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1 Introduction

Heavy quark (bottom, top) decays are phenomenologically important Standard Model (SM)

processes. A prominent example is the decay b→ sγ. In the SM it is loop-suppressed and

represents a promising window to new physics. In particular, beyond SM interactions due

to flavor changing neutral currents could add a measurable effect on the decay rate of

B → Xsγ on top of the small SM background. In the phenomenologically relevant region

of large photon energies the decay rate Γ(B → Xsγ) factorizes as [1]

dΓ

dEγ
= H(Eγ ,mb, µ)

∫
dωmb J(mb ω, µ)S(∆− ω, µ) +O

(
∆

mb
,

ΛQCD

mb

)
, (1.1)

where ∆ = mb − 2Eγ .1 Within soft-collinear effective theory (SCET) [2–7] this factor-

ization theorem was proven in ref. [5]. The hard function H encodes the short distance

(electroweak) interaction and its virtual quantum corrections at and beyond the hard scale

mb ∼ Eγ . Explicit expressions up to two loops can be found in refs. [8, 9]. The jet func-

tion J describes the collinear radiation in the final state jet initiated by the (massless) s

quark and is governed by the virtuality scale
√
mb∆. In ref. [10] we computed the massless

quark jet function to three-loop order (see also ref. [11]). Finally, S denotes the B-meson

shape function [12, 13] which describes the physics at scales smaller or similar to ∆. For

1For brevity we have absorbed a constant overall factor including electroweak and electromagnetic cou-

plings as well as CKM matrix elements in the hard function H.
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∆ & ΛQCD nonperturbative effects are sizable and one can further factorize S into a purely

perturbative ‘heavy-to-light soft function’ Shl and a nonperturbative shape function F [8]:

S(ω, µ) =

∫
dω′ Shl(ω − ω′, µ)F (ω′) , (1.2)

with
∫

dω F (ω) = 1. The soft function Shl can be expressed as a partonic b-quark matrix

element, see eq. (2.4), and was computed to two-loop order in ref. [14]. The functions J , Shl,

and F vanish when their first argument is negative. This entails finite integration ranges

in eqs. (1.1) and (1.2). The perturbative factorization functions H, J , and Shl depend

individually on the common renormalization scale µ, while the total decay rate in eq. (1.1)

is µ independent to the perturbative order one is working at. The renormalization group

(RG) evolution of the hard, jet, and, soft functions is therefore not independent, but subject

to a consistency relation (which will be relevant later). The combined RG running of the

different functions to the common scale µ eventually resums large logarithms of the ratios

between the hard, jet, and soft (matching) scales µH ∼ mb, µJ ∼
√
mb∆, and µS ∼ ∆.

A factorization theorem analogous to eq. (1.1) also holds for the decay B → Xu`ν̄. In

particular the involved jet and shape functions are the same. The nonperturbative function

F can thus be obtained from a fit to experimental data for the differential spectrum of one

or both decays, see e.g. ref. [15], and then be used for theoretical predictions. For details

we refer to ref. [8]. The current state of the art for such predictions includes resummation

at the primed next-to-next-to-leading logarithmic (NNLL′) level [8, 16], where the NNLL

expression [17] is augmented with the next-to-next-to-leading order (NNLO) corrections to

the factorization functions at their matching scales, i.e. to H(µH), J(µJ), Shl(µS).2 Still,

the uncertainties from missing higher-order perturbative corrections represent a major

contribution to the total error budget [15].

In order to reach N3LL′ accuracy of the decay rate in eq. (1.1) the three-loop corrections

to the hard, jet, and soft, functions along with their anomalous dimensions are required.

Our three-loop calculation of the jet function in ref. [10] represents a first step toward this

goal. In the present paper we calculate the soft function Shl at three loops, while the three-

loop hard function is left for future work. We also give explicit expressions for all three-loop

(noncusp) anomalous dimensions necessary for N3LL(′) resummation in eq. (1.1).

Another possible application of our result is within the context of N -jettiness subtrac-

tions [19, 20]. In its simplest version the latter is an infrared (IR) slicing method which uses

the observable N -jettiness TN [21] as an auxiliary resolution variable for soft and collinear

real emissions. It was employed amongst others to compute the fully-differential decay rate

of the semileptonic top decay t→W+(l+ν)b at NNLO in QCD [22]. In this case the reso-

lution variable is T1 (1-jettiness). For T1 < Tcut the decay rate is given by a factorization

formula analogous to eq. (1.1), but with S = Shl, provided that Tcut is small enough to

neglect O(Tcut/mt) power corrections at the desired precision. For T1 > Tcut there is at

least one additional hard parton in the final state. On the other hand quantum corrections

to this part of the decay rate are only needed at one order lower in the perturbative ex-

pansion. In case of the NNLO t → W+(l+ν)b decay the T1 > Tcut piece can therefore be

2For details and advantages of the primed counting, see e.g. ref. [18].
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computed with standard (numerical) NLO technology. The soft function Shl we calculate

in the present paper equals the soft function in the 1-jettiness factorization theorem for any

heavy-to-light quark decay. The new three-loop contribution is thus a necessary ingredient

for future N3LO calculations of differential decay rates based on the N -jettiness method,

not only for semileptonic top, but also any other heavy-to-light quark decay.

The outline of this paper is as follows. In section 2 we give four (slightly) different def-

initions of the heavy-to-light soft function Shl and show their equivalence. We give details

on our three-loop calculation based on one of these definitions in section 3. In section 4

we present our results for the renormalized soft function and its anomalous dimension. We

also use the latter to check the universal infrared structure of QCD scattering amplitudes

that have a massive quark leg. We briefly summarize our findings in section 5.

2 Definitions

The 1-jettiness soft function for heavy-to-light decays is defined by the vacuum matrix el-

ement

Shl(ω) :=
1

Nc
tr
〈
0
∣∣T [(X+

)†
(0)Y−(0)

]
δ(ω − n·p̂) T

[(
Y−
)†
(0)X+(0)

] ∣∣0〉 , (2.1)

with the soft momentum operator p̂µ and the Wilson lines

X+(x) = P exp

[
ig

∫ 0

−∞
ds v ·A(x+ sv)

]
, (2.2)

Y−(x) = P exp

[
− ig

∫ ∞
0

ds n·A(x+ sn)

]
, (2.3)

where Aµ(x) ≡ Aaµ(x)T a is the (ultra)soft SCET(I) gluon field, vµ is the heavy quark

velocity (v2 = 1), nµ is the light-like jet direction (n2 = 0) and P (P) denotes (anti-)path

ordering of the Aµ including their SU(Nc) color generators T a. The trace in eq. (2.1) is

over color indices, and T[. . .] and T[. . .] represent time- and anti-time-ordered products

of the field operators Aaµ(x), respectively. The argument ω of Shl can be regarded as the

(appropriately normalized) soft contribution to the 1-jettiness observable T1, cf. ref. [21].

The soft function in eq. (2.1) equals the perturbative contribution to the shape function

in eq. (1.2):3

Shl(ω) =
〈
bv
∣∣hv(0) δ(ω + in·D)hv(0)

∣∣bv〉 , (2.4)

where averaging over color and spin of the external HQET b-quark states is understood,

the latter are normalized such that 〈bv|hv(0)hv(0)|bv〉 = 1, hv is the HQET heavy quark

field with velocity v, and Dµ = ∂µ + igAµ(0). This b-quark matrix element was calculated

to O(αs) in refs. [23, 24] and O(α2
s) in ref. [14]. The equivalence to eq. (2.1) can be seen

3In the following we take the decaying heavy quark without loss of generality to be a bottom quark.
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as follows:〈
bv
∣∣hv(0) δ(ω + in·D)hv(0)

∣∣bv〉
=
〈
bv
∣∣hv(0)Y−(0) δ(ω + in·∂)

(
Y−
)†
(0)hv(0)

∣∣bv〉 (2.5)

=
〈
bv
∣∣T [hv(0)Y−(0)

]
δ(ω − n·p̂) T

[(
Y−
)†
(0)hv(0)

]∣∣bv〉 (2.6)

=
〈
b(0)v
∣∣h(0)v (0) T

[(
X+

)†
(0)Y−(0)

]
δ(ω − n·p̂) T

[(
Y−
)†
(0)X+(0)

]
h(0)v (0)

∣∣b(0)v 〉 (2.7)

= Shl(ω) . (2.8)

In eq. (2.6) we could introduce the T and T symbols, because the field operators in Y−
are already anti-time-ordered by default as a consequence of the anti-path-ordering, and

Hermitian conjugation reverses the order. Similarly the T and T symbols in eqs. (2.7)

and (2.1) are in fact redundant, but kept for clarity. In eq. (2.7) we performed the HQET

field redefinition

hv(x)→ X+(x)h(0)v (x) , (2.9)

where the new (sterile) field h
(0)
v does not interact with soft gluons anymore, see e.g.

ref. [5]. Note that given the (anti)-time-ordering the external b-quark states should be

interpreted as ‘in’ states, |bv〉 = |bv, in〉, 〈bv| = 〈bv, in|. The LSZ reduction formula relates

the asymptotic ‘in’/‘out’ b-quark states of the S-matrix element to weighted integrals over

interpolating hv(x)/hv(x) field operators acting on the vacuum at macroscopically large

negative/positive times. Performing the field redefinition in eq. (2.9) one also has to take

into account factors of X+ from these interpolating fields. For the ‘in’ states this factor is

trivial and we can effectively replace [25]∣∣bv, in〉i → [(
X+

)†
(t=−∞, ~x = 0)

]
ji

∣∣b(0)v , in
〉
j

=
∣∣b(0)v , in

〉
i
, (2.10)

where i, j are color indices in the fundamental representation. Here and in the following we

assume the b quark to be at rest, i.e. vµ = (1,~0) for simplicity. The spatial position ~x of the

endpoint of the Wilson line X+ in eq. (2.10) is fixed by the position of the field operator,

here hv(0), acting on the asymptotic state, because 〈0|hv(x)hv(y)|0〉 ∝ δ(3)(~x−~y). Finally,

the sterile HQET quark field operators in eq. (2.7) annihilate the sterile external quarks

and the color averaging implicit in the b-quark matrix elements translates to 1/Nc times

the color trace in eq. (2.1).

For the actual calculation of the soft function it is convenient to express it as the

imaginary part (discontinuity) of a (1 → 1) ‘forward scattering’ matrix element. Starting

from eq. (2.6) and inserting a complete set of states we have

Shl(ω) =
∑∫
Z

δ(ω − p+Z )
∣∣∣〈Z∣∣T [(Y−)†(0)hv(0)

]∣∣bv〉∣∣∣2
= Im

[
i
∑∫
Z

∫ ∞
−∞

ds

2π

i

s+ i0
δ

(
ω

2
−
p+Z
2
− s
) ∣∣∣〈Z∣∣(Y−)†(0)hv(0)

∣∣bv〉∣∣∣2 ] (2.11)
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k

δ(ω−k+)

= Im

[
i

π
×

ω ω

]

Figure 1. The cut diagram on the left hand side represents one O(αs) contribution to Shl in

eq. (2.1). The phase space integration of the soft gluon (with outgoing momentum kµ) crossing the

final state cut is restricted by the measurement function δ(ω − n· p̂). The equivalent contribution

to the expression in eq. (2.16) comes from the loop diagram on the right hand side, where the

external lightcone momentum ω is routed through the light-like Wilson line as indicated. Here

and in the following dashed double lines represent light-like Wilson lines (Y ) and solid double lines

represent time-like Wilson lines (X). The arrows on the Wilson lines indicate the fermion flow of

the respective original quarks, which coincides with the direction of the path as well as the time

ordering in this case.

= Im

[
i
∑∫
Z

∫ ∞
−∞

dx−

2π
e

i
2
ωx−
∫ ∞
−∞

ds

2π

ie−isx
−

s+ i0

×
〈
bv
∣∣e i

2
p̂+x− hv(0)Y−(0) e−

i
2
p̂+x−

∣∣Z〉〈Z∣∣(Y−)†(0)hv(0)
∣∣bv〉] (2.12)

= Im

[
i

∫ ∞
−∞

dx−

2π
e

i
2
ωx−θ(x−)

〈
bv
∣∣hv(x− n2 )Y−(x− n2 ) (Y−)†(0)hv(0)

∣∣bv〉] (2.13)

= Im

[
i

∫ ∞
0

dx−

2π
e

i
2
ωx−
〈
bv
∣∣T [hv(x− n2 )P exp

[
ig

∫ x−/2

0
ds n·A(sn)

]
hv(0)

]∣∣bv〉] .
(2.14)

Here we use the usual light-cone (Sudakov) decomposition of four vectors: aµ = a−nµ/2 +

a+n̄µ/2 + aµ⊥ with n2 = n̄2 = 0 and n̄ · n = 2. Note that the momentum operator p̂+

acting to the left on the external HQET state in eq. (2.12) vanishes, because the external

heavy quarks are onshell and therefore have zero residual (soft) four-momentum. While

for space-like distance x2 < 0 the field operators commute, the theta function θ(x−) in

eq. (2.13) implies t > 0 for time-like distances x2 > 0. After combining the two Wilson

lines using their unitarity property the remaining field operators are therefore automatically

time-ordered. To make this manifest we explicitly inserted the T symbol in eq. (2.14).

We can now again perform the field redefinition in eq. (2.9). This time, however, the

time ordering in eq. (2.14) implies that |bv〉 = |bv, in〉 and 〈bv| = 〈bv, out|. In contrast to

eq. (2.10) the field redefinition now induces a non-trivial factor from the interpolating fields

– 5 –
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generating the ‘out’ state [25]:

i

〈
bv, out

∣∣→ j

〈
b(0)v , out

∣∣[X+(t=+∞, x− ~n2 )
]
ij

= j

〈
b
(0)
v , out

∣∣[(X−)†(x− n2 )X+

(
x− n2

)]
ij
.

(2.15)

Using r = x−/2 as integration variable we thus obtain

Shl(ω) = Im

[
i

π

1

Nc
tr

∫ ∞
0

dr eiωr
〈
0
∣∣T [(X−)†(rn) P exp

[
ig

∫ r

0
ds n·A(sn)

]
X+(0)

] ∣∣0〉 ] .
(2.16)

In this expression the time-like Wilson lines extend from t = −∞ to t = 0 (incoming)

and from t = r to t = +∞ (outgoing), respectively. The light-like Wilson line connects

the points 0 and rnµ. The Wilson line correlator in eq. (2.16) can be straightforwardly

evaluated in terms of (momentum-space) Feynman diagrams using the usual Feynman

rules for Wilson lines in QCD. The equivalence of eqs. (2.1) and (2.16) is illustrated on

the diagrammatic level at one loop in figure 1. In figure 2 we show some examples of

corresponding three-loop diagrams. At O(g0) (tree level) Shl is, according to eq. (2.16),

proportional to the discontinuity of a single light-like Wilson line propagator with soft

light-cone momentum ω:

S
(0)
hl (ω) = Im

[
i

π

∫ ∞
−∞

dr eiωrθ(r)

]
= Im

[
i

π

i

ω + i0

]
= δ(ω) . (2.17)

To conclude this section we comment on the relation of Shl to the analogous 1-jettiness

soft functions where one or both Wilson lines in eq. (2.1) are changed from incoming to

outgoing or vice versa. In the underlying full QCD processes the external heavy and light

quark lines are correspondingly crossed from initial to final state or vice versa. Some of

these soft functions are e.g. relevant for s- and t-channel single top production as well as

charm production in deep-inelastic neutrino scattering (‘light-to-heavy DIS’). For state-of-

the-art fully-differential NNLO predictions we refer to ref. [26], refs. [27, 28], and ref. [29],

respectively. The soft function for the light-to-heavy DIS process is for instance simply

given by interchanging X ↔ Y (i.e. vµ ↔ nµ in the Wilson lines) in eq. (2.1). Up to two

loops the soft functions for the crossed processes can be shown to equal Shl as defined in

eq. (2.1) in analogy to the massless case [30]. Unfortunately there is, to the best of our

knowledge, no simple argument why this equality should hold at three loops and beyond,

not even between heavy-to-light decay and light-to-heavy DIS soft functions.4 A dedicated

three-loop analysis along the lines of ref. [30] would require to derive the analytic structure

for the relevant two-loop single-emission and one-loop double-emission heavy-light soft

currents, which is beyond the scope of this work.

3 Calculation

Our three-loop calculation of the soft function Shl is based on the definition in eq. (2.16)

and performed very much along the lines of our jet function calculation in ref. [10], to

4In ref. [31] an all-order proof for the equality of two transverse momentum dependent soft functions,

one with incoming, one with outgoing oppositely directed light-like Wilson lines based on time reversal

symmetry of the vacuum is given. An analogous proof can however not be provided for our case because

gluon field operators from the time-like and light-like Wilson lines do not commute.
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Figure 2. Sample Feynman diagrams contributing to Shl at N3LO. Time-like Wilson lines, light-

like Wilson lines, gluons, and light fermions are represented by solid double lines, dashed double

lines, curly lines, and solid lines, respectively. The direction of the Wilson lines and the prescription

for the routing of the external momentum ω are the same as in the one-loop diagram on the right

of figure 1.

which we refer for more details. We work in general covariant gauge with gauge parameter

ξ, where ξ = 0 corresponds to Feynman gauge. Ultraviolet (UV) and (intermediate) IR

divergences are regulated with dimensional regularization (d = 4− 2ε).

We use qgraf [32] to generate all relevant three-loop (propagator-type) Feynman

graphs with one internal light-like and two external time-like Wilson lines (one incom-

ing, one outgoing), like the ones in figure 2.5 The diagrams are further processed by an

in-house Mathematica code which assigns the corresponding Feynman rules and performs

the necessary Dirac, Lorentz and color algebra. After that the diagrams are given by

linear combinations of scalar Feynmann integrals. These integrals can then be mapped

onto 16 integral topologies with twelve linearly independent linear and quadratic propaga-

tors. The associated 16 integral families contain integrals with integer propagator powers

ranging from minus three to plus five. The mapping of Feynmann integrals onto the dif-

ferent topologies requires numerous multivariate partial fraction operations on products of

linear Wilson line propagators followed by suitable shifts of the loop momenta. In order

to automatize the extensive partial fractioning we implemented the algorithm outlined in

ref. [33] in our code.

Next, we perform the integration-by-parts (IBP) reduction [34] of the integrals in each

of the 16 families to a set of master integrals (MIs) using the public program FIRE5 [35].6

We then identify pairs of equal MIs of different families that are related by shifts of their

loop momenta. The resulting total set of MIs across the 16 families still turns out to be

redundant. We find 14 additional relations involving at least three MIs of different families

5Although the relation of Shl to the time-ordered product of Wilson lines in eq. (2.16) was not made

explicit, also the NNLO computation of Shl in ref. [14] was performed in terms of the same type of loop

diagrams.
6The plain IBP reduction with FIRE5 yields an overcomplete set of MIs. To obtain a minimal MI basis

for each family we employ the algorithm of ref. [33] to identify equal Feynman integrals. This algorithm

is implemented in the FindRules command of FIRE5, which we apply to a large list of test integrals in

each family. The output are identities among these integrals, which must also hold after IBP reduction.

Demanding this yields another eight independent relations between MIs belonging to the same family, see

also ref. [10].
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due to partial fraction identities among their linear propagators. Finally, the three-loop

contribution to the matrix element in eq. (2.16) can be expressed as a linear combination

of 45 MIs belonging to nine different integral families.7 At this point we already notice

that the gauge parameter ξ manifestly cancels out in the sum of all diagrams indicating

the correctness of our setup. The 45 contributing MIs can be cast into the form

G(~a,~b,~c ) =
(
iπ

d
2
)−3∫ ddk1 ddk2 ddk3

Da11 D
a2
2 D

a3
3 D

a4
4 D

a5
5 D

a6
6 D

b1
7 D

b2
8 D

b3
9 D

b4
10D

b5
11D

c1
12D

c2
13D

c3
14D

c4
15D

c5
16

(3.1)

with the following (linearly-dependent) propagator denominators

D1 = −k21 , D2 = −k22 ,
D3 = −k23 , D4 = −(k1 − k2)2 ,
D5 = −(k2 − k3)2 , D6 = −(k3 − k1)2 ,
D7 = −v ·k1 , D8 = −v ·k2 ,
D9 = −v ·k3 , D10 = −v ·(k1 − k3) ,
D11 = −v ·(k2 − k3) , D12 = −n·k1 − ω ,
D13 = −n·k2 − ω , D14 = −n·k3 − ω ,
D15 = −n·(k1 − k3)− ω , D16 = −n·(k2 − k3)− ω , (3.2)

where the usual (causal) ‘−i0’ prescription, i.e. Di → Di − i0, is understood. The nine

integral families containing the 45 MIs are defined by their maximal topologies with twelve

linearly independent Di. These topologies are determined by restricting the propagator

powers in eq. (3.1), for instance by

topology 1: b4, b5, c4, c5 = 0 , topology 2: b3, b5, c4, c5 = 0 ,

topology 3: b4, b5, c3, c4 = 0 , topology 4: b3, b4, c3, c4 = 0 ,

topology 5: b2, b3, c4, c5 = 0 , topology 6: b3, b4, c2, c4 = 0 ,

topology 7: b4, b5, c2, c4 = 0 , topology 8: b3, b5, c3, c4 = 0 ,

topology 9: b3, b4, c1, c5 = 0 . (3.3)

From the scaling properties of the integrand in eq. (3.1) for general time-like vector vµ

and light-like vector nµ we conclude

G(~a,~b,~c ) =
(
v2
) 3

2
d−A−B

(n·v)2A+B−3d(−ω − i0)3d−2A−B−CI(~a,~b,~c, ε) (3.4)

with A =
∑

i ai, B =
∑

i bi, and C =
∑

i ci. The dependence on the external kinematics

thus totally factors out and we are left to compute the dimensionless function I(~a,~b,~c, ε)

as an expansion in ε. For the case of heavy-to-light decays calculated in the rest frame of

the heavy quark we have v2 = n·v = 1 by definition. For convenience we set ω = −1 during

the calculation of the MIs and restore their ω dependence later. Twelve MIs are simple

enough to be evaluated by direct integrations over the associated Feynman parameters in

7The total number of linearly independent MIs across all families is 64, but only 45 contribute to Shl.
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d = 4 − 2ε dimensions. The results involve hypergeometric and gamma functions and are

expanded in ε with the help of the Mathematica package HypExp2 [36].

To solve the remaining 33 MIs we proceed in the same way as for our jet function

calculation in ref. [10]. The method was inspired by refs. [37–39]. The key idea is to express

the 33 MIs as a linear combination of quasi-finite integrals and known MIs. Quasi-finite

integrals are free of (endpoint) divergences from the integrations in the Feynman parameter

representation (at the Euclidean point ω = −1) for some (even) integer dimension. Starting

from a given MI in d = 4 − 2ε one can construct a corresponding quasi-finite integral

by raising the spacetime dimension by an even number and/or increasing appropriate

propagator powers by integer amounts. The former decreases (increases) the degree of IR

(UV) divergence, whereas the latter decreases (but not necessarily increases) the degree of

UV (IR) divergence. To systematically identify suitable quasi-finite integrals we employ the

dedicated algorithm implemented in the public program Reduze2 [40]. For our purposes

we find 18 integrals that are quasi-finite in 4 − 2ε and 15 integrals that are quasi-finite

in 6− 2ε dimensions. To compute them in the respective dimension we first expand their

nonsingular integrands in the Feynman parameter representation to high enough order in

ε. We then perform the integrations with the help of HyperInt [41], a powerful computer

algebra package for the analytical evaluation of convergent linearly reducible (Feynman)

integrals in terms of multiple polylogarithms. The quasi-finite integrals (in their respective

dimension) are related to the original MIs (in d = 4−2ε) by dimensional recurrence [42–44]

and IBP reduction. To determine the relevant dimensional recurrence relations between

integrals in d and d+2 dimensions we use the public code LiteRed [45, 46]. Our choice of the

33 quasi-finite integrals is such that their results together with the 12 already computed MIs

uniquely determine the remaining 33 MIs. We successfully verified all analytic expressions

for the MIs obtained in this way numerically using the sector decomposition program

FIESTA4 [47]. Finally we insert the results for the 45 MIs in the IBP reduced expression

for each three-loop Feynman diagram contributing to Shl and expand to the required order

in ε, see below. We also repeated the calculation for the relevant lower-order graphs using

the same setup.

4 Results

After computing the relevant Feynman diagrams as described in the previous section we

take their imaginary part according to eq. (2.16) using

Im
[
(−ω − i0)−1−aε

]
= − sin(πaε) θ(ω)ω−1−aε . (4.1)

Adding the contributions of all diagrams (including the lower-order ones) we obtain the

bare soft function8

Sbare
hl (ω) = 1 +

αbare
s

4π
θ(ω)ω−1−2εCF KF (4.2)

+

(
αbare
s

4π

)2
θ(ω)ω−1−4ε

(
C2
F KFF + CFCAKFA + CFnfTF KFf

)
8Here we consistently set v2 = n·v = 1. If needed, the dependence on the scalar products v2 and n·v

can be reconstructed straightforwardly using the scaling properties of the matrix element in eq. (2.1), cf.

eq. (3.4).
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+

(
αbare
s

4π

)3
θ(ω)ω−1−6ε

(
C3
F KFFF + C2

FCAKFFA + CFC
2
AKFAA

+ C2
FnfTF KFFf + CFCAnfTF KFAf + CF (nfTF )2KFff

)
+O(α4

s)

in terms of the bare coupling αbare
s = Zαµ

2εαs with nf being the number of light (massless)

quark flavours. The color constants of the SU(Nc) gauge group are CA = Nc, CF =

(N2
c − 1)/(2Nc), and TF = 1/2. The coefficients KX of each color structure are given in

appendix B. For illustration we show in figure 2 for each of the six three-loop KX coefficients

one sample Feynman diagram (arranged in the corresponding order) that contributes to it.

Throughout this work we employ the MS renormalization scheme. The relevant terms of

the strong coupling renormalization factor Zα are

Zα = 1 +
αs
4π

(
−β0
ε

)
+
(αs

4π

)2(β20
ε2
− β1

2ε

)
+O

(
α3
s

)
(4.3)

with

β0 =
11

3
CA −

4

3
TFnf , β1 =

34

3
C2
A −

20

3
CAnfTF − 4CFnfTF . (4.4)

For the ε expansion of eq. (4.2) we employ the distributional identity

µaε θ(ω)ω−1−aε = −δ(ω)

aε
+
∞∑
n=0

(−aε)n

n!

1

µ
Ln
(
ω

µ

)
(4.5)

with the usual plus distributions defined as

Ln(x) =

[
θ(x) lnnx

x

]
+

= lim
ε→0

d

dx

[
θ(x− ε) lnn+1 x

n+ 1

]
. (4.6)

The bare and renormalized soft functions are related by

Sbare
hl (ω) = ZS(ω, µ)⊗ Shl(ω, µ) , (4.7)

where the ⊗ symbol denotes a convolution of the type

A(ω)⊗B(ω) ≡
∫

dω′Ai(ω − ω′)B(ω′) . (4.8)

Convolutions among the plus distributions Ln take the form

Lm(ω)⊗ Ln(ω) = V mn
−1 δ(ω) +

m+n+1∑
k=0

V mn
k Lk(ω) . (4.9)

A generic expression for V mn
k can be found in ref. [8].
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4.1 Anomalous dimension

The RGE of our 1-jettiness soft function reads

µ
d

dµ
Shl(ω, µ) = ΓS(ω, µ)⊗ Shl(ω, µ) , (4.10)

with the anomalous dimension

ΓS(ω, µ) = −
[
ZS(ω, µ)

]−1 ⊗ µ d

dµ
ZS(ω, µ) (4.11)

= 2Γqcusp(αs)
1

µ
L0
(
ω

µ

)
+ γS(αs) δ(ω) . (4.12)

For the loop expansion of the anomalous dimensions we adopt the notation

Γqcusp(αs) =
∞∑
n=0

Γqn

(
αs
4π

)n+1

, γS(αs) =
∞∑
n=0

γSn

(
αs
4π

)n+1

. (4.13)

With the soft renormalization factor ZS determined from our bare results in eq. (4.11)

we obtain

γS0 = 4CF , (4.14)

γS1 = CF

[
CA

(
36ζ3 −

220

27
− π2

9

)
− nfTF

(
16

27
+

4π2

9

)]
, (4.15)

γS2 = CF

[
C2
A

(
5428ζ3

9
− 64π2ζ3

9
− 264ζ5 −

81215

729
+

853π2

243
− 44π4

45

)
(4.16)

+ CAnfTF

(
− 4432ζ3

27
+

4460

729
− 1388π2

243
+

16π4

15

)
+ CFnfTF

(
− 32ζ3

9
+

1442

27
− 4π2

3
− 16π4

45

)
+ (nfTF )2

(
− 448ζ3

27
+

6592

729
+

80π2

81

)]
,

in addition to the known terms of the cusp anomalous dimension given in appendix A.

The one- and two-loop results in eqs. (4.14) and (4.15) agree with those in ref. [14] (after

adapting to their conventions). In the following we relate the soft anomalous dimension

to corresponding collinear and hard anomalous dimensions in SCET factorization in order

to verify our results. As we will see γS2 can thus also be determined indirectly, i.e. with-

out a dedicated three-loop calculation, using known results. However, to the best of our

knowledge, the explicit expression in eq. (4.16) has not been given in the literature so far.

The anomalous dimension associated with the virtual IR singularities due to strong

interactions among onshell partons in a squared QCD scattering amplitude can be under-

stood as the anomalous dimension of a corresponding hard function in SCET. It is therefore

intrinsically tied to the UV divergences of soft and collinear operator matrix elements in

SCET by RG consistency. The generic all-order structure of the anomalous dimension for
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QCD amplitudes involving massive quarks was derived in ref. [48]. For the heavy-to-light

decay with one massless and one massive external quark the it is given by9

Γhl = −Γqcusp(αs) ln
µ

2v · p
+ γq + γQ , (4.17)

where p is the (outgoing) four-momentum of the massless quark (p2 = 0, v · p = mb/2) and

Γqcusp(αs) is the light-like cusp anomalous dimension in the fundamental representation of

SU(Nc). The noncusp anomalous dimensions γq and γQ are associated with each massless

and massive external quark, respectively. They accordingly contribute to the anomalous

dimension of any QCD scattering amplitude with multiple quark legs [48] and are in that

sense universal. The renormalized SCET hard function Hhl corresponds to the finite part

of the respective QCD amplitude squared, i.e. where all IR and UV divergences have been

subtracted. We thus have

µ
d

dµ
Hhl = 2ΓhlHhl . (4.18)

For the QCD amplitude with two external heavy quarks (one outgoing, one incoming,

where p2i = m2
i , p1 · p2 > 0) the (hard) anomalous dimension reads

Γhh = ΓQcusp(β, αs) + 2γQ . (4.19)

Here the angle-dependent cusp anomalous dimension ΓQcusp(β, αs) with (Minkowskian) cusp

angle β = arccosh( p1·p2
m1m2

) is defined such that in the large angle expansion,10

ΓQcusp(β, αs) = Γqcusp(αs)β +O
(

1

β

)
, (4.20)

there is no O(β0) term. As the large angle limit corresponds to the limit where the mass

of one or both of the quarks vanishes it is not surprising that the coefficient of the leading

term in eq. (4.20) equals the light-like cusp anomalous dimension [49, 51].

For completeness and comparison we also recall the corresponding anomalous dimen-

sion for a QCD amplitude with two massless quarks (p2i = 0, p1 · p2 > 0):

Γll = −Γqcusp(αs) ln
µ2

2p1 · p2
+ 2γq . (4.21)

We stress that Γqcusp(αs) and γq are the same as in eq. (4.17).

Renormalization group invariance of the decay rate in eq. (1.1) requires

µ
d

dµ
(Hhl × Shl ⊗ Jq) = 0 . (4.22)

9Here and in the following we suppress a +i0 accompanying the scalar product in the argument of the

logarithm, which is necessary for the analytic continuation to other kinematical situations, where e.g. both

quarks are outgoing/incoming.
10Note that in the literature traditionally often the full Γhh is referred to as the angle-dependent cusp

anomalous dimension, see e.g. refs. [49, 50].
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For the noncusp anomalous dimensions this implies11

2γq + 2γQ + γS + γJq = 0 . (4.23)

The three-loop contribution γq2 was obtained from the calculation of the three-loop massless

quark form factor [52] via eq. (4.21). In ref. [10] we directly computed the massless quark

jet function anomalous dimension γ
Jq
2 . It was initially derived indirectly from the RG

invariance of the factorized DIS cross section in the threshold region [53] using the three-

loop results of refs. [52, 54]. The heavy quark noncusp anomalous dimension γQ2 can be

extracted from the three-loop result of Γhh in ref. [50] using eqs. (4.19) and (4.20). In fact

it can be read off directly from the (nonlogarithmic) constant in the large-angle expansion

of (−Γhh) explicitly performed in appendix B of ref. [55]. We have

γQ2 = CF

[
C2
A

(
− 4

3
π2ζ3 −

740ζ3
9

+ 36ζ5 −
22π4

45
+

304π2

27
− 343

9

)
+ CFnfTF

(
110

3
− 32ζ3

)
+ CAnfTF

(
496ζ3

9
− 80π2

27
+

356

27

)
+

32

27
(nfTF )2

]
. (4.24)

We give the explicit expressions for γq2 and γ
Jq
2 in appendix A. We can now solve eq. (4.23)

for γS2 and find exact agreement with eq. (4.16). This serves as a valuable cross check of our

three-loop calculation of Shl. At the same time it confirms the prediction [48] regarding the

two-parton correlation part of the IR singularity structure of QCD scattering amplitudes

with massive external quarks according to eqs. (4.17) and (4.19).

4.2 Renormalized results

Upon MS renormalization the coefficients in the loop expansion of the 1-jettiness soft

function for heavy-to-light quark decays

Shl(ω, µ) =
∞∑
m=0

(
αs
4π

)m
S(m)(ω, µ) (4.25)

take the form

S(m)(ω, µ) = S
(m)
−1 δ(ω) +

2m−1∑
n=0

S(m)
n

1

µ
Ln
(
ω

µ

)
. (4.26)

By iteratively solving the RGE in eq. (4.10) as an expansion in αs the terms depending on

the renormalization scale µ, i.e. the coefficients S
(m)
n with n ≥ 0, are completely determined

by the lower-order constants S
(l<m)
−1 and anomalous dimension coefficients. To three-loop

order we have

S
(1)
1 = − 2Γq0 , (4.27)

S
(1)
0 = − γS0 , (4.28)

11In our convention the jet function RGE is analogous to eq. (4.10).
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S
(2)
3 = 2

(
Γq0
)2
, (4.29)

S
(2)
2 = Γq0

(
2β0 + 3γS0

)
, (4.30)

S
(2)
1 = − 2π2

3

(
Γq0
)2 − 2Γq1 + γS0

(
γS0 + 2β0

)
− 2S

(1)
−1Γq0 , (4.31)

S
(2)
0 = 4

(
Γq0
)2
ζ3 −

π2

3
Γq0γ

S
0 − γS1 − S

(1)
−1

(
2β0 + γS0

)
, (4.32)

S
(3)
5 = −

(
Γq0
)3
, (4.33)

S
(3)
4 = −

(
Γq0
)2(5γS0

2
+

10

3
β0

)
, (4.34)

S
(3)
3 =

4π2

3

(
Γq0
)3

+ 4Γq0Γ
q
1 −

8

3
Γq0β

2
0 − 2Γq0γ

S
0

(
10

3
β0 + γS0

)
+ 2S

(1)
−1
(
Γq0
)2
, (4.35)

S
(3)
2 = − 20ζ3

(
Γq0
)3

+ 2π2
(
Γq0
)2(

β0 + γS0

)
+ Γq0

(
2β1 + 3γS1

)
+ Γq1

(
4β0 + 3γS0

)
− 1

2

(
γS0
)3 − β0γS0 (4β0 + 3γS0

)
+ S

(1)
−1Γq0

(
8β0 + 3γS0

)
, (4.36)

S
(3)
1 =

2π4

45

(
Γq0
)3 − 8ζ3

(
Γq0
)2(

2γS0 + 3β0

)
+ 2π2Γq0γ

S
0

(
γS0
3

+ β0

)
− 4π2

3
Γq0Γ

q
1 − 2Γq2 + 2β1γ

S
0 + 2γS1

(
γS0 + 2β0

)
+ S

(1)
−1

[
8β20 −

2π2

3

(
Γq0
)2 − 2Γq1 + γS0

(
γS0 + 6β0

)]
− 2Γq0S

(2)
−1 , (4.37)

S
(3)
0 =

(
8

3
π2ζ3 − 24ζ5

)(
Γq0
)3

+
π4

45

(
Γq0
)2(

4β0 + γS0

)
− 2ζ3Γ

q
0γ
S
0

(
2β0 + γS0

)
+ 8ζ3Γ

q
0Γ

q
1

− γS2 −
π2

3

(
Γq1γ

S
0 + Γq0γ

S
1

)
+ S

(1)
−1

[
4ζ3
(
Γq0
)2 − π2

3
Γq0
(
γS0 + 2β0

)
− γS1 − 2β1

]
− S(2)

−1

(
γS0 + 4β0

)
. (4.38)

Our explicit calculation of Shl(ω, µ) perfectly reproduces eqs. (4.27)–(4.38), which serves

as a cross check. In addition it yields the delta function coefficients

S
(1)
−1 = − π2

6
CF ,

S
(2)
−1 = C2

F

(
32ζ3 −

3π4

40
− 4π2

3

)
+ CACF

(
−107ζ3

9
+

67π4

180
− 427π2

108
− 326

81

)
+ CFnfTF

(
−20ζ3

9
+

5π2

27
− 8

81

)
, (4.39)

S
(3)
−1 = C3

F

(
−1280ζ23

3
+ 80π2ζ3 −

64ζ3
3
− 768ζ5 +

3097π6

9072
+

26π4

45

)
+ C2

FCA

(
288ζ23 +

1883π2ζ3
54

+
1504ζ3

27
− 2816ζ5

3
− π6

360
+

11287π4

3240
+

1483π2

243

)
+ CFC

2
A

(
− 1052ζ23

9
− 136π2ζ3

3
+

998ζ3
243

+
4369ζ5

9
− 13387π6

51030
+

6223π4

972

+
45139π2

8748
− 2662195

26244

)
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+ C2
FnfTF

(
−782

27
π2ζ3 −

3224ζ3
81

+
2848ζ5

9
− 673π4

810
+

695π2

486
+

11929

486

)
+ CFCAnfTF

(
44π2ζ3

3
+

464ζ3
81

− 104ζ5 −
1169π4

1215
+

121π2

2187
+

131659

6561

)
+ CF (nfTF )2

(
736ζ3
243

− 52π4

1215
+

8π2

243
+

33920

6561

)
. (4.40)

The expression for S
(3)
−1 is new and represents together with the three-loop soft anomalous

dimension in eq. (4.16) the main result of this work.

5 Summary

In this paper we calculated the 1-jettiness (T1) soft function for heavy-to-light quark decays

at N3LO. The renormalized result is given in section 4.2. The three-loop delta-function

coefficient in eq. (4.40) and the three-loop contribution to the soft noncusp anomalous di-

mension in eq. (4.16) represent the genuinely new information at this order. In appendix A

we also collect all other noncusp anomalous dimensions required for N3LL resummed heavy-

to-light decay rates that are differential in either T1 or closely related observables like the

photon energy in B → Xsγ or the jet invariant mass in B → Xu`ν̄. We explicitly checked

the relation between hard, soft, and jet anomalous dimensions required by RG consistency.

This also confirms the predicted universal structure [48] of the IR singularities of QCD am-

plitudes due to two-parton interactions involving massive external quarks at three loops.

That is because we used this prediction to derive the three-loop hard anomalous dimen-

sion for heavy-to-light decays from the known three-loop IR singularities of the massive

(heavy-heavy) and massless (light-light) quark form factors.

For N3LL′ accuracy also the three-loop contributions to the hard, jet, and soft functions

in the corresponding T1-type factorization theorems for the decay rates are needed. Our new

soft function result represents together with the three-loop contribution to the jet function,

which we computed in ref. [10], the two universal (i.e. process-independent) ingredients at

this order. As such they also play a crucial role in the calculation of differential N3LO heavy-

to-light quark decay rates using the N -jettiness IR subtraction (slicing) method, e.g. for

t→W+(l+ν)b. The three-loop calculations of the corresponding process-dependent heavy-

to-light hard functions are presumably feasible using state-of-the-art multi-loop technology

and may be performed in the not too far future.
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A Hard, collinear, and cusp anomalous dimensions

For completeness we collect here the explicit expressions for all anomalous dimensions

other than γS in eqs. (4.14)–(4.16) relevant for the heavy-to-light quark decay up to three-

loop order. The convention for the loop expansion of the listed anomalous dimensions is

analogous to eq. (4.13).

The one-, two-, and three-loop coefficients of the cusp anomalous dimensions are [54, 56]

Γq0 = 4CF , (A.1)

Γq1 = 4CF

[(
67

9
− π2

3

)
CA −

20

9
nfTF

]
, (A.2)

Γq2 = 4CF

[(
245

6
− 134π2

27
+

11π4

45
+

22ζ3
3

)
C2
A +

(
−418

27
+

40π2

27
− 56ζ3

3

)
CAnfTF

+

(
−55

3
+ 16ζ3

)
CFnfTF −

16

27
(nfTF )2

]
. (A.3)

The four-loop coefficient Γq3 (necessary for N3LL resummation) is known completely nu-

merically [57, 58], while analytic expressions are at present available for all fermionic con-

tributions [59–62].

The hard noncusp anomalous dimension associated with massless external partons

appearing in eq. (4.17) is given up to three loops by [53, 63]

γq0 = − 3CF , (A.4)

γq1 = CF

[
CA

(
26ζ3 −

961

54
− 11π2

6

)
+ CF

(
−24ζ3 −

3

2
+ 2π2

)
+ nfTF

(
130

27
+

2π2

3

)]
, (A.5)

γq2 = CF

[
C2
A

(
3526ζ3

9
− 44π2ζ3

9
− 136ζ5 −

139345

2916
− 7163π2

486
− 83π4

90

)
+ CACF

(
−844ζ3

3
− 8π2ζ3

3
− 120ζ5 −

151

4
+

205π2

9
+

247π4

135

)
+ C2

F

(
−68ζ3 +

16π2ζ3
3

+ 240ζ5 −
29

2
− 3π2 − 8π4

5

)
+ CAnfTF

(
−1928ζ3

27
− 17318

729
+

2594π2

243
+

22π4

45

)
+ CFnfTF

(
512ζ3

9
+

2953

27
− 26π2

9
− 28π4

27

)
+ (nfTF )2

(
−32ζ3

27
+

9668

729
− 40π2

27

)]
. (A.6)

The hard noncusp anomalous dimension associated with the massive external quarks

in eqs. (4.17) and (4.19) has the coefficients

γQ0 = − 2CF , (A.7)

γQ1 = CF

[
CA

(
2π2

3
− 98

9
− 4ζ3

)
+ nfTF

40

9

]
, (A.8)
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γQ2 = CF

[
C2
A

(
−4

3
π2ζ3 −

740ζ3
9

+ 36ζ5 −
22π4

45
+

304π2

27
− 343

9

)
+ CFnfTF

(
110

3
− 32ζ3

)
+ CAnfTF

(
496ζ3

9
− 80π2

27
+

356

27

)
+

32

27
(nfTF )2

]
. (A.9)

The one- and two-loop terms in eqs. (A.7) and (A.8) can be found in ref. [48]. The three-

loop contribution is copied for completeness from eq. (4.24).

The known terms of the noncusp quark jet function anomalous dimension are [17, 53]12

γ
Jq
0 = 6CF , (A.10)

γ
Jq
1 = CF

[
CA

(
−80ζ3 +

1769

27
+

22π2

9

)
+ CF

(
48ζ3 + 3− 4π2

)
+ nfTF

(
−484

27
− 8π2

9

)]
, (A.11)

γ
Jq
2 = CF

[
C2
A

(
−11000ζ3

9
+

176π2ζ3
9

+ 464ζ5 +
412907

1458
+

838π2

243
+

19π4

5

)
+ CACF

(
1688ζ3

3
+

16π2ζ3
3

+ 240ζ5 +
151

2
− 410π2

9
− 494π4

135

)
+ C2

F

(
136ζ3 −

32π2ζ3
3

− 480ζ5 + 29 + 6π2 +
16π4

5

)
+ CAnfTF

(
5312ζ3

27
+

10952

729
− 2360π2

243
− 92π4

45

)
+ CFnfTF

(
−416ζ3

9
− 9328

27
+

64π2

9
+

328π4

135

)
+ (nfTF )2

(
512ζ3

27
− 27656

729
+

160π2

81

)]
. (A.12)

B Bare data

Here we present our expressions for the coefficients of the different color structures in the

bare soft function, eq. (4.2). We show the results as an expansion in ε = (4 − d)/2 to

the order required for the calculation of the renormalized three-loop soft function using

eqs. (4.3), (4.5), and (4.7):

KF =
4

ε
− 4 +

π2ε

3
+

(
− 4ζ3

3
− π2

3

)
ε2 +

(
4ζ3
3

+
π4

40

)
ε3 +

(
−1

9
π2ζ3 −

4ζ5
5
− π4

40

)
ε4

+

(
2ζ23
9

+
π2ζ3

9
+

4ζ5
5

+
61π6

30240

)
ε5 +O(ε6) , (B.1)

KFF = − 8

ε3
+

16

ε2
+

4π2 − 8

ε
+

(
400ζ3

3
− 8π2

)
+

(
−800ζ3

3
+

59π4

15
+ 4π2

)
ε

+

[(
400

3
− 200π2

3

)
ζ3 +

7696ζ5
5

− 118π4

15

]
ε2

12Note that the γq
n of ref. [10] equal our γ

Jq
n .
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+

(
−10000ζ23

9
+

400π2ζ3
3

− 15392ζ5
5

+
6229π6

1890
+

59π4

15

)
ε3 +O(ε4) , (B.2)

KFA =
22

3ε2
+

1

ε

(
2

9
− 2π2

3

)
+

(
−36ζ3 +

23π2

9
+

220

27

)
+

(
340ζ3

9
− 67π4

45
+

361π2

27

+
1304

81

)
ε+

[(
404

27
+

334π2

9

)
ζ3 − 492ζ5 +

337π4

108
− 4210π2

81
+

7792

243

]
ε2

+

[
352ζ23 +

(
−23816

81
− 2158π2

27

)
ζ3 +

13396ζ5
15

− 6149π6

3780
+

10807π4

1620

+
36940π2

243
+

46688

729

]
ε3 +O(ε4) , (B.3)

KFf = − 8

3ε2
+

8

9ε
+

(
16

27
− 4π2

9

)
+

(
112ζ3

9
+

4π2

27
+

32

81

)
ε

+

(
−112ζ3

27
− 7π4

135
+

8π2

81
+

64

243

)
ε2

+

[(
56π2

27
− 224

81

)
ζ3 +

496ζ5
15

+
7π4

405
+

16π2

243
+

128

729

]
ε3 +O(ε4) , (B.4)

KFFF =
8

ε5
− 24

ε4
+

24− 14π2

ε3
+
−520ζ3 + 42π2 − 8

ε2
+

1

ε

(
1560ζ3 −

185π4

12
− 42π2

)
+

[ (
910π2 − 1560

)
ζ3 −

61464ζ5
5

+
185π4

4
+ 14π2

]
+

[
16900ζ23

+
(
520− 2730π2

)
ζ3 +

184392ζ5
5

− 367153π6

15120
− 185π4

4

]
ε+O(ε2) , (B.5)

KFFA = − 22

ε4
+

1

ε3

(
64

3
+ 2π2

)
+

1

ε2

(
108ζ3 +

107π2

6
− 214

9

)
+

1

ε

(
842ζ3 +

59π4

30
− 532π2

9
− 644

27

)
+

[(
−2888

3
− 343π2

)
ζ3 +

31381π4

720

+ 1476ζ5 +
12191π2

54
− 3880

81

]
+

[
− 6276ζ23 +

(
18686

9
− 1405π2

6

)
ζ3

+
127086ζ5

5
− 24313π6

5040
− 1897π4

135
− 47155π2

81
− 23312

243

]
ε+O(ε2) , (B.6)

KFAA =
484

27ε3
+

1

ε2

(
2152

81
− 88π2

27

)
+

1

ε

(
−2288ζ3

9
+

44π4

135
+

619π2

81
+

7414

81

)
+

[(
64π2

9
− 1204

9

)
ζ3 + 264ζ5 −

77π4

5
+

39530π2

243
+

210311

729

]
+

[
2104ζ23

3
+

(
5144

81
+

6122π2

9

)
ζ3 −

24974ζ5
3

+
13387π6

8505
− 16517π4

3240

− 886981π2

1458
+

4205011

4374

]
ε+O(ε2) , (B.7)

KFFf =
8

ε4
− 32

3ε3
+

1

ε2

(
−16

9
− 26π2

3

)
+

1

ε

(
−1208ζ3

3
+

104π2

9
− 428

27

)
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+

(
5120ζ3

9
− 635π4

36
− 44π2

27
− 4294

81

)
+

[(
16

27
+

1394π2

3

)
ζ3

− 160552ζ5
15

+
3247π4

135
− 385π2

81
− 35723

243

]
ε+O(ε2) , (B.8)

KFAf = − 352

27ε3
+

1

ε2

(
32π2

27
− 1096

81

)
+

1

ε

(
640ζ3

9
− 392π2

81
− 2000

81

)
+

(
2992ζ3

27
+

44π4

9
− 14398π2

243
− 48236

729

)
+

[(
−2360

27
− 2128π2

9

)
ζ3

+ 2592ζ5 −
2651π4

405
+

154540π2

729
− 537494

2187

]
ε+O(ε2) , (B.9)

KFff =
64

27ε3
+

64

81ε2
+

16
(
π2 − 4

)
27ε

+

(
−704ζ3

27
+

16π2

81
− 7744

729

)
+

(
−704ζ3

81
+

134π4

405
− 16π2

27
− 70144

2187

)
ε+O(ε2) . (B.10)
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