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basis of operators from counterterms computed for the above flavor-blind operators without

introducing singular inverse Yukawa coupling matrices. As a phenomenological application,
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Keywords: Beyond Standard Model, Effective Field Theories, Renormalization Group,

Global Symmetries

ArXiv ePrint: 1901.10302

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP03(2019)179

mailto:liaoy@nankai.edu.cn
mailto:maxid@mail.nankai.edu.cn
https://arxiv.org/abs/1901.10302
https://doi.org/10.1007/JHEP03(2019)179


J
H
E
P
0
3
(
2
0
1
9
)
1
7
9

Contents

1 Introduction 1

2 Dimension 7 operators and their flavor structure 3

3 Renormalization of operators and extraction of anomalous dimension ma-

trix 6

4 Phenomenology of dim-7 operators 8

5 Conclusion 13

A One-loop contribution with an insertion of effective interactions 14

1 Introduction

The standard model effective field theory (SMEFT) is a systematic approach to low energy

effects from unknown high-scale new physics. It has become practically more and more

important due to null results in searching for new particles of mass below the electroweak

scale. In this approach the dynamical degrees of freedom are restricted to those in the

standard model (SM) and the SM interactions are nothing but the leading ones in an

infinite tower of interactions:

LSMEFT = LSM +
∑
d≥5,i

Cdi Odi . (1.1)

Suppressing gauge-fixing related terms the SM Lagrangian is

LSM = −1

4

∑
X

XµνX
µν + (DµH)†(DµH)− λ

(
H†H − 1

2
v2

)2

+
∑
Ψ

Ψ̄i /DΨ−
[
Q̄YuuH̃ + Q̄YddH + L̄YeeH + h.c.

]
, (1.2)

where X stands for the three gauge field strengths of respective couplings g3,2,1 for the gauge

group SU(3)C×SU(2)L×U(1)Y , and Ψ covers all fermions including left-handed quark and

lepton doublets Q, L and right-handed quark and lepton singlets u, d, e with appropriate

gauge covariant derivatives Dµ. H is the Higgs doublet field with H̃i = εijH
∗
j . The Yukawa

couplings Yu,d,e are generic complex 3× 3 matrices with three generations of fermions.

SMEFT is expected to work in the energy range between certain new physics scale

Λ and the electroweak scale set by the vacuum expectation value v of the Higgs field H.

It thus builds a bridge between unknown new physics above Λ and physical processes
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explored in current experiments below v. New physics effects are organized in a tower of

effective operators Odi of increasing canonical dimension d ≥ 5 whose impacts are measured

by Wilson coefficients Cdi of decreasing relevance. These high-dimensional operators are

generated by integrating out heavy degrees of freedom in new physics, and they respect SM

gauge symmetries but not necessarily its accidental symmetries such as lepton and baryon

number conservation. Their coefficients are generally suppressed by the new physics scale

Λ, Cdi ∼ Λ4−d. An important task in this endeavor is to establish a correct basis of

operators in each dimension and to work out their renormalization group evolution (RGE)

effects from Λ to v due to SM interactions. When a type of new physics is specified, this

facilitates direct comparison of new physics with low energy measurements with the help

of matching calculations at the scales Λ and v.

It has been known for a long time that the dimension-five (dim-5) operator is unique [1]

and generates an effective Majorana neutrino mass. The complete and independent sets

of dim-6 and dim-7 operators have been constructed in refs. [2, 3] and [4, 5] respectively.

These operators have also been examined in an independent approach based on Hilbert

series which counts fermion flavor structures, and further extended to even higher dimen-

sions [6–10]. If the SM is generalized by sterile neutrinos of mass below the electroweak

scale, there will be additional operators at each dimension, see refs. [11–14] for discussions

on operators up to dim-7 that involve sterile neutrinos. The renormalization group running

of effective operators due to SM interactions is important for precision phenomenological

analysis. Currently the 1-loop RGE has been completed for the dim-5 [15] and dim-6 [16–

22] operators. While all dim-7 operators violate lepton number, they are classified into

two subsets: one has 12 baryon number conserving operators and the other has 6 baryon

number violating operators; see table 1. The RGE analysis for the subset that violates

baryon number has been done in ref. [5]. All these 1-loop results for anomalous dimen-

sion matrices follow interesting patterns [23, 24] and simple perturbative power counting

rules [25, 26]. The purpose of this work is to finish the 1-loop RGE analysis of dim-7

operators by completing the subset that conserves baryon number.

As we will discuss in sections 2 and 3 and demonstrate in table 2, rich and nontrivial

flavor relations among operators first appear at dimension seven. This makes analysis of

dim-7 operators very different from dim-5 and dim-6 operators. While the above mentioned

12+6 operators are convenient for extracting 1-loop counterterms when renormalizing them,

they cannot be directly employed to do RGE in phenomenological analysis where specific

flavors of fermions have to be discriminated because not all of them are flavor independent.

For brevity we say they are in a flavor-blind basis though this is not a basis in the strict

sense of the word; in contrast we call the set of genuinely independent operators taking into

account flavor relations a flavor-specified basis. The anomalous dimension matrix should be

defined and computed for this latter basis of operators. Since the flavor relations involve

Yukawa coupling matrices whose entries are mostly small, a suitable choice of a flavor-

specified basis should avoid the appearance of inverse Yukawa matrices when expressing

dependent operators in terms of those in the basis. We will show an example of such choices

in section 3. Our result for the anomalous dimension matrix still follows the patterns

explained by non-renormalization theorem [24] and power counting rules [26].
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ψ2H4 ψ2H3D

OLH εijεmn(LiCLm)HjHn(H†H) OLeHD εijεmn(LiCγµe)H
jHmiDµHn

ψ2H2D2 ψ2H2X

OLHD1 εijεmn(LiCDµLj)Hm(DµH
n) OLHB g1εijεmn(LiCσµνL

m)HjHnBµν

OLHD2 εimεjn(LiCDµLj)Hm(DµH
n) OLHW g2εij(ετ

I)mn(LiCσµνL
m)HjHnW Iµν

ψ4D ψ4H

Od̄uLLD εij(d̄γµu)(LiCiDµLj) OēLLLH εijεmn(ēLi)(LjCLm)Hn

Od̄LQLH1 εijεmn(d̄Li)(QjCLm)Hn

Od̄LQLH2 εimεjn(d̄Li)(QjCLm)Hn

Od̄LueH εij(d̄L
i)(uCe)Hj

OQ̄uLLH εij(Q̄u)(LCLi)Hj

OL̄QddD (L̄γµQ)(dCiDµd) OL̄dudH̃ (L̄d)(uCd)H̃

OēdddD (ēγµd)(dCiDµd) OL̄dddH (L̄d)(dCd)H

OēQddH̃ εij(ēQ
i)(dCd)H̃j

OL̄dQQH̃ εij(L̄d)(QCQi)H̃j

Table 1. Dim-7 operators in 6 classes are divided into two subsets with L = 2 and B = 0 and

B = −L = 1 (in gray) respectively, where (DµH
n) should be understood as (DµH)n etc.

Since all dim-7 operators violate lepton number, their effects are presumably small

and can only be explored in high precision measurements. For the purpose of illustration

we will study nuclear neutrinoless double β decays (0νββ) and discuss very briefly lepton-

number violating decays of the charged kaons K± → π∓`±`±. We will find that these

processes generally involve new low-energy mechanisms for lepton number violation beyond

the widely studied neutrino mass insertion. As these new mechanisms contain hadronic

matrix elements that have not yet been well investigated for kaon decays in the literature,

we defer an appropriate phenomenological analysis to our future work.

2 Dimension 7 operators and their flavor structure

For convenience we reproduce in table 1 the 12 + 6 dim-7 operators finally fixed in ref. [5].

These operators are complete and independent when fermion flavors are not counted, and

form the so-called flavor-blind basis introduced above. They include two subsets according

to their lepton L and baryon B numbers, 12 operators with L = 2 and B = 0 and 6 ones

with B = −L = 1. They are all non-Hermitian and will be multiplied by generally complex

Wilson coefficients.

We denote fermion flavors (p, r, s, t, . . .) of an operator in the same order that fermion

fields appear in the operator, and all repeated indices are implied to be summed over

unless otherwise stated. For instance, OprLH = εijεmn(LipCL
m
r )HjHn(H†H) and Oprst

d̄uLLD
=

εij(d̄pγµur)(L
i
sCiD

µLjt ). It is easy to understand that operators involving two or three like-

charge fermions may be related. With two like-charge fermions the relations are simply

symmetric or antisymmetric, as is the case with the operators OprLH , OprLHB, and Oprst
ēQddH̃

.
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Class Operator Flavor relations

ψ2H4 OLH OprLH − p↔ r = 0

ψ2H3D OLeHD ×
ψ2H2D2 OLHD1 (OprLDH1 +Kpr)− p↔ r = 0

OLHD2

[
4OprLHD2 + 2(Ye)rvOpvLeHD −O

pr
LHW + 2Kpr

]
− p↔ r = OprLHB

ψ2H2X OLHB OprLHB + p↔ r = 0

OLHW ×
ψ4H OēLLLH (OprstēLLLH + r ↔ t)− r ↔ s = 0

Od̄LQLH1 ×
Od̄LQLH2 ×
Od̄LueH ×
OQ̄uLLH ×

ψ4D Od̄uLLD
[
Oprst
d̄uLLD

+ (Yd)vpOvrstQ̄uLLH
− (Y †u )rvOpsvtd̄LQLH2

]
− s↔ t = 0

ψ4H OL̄dudH̃ ×
OL̄dddH Oprst

L̄dddH
+ s↔ t = 0, Oprst

L̄dddH
+Opstr

L̄dddH
+Optrs

L̄dddH
= 0

OēQddH̃ Oprst
ēQddH̃

+ s↔ t = 0

OL̄dQQH̃ ×
ψ4D OL̄QddD

[
Oprst
L̄QddD

+ (Yu)rvOpsvtL̄dudH̃

]
− s↔ t = −(Y †e )vpOvrstēQddH̃

− (Yd)rvOpvstL̄dddH

OēdddD OprstēdddD − r ↔ s = (Y †d )tvOpvrsēQddH̃

(OprstēdddD + r ↔ t)− s↔ t = (Ye)vpOvrstL̄dddH

Table 2. Flavor relations for dim-7 operators. The symbol × indicates lack of such a relation.

With three like-charge fermions the relations generally have a mixed symmetry, and these

cover the operators OprstēLLLH and Oprst
L̄dddH

. Nontrivial flavor relations exist for operators that

involve at least one derivative, including OprLHD1, OprLHD2, Oprst
d̄uLLD

, Oprst
L̄QddD

, and OprstēdddD.

This explains why this feature appears first at dimension seven but not lower dimensions,

and it is expected to prevail at higher dimensions. We list all flavor relations in table 2, in

which a shortcut is used,

Kpr = (Yu)vwOvwprQ̄uLLH
− (Y †d )vwOvpwrd̄LQLH2

− (Y †e )vwOvwprēLLLH . (2.1)

The derivation of flavor relations involves judicious applications of equations of motion

(EoM) in SM, integration by parts (IBP), and Fierz identities (FI) for fermion bilinears

and SU(2) group generators. As an example, we derive the relation for operators Oprst
d̄uLLD

in class-ψ4D:

Oprst
d̄uLLD

− s↔ t

= εij(d̄pγµur)(L
i
sCiD

µLjt )− s↔ t

IBP
==== −εij(d̄pi

←−
/Dur)(L

i
sCL

j
t )− εij(d̄pi /Dur)(LisCL

j
t )
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EoM
==== (Yd)vp

[
εijδmn(Q̄mv ur)(L

i
sCL

j
t )H

n
]
− (Y †u )rv

[
εijεmn(d̄pQ

m
v )(LisCL

j
t )H

n
]

FI
===

[
− (Yd)vpOvrstQ̄uLLH + (Y †u )rvOpsvtd̄LQLH2

]
− s↔ t, (2.2)

where the total derivative term is neglected in the second equality, EoM’s for quark fields

d and u are implemented in the third, and finally the Fierz identities are applied to cast

the operators thus obtained into the ones listed in table 1.

All of the above independent flavor relations must be applied to remove redundant

operators before a flavor-specified basis is achieved. We have checked that the dimension

of such a basis coincides with counting of independent operators in the Hilbert series

approach [9]; for instance, with one (three) generation(s) of fermions there are in total

30 (1542) independent operators in the basis when Hermitian conjugates of the operators

are also counted. In principle the choice of a basis is arbitrary for RGE analysis [27]. In

practice however, since the above nontrivial relations involve Yukawa coupling matrices

whose entries are generally small, one should avoid using their inverse when removing

redundant operators. Note that even if one deletes redundant operators from a basis at the

start they can reappear by renormalization of chosen basis operators. It is thus important

to choose a suitable basis so that no singular relations would be appealed to when recasting

those redundant operators in terms of basis operators. Inspection of the relations suggests

the following priority of reserving operators in the flavor-specified basis: first the operators

without a derivative, then the ones with one derivative and finally the ones with two

derivatives. In each step we exploit the relations to remove redundant operators. For

instance, one appropriate choice would be as follows. We include the following operators

in the basis: for the subset L = 2, B = 0,

1

2

(
OprLH +OrpLH

)
, OprLeHD,

1

2

(
OprLHD1 +OrpLHD1

)
,

1

2

(
OprLHD2 +OrpLHD2

)
,

1

2

(
OprLHB−O

rp
LHB

)
,

OprLHW , O
prst

d̄LQLH1
, Oprst

d̄LQLH2
, Oprst

d̄LueH
, Oprst

Q̄uLLH
,

1

2

(
Oprst
d̄uLLD

+Oprst
d̄uLLD

)
,

1

4

(
OprstēLLLH +OptsrēLLLH +OpsrtēLLLH +OptrsēLLLH

)
(with at least two of r,s, t being equal),

OprstēLLLH , O
prts
ēLLLH , O

psrt
ēLLLH , O

pstr
ēLLLH (for r < s< t), (2.3)

and for the subset B = −L = 1,

Oprst
L̄dudH̃

,
1

2

(
Oprst
ēQddH̃

−Oprts
ēQddH̃

)
, Oprst

L̄dQQH̃
,

1

2

(
Oprst
L̄QddD

+Oprts
L̄QddD

)
,

1

2

(
Oprst
L̄dddH

−Oprts
L̄dddH

)
(with at least two of r, s, t being equal),

Oprst
L̄dddH

, Opstr
L̄dddH

(for r < s < t),
1

6

(
OprstēdddD + 5 permutations of (r, s, t)

)
, (2.4)

where the indices p, r, s, t take values 1, 2, 3 with three generations of fermions. All other

operators in the flavor-blind basis are redundant ones and can be expressed by nonsingular

flavor relations as a linear sum of the above operators in the flavor-specified basis.
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3 Renormalization of operators and extraction of anomalous dimension

matrix

The effective interaction involving a high-dimensional operator is typically induced at a

high energy scale. When it is applied to a process or matched to an effective field theory

at a low energy scale, naive perturbation theory could be spoiled by large logarithms of

the ratio of the two scales. Renormalization group equation offers a systematic approach

to improving perturbation theory by summing the logarithms to all orders. In doing so the

correct choice of a basis of operators is a prerequisite.

We recall that we introduced two bases. The flavor-blind basis (FBB) includes all of

12 + 6 operators listed in table 1 without referring to fermion flavors. This is not a genuine

basis of operators, but is very convenient for computing counterterms to effective inter-

actions when the latter are dressed by SM interactions. Once this is achieved, we forget

about it and move on to the flavor-specified basis (FSB) to extract anomalous dimension

matrix for physical applications. This is a genuine basis of operators in which all redun-

dancy in FBB due to fermion flavor relations has been removed. But the choice of an FSB

is not unique; our suggestion is that we should avoid artificial flaws such as inverse Yukawa

coupling matrices when recasting redundant operators in terms of those included in the

FSB. This is indeed possible according to our discussion in the last section.

Now we formulate how the above procedure is implemented. Suppose we choose an FSB

(index b). All operators in FBB are either included in the FSB or redundant (index r), and

they appear in the effective Lagrangian in the form CbOb +CrOr where Cb, Cr are Wilson

coefficients and summation over b, r is implied. We stress again that the CrOr term is not

necessary for either matching calculation or RGE and that its appearance only facilitates

computing counterterms using the 12+6 operators without specifying fermion flavors. The

counterterms in D = 4− 2ε dimensions with minimal subtraction are denoted as

c.t. = −
(
〈CbOb〉+ 〈CrOr〉

)
, (3.1)

where 〈CO〉 stands for the one-loop contribution with an insertion of the effective inter-

action CO dressed by SM interactions. Our results for all operators in FBB computed in

Rξ gauge are listed in appendix A. Once this is achieved, we only need to manipulate the

〈CbOb〉 part further to extract the anomalous dimension matrix in the chosen FSB. Noting

that this part generically induces both Ob and Or operators, we write it in matrix form

c.t. = − 1

16π2ε
CTb (POb +ROr) + · · · , (3.2)

where the dots stand for the dropped 〈CrOr〉 part and P, R are matrices appropriate for

1-column matrices Cb, Ob, Or which can be read off from appendix A. Next we employ

flavor relations to replace Or by Or = MOb where M is a matrix obtained from the flavor

relations, so that the above counterterms become

c.t. = − 1

16π2ε
CTb (P +RM)Ob + · · · . (3.3)

– 6 –
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(ω, ω̄)|χ (5, 3)|3 (5, 3)|3 (5, 3)|3 (5, 5)|2 (5, 5)|2 (5, 5)|2 (7, 3)|2 (7, 3)|2 (7, 3)|2 (7, 3)|3(7, 3)|3(7, 5)|1
(ω, ω̄)|χ γij OLHD1OLHD2Od̄uLLDOLeHDOd̄LueHOQ̄uLLHOēLLLHOd̄LQLH1Od̄LQLH2 OLHB OLHW OLH

(5, 3)|3 OLHD1 g2 g2 g2 0 0 0 0 0 0 0 0 0

(5, 3)|3 OLHD2 g2 g2 0 0 0 0 0 0 0 0 0 0

(5, 3)|3 Od̄uLLD g2 g2 g2 0 0 0 0 0 0 0 0 0

(5, 5)|2 OLeHD g3 g3 0 g2 g2 0 0 0 0
∑
→ 0

∑
→ 0 0

(5, 5)|2 Od̄LueH g3 g3 g3 g2 g2 g2 0 YuYe YuYe 0 0 0

(5, 5)|2 OQ̄uLLH g3 g3 g3 0 g2 g2 YuYe YuYd YuYd 0 0 0

(7, 3)|2 OēLLLH g3 g3 0 0 0 Y †
uY

†
e g2 g2 g2 g3 g3 0

(7, 3)|2Od̄LQLH1 g3 g3 g3 0 Y †
uY

†
e Y †

uY
†
d g2 g2 g2 g3 g3 0

(7, 3)|2Od̄LQLH2 g3 g3 g3 0 Y †
uY

†
e Y †

uY
†
d g2 g2 g2 g3 g3 0

(7, 3)|3 OLHB g2 g2 0 Y †
e 0 0 g1 g1 0 g2 g2 0

(7, 3)|3 OLHW g2 g2 0 Y †
e 0 0 g1 g1 g1 g2 g2 0

(7, 5)|1 OLH g4 g4 0 g3 0 g3 g3 g3 0 0 g4 g2

Table 3. The structure and perturbative power counting of the anomalous dimension matrix γij
for the subset of dim-7 operators with L = 2, B = 0. Also shown are holomorphic (ω) and

antiholomorphic (ω̄) weights and perturbative power counting (χ) of the operators. The entries

with
∑
→ 0 indicate that Yukawa coupling terms happen to cancel each other.

Now we define operators Ob at scale µ and associate renormalization effects to the Wilson

coefficients

16π2 dCb
d lnµ

= γCb, (3.4)

and the anomalous dimension matrix in the chosen FSB is computed as

γ = −
∑
α

ραgα
∂

∂gα
(P +RM), (3.5)

where gα = g1,2,3, Ye,d,u, λ, and ρα = 2 for gα = λ and ρα = 1 otherwise.

We conclude this section with a brief discussion of the structure in the anomalous

dimension matrix. The structure at one loop can be understood in terms of a nonrenor-

malization theorem [24] and perturbative power counting rules [26]. For the subset of

dim-7 operators with B = −L = 1 this was studied in detail in ref. [26], and we thus

concentrate on the other subset with L = 2, B = 0 whose result is shown in table 3.

According to ref. [24] each operator O is assigned with a holomorphic weight ω(O) and

an antiholomorphic weight ω̄(O), and the nonrenormalization theorem asserts that up to

nonholomorphic Yukawa couplings an operator Oi can only be renormalized by an operator

Oj if ω(Oi) ≥ ω(Oj) and ω̄(Oi) ≥ ω̄(Oj) are both true, or to put it in another way, γij = 0

when ω(Oi) < ω(Oj) or ω̄(Oi) < ω̄(Oj). This explains the zeros in gray up to Yukawa

couplings in table 3. The other zeros in the table reflect the simple fact that there happens

to be no one-loop diagrams. We stress that flavor relations shown in tabel 2 do not spoil

the nonrenormalization theorem. For simple relations without involving Yukawa couplings

this is obvious. For nontrivial relations involving Yukawa couplings which are brought

about by EoMs, there is no theorem at all in the first place. The perturbative orders of the

remaining entries in γ can be determined by power counting rules [26]. The basic idea is

– 7 –
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Figure 1. Quark-level Feynman diagram for 0νββ from dim-7 (and dim-5 in (e)) operators (heavy

dots) in SMEFT.

that all terms in the SM Lagrangian LSM are treated as same order in perturbation theory.

This fixes the perturbative order of each building block and thus that of each operator,

χ[Oi], up to a common additive constant. The perturbative order of γ is then determined

at one loop to be χ[γij ] = 2 + χ[Oj ]− χ[Oi]. In this counting we treat all of the couplings

g1,2,3, Ye,u,d,
√
λ as the same order g. We note again that flavor relations are automatically

consistent with power counting since none of manipulations in establishing the relations

would change perturbative order of an operator.

4 Phenomenology of dim-7 operators

We studied in a previous work [5] the proton decay p→ π+ν induced by the subset of dim-7

operators with B = −L = ±1. In this section we study some phenomenology of the other

subset of operators with L = ±2 and B = 0. We will improve a previous analysis [28, 29]

on nuclear neutrinoless double β decay by incorporating complete one-loop SM RGE effects

from a high scale to the electroweak scale. We will also discuss briefly its counterpart in the

meson sector, i.e., the rare decays K± → π∓`±`±, which have been severely constrained

for the muon-pair final state to be Br(K± → µ±µ±π∓) < 8.6× 10−11 (90% CL) [30].

Nuclear neutrinoless double β decay (0νββ) has been so far the most extensively

studied process searching for lepton number violation; see, e.g., ref. [31] for a review.

Attributing its source to a mechanism responsible for light Majorana neutrino mass, the

current experimental limit on the process translates to a bound on the effective neutrino

mass mββ < 0.1 eV [32, 33], and this bound is expected to be pushed down further to

– 8 –
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mββ < 0.015 eV [34] in the near future. In the framework of SMEFT there are additional

mechanisms that are not directly related to the light neutrino masses as shown in figure 1.

The heavy dot in the figure represents dim-7 effective interactions studied in previous

sections (and also the dim-5 effective mass operator in subgraph (e)) that are obtained

from the 12 operators in table 1 upon sending H to its vacuum expectation value v/
√

2.

As we go down further to lower energy scale at which the weak gauge bosons are integrated

out, the diagrams in the left panel will be matched to those in the right where the box

stands for the SM four-Fermi weak interactions. It is clear that there are three classes

of contributions: short-range (or contact) interaction, long-range interaction, and light

neutrino mass insertion, which we will study one by one below. To simplify the matter

a bit, we assume that all quark and lepton mixing matrix elements have already been

incorporated in the Wilson coefficients.

The short-range interaction amounts to the following dim-9 operators which are gener-

ated from dim-7 operators Opr†LHD1, O†prLHW , and Oprst†
d̄uLLD

together with the SM four-Fermi

weak interactions:

LS = (uγµPLd)
[
CS1(uγµPLd) + CS2(uγµPRd)

]
(ePRe

C), (4.1)

where

(CS1, CS2) = −2
√

2GF
(
C†11
LHD1+4C†11

LHW , C
†1111

duLLD

)
, (4.2)

and GF is the Fermi constant. Neutrinoless double β decay has been studied in EFT below

the weak scale in refs. [35–37]. Relations to the ε parameters in ref. [37] are

(
C†11
LHD1+4C†11

LHW , C
†1111

duLLD

)
= −
√

2GF
mp

(
εLLR3 , εLRR3

)
, (4.3)

where mp is the proton mass. The constraints on the ε parameters at the proton mass

scale from experiments using elements 48Ca,76 Ge,82 Se,130 Te,136 Xe were worked out in

ref. [37], and those relevant to our analysis are reproduced in table 4. As a matter of fact,

translating experimental limits on half lives to those on the ε or C parameters defined

at 1 ∼ 2 GeV is afflicted with hadronic and nuclear level uncertainties which we cannot

improve in this work. These uncertainties can be order one according to the most recent

estimates in refs. [29, 37]. We refer the interested reader to ref. [29] and references cited

therein for a comprehensive account of the issue.

The long-range interaction is mediated by a neutrino propagator connecting the SM

four-Fermi weak interaction and the effective interactions induced by the dim-7 operators

Opr†LeHD, Oprst†
d̄LueH

, Oprst†
d̄LQLH1

, Oprst†
d̄LQLH2

, and Oprst†
Q̄uLLH

:

LL =

5∑
n=0

CLnOn, (4.4)

where the SM effective interaction is

O0 = (uγµPLd)(eγµPLν), CL0 = −2
√

2GF , (4.5)
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48Ca 76Ge 82Se 130Te 136Xe

|εLLR3 | 3.8× 10−7 8.9× 10−9 6.7× 10−8 2.0× 10−8 4.1× 10−9

|εLRR3 | 6.3× 10−7 1.4× 10−8 1.1× 10−7 3.2× 10−8 6.7× 10−9

|εV+A
V−A| 1.1× 10−7 2.2× 10−9 1.7× 10−8 5.1× 10−9 1.1× 10−9

|εV+A
V+A| 1.3× 10−5 4.3× 10−7 2.2× 10−6 9.3× 10−7 2.0× 10−7

|εS+P
S±P | 3.4× 10−7 7.9× 10−9 6.1× 10−8 1.4× 10−8 2.9× 10−9

|εTRTR| 1.8× 10−8 7.9× 10−10 5.9× 10−9 2.0× 10−9 4.2× 10−10

Table 4. Upper bounds on some |ε| at the proton mass scale µ ≈ mp derived for various nuclei

and assuming one operator is active at a time. Reproduced from ref. [37].

and the new ones are

O1 = (uγµPLd)(eγµPRν
C),

O2 = (uγµPRd)(eγµPRν
C),

O3 = (uPLd)(ePRν
C),

O4 = (uPRd)(ePRν
C),

O5 = (uσµνPRd)(eσµνPRν
C), (4.6)

with coefficients (
CL1, CL3

)
=

√
2v

2

(
− C11†

LeHD, C
1111†
Q̄uLLH

)
,(

CL2, CL4

)
=

√
2v

4

(
C1111†
d̄LueH

, C1111†
d̄LQLH1

)
,

CL5 =

√
2v

16

[
C1111†
d̄LQLH1

+ 2C1111†
d̄LQLH2

]
. (4.7)

Note that Fierz identities have been employed to reach the above form. Again, relations

to the ε parameters in [37] are(
C11†
LeHD, C

1111†
Q̄uLLH

)
=

4GF
v

(
− εV+A

V−A, ε
S+P
S−P

)
,(

C1111†
d̄LueH

, C1111†
d̄LQLH1

)
=

8GF
v

(
εV+A
V+A, ε

S+P
S+P

)
,

C1111†
d̄LQLH2

=
4GF
v

[
4εTRTR − εS+P

S+P

]
, (4.8)

and upper bounds on their magnitudes are also reproduced in table 4.

Finally the decay may be induced by insertion of a light Majorana neutrino mass in

the neutrino propagator that transmits lepton number violation:

LM = −1

2
v2(CprLH5 + v2CprLH)(νpPRν

C
r ) + h.c., (4.9)

where CprLH5 is the Wilson coefficient of the dim-5 Weinberg operator. Since this mechanism

has been extensively studied in the literature, we will concentrate on the other two. From
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(100 TeV)−3 48Ca 76Ge 82Se 130Te 136Xe

|C11†
LHD1| 4.124× 103 0.097× 103 0.727× 103 0.217× 103 0.046× 103

|C1111†
duLLD

| 12.36× 103 0.274× 103 2.149× 103 0.625× 103 0.131× 103

|C11†
LeHD| 0.021× 103 0.4 3.2 1.0 0.2

|C1111†
d̄LueH

| 4.927× 103 0.163× 103 0.834× 103 0.352× 103 0.076× 103

|C1111†
Q̄uLLH

| 0.043× 103 1.0 0.008× 103 1.8 0.4

|C1111†
d̄LQLH1

| 0.086× 103 2.0 0.015× 103 3.5 0.7

|C1111†
d̄LQLH2

| 0.068× 103 1.3 9.9 1.7 0.3

|C11†
LHW | 1.031× 103 0.024× 103 0.182× 103 0.054× 103 0.012× 103

Table 5. Upper bounds on Wilson coefficients of dim-7 operators at the weak scale µ ≈ mW using

RGE formulas in ref. [28] and table 4 as initial values [37].

naive dimensional analysis they are important only when the dim-5 Weinberg operator is

suppressed for one reason or another.

Now we evolve the above bounds at the proton mass scale µ ≈ mp to those at the

electroweak scale µ ≈ mW using RGE formulas in ref. [28]. We adopt the physical constants

recommended by the Particle Data Group [38]; for instance, mp = 0.938 GeV, GF =

1.166 × 10−5 GeV−2, and v = 246.22 GeV. The results are shown in table 5. As we can

see from the table, data from the nucleus 136Xe sets the most severe constraints for all

Wilson coefficients under consideration. This offers the starting point for our further RGE

analysis to a higher energy scale of new physics.

To evolve from the electroweak scale to a higher scale at which dim-7 operators are

generated, we first derive RGE equations relevant to 0νββ decay using eqs. (3.5) and (A.2)–

(A.13):

d

d lnµ
C11†
LHD1 =

1

4π

(
− 9

10
α1 +

11

2
α2 +6αt

)
C11†
LHD1 +

1

4π

(
− 33

20
α1−

19

4
α2−2αλ

)
C11†
LHD2,

d

d lnµ
C1111†
d̄uLLD

=
1

4π

(
1

10
α1−

1

2
α2

)
C1111†
d̄uLLD

,

d

d lnµ
C11†
LeHD =

1

4π

(
− 9

10
α1 +6αλ+9αt

)
C11†
LeHD,

d

d lnµ
C1111†
d̄LueH

=
1

4π

(
− 69

20
α1−

9

4
α2 +3αt

)
C1111†
d̄LueH

,

d

d lnµ
C1111†
Q̄uLLH

=
1

4π

(
1

20
α1−

3

4
α2−8α3 +3αt

)
C1111†
Q̄uLLH

,

d

d lnµ
C1111†
d̄LQLH1

=
1

4π

(
13

20
α1 +

9

4
α2−8α3 +3αt

)
C1111†
d̄LQLH1

+
1

4π

(
6α2

)
C1111†
d̄LQLH2

,

d

d lnµ
C1111†
d̄LQLH2

=
1

4π

(
− 121

60
α1−

15

4
α2 +

8

3
α3 +3αt

)
C1111†
d̄LQLH2

+
1

4π

(
− 4

3
α1 +

16

3
α3

)
C1111†
d̄LQLH1

,
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d

d lnµ
C11†
LHD2 =

1

4π

(
12

5
α1 +3α2 +4αλ+6αt

)
C11†
LHD2 +

1

4π

(
−8α2

)
C11†
LHD1,

d

d lnµ
C11†
LHW =

1

4π

(
− 6

5
α1 +

13

2
α2 +4αλ+6αt

)
C11†
LHW

+
1

4π

(
5

8
α2

)
C11†
LHD1 +

1

4π

(
− 9

80
α1 +

11

16
α2

)
C11†
LHD2. (4.10)

Note that we have kept the couplings g1,2,3, λ and the dominant top Yukawa coupling

yt ≡ (Yu)33 in the above equations and switched to the grand unification convention for

the g1 coupling, i.e., g1 → g1

√
3/5. Our αi convention is standard

α1,2,3 =
g2

1,2,3

4π
, αλ =

λ

4π
, αt =

y2
t

4π
, (4.11)

which satisfy the RGE equations at one loop (for a clear exposition see ref. [39]):

dα1

d lnµ
=

1

2π

(
1

10
+

4

3
nG

)
α2

1,

dα2

d lnµ
=

1

2π

(
− 43

6
+

4

3
nG

)
α2

2,

dα3

d lnµ
=

1

2π

(
−11+

4

3
nG

)
α2

3,

dαt
d lnµ

=
1

2π

(
− 17

20
α1−

9

4
α2−8α3 +

9

2
αt

)
αt,

dαλ
d lnµ

=
1

4π

(
− 9

5
α1−9α2 +12αt+24αλ

)
αλ+

1

8π

(
27

100
α2

1 +
9

10
α1α2 +

9

4
α2

2

)
, (4.12)

where nG is the number of fermion generations. We adopt the MS values of αi at the

Z-pole mZ [39] as our initial values

α1(mZ) = 0.0169225± 0.0000039, α2(mZ) = 0.033735± 0.00020,

α3(mZ) = 0.1173± 0.00069, αt(mZ) = 0.07514, αλ = 0.13/4π, (4.13)

where αλ is calculated by 4παλ = m2
H/(2v).

Now we solve our RGE equations (4.10) and (4.12) numerically using the last column

of table 5 and eq. (4.13) as initial conditions. Since the operator O11†
LHD2 does not appear in

the Feynman diagrams for the decay, we assume C11†
LHD2(mZ) = 0. Our results for the eight

Wilson coefficients are shown in figure 2. As we can see from the figure that the running

effect from 100 GeV to about 100 TeV is mild for C1111†
d̄uLLD

and C1111†
d̄LueH

but significant for

other coefficients, and the lower limit on new physics scale estimated naively from |Ci|−1/3

is around 100 TeV depending on the operator under consideration. Our result improves

the analysis in ref. [28] where only QCD interactions were considered in RGE of dim-7

operators in SMEFT, while both results agree in the order of magnitude.

Now we discuss briefly the rare decay K+ → µ+µ+π− which can be considered an

analog of the nuclear 0νββ decay in the meson sector. The Feynman diagrams at the

quark level are also classified into three classes: short-range, long-range interactions and
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Cd_ LQLH2
1111 †

CLHW
11 †

Figure 2. RGE of the Wilson coefficients relevant to 0νββ decay. The black solid line indicates

µ = |Ci|−1/3, and roughly speaking SMEFT applies to its left region.

insertion of light Majorana neutrino masses. Since a pair of quark currents are involved,

the hard core problem is to evaluate their matrix elements between the initial and final

meson states of opposite charge. In quark-level Feynman diagrams the two mesons can be

formed in two different manners according to whether the W± gauge bosons are exchanged

in the s or t channel. In the classes of long-range interaction and mass insertion the

pair of quark charged currents are defined at different points that are connected by a

light neutrino propagator. This pseudoscalar level problem should be less difficult to cope

with than the hadronic problem in 0νββ decay which involves nucleons as well. We note

that a similar process π−π− → ee entering 0νββ decay has recently been worked out by

lattice methods, that is due to a short-range interaction [40] or a long-range interaction

by a neutrino propagator [41]. This result could be helpful for the evaluation of the rare

K+ decay by flavor SU(3) symmetry. We would like to reserve for our future efforts the

phenomenological analysis of the decay and related processes for the D and B mesons.

5 Conclusion

We have studied systematically the fermion flavor relations of the (12 + 6) dim-7 operators

of different Lorentz structures and field contents in SMEFT. These operators would be com-
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plete and independent without counting flavors. Some nontrivial types of flavor relations

first appear at dimension seven and involve Yukawa coupling matrices. In phenomenolog-

ical analysis it is necessary to choose a genuine basis for operators which must take into

account individual flavor degrees of freedom. While in principle one can choose any basis,

an improper choice however may bring about artefact such as inverse Yukawa coupling ma-

trices that are almost singular in SM. We suggest a recipe to choose a proper basis: reserve

priority to operators with less derivatives and along the way remove redundant operators

by flavor relations.

Then we discussed how to renormalize these operators that are constrained by flavor

relations. The issue is that while the (12 + 6) operators without counting flavors are easier

to work with when computing their counterterms ‘blindly’, anomalous dimension can only

be defined consistently for a set of complete and independent operators. We formulated

how to form the anomalous dimension matrix for the latter from counterterms computed

for the former, and listed counterterms in appendix A. Our one-loop results follow the

patterns heralded by nonrenormalization theorem and perturbative power counting rules.

As a first phenomenological application we studied renormalization group effects on nuclear

neutrinoless double β decay from the electroweak scale to certain high scale at which dim-7

operators are generated. Requiring the inverse cubic root of the Wilson coefficients to be

no lower than the high scale, the running effects can still be significant for some operators.

And the current experimental bound on the decay implies the inverse cubic root of the

Wilson coefficients to be larger than about 100 TeV. We also very briefly touched upon

the lepton-number violating decay K± → π∓µ±µ± and pointed out its potential difficulties.

We wish to come back to this process in the near future.
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A One-loop contribution with an insertion of effective interactions

We collect our results for the ultraviolet divergent terms in one-loop diagrams with one

insertion of effective interactions due to dim-7 operators that is dressed by SM interac-

tions. Our calculations are done in dimensional regularization (D = 4− 2ε) with minimal

subtraction and in Rξ gauge. The results can be used to extract the anomalous dimension

matrix γ once a flavor-specified basis is chosen as described in the main text.

– 14 –



J
H
E
P
0
3
(
2
0
1
9
)
1
7
9

We adopt the following shortcuts:

δ = 16π2ε,

WH = Tr
[
3(Y †uYu)+3(Y †d Yd)+(Y †e Ye)

]
,

W 1
pr =

1

8

[(
4g2

1−3g2
2

)
CprLHD1−

(
4g2

1−15g2
2

)
CrpLHD1 +4(YeY

†
e )vpC

rv
LHD1 +2(YeY

†
e )vrC

pv
LHD1

]
,

W 2
pr =

1

4

[
(g2

1 +3g2
2)CprLHD2−g

2
1C

rp
LHD2 +

(
(YeY

†
e )vrC

pv
LHD2 +p↔ r

)]
, (A.1)

where WH originates from the Higgs field wavefunction renormalization due to Yukawa

couplings and W 1
pr (W 2

pr) appears in insertion of the operator OLHD1 (OLHD2). In the

following formulas, 〈CO〉 on the left-hand side stands for an insertion of the effective

interaction CO with the dim-7 operator O and its Wilson coefficient C, which yields the

one-loop result on the right-hand side due to SM interactions. A subscript X on the right

implies the same field labels as in the left 〈(CO)X〉.
The results for the operators with L = 2, B = 0 are:

〈(CO)LH〉δ =
1

4

{(
3g2

1 +15g2
2−80λ−8WH

)
Cpr

X +3
[
(YeY

†
e )vpC

vr
X +p↔r

]}
Opr

X , X=LH, (A.2)

〈(CO)LeHD〉δ =
1

4

{[(
3g2

2−4λ
)
(Y †

e )vr−2(Y †
e YeY

†
e )vr

]
Cpv

X +p↔r
}
Opr

LH

+
1

4

[(
3g2

1−12λ−6WH

)
Cpr

X −(YeY
†
e )vpC

vr
X −2(Ye)vr(Y †

e )wpC
vw
X −8(Y †

e Ye)vrC
pv
X

]
Opr

X

− 1

16

[
(Y †

e )vrC
pv
X −p↔r

]
Opr

LHB−
1

4
(Y †

e )vrC
pv
X O

pr
LHW +3(Y †

d Yu)psC
rt
XOprst

d̄LueH
,

X = LeHD, (A.3)

〈(CO)LHD1〉δ =
1

8

{[
3g4

2C
pr
X +4

(
2λ(YeY

†
e )vr+(YeY

†
e YeY

†
e )vr

)
Cpv

X −λW
1
pr

]
+p↔r

}
Opr

LH

−1

4

{
(Ye)vr

[(
3g2

1−4g2
2

)
Cpv

X +
(
3g2

1 +2g2
2

)
Cvp

X

]
−
[
(YeY

†
e )vp(Ye)wr

(
2Cvw

X −Cwv
X

)
+4(YeY

†
e Ye)vrC

pv
X

]}
Opr

LeHD−(Yu)prW
1
tsOprst

Q̄uLLH

+
1

4

{[
2
(
g2

1−2g2
2−2WH

)
Cpr

X +
(
g2

1−7g2
2

)
Crp

X

]
−
[
(YeY

†
e )vp

(
7Cvr

X −Crv
X

)
+6(YeY

†
e )vrC

pv
X

]}
Opr

X −(Y †
d Yu)ps(Ye)vtC

rv
X Oprst

d̄LueH

+
1

2

[
g2

2

(
7Cpr

X +Crp
X

)
+
(

5(YeY
†
e )vpC

vr
X +2(YeY

†
e )vrC

pv
X

)]
Opr

LHD2−(Y †
d Yu)prC

st
XOprst

d̄uLLD

− 1

64

{[
9g2

2C
pr
X +2(YeY

†
e )vp

(
2Cvr

X −Crv
X

)]
−p↔r

}
Opr

LHB

− 1

16

[
g2

2

(
7Cpr

X −2Crp
X

)
+2
(

2(YeY
†
e )vpC

vr
X +(YeY

†
e )vrC

pv
X

)]
Opr

LHW

−1

4

{
3g2

1(Y †
e )pt

(
Crs

X +Csr
X

)
−g2

2

[
(Y †

e )pt
(
Crs

X −Csr
X

)
−2(Y †

e )ps
(
Crt

X −Ctr
X

)]
−4(Y †

e )prW
1
ts

}
Oprst

ēLLLH−
1

2
(Y †

d )ps
[
g2

2

(
Crt

X −Ctr
X

)
−2
(
W 1

rt+W
1
tr

)]
Oprst

d̄LQLH1

− 1

12
(Y †

d )ps
[(
g2

1−3g2
2

)
Crt

X +
(
g2

1 +3g2
2

)
Ctr

X +12W 1
rt

]
Oprst

d̄LQLH2
, X=LHD1, (A.4)

〈(CO)LHD2〉δ =
1

16

{[
3
(
g4

1 +2g2
1g

2
2 +3g4

2

)
Cpr

X +8
(
2λ(YeY

†
e )vr+(YeY

†
e YeY

†
e )vr

)
Cpv

X −λW
2
pr

]
+p↔r

}
Opr

LH

− 1

16

[(
13g2

1−17g2
2−8λ

)
(Ye)vrC

pv
X −4

(
5(YeY

†
e Ye)vrC

pv
X +(YeY

†
e )vp(Ye)wrC

vw
X

)]
Opr

LeHD

+
1

8

{[(
7g2

1 +11g2
2 +8λ

)
Cpr

X +4
(
g2

1 +2g2
2

)
Crp

X

]
+4
[
(YeY

†
e )vp

(
Cvr

X −Crv
X

)
−(YeY

†
e )vrC

pv
X

]}
Opr

LHD1
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−1

4

{(
5g2

1−g2
2 +8λ+4WH

)
Cpr

X +
(
3g2

1 +7g2
2

)
Crp

X −3
[
(YeY

†
e )vpC

vr
X +(YeY

†
e )vrC

pv
X

]}
Opr

X

− 1

12
(Y †

d )ps
((
g2

1−9g2
2

)
Crt

X +12W 2
rt

)
Oprst

d̄LQLH2
+

3

128

(
g2

1−g2
2

)(
Cpr

X −C
rp
X

)
Opr

LHB

+
1

32

{[(
3g2

1−7g2
2

)
Cpr

X −4g2
2C

rp
X

]
−4
[
(YeY

†
e )vrC

pv
X +p↔r

]}
Opr

LHW

−1

4

{
3
(
g2

1−g2
2

)[
(Y †

e )ptC
rs
X −(Y †

e )ps
(
Crt

X −Ctr
X

)]
−4(Y †

e )prW
2
ts

}
Oprst

ēLLLH

+
1

12
(Y †

d )ps
[(
g2

1−9g2
2

)(
Crt

X −Ctr
X

)
−12

(
W 2

rt+W
2
tr

)]
Oprst

d̄LQLH1

−2(Y †
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X −
3

2
g2

1C
pr
X O

pr
LHW

−3g2
1

[
(Y †

e )prC
st
X +(Y †
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ēLLLH

– 16 –



J
H
E
P
0
3
(
2
0
1
9
)
1
7
9

+
1

72

{(
41g2

1 +63g2
2 +96g2

3−36WH

)
Cprst

X −16
(
5g2

1 +9g2
2−12g2

3

)
Cptsr

X

−18
[
6(Y †

d Yd)pvC
vrst
X +(YuY

†
u +5YdY

†
d )vsC

prvt
X +(YeY

†
e )vrC

pvst
X −3(YeY

†
e )vtC

prsv
X

+
3

2
(Y †

d )ps(Yd)vw
(
Cwtvr

X +Cwrvt
X

)]}
Oprst

X −(Yu)vs(Ye)wt

(
Cpwvr

X −Cprvw
X

)
Oprst

d̄LueH

+
1

9

[(
10g2

1 +9g2
2−24g2

3

)
Cptsr

X −9g2
2C

prst
X

]
Oprst

d̄LQLH2

−1

2

[
2(YeY

†
e )vrC

pvst
X −2(YdY

†
d )vsC

prvt
X +(YuY

†
u )vsC

prvt
X −3(Y †

d )ps(Yd)vwC
wtvr
X

]
Oprst

d̄LQLH2

+
1

2

[
3(Yu)pr(Yd)vw−(Yd)pw(Yu)vr

]
Cwsvt

X Oprst

Q̄uLLH
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(
5(YuY

†
u )vs−3(YdY

†
d )vs

)
Cprvt

X +(YeY
†
e )vrC

pvst
X +5(YeY

†
e )vtC

prsv
X

−6(Y †
d )ps(Yd)vw

(
Cwtvr

X −Cwrvt
X

)]}
Oprst

X

−1

2

[
(Ye)vt(Yu)wsC

pvwr
X +2(Yu)vs(Ye)wtC

prvw
X

]
Oprst

d̄LueH

+
1

2

[
3(Yu)pr(Yd)vw−(Yd)pw(Yu)vr

](
Cwsvt

X −Cwtvs
X

)
Oprst

Q̄uLLH
, X= d̄LQLH2, (A.11)

〈(CO)Q̄uLLH〉δ = −3
[
λ(Y †

u )vw−(Y †
uYuY

†
u )vw

](
Cwvpr

X +Cwvrp
X

)
Opr

LH +3(Y †
e )pr(Y †

u )vwC
wvst
X Oprst
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For completeness, we reproduce the results for the operators with B = −L = 1 that were

obtained in ref. [5]:
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Figure 3. One-loop Feynman diagrams with an insertion of the effective interaction (CO)d̄LueH .
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As an illustration of our detailed calculation, we show the one-loop correction with

an insertion of the effective interaction (CO)d̄LueH . All one particle irreducible divergent

Feynman diagrams are shown figure 3. We verified that diagrams (q) and (r) contain a

derivative that combines with additional diagrams obtained by attaching a gauge field to

an internal propagator of those two diagrams to form a gauge covariant derivative. The

result is, diagram by diagram,

〈(CO)d̄LueH〉(a)δ = (ξ1 + 3)ydyLg
2
1C

prst

d̄LueH
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d̄LueH

,
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2
3 + ξ1ydyug

2
1

)
Cprst
d̄LueH

Oprst
d̄LueH

,

〈(CO)d̄LueH〉(d)δ = −ξ1yLyeg
2
1C

prst

d̄LueH
Oprst
d̄LueH

,

〈(CO)d̄LueH〉(e)δ = ξ1ydyeg
2
1C

prst

d̄LueH
Oprst
d̄LueH

,

〈(CO)d̄LueH〉(f)δ = −ξ1yLyug
2
1C

prst

d̄LueH
Oprst
d̄LueH

,

〈(CO)d̄LueH〉(g)δ = ξ1ydyHg
2
1C

prst

d̄LueH
Oprst
d̄LueH

,

〈(CO)d̄LueH〉(h)δ =

(
3

4
ξ2g

2
2 − ξ1yLyHg

2
1

)
Cprst
d̄LueH

Oprst
d̄LueH

,

〈(CO)d̄LueH〉(i)δ = −ξ1yuyHg
2
1C

prst

d̄LueH
Oprst
d̄LueH

,

〈(CO)d̄LueH〉(j)δ = −ξ1yeyHg
2
1C

prst

d̄LueH
Oprst
d̄LueH

,

〈(CO)d̄LueH〉(k)δ = −1

2
(Yd)pv(Y

†
e )wsC

vtrw
d̄LueHO

prst

d̄LueH
,

〈(CO)d̄LueH〉(l)δ = (Y †u )vs(Y
†
e )wtC

prvw

d̄LueH

(
Oprst
d̄LQLH1

−Oprst
d̄LQLH2

)
,

〈(CO)d̄LueH〉(m)δ = −1

2
(Ye)vt(Y

†
e )wrC

pvsw

d̄LueH
Oprst
d̄LueH

,

〈(CO)d̄LueH〉(n)δ = −(Y †d Yd)pvC
vrst
d̄LueHO

prst

d̄LueH
,

〈(CO)d̄LueH〉(o)δ = −(Y †uYu)vsC
prvt

d̄LueH
Oprst
d̄LueH

,

〈(CO)d̄LueH〉(p)δ = (YeY
†
e )vrC

pvst

d̄LueH
Oprst
d̄LueH

,

〈(CO)d̄LueH〉(q)δ = −1

2
(Y †e Ye)vtC

prsv

d̄LueH
Oprst
d̄LueH

,

〈(CO)d̄LueH〉(r)δ = 3(Y †uYd)vwC
wpvr

d̄LueH
OprLeHD, (A.20)

where ξ1,2,3 are the gauge parameters for the SM gauge group and yL,e,Q,u,d,H are hyper-

charges. Including the term due to wavefunction renormalization

〈(CO)d̄LueH〉(s)δ=−
(

8

3
ξ3g

2
3 +

3

2
ξ2g

2
2 +

37

18
ξ1g

2
1−

9

4
g2

2−
3

4
g2

1 +WH

)
Cprst
d̄LueH

Oprst
d̄LueH

(A.21)

−
(

(Y †d Yd)pvC
vrst
d̄LueH +

1

2
(YeY

†
e )vrC

pvst

d̄LueH
+(Y †uYu)vsC

prvt

d̄LueH
+(Y †e Ye)vtC

prsv

d̄LueH

)
Oprst
d̄LueH

,

the complete one-loop correction is

〈(CO)d̄LueH〉δ =

r∑
α=a

〈(CO)d̄LueH〉(α)δ +
1

2
〈(CO)d̄LueH〉(s)δ. (A.22)

Plugging in the values of hypercharges returns the final answer shown in eq. (A.9). As

cross checks of our calculation we note that the final answer does not depend on gauge

parameters, is consistent with perturbative power counting [26], and conforms to nonrenor-

malization theorem [24] when nonholomorphic Yukawa couplings are discarded.
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