized kinetic terms
(BLKTs), with xF1 (τ = 0) = 1/2. Here, on the other hand, it is the value of aF 6= 0 that
generates a mass for the lowest lying dark photon KK state so that we expect xF1 → 0 as
aF → 0 and thus to grow with increasing aF . The top and bottom panels of figure 2 show
that, indeed, the values of xF1 follow this anticipated behavior. For a fixed value of aF , xF1
decreases as τ increases and for a fixed value of τ , xF1 increases with the value of aF .

Beyond the position of the lowest-lying root of eq. (3.3), the particular spectrum of the
more massive KK modes are obviously of significant interest. A clear phenomenological
signal for the types of models we are considering is the experimental observation of the
dark photon KK excitations, perhaps most importantly that of the second dark photon
KK excitation. Hence, knowing where the ‘next’ state beyond the lowest lying member of
the KK tower may lie is of a great deal of importance, i.e., where do we look for the dark
photon KK excitations if the lowest KK state is discovered? In figure 3 we display the ratio
m2/m1 = xF2 /x

F
1 as a functions of aF , τ and we see that for a reasonable variation of these

parameters this mass ratio lies in the range 3−4. Note that for fixed aF this ratio increases
with increasing τ (mostly since xF1 is pushed lower). Meanwhile, for any fixed value of τ ,
this ratio sharply declines with increasing aF in the region aF . 1 (largely because xF1
itself decreases sharply in this regime), while for aF & 1 the ratio slowly increases with
increasing aF . Non-zero values of aF , τ particularly influence the low mass end of the dark
photon KK mass spectrum as, e.g., aF 6= 0 provides the mass for the lightest KK mode in
the present case. However, beyond the first few KK levels the masses of the dark photon
KK states, in particular the ratio mn/m1 grows roughly linearly with increasing n with a
slope that is dependent on the values of the parameters aF , τ as is shown in figure 4. It is
actually straightforward to see the eventual linear trend of the lines in figure 4 analytically,
using the root equation eq. (3.3). In particular, note that as xFn →∞, eq. (3.3) approaches

tanc(πxFn ) = − τ

π(1 + a2
F τ)

, (3.4)

where tanc(z) ≡ tan(z)/z. It is well known that the difference between consecutive so-
lutions of tanc(z) = C, for some constant C, approaches π for very large z. So, we can

6The label “F” is used here to distinguish these flat space results from those of the warped case which
we will discuss further below.
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Figure 2. (Top) Value of the root xF1 as a function of τ for, from bottom to top, aF = 1, 3/2, 2,
5/2 and 3, respectively. (Bottom) Value of the root xF1 as a function of aF for, from top to bottom,
τ = 1/2, 1, 3/2, 2, 5/2 and 3, respectively.

see that for high-mass KK modes, the difference between consecutive solutions of eq. (3.3)
will approach 1. Hence, the slope of the lines in figure 4 can be easily approximated as
∼ (xF1 )−1, and will therefore exhibit the inverse of the dependence of xF1 on the parame-
ters τ and aF , which we have already observed in figure 2. In addition, we can note that
without taking the ratio of xFn to xF1 , any large-n solution of eq. (3.3) eventually follows
the pattern xFn ≈ n.
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Figure 3. (Top) The mass ratio of the lowest two dark photon KK states, m2/m1 = xF2 /x
F
1 , as

a function of τ for aF = 3 (cyan), 5/2 (magenta), 2 (green), 3/2 (blue), 1 (red), and 1/2 (yellow),
respectively. (Bottom) As in the previous panel, but now as a function of aF assuming τ = 3
(cyan), 5/2 (magenta), 2 (green), 3/2 (blue), 1 (red), and 1/2 (yellow), respectively.

The next quantities of phenomenological relevance are the relative values of the KM
parameters, εn/ε1, and the couplings of the dark photon KK tower states to DM, gnDM/gD;
note that these latter quantities are found to oscillate in sign. Before exploring the numerics
in detail here, it is useful to note that one can get a feel for the behavior of these ratios
by purely analytical methods. In particular, by invoking eqs. (2.14), (3.2), and (3.3), it is
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Figure 4. Approximate linear growth of the relative dark photon KK mass ratio mn/m1 as a
function of n for various choices of (τ, aF ) =(1/2,1/2) [red], (1/2,1) [blue], (1/2,3/2) [green], (1,1/2)
[magenta], (3/2,1/2) [cyan] and (1,1) [yellow], respectively.

possible to derive the expressions(
εn
ε1

)2
=
(
a4
F + (xFn )2

a4
F + (xF1 )2

)
λF , (3.5)

(
gnDM
gD

)2
=
((1 + (xFn )2τ2)(xFn )2

(1 + (xF1 )2τ2)(xF1 )2

)
λF ,

λF ≡
π(1 + (xF1 )2τ2)(a4

F + (xF1 )2) + (1 + a2
F τ)(a2

F + (xF1 )2τ)
π(1 + (xFn )2τ2)(a4

F + (xFn )2) + (1 + a2
F τ)(a2

F + (xFn )2τ)
.

From eq. (3.5), we can readily take the limits of (εn/ε1)2 and (gnDM/gD)2 at large n (and
hence large xFn ≈ n). We arrive at the result that as n→∞(

εn
ε1

)2
→ π(1 + (xF1 )2τ2)(a4

F + (xF1 )2) + (1 + a2
F τ)(a2

F + (xF1 )2τ)
πτ2(a4

F + (xF1 )2)
1
n2 , (3.6)

(
gnDM
gD

)2
→ π(1 + (xF1 )2τ2)(a4

F + (xF1 )2) + (1 + a2
F τ)(a2

F + (xF1 )2τ)
π(1 + (xF1 )2τ2)(xF1 )2 .

From the first expression in eq. (3.6), we see that the ratio (εn/ε1) falls roughly as 1/n
for large n; this result is readily borne out numerically in the top panel of figure 6, where
we also see that even for small n, εn never significantly exceeds the value of ε1, offering
encouraging evidence that the small-kinetic mixing limit we took in section 2 was valid.
More rigorously demonstrating this validity, however, will require the use of sum identities
we shall derive later in this section.

In contrast to the behavior of the effective kinetic mixing terms εn/ε1, the ratio
|gnDM/gD| approaches a constant non-zero value as n → ∞. The precise value of this
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asymptotic limit of the ratio |gnDM/gD| is naturally of quite significant phenomenological
interest: if |gnDM/gDM| is large, one might be concerned that even for a reasonable value
of gD . 1, the DM particle may experience some non-perturbative couplings to the var-
ious KK modes.7 In figure 5, we explore the τ and aF dependence of this asymptotic
coupling limit numerically. Notably, we find that the coupling ratio increases sharply as
aF increases. For comparison’s sake, in both panels of figure 5, we have depicted as a
dashed line the maximum |gnDM/gD| that would be allowed such that all couplings would
remain perturbative (that is, have a structure constant (gnDM)2/(4π) < 1) given a choice
of gD = 0.3, that is, assuming that the coupling of DM to the first KK mode of the dark
photon field has approximately the same coupling constant as the electroweak force. In
the figure then, we see that such a choice of gD is only permitted when aF . 3/2; much
larger and the DM interactions with large-n KK modes become strongly coupled. In both
figures 5 and 6, however, we see that limiting our choice of aF to aF . 3/2 leads to sub-
stantially more modest asymptotic values of |gnDM/gD|, of . 10. Because |gnDM/gD| rises
quadratically (or more accurately, the square of this ratio rises quartically) with increasing
aF , these conditions would be only slightly less restrictive if a somewhat smaller value of
gD, e.g., gD = 0.1 were chosen.

To continue our discussion of the phenomenology of our construction, we must now
also find the sum F (y, y′, s), which we remind the reader is defined in eq. (2.9), for the flat
space case, which we can accomplish by inserting f(y) = 1 into eq. (2.13), yielding

∂2
yF (y, y′, s) = Rδ(y − y′)− sF (y, y′, s),

∂yF (y, y′, s)|y=0 = −sτRF (0, y′, s), (3.7)
∂yF (y, y′, s)|y=πR = −m2

VRF (πR, y′, s),

from which the solution

F (y, y′, s) = R2 [cos(
√
sy<)−R

√
s sin(

√
sy<)][

√
sR cos(

√
s(y> − πR))− a2

F sin(
√
s(y> − πR))]

R
√
s(−a2

F + sR2τ) cos(πR
√
s) + sR2(1 + a2

F τ) sin(πR
√
s)

,

(3.8)

y> ≡ max(y, y′), y< ≡ min(y, y′)

can be straightforwardly derived. We see that, as expected, the sum F (y, y′, s) has poles
whenever s = m2

n, as can be seen from the mass eigenvalue condition eq. (3.3); in other
words, our sum of propagators possesses poles exactly where the individual propagators
have poles. Additionally, equipped with this sum, it is possible to derive in closed form
the sum

∑
n ε

2
n/ε

2
1, which we recall from I and section 2 must be . 10 in order for our

assumption of small kinetic mixing (KM) to be valid. Taking the limit of F (y, y′, s) as
s→ 0, we arrive at the result

−F (y, y′, 0) =
∑
n

vn(y)vn(y′)
m2
n

= R2
( 1
a2
F

+ π

)
− θ(y − y′)Ry − θ(y′ − y)Ry′. (3.9)

7We also note that a large |gn
DM/gDM| may raise concerns about non-convergence of various sums over

all KK modes, such as those that appear in eqs. (2.18) and (2.22), however, as we shall see later in this
section, these sums remain well-defined.

– 17 –



J
H
E
P
0
3
(
2
0
2
1
)
1
7
3

0

10

20

30

40
|g
n
/g
1
|

0.5 1.0 1.5 2.0 2.5 3.0
τ

0

10

20

30

40

|g
n
/g
1
|

0.5 1.0 1.5 2.0 2.5 3.0
aF

Figure 5. (Top) The limit of the ratio |gnDM/gD| as n→∞, as a function of τ for aF = 3 (cyan),
5/2 (magenta), 2 (green), 3/2 (blue), 1 (red), and 1/2 (yellow), respectively. The dashed line
denotes the largest possible ratio such that the couplings of the DM particle to the gauge boson
KK modes remain perturbative for all KK modes in the theory, assuming gD = 0.3 (Bottom) As in
the previous panel, but now as a function of aF assuming τ = 3(cyan), 5/2 (magenta), 2 (green),
3/2 (blue), 1 (red), and 1/2 (yellow), respectively.
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Figure 6. (Top) The ratio εn/ε1 as a function of n for various choices of (τ, aF ) = (1/2, 1/2) [red],
(1/2,1) [blue], (1/2,3/2) [green], (1,1/2) [magenta], (3/2,1/2) [cyan], and (1,1) [yellow], respectively.
(Bottom) Same as the top panel but now for the absolute value of the strength of the nth KK
coupling of the dark photon to DM in units of gD. Note that this quantity alternates in sign.

– 19 –



J
H
E
P
0
3
(
2
0
2
1
)
1
7
3

Differentiating this sum with respect to y at y = 0 and applying the SM-brane boundary
condition given in eq. (3.1), we rapidly arrive at∑

n

vn(0)2 = 1
τ

(3.10)

→
∑
n

ε2n
ε21

=
∑
n

vn(0)2

v1(0)2 = 1
τv1(0)2 .

The form of the sum in the second line of eq. (3.10) already then confirms what has
previously been observed in I, namely, that a nontrivial positive BLKT is necessary for
the consistency of our KM analysis. The sum sharply increases to infinity as τ → 0,
indicating that an insufficiently large τ will result in the sum being unacceptably large,
namely & O(10). Furthermore, a negative τ would suggest a still more worrying scenario,
indicating the need for at least one KK state to be ghost-like (have a negative norm
squared). To determine if our kinetic mixing treatment is valid for the full parameter
space we consider, we depict the sum

∑
n ε

2
n/ε

2
1 in figure 7. Our results here explicitly

confirm those observed in I, namely, that for selections of (τ, aF ) such that τ & 1/2, the
summation

∑
n ε

2
n/ε

2
1 remains small enough not to vitiate our treatment of kinetic mixing:

the sum remains . O(10).
Next, we apply the results of eqs. (3.2), (3.3), and (3.8) to find the DM-e− scattering

cross section, to explore the possibility of direct detection of the DM. Inserting eq. (3.8)
into eq. (2.18) yields

σφe = 4αemm2
e(gDε1)2

v1(0)2v1(πR)2
R4

a4
F

(3.11)

= 4αemm2
e(gDε1)2

v1(0)2v1(πR)2
(xF1 )4

m4
1a

4
F

,

where in the second line we have substituted the parameter m1, the mass of the lowest-
lying KK mode of the dark photon field, for the compactification radius R. We can now
suggestively rewrite this expression as

σφe = (2.97× 10−40 cm2)
(100 MeV

m1

)4(gDε1
10−4

)2
ΣF
φe, (3.12)

ΣF
φe ≡

(xF1 )4

v1(0)2v1(πR)2a4
F

=
∣∣∣∣ ∞∑
n=0

(xF1 )2vn(0)vn(πR)
(xFn )2v1(0)v1(πR)

∣∣∣∣2.
Note here that the quantity ΣF

φe depends only on the model parameters (τ, aF ), while
the rest of the expression above is independent of them. While the closed form of ΣF

φe is
convenient for calculation, we have also included an explicit expression for this quantity
in terms of an infinite sum over KK modes — notably, because the quantity gnDMεn (or
alternatively, vn(πR)vn(0)) alternates in sign and decreases sharply with increasing n, we
can see in figure 8 that the sum rapidly converges, coming within O(10−2) corrections to
the value of the closed form of ΣF

φe even when the sum is truncated at n = 10.
Looking at the numerical coefficient of ΣF

φe in eq. (3.12), meanwhile, we see that for
m1 ∼ O(100 MeV) and gDε1 ∼ 10−4, the DM-e− scattering cross section easily avoids
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Figure 7. (Top) The sum
∑
n ε

2
n/ε

2
1 over all n, as a function of τ for aF = 3 (cyan), 5/2 (magenta),

2 (green), 3/2 (blue), 1 (red), and 1/2 (yellow), respectively. (Bottom) As in the previous panel,
but now as a function of aF assuming τ = 3 (cyan), 5/2 (magenta), 2 (green), 3/2 (blue), 1 (red),
and 1/2 (yellow), respectively.
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Figure 8. The explicit KK sum form of ΣFφe defined in eq. (3.12), which encapsulates the depen-
dence of the DM-electron scattering cross section on parameters of the model of the extra dimension,
where only terms coming from the first n KK modes are included in the sum, for the choices of
(τ, aF ) =(1/2,1/2) [red], (1/2,1) [blue], (1/2,3/2) [green], (1,1/2) [magenta], (3/2,1/2) [cyan] and
(1,1) [yellow], respectively.

current direct detection constraints as long as the quantity ΣF
φe ≤ 1 [78–82], although it

does lie within the possible reach of future experiments such as SuperCDMS [80]. An-
ticipating that mDM ≈ m1/2 (which we shall shortly see is necessary in order to enjoy
the resonant enhancement of the annihilation cross section we require to recreate the relic
density), we note that if we assume gDε1 = 10−4, the quantity σφe/ΣF

φe (that is, the direct
detection cross section divided by the variable which parameterizes the parameters related
to the geometry of the extra dimension) is at least an order of magnitude below the most
stringent boundaries of [78–82] for any m1 & O(a few) MeV. So, our sole remaining task
to demonstrate that this model escapes direct detection bounds is to demonstrate that
ΣF
φe ≤ O(1).

We can see that ΣF
φe does in fact stay below O(1) for a broad range of parameters

in figure 9; for every choice of (τ, aF ) that we are considering here, ΣF
φe lies between 0.6

and 0.9 implying that the KK states lying above the lightest one do not make critical
contributions to this cross section. Hence, this model can easily evade present DM direct
detection constraints for reasonable choices of m1 ∼ 100 MeV and gDε1 ∼ 10−4.

Our brief phenomenological survey of the flat space scenario now concludes with a dis-
cussion of the thermally averaged annihilation cross section at freeze-out, that is, demon-
strating that this construction is capable of producing the correct relic density of DM in
the universe. To begin, we insert eq. (3.8) into the expression for the φ†φ → ff̄ (where
f is some fermion species) velocity-weighted annihilation cross section of eq. (2.22). This
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Figure 9. (Top) The sum ΣFφe defined in eq. (3.12), which encapsulates the dependence of the DM-
electron scattering cross section on parameters of the model of the extra dimension, as a function
of τ for aF = 3 (cyan), 5/2 (magenta), 2 (green), 3/2 (blue), 1 (red), and 1/2 (yellow), respectively.
(Bottom) As in the previous panel, but now as a function of aF assuming τ = 3 (cyan), 5/2
(magenta), 2 (green), 3/2 (blue), 1 (red), and 1/2 (yellow), respectively.
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yields the result

σvlab = 1
3
g2
Dε

2
1αemQ

2
f

v1(πR)2v1(0)2

(s+ 2m2
f )(s− 4m2

DM)
√
s(s− 4m2

f )R4

s(s− 2m2
DM)

(3.13)

×
∣∣∣∣∣ 1
R2F (0, πR, s)− v1(πR)v1(0)

sR2 − (xF1 )2 + v1(πR)v1(0)
sR2 − (xF1 )2 + i(xF1 )RΓ1

∣∣∣∣∣
2

,

1
R2F (0, πR, s) = 1

(−a2
F + sR2τ) cos(πR

√
s) +R

√
s(1 + a2

F τ) sin(πR
√
s)
.

We can then use this expression in the single integral formula for a thermally averaged
annihilation cross section given in eq. (2.19), and compare the results to the approximate
necessary cross section to reproduce the (complex) DM relic density with a p−wave an-
nihilation process, namely ' 7.5 × 10−26 cm3/s [83].8 We note that this quantity is the
only one in our analysis which has any direct dependence on the mass of the DM, mDM,
(assuming, as we do, that the DM particle’s mass is substantially greater than that of the
electron). In fact, because we must rely on resonant enhancement in order to achieve the
correct relic density, we see that with all the other parameters fixed our results for the
thermally averaged cross section are extremely sensitive to mDM and largely agnostic to
differing choices of (τ, aF ). In figure 10, we depict the thermally averaged velocity-weighted
cross section as a function of the DM mass mDM, requiring, as we have argued must be
the case in section 2, that mDM < m1. For demonstration purposes, we have selected that
m1 = 100 MeV, xF = mDM/T = 20, gD = 0.3, (gDε1) = 10−4 (where our choices of m1
and ε1 have been informed by the constraints on direct detection), and have included only
the possibility of the DM particles annihilating into an e+e− final state.

Notably, the cross sections depicted are largely independent of the choices of (τ, aF )
near values ofmDM/m1 that produce the correct relic abundance (that is, relatively near the
m1 resonance of the cross section). In fact, for all parameter space points we depict here,
it is possible to produce the correct cross section when mDM ∼ 0.36m1 or mDM ∼ 0.54m1;
however, other values would be required if we also varied m1 or gDε1 By leveraging the
resonance, therefore, our model is clearly able to reproduce the observed relic abundance for
a wide variety of reasonable points in parameter space. We also note that the annihilation
cross section here displays an extremely sharp decline when very close to the resonance
peak. This is a consequence of the total decay width of the first KK excitation of the dark
photon field becoming progressively smaller, as the width of the decay to a pair of DM
particles becomes suppressed by a shrinking phase space factor, eventually approaching 0
when mDM = m1/2. In the absence of a kinematically allowed decay to the DM pairs, the
decay into an electron-positron pair, which has a width of ' αemε

2
1m1/3, or O(10−10)m1

if ε1 ∼ 10−4, becomes the dominant decay channel for the lightest KK mode of the dark
photon field; this state is thus extremely narrow under these circumstances.

8Note that due to the sub-GeV mass of the DM, the familiar required annihilation cross section of
∼ 3× 10−26 cm3/s is inaccurate, as discussed in [83].
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Figure 10. The thermally averaged, velocity-weighted cross section in cm3/s for the annihila-
tion process φ†φ → ff̄ , where the final-state fermions f are electrons, for the choices of (τ, aF )
=(1/2,1/2) [red], (1/2,1) [blue], (1/2,3/2) [green], (1,1/2) [magenta], (3/2,1/2) [cyan] and (1,1)
[yellow], respectively. The dashed line denotes the value for this cross section necessary to produce
the observed relic abundance of DM after freeze out.

4 Warped space model analysis

We now consider the possibility that the extra dimension is not flat, but rather has a
Randall-Sundrum-like geometry with a curvature scale k. In this case, f(y) in the metric
of eq. (2.1) shall be e−ky, but our analysis closely follows that of the flat space scenario.
The warped geometry does, however, necessitate additional care in certain aspects of model
construction, which we should address before moving forward with our discussion.

First, in the warped space scenario, because f(y) is non-trivial, we need two parameters
to describe the metric rather than the single parameter, R, that we used in the flat-space
analysis. We shall find the most convenient parameters with which to describe our metric
are kR, the product of the curvature scale and the compactification radius, and the so-
called “KK mass”, MKK ≡ k exp(−kRπ). Second, unlike the flat-space case, our choice to
place the SM on the y = 0 brane and the DM on the y = πR brane is no longer arbitrary.
Specifically, we note that naturalness suggests that ∼ MKK is a natural scale for mass
terms localized on the y = πR brane, and that the lowest-mass Kaluza-Klein (KK) modes
of any bulk fields should also in general be O(MKK), while the natural scale for mass
terms localized on the y = 0 brane should be ∼ MKKexp(kRπ), which is exponentially
larger [32, 84]. In our construction, then, naturalness suggests that we localize the higher-
scale physics (the SM, with a scale of roughly O(250 GeV)) on the y = 0 brane, and
the lower-scale DM sector with a scale of O(0.1 − 1 GeV) localized on the y = πR brane.
Furthermore, the hierarchy between the two scales roughly sets the value of the product kR,
namely, we must require that e−kRπ ∼ O(0.1− 1 GeV)/O(250 GeV). Thus we will require
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that kR ≈ 1.5− 2. We note in passing, therefore, that in contrast to the flat space model,
the warped space construction offers the aesthetically appealing characteristic of explaining
the mild hierarchy between the brane-localized vev of the SM Higgs and the brane-localized
mass parameters of the DM and dark photon fields appearing on the opposite brane.

With these concerns addressed, we can now move on to determining the bulk profiles
and sums of KK modes required for our analysis. First, we note that the equations of
motion for the bulk profile vn(y) become9

∂y[e−2ky ∂yvn(y)] = −m2
nvn(y), (4.1)

(∂y +m2
nτR)vn(y)|y=0 = 0,

(e−2kRπ ∂y +m2
VR)vn(πR)|y=πR = 0.

The solution to these equations can be written,

vn(y) = Anz
W
n ζ

(n)
1 (zWn ), (4.2)

zWn ≡ xWn ek(y−πR), xWn ≡
mn

MKK
, εWn ≡ xWn e−kRπ

where An is a normalization factor, and the function ζ(n)
ν (z) is given by

ζ(n)
ν (z) ≡ αnJν(z)− βnYν(z), (4.3)

αn ≡ [(Y0
(
εWn
)

+
(
εWn
)
kRτY1

(
εWn
)
],

βn ≡ [(J0
(
εWn
)

+
(
εWn
)
kRτJ1

(
εWn
)
],

with Jν , Yν denoting order-ν Bessel functions of the first and second kind, respectively.
Notice that vn(y) then automatically satisfies its boundary condition at the brane y = 0,
while the allowed values of xWn (and hence the masses of the KK tower modes mn) are then
found with the boundary condition at y = πR, which can be simplified to

xWn ζ
(n)
0 (xWn ) = −a2

W ζ
(n)
1 (xWn ), (4.4)

aW ≡
√
kR

mn

MKK
.

The normalization constant An can be found using the orthonormality relation of eq. (2.8),
yielding

An =
√

2kR[
(zWn )2[ζ(n)

1 (zWn )2 − ζ(n)
0 (zWn )ζ(n)

2 (zWn )]|z
W
n =xW

n

zW
n =εW

n
+ 2τkR(εWn )2ζ

(n)
1 (εWn )2

]1/2 . (4.5)

Using eqs. (4.2) and (4.4), we can now continue on to an exploration of the phe-
nomenology of various KK modes, much as we have done in section 3 for the scenario with

9Here we use the label “W” to denote the values relevant for the warped scenario.
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Figure 11. (Top left) Value of the root xW1 assuming kR = 1.5 as a function of τ for various
choices of aW , from bottom to top, aW = 1/2, 1, 3/2, 2, 5/2 and 3, respectively. (Top right) The
same as the top left, but assuming kR = 2.0 (Bottom left) Value of the root xW1 assuming as a
function of aW for various choices of τ , from top to bottom, (kR)τ = 1/2, 1, 3/2, 2, 5/2 and 3,
respectively. (Bottom right) The same as the bottom left, but assuming kR = 2.0.

a flat extra dimension. We begin, as in the case of flat space, by determining the depen-
dencies of the lowest-lying root of eq. (4.4), xW1 , as a function of the parameters (τ, aW ),
depicted in figure 11. Note that in figure 11 and subsequent calculations, we have elected
to specify the parameter (kR)τ (that is τ scaled by the quantity kR) rather than τ . This
is because in practice, expressions featuring the brane term τ in this setup will always do
so through the quantity (kR)τ ; we therefore find, as has been the case in other work with
Randall-Sundrum brane terms [41–47], that (kR)τ is the more natural parameter to use.

Qualitatively, we observe largely similar behavior for the root xW1 in figure 11 as we
observed in xF1 in figure 2, namely that xW1 . 1 for the range of (τ, aW ) parameters we
probe, and that xW1 increases with increasing aW and decreases with increasing τ . It is
interesting to note that the specific values of xW1 are somewhat sensitive to the specific
value of kR: in particular, when kR = 2.0, the values of xF1 for a given choice of (kR)τ
and aW is approximately 15% lower than these values in a scenario where kR = 1.5.

Next, we discuss the quantity m2/m1, the ratio of the mass of the second KK mode
of the dark photon field to that of the first KK mode; as in our discussion of this ratio
in the flat space scenario, this quantity continues to possess substantial phenomenological
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Figure 12. (Top left) The mass ratio of the lowest two dark photon KK states, m2/m1 = xW2 /xW1
assuming kR = 1.5, as a function of (kR)τ for aW = 3 (cyan), 5/2 (magenta), 2 (green), 3/2 (blue),
1 (red), and 1/2 (yellow), respectively. (Top right) As in the top left, but now assuming kR = 2.0.
(Bottom left) As in the top left, but now as a function of aW assuming (kR)τ = 3 (cyan), 5/2
(magenta), 2 (green), 3/2 (blue), 1 (red), and 1/2 (yellow), respectively. (Bottom right) As in the
bottom left, but assuming kR = 2.0.

importance due to the potential of the second KK mode to be an experimental signal for
the existence of extra dimensions. In figure 12, we depict this mass ratio’s dependence on
the quantities τ and aW . The most salient difference between the results here and those
for the flat space case discussed in section 3 lies in the typical magnitude of the ratio itself:
with a flat extra dimension, we found that reasonable selections for τ and aF resulted in
ratios m2/m1 ∼ 3 − 4. In the warped setup, we find that the same ratio now typically
lies within the range of m2/m1 ∼ 6 − 16. This represents one of the primary distinctions
between the warped and flat constructions, namely, that for a given mass of the lightest
KK mode of the dark photon, m1, the mass of the second KK mode m2 is significantly
greater in the case of a warped extra dimension than it is in the case of a flat one. Beyond
this observation, we also note that changing kR in our computations below has an effect
roughly in line with what we might expect from the results depicted in figure 2, namely,
that a larger value of kR slightly increases the ratio m2/m1, likely because the value of the
root xW1 is somewhat reduced.
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We complete our exploration of the relative masses of various KK modes just as we
have in the flat space scenario, namely, by exploring the growth of mn as n increases. We
depict the results in figure 13 for both kR = 1.5 and kR = 2.0, for various selections of
(kR)τ and aW . The most salient contrast between these results and those in the flat space
analysis again lies in the magnitude of the mass ratio: in the warped setup, mn/m1 increases
significantly more sharply with n than it does in the flat space, such that at large n, typical
values of mn/m1 are approximately three times larger for a warped extra dimension than
they are for a flat one. The dominant share of this discrepancy is determinable from the
mass eigenvalue equation eq. (4.4)– numerically, it can be readily seen that the difference
between successive roots of this equation approaches π as n becomes large, so the eventual
slope of the line depicted in figure 13 should be roughly π(xW1 )−1. This is compared to
the analogous slope in the flat space scenario, which, as discussed in section 3, should be
approximated by (xF1 )−1. Because the typical values of xF1 and xW1 are roughly comparable,
this in turn suggests that the slope of the lines in figure 13 should be steeper by roughly a
factor of O(π) than their flat space counterparts in figure 4. Before moving on, we also note
that the same behavior with increasing kR that we observed in the ratio m2/m1 appears
again as we consider more massive KK modes, namely, that increasing kR will increase the
value of the ratios of heavier KK mode masses to that of the lightest mode.

Having addressed the masses of the various dark photon KK modes, we now move on to
discuss the effective kinetic mixing and DM coupling terms that arise in this construction.
In figure 14, we depict the behavior of the ratios εn/ε1 and |gnDM/gD| as a function of the KK
mode n (we note that once again, as in the flat space scenario, the values of gnDM oscillate
in sign). The results are qualitatively quite similar to the flat space scenario depicted
in figure 6. In particular, we find once again that while εn/ε1 consistently decreases for
large n, |gnDM/gD| again approaches a non-zero asymptotic value. This asymptotic value
for |gnDM/gD|, much like its flat space analogue, can be explored further by semi-analytical
means. By using eqs. (4.2) and (4.4), as well as the identities,

J1(z)Y0(z)− J0(z)Y1(z) = 2
πz
, ζ

(n)
2 (z) = 2

z
ζ

(n)
1 (z)− ζ(n)

0 (z), (4.6)

it is possible to determine that as n becomes very large, the ratio |gnDM/gD| becomes well-
approximated by the expression∣∣∣∣gnDM

gD

∣∣∣∣ ≈ 1
(xW1 )

(
(xW1 )2 + 2a2

W + a4
W − (1 + (kR)2τ2(xW1 )2e−2kRπ)

(
J
)2) 1

2
, (4.7)

J ≡ xW1 J0(xW1 ) + a2
WJ1(xW1 )

J0(xW1 e−kRπ) + (kR)τxW1 e−kRπJ1(xW1 e−kRπ)
.

In figure 15, we depict the dependence of this approximate asymptotic value on τ and aW .
The behavior of this quantity is quite similar to the analogous results figure 5 for the flat
space scenario, in particular, we observe a sharp increase in the ratio here as aW increases,
just as the corresponding ratio in the flat space case increases sharply with increasing
aF . We note that the typical maximum values that we observe in figure 15, however, are
roughly a factor of 2 smaller than those we observed in figure 5, however, as aF and aW are
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Figure 13. (Top) Approximate linear growth of the relative dark photon KK mass ratio mn/m1 as
a function of n assuming kR = 1.5 for various choices of ((kR)τ, aW ) =(1/2,1/2) [red], (1/2,1) [blue],
(1/2,3/2) [green], (1,1/2) [magenta], (3/2,1/2) [cyan] and (1,1) [yellow], respectively. (Bottom) As
in the previous panel, but assuming kR = 2.0.
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Figure 14. (Top left) The ratio εn/ε1, assuming kR = 1.5, as a function of n for various choices of
((kR)τ, aW ) =(1/2,1/2) [red], (1/2,1) [blue], (1/2,3/2) [green], (1,1/2) [magenta], (3/2,1/2) [cyan]
and (1,1) [yellow], respectively. (Top right) The same as the top left, but assuming kR = 2.0
(Bottom left) The ratio gnDM/gD, assuming kR = 1.5, as a function of n for various choices of
((kR)τ, aW ) =(1/2,1/2) [red], (1/2,1) [blue], (1/2,3/2) [green], (1,1/2) [magenta], (3/2,1/2) [cyan]
and (1,1) [yellow], respectively. (Bottom right) The same as the bottom left, but assuming kR = 2.0.

not directly comparable quantities, the significance of this diminished range is not obvious.
Again, as in figure 5, we have included a dashed line which denotes the maximum value
that this ratio can attain such that all gnDM remain perturbative for the choice gD = 0.3;
in this case, we see that such a requirement effectively excludes choices of aW & 2.

Just as in our analysis of the flat space setup, we can now move on from discussing
individual KK modes’ masses and couplings to the basic predictions of phenomenologically
important processes. In order to do this, we must first evaluate the sum F (y, y′, s) (defined
in eq. (2.9) for the warped metric, by solving eq. (2.13) with f(y) = e−ky inserted. We
arrive at the differential equation

∂y[e−2ky ∂yF (y, y′, s)] = Rδ(y − y′)− sF (y, y′, s),

∂yF (y, y′, s)|y=0 = −sτRF (0, y′, s), (4.8)

∂yF (y, y′, s)|y=πR = −m2
VRe

−2kRπF (πR, y′, s).

By defining the variables z ≡ (
√
s/MKK)ek(y−πR) and z′ ≡ (

√
s/MKK)ek(y′−πR), we can
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Figure 15. (Top left) The approximate asymptotic value of |gnDM/gD| given by eq. (4.7) for large
n, assuming kR = 1.5, as a function of (kR)τ for various choices of aW = 3 (cyan), 5/2 (magenta),
2 (green), 3/2 (blue), 1 (red), 1/2 (yellow). (Top right) The same as the top left, but assuming
kR = 2.0 (Bottom left) The approximate asymptotic value of |gnDM/gD| given by eq. (4.7) for large
n, assuming kR = 2.0, as a function of aW for various choices of (kR)τ = 3 (cyan), 5/2 (magenta),
2 (green), 3/2 (blue), 1 (red), 1/2 (yellow). The dashed line represents the maximum value that
this ratio can obtain and still have all KK couplings remain perturbative for gD = 0.3. (Bottom
right) The same as the bottom left, but assuming kR = 2.0.

solve eq. (4.8) in terms of Bessel functions, yielding

F (y, y′, s) = − kRπ

2M2
KK

ek(y+y′−2πR)ξ1(z>)ω1(z<)
zπω0(zπ) + a2

Wω1(zπ)
, (4.9)

ων(z) ≡ [Y0(z0) + τkRz0Y1(z0)]Jν(z)− [J0(z0) + τkRz0J1(z0)]Yν(z),

ξν(z) ≡ [zπY0(zπ) + a2
WY1(zπ)]Jν(z)− [zπJ0(zπ) + a2

WJ1(zπ)]Yν(z),

z> ≡
( √

s

MKK

)
ek(max(y,y′)−πR), z< ≡

( √
s

MKK

)
ek(min(y,y′)−πR),

z0 ≡
( √

s

MKK

)
e−kRπ, zπ ≡

( √
s

MKK

)
.

We note that in this form, it is readily apparent that F (y, y′, s) has poles wherever
√
s is

equal to the mass of a KK mode mn, just as we would expect given the components of its
sum and just as we previously observed in the flat-space sum eq. (3.8).
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With a solution for F (y, y′, s) in hand, we can then replicate our analysis in section 3
to determine whether or not our kinetic mixing treatment is valid in the parameter space
we’re probing, this time applied to the warped space scenario not considered in I. Through
analogous steps to those taken in section 3, we find that the sum

∑
n ε

2
n/ε

2
1 in the case of

warped spacetime is also given by

∑
n

ε2n/ε
2
1 = 1

τv1(0)2 , (4.10)

the only difference from the flat-space result here being the form of the function v1(0).
The τ−1 dependence of this sum suggests the same requirements as the identical flat space
result, then: the brane-localized kinetic term (BLKT) τ must still be large enough so that
its magnitude remains . 10 and positive so that the result does not require the existence
of ghost states. In figure 16, we depict the sum

∑
n ε

2
n/ε

2
1 for different values of τ and aW .

Notably, while the sum is generally within reasonable . 10 limits, when (kR)τ ≈ 1/2,
the sum becomes quite close to, and even somewhat exceeds, 10. While the largest values
of
∑
n ε

2
n/ε

2
1 achieved among the region of parameter space we have explored still aren’t

quite large enough to render ε21 terms in our analysis numerically significant (at least for the
ε1 ∼ 10−(3−4) terms we consider here), the sharp rate of increase they enjoy with decreasing
τ near (kR)τ = 1/2 suggests that probing significantly below this value is unlikely to yield
valid results. On the surface, this may seem to contrast slightly with our results in section 3,
in which we found that restricting τ to values larger than 1/2 stayed roughly . 6. Closer
inspection indicates that this discrepancy can largely be attributed to the use of (kR)τ as
the variable we are employing instead of τ : if one compares the maximum value obtained
by the warped sum at (kR)τ = 3/4 (for kR = 1.5) and (kR)τ = 1 (for kR = 2.0), for which
the variable τ itself is simply 1/2, the results for the sum with both kR values very closely
matches that which was observed in the flat space construction of section 3. Hence, in both
the flat and warped space cases, our setup’s treatment of kinetic mixing easily remains valid
for τ & 0.5, although it should be noted that as kR increases, any boundary from these
perturbativity concerns on the more natural warped-space parameter (kR)τ , which is often
used instead of τ for warped setups [41–47], will become increasingly stringent.

Moving on, it is then straightforward to find the DM-e− scattering cross section by
inserting our results for F (y, y′, s) given in eq. (4.9) into eq. (2.18), arriving at

σφe = 4αemm
2
e(gDε1)2

v1(πR)2v1(0)2
(kR)2

a4
WM

4
KK

= (2.97× 10−40 cm2)
(100 MeV

m1

)4(gDε1
10−4

)2
ΣW
φe, (4.11)

ΣW
φe ≡

(xW1 )4(kR)2

a4
W v1(πR)2v1(0)2 =

∣∣∣∣∣
∞∑
n=0

(xF1 )2vn(0)vn(πR)
(xFn )2v1(0)v1(πR)

∣∣∣∣∣
2

.

Notably, this is the same result (up to a normalization convention of the parameter aW
and, of course, different bulk wave functions v1(y)) that we derived for the flat-space
case eq. (3.11). In particular, the sum F (0, πR, 0) has identical results (again, up to
normalization of aW ) for the flat- and warped-space scenarios. Just as in the flat space
case, the numerical coefficient in front of the quantity ΣW

φe, which now encapsulates all
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Figure 16. (Top left) The value of the sum
∑
n ε

2
n/ε

2
1 over all n assuming kR = 1.5, as a function

of (kR)τ for aW = 3 (cyan), 5/2 (magenta), 2 (green), 3/2 (blue), 1 (red), and 1/2 (yellow),
respectively. (Top right) As in the top left, but now assuming kR = 2.0. (Bottom left) As in the
top left, but now as a function of aW assuming (kR)τ = 3 (cyan), 5/2 (magenta), 2 (green), 3/2
(blue), 1 (red), and 1/2 (yellow), respectively. (Bottom right) As in the bottom left, but assuming
kR = 2.0.

of the cross section’s dependence on the parameters τ and aW , indicates that as long as
ΣW
φe . O(1), the resultant cross section is not constrained by current experimental limits,

although we remind the reader that such cross sections may lie within reach of near-term
future direct-detection experiments. In figure 17, we depict the dependence of ΣW

φe on
various choices of τ and aW ; we find that just as for the flat space case, this requirement
is easily satisfied for every τ and aW we consider.

We also note that the sum over individual KK modes in the computation of ΣW
φe quickly

converges to the closed form expression even when truncated for very low n; as depicted
in figure 18, ΣW

φe, just like its flat space analogue, converges to within O(10−2) corrections
to its exact value even when truncated at n ≈ 10. Hence, just as in the flat space scenario,
exchanges of the lightest few dark photon KK modes dominate the direct detection signal.

Finally, we can conclude our discussion of the warped space scenario by considering the
thermally averaged annihilation cross section of DM particles into SM fermions. Inserting
the relevant value of F (y, y′, s) into eq. (2.22) allows us to derive the DM annihilation
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Figure 17. (Top left) The sum ΣWφe defined in eq. (4.11), which encapsulates the dependence of the
DM-electron scattering cross section on parameters of the model of the extra dimension, assuming
kR = 1.5, as a function of (kR)τ for aW = 3 (cyan), 5/2 (magenta), 2 (green), 3/2 (blue), 1 (red),
and 1/2 (yellow), respectively. (Top right) As in the top left, but now assuming kR = 2.0. (Bottom
left) As in the top left, but now as a function of aW assuming (kR)τ = 3 (cyan), 5/2 (magenta), 2
(green), 3/2 (blue), 1 (red), and 1/2 (yellow), respectively. (Bottom right) As in the bottom left,
but assuming kR = 2.0.

cross-section, σvlab, for the warped space scenario, yielding

σvlab = 1
3
g2
Dε

2
1αemQ

2
f

v1(πR)2v1(0)2

(s+ 2m2
f )(s− 4m2

DM)
√
s(s− 4m2

f )
s(s− 2m2

DM)M4
KK

(4.12)

×
∣∣∣∣∣ 2
πzπ

(
kR

zπω0(zπ) + a2
Wω1(zπ)

)
− v1(πR)v1(0)

(s/M2
KK)− (xW1 )2

+ v1(πR)v1(0)
(s/M2

KK)− (xW1 )2 + ixW1 Γ1/MKK

∣∣∣∣∣
2

,

where we remind the reader that the functions ω0,1(z) are defined in eq. (4.9). Inserting
this result into eq. (2.19), we can straightforwardly obtain the thermally averaged DM
annihilation cross section via numerical integration. Just as in the flat space case, we specify
that mDM = 100 MeV, xF = (mDM/T ) = 20, gD = 0.3, and gDε1 = 10−4, and consider
DM annihilation into an e+e− final state. Our results, depicted in figure 19 along with a
dashed line marking < σv >= 7.5× 10−26 cm3/s, the approximate necessary cross section
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Figure 18. (Top) The value of the sum ΣWφe defined in eq. (4.11), which encapsulates the dependence
of the DM-electron scattering cross section on parameters of the model of the extra dimension,
truncated at finite n, assuming kR = 1.5 for various choices of ((kR)τ, aW ) =(1/2,1/2) [red],
(1/2,1) [blue], (1/2,3/2) [green], (1,1/2) [magenta], (3/2,1/2) [cyan] and (1,1) [yellow], respectively.
(Bottom) As in the previous panel, but assuming kR = 2.0.

to produce the observed DM relic abundance, exhibit substantial similarity with the results
for the flat space scenario given in figure 10; in particular, in both cases the dependence
of the cross section on the BLKT τ and the brane-localized mass parameter mV ∝ aF,W
is extremely limited, and the correct relic abundance is obtained when mDM ≈ 0.36m1 or
mDM ≈ 0.53m1. Of course, as we vary the DM mass and gDε1, other values of m1 will also
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Figure 19. (Top) The thermally averaged annihilation cross section in cm3/s, assuming kR =
1.5 for various choices of ((kR)τ, aW ) =(1/2,1/2) [red], (1/2,1) [blue], (1/2,3/2) [green], (1,1/2)
[magenta], (3/2,1/2) [cyan] and (1,1) [yellow], respectively. (Bottom) As in the previous panel, but
assuming kR = 2.0.

be allowed. In short, for the annihilation cross section at freeze-out, we observe qualitatively
similar behavior in the warped space setup as we do in the flat space scenario: for our
choice of parameters resonant enhancement is necessary in order to realize the correct dark
matter relic density, and the cross section is largely agnostic to specific selections for the
brane-localized kinetic and mass terms for the dark photon field.
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5 Summary and conclusions

In this paper, we have discussed a modification to our previous setup in I and II. In lieu
of imparting mass to the lightest dark photon Kaluza-Klein (KK) modes via dark photon
boundary conditions, which necessitates a bulk DM particle with corresponding KK modes,
our current construction simplifies this structure by reinstating the dark Higgs as a scalar
localized on the opposite brane in the theory from the brane containing the SM, preventing
mixing between the SM and dark Higgs scalars. The DM particle can then be placed on
the same brane as the dark Higgs, removing the additional complication of a KK tower
of DM particles and resulting in substantially simpler phenomenology while still removing
the effects of the dark and SM Higgses mixing.

We then briefly explored the model-building possibilities for this setup in two scenarios,
one with a flat extra dimension and the other with a warped Randall-Sundrum metric, in
particular considering the behavior of the dark photon tower’s mass spectrum, couplings,
and mixing parameters with SM fields, as well as briefly touching on the predictions for
spin-independent direct detection experiments and thermally averaged annihilation cross
sections at freeze-out for various points in parameter space. Exploring the case of a warped
extra dimension in addition to that of a flat one affords us significant additional model-
building freedom; for example, given the same choice for the lightest dark photon KK
mode mass, subsequent KK modes for the warped scenario are approximately ∼ 3 times
heavier than they are in the flat scenario, demonstrating a qualitatively different KK spec-
trum. The ability for warped extra dimensions to generate hierarchies, meanwhile, can be
straightforwardly exploited to naturally explain the mild O(102−3) hierarchy that exists
between the SM Higgs scale and the characteristic mass scales of the dark brane, namely
the masses of the DM and the lightest dark photon KK modes ∼ 0.1− 1GeV.

With this model, we find few parameter space restrictions in either the warped or
flat space constructions. The requirement that every dark photon KK mode’s coupling
to DM remain perturbative provides an upper limit on the DM-brane-localized mass term
mV . In particular, we find that for the flat construction, mV . 1.5R−1, where R is the
compactification radius of the extra dimension, while for warped space, mV . 2MKK/

√
kR,

where MKK is the KK mass in the model and kR ∼ 1.5− 2.0. We also find, in agreement
with I for the flat space scenario and novelly for the case of warped space, that a positive
O(1) value for the SM-brane-localized kinetic term (referred to here as τ) is necessary
in order to ensure the validity of our kinetic mixing analysis (in particular to ensure that
O(ε21) and higher order terms can in fact be safely neglected). For both the flat and warped
space scenarios, however, this constraint is quite mild; requiring τ ≥ 1/2 is sufficient to
satisfy it.

Regarding possible experimental signals, we explicitly consider that of spin-
independent direct detection from scattering with electrons. We find that selecting
gDε1 ∼ 10−4 and m1 ∼ 100 MeV still places the spin-independent direct detection cross
sections in both the flat and warped space constructions at ∼ 10−40cm2, below current
experimental constraints. However, we note that such signals are roughly within the order
of magnitude of the possible reach of near-term future experiments, and are not especially
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sensitive to variations in the brane-localized kinetic and mass terms of the particular extra
dimensional model (in the flat scenario, we see reasonable variation in these parameters
producing at most an approximately 25% change in the value of the direct detection cross
section, while for the warped scenario this variation is approximately 5%). As such, exper-
iments such as SuperCDMS may place meaningful constraints on dark photon KK mode
masses, couplings, and mixings in the near future.

The requirement that the thermally averaged annihilation cross section for the DM
gives rise to the correct DM relic density, meanwhile, substantially constrains our selection
of the relative DM particle mass mDM/m1. In particular, for natural selections of the other
model parameters we see in both the flat and warped scenarios the DM annihilation cross
section must enjoy some resonant enhancement of the contribution from the exchange of
the lightest dark photon KK mode in order to attain a sufficiently large value. Given the
sharpness of the resonance peak, this requirement places a significant constraint on the
mDM; for the choices gDε1 = 10−4, m1 = 100 MeV, and gD = 0.3, mDM must lie near 0.36
or 0.54 of m1 for flat space and 0.36 or 0.53 of m1 for warped space. This cross section
is also notably largely insensitive to differing choices of the brane-localized dark photon
mass mV and the brane-localized kinetic term τ provided m1, gD, and ε1 are kept fixed,
indicating that the exchange of the lightest KK mode is, somewhat unsurprisingly given
its resonant enhancement, of paramount importance as contributors to this process.

Overall, we find that constructing this model within a flat or warped space frame-
work results in little qualitative difference in our results. The most salient potential phe-
nomenological difference lies in the differing relative masses of dark photon KK modes (in
particular, the ratio of the second-lightest dark photon mass to that of the lightest is in
general 3-4 times larger in the Randall-Sundrum-like metric we consider than in the flat
space case), which would have considerable effect on experimental searches for dark pho-
tons in colliders. Otherwise, however, we note that a wide range of natural and currently
phenomenologically viable parameter space is available for both constructions.

As we move forward to explore the possibilities of kinetic mixing in theories of extra
dimensions, we continue to find alternate constructions that allow for phenomenologically
viable models. Here, following the work of I and II, we have presented another, simpler,
construction that utilizes the additional model-building freedom afforded by extra dimen-
sions to ameliorate phenomenological concerns that arise in 4-D kinetic mixing theories.
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