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1 Introduction

Given a four dimensional N = 2 superconformal field theory (SCFT) with marginal defor-

mations, it is interesting to write down its weakly coupled gauge theory descriptions. In

such descriptions, gauge couplings take the role of the coordinate on the conformal mani-

fold and the gauge theory is interpreted as conformal gauging of various strongly coupled

isolated SCFTs [1]. It is quite common to find more than one weakly coupled descriptions,

and they are S-dual to each other as the gauge couplings are often related by e.g., τ ∝ − 1
τ .

Finding all weakly coupled gauge theory descriptions is often very difficult for a generic

strongly coupled N = 2 SCFT.

The above questions are solved for class S theory where the Coulomb branch spectrum

has integral scaling dimensions: one represents our theory by a Riemann surface Σ with

regular singularity so that S-duality is interpreted as different degeneration limits of Σ into

three punctured sphere [2]; once a degeneration is given, the remaining task is to identify

the theory corresponding to a three punctured sphere, as well as the gauge group associated

to the cylinder connecting those three punctured spheres. In class S theory framework, Σ

appears naturally as the manifold on which we compactify 6d (2, 0) theory. Certain N = 2

SCFTs and their S-duality can be studied via geometric engineering, see [3].

There is a different type of N = 2 SCFT called Argyres-Douglas (AD) theories [4, 5].

The Coulomb branch spectrum of these theories has fractional scaling dimension and they

also admit marginal deformations. Again, one can engineer such AD theories by using (2, 0)

theory on Riemann spheres Σg=0 with irregular singularity.1 Since we can not interpret

the exact marginal deformations as the geometric moduli of Σ, there is no clue how weakly

coupled gauge theory descriptions can be written down in general, besides some simple

cases where one can analyze the Seiberg-Witten curve directly [6].

It came as quite a surprise that one can still interpret S-duality of AN−1-type AD theory

in terms of an auxiliary punctured Riemann surface [7]. The main idea of [7] is giving a

map from Σ with irregular singularities to a punctured Riemann sphere Σ
′
, and then find

weakly coupled gauge theory as the degeneration limit of Σ
′

into three punctured sphere.

The main purpose of this paper is to generalize the idea of [7] to AD theories engineered

using general 6d (2, 0) theory of type g. The major results of this paper are

• We revisit the classification of irregular singularity of class (k, b) in [5, 8]:

Φ ∼ Tk

z2+ k
b

+
∑
−b≤l<k

Tl

z2+ l
b

(1.1)

and find new irregular singularity which gives SCFT in four dimensions. Briefly, they

are the configuration for which

(i) Tk is regular-semisimple, whose classification was studied in [8].

(ii) The new cases are that Tk is semisimple.

1We will henceforth drop the subscript g = 0 in what follows to denote the Riemann sphere.

– 2 –



J
H
E
P
0
3
(
2
0
1
8
)
1
8
6

(iii) Fix a pair (k, b) and type Tk, we can consider the degeneration of Tk and the

crucial constraint is that the corresponding Levi subalgebra has to be the same

for Tl, l > −b.

• We successfully represent our theory by an auxiliary punctured sphere from the data

defining our theory from 6d (2,0) SCFT framework, and we then find weakly coupled

gauge theory descriptions by studying degeneration limit of new punctured sphere.

For instance, we find that for g = DN , b = 1 and large k and all coefficient matrices

regular semisimple, one typical duality frame looks like

TN−1,

SO(2N − 2)

TN−2

. . . . . .

T3

SO(6)

T2

SO(4)

T1

where Ti is given by Di+1 theory
(
III

[1;2i]×(k+1),[1i+1;0]
k,1 , [12i+2]

)
. The notation we use to

label the AD theories is (
III

{li}
k,b , Q

)
, (1.2)

where III means type-III singularity in the sense of [5], and {li} are Levi subalgebra for

each coefficient matrix Ti and Q is the label for regular puncture. Each notation will be

explained in the main text.

The same theory has a second duality frame, given by

T̂ ′N ,

SU(N)

T̂N−1

. . . . . .

T̂3

SU(3)

T̂2

SU(2)

T̂1

where T̂i, 1 ≤ i ≤ N − 1 is given by
(
III

[i,1]×(k+1),[1i+1]
k,1 , [1i+1]

)
, and T̂ ′N is given by(

III
[N ;0]×(k+1),[12N ;0]
k,1 , Q

)
. An unexpected corollary is that the quiver with SO(2n) gauge

groups are dual to quivers with SU(n) gauge groups, and each intermediate matter content

does not have to be engineered from the same g-type in 6d. Similar feature appears when

g = E6,7,8, as will be demonstrated in this work.

The paper is organized as follows. In section 2 we briefly review regular punctures and

their associated local data, and then proceed to classify (untwisted) irregular punctures for

g = DN and g = E6,7,8 theories. We give relevant Coulomb branch spectrum. The map

from Σ to Σ′ is described in section 3. Section 4 is devoted to study the duality frames for

DN theories. We consider both untwisted and twisted theories. Finally, we study S-duality

frame for E6,7,8 theories in section 5. We conclude in section 6.

2 SCFTs from M5 branes

M5 brane compactifications on Riemann surface Σ provide a large class of N = 2 super-

conformal theories in four dimensions. To characterize the theory, one needs to specify a

Lie algebra g of ADE type, the genus g of the Riemann surface, and the punctures on Σ.

Regular punctures are the loci where the Higgs field Φ has at most simple poles; while irreg-

ular punctures are those with Φ having higher order poles. The class S theories developed
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in [2] are SCFTs with Σ of arbitrary genus and arbitrary number of regular punctures,

but no irregular puncture. Later, it was realized that one may construct much larger class

of theories by utilizing irregular punctures [5, 9, 10]. However, in this case the Riemann

surface is highly constrained. One may use either

• A Riemann sphere with only one irregular puncture at the north pole;

• A Riemann sphere with one irregular puncture at the north pole and one regular

puncture at the south pole.

where the genus g = 0 condition is to ensure the C∗ action on the Hitchin system, which

guarantees U(1)r R-symmetry and superconformality. This reduces classification of theories

into classification of punctures. In this section we revisit the classification and find new

irregular singularity which will produce new SCFTs.

2.1 Classification of punctures

2.1.1 Regular punctures

Near the regular puncture, the Higgs field takes the form

Φ ∼ Λ

z
+M, (2.1)

and classification of regular puncture is essentially classification of nilpotent orbits. The

puncture itself is associated with the Nahm label, while Λ is given by the Hitchin label.

They are related by the Spaltenstein map. We now briefly review the classification.

Lie algebra g = AN−1. The nilpotent orbit is classified by the partition Y =[
nh11 , . . . , nhrr

]
, where ni are column heights, and the flavor symmetry is [2, 11]

Gflavor = S

(
r∏
i=1

U(hi)

)
. (2.2)

The spectral curve is

det(x− Φ(z)) = 0→ xN +

N∑
i=2

φi(z)xN−i = 0. (2.3)

Each φi is the meromorphic differentials on the Riemann surface, living in the space

H0(Σ,K⊗i). The order of pole pi of the regular puncture at φi determines the local dimen-

sion of Coulomb branch spectrum with scaling dimension ∆ = i. It is given by pi = i− si
where si is the height of i-th box of the Young tableaux Y ; here the labeling is row by row

starting from bottom left corner.

– 4 –
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Lie algebra g = DN . We now review classification of regular punctures of DN algebra.

For a more elaborated study, the readers may consult [12, 13].

A regular puncture of type g = DN is labelled by a partition of 2N , but not every

partition is valid. It is a requirement that the even integers appear even times, which we

will call a D-partition. Moreover, if all the entries of the partition are even, we call it very

even D-partition. The very even partition corresponds to two nilpotent orbit, which we

will label as OI[·] and OII[·] . We again use a Young tableau with decreasing column heights

to represent such a partition, and we call it a Nahm partition. Given a Nahm partition,

the residual flavor symmetry is given by

Gflavor =
∏
h odd

Spin(nh)×
∏
h even

Sp
(
nh
)
. (2.4)

We are interested in the contribution to the Coulomb branch dimension from each

puncture. When g = AN−1 case we simply take transpose and obtain a Hitchin parti-

tion [11]. However, for g = DN the transpose does not guarantee a valid Young tableaux.

Instead it must be followed by what is called D-collapse, denoted as (·)D, which is described

as follows:

(i) Given a partition of 2N , take the longest even entry n, which occurs with odd mul-

tiplicity (if the multiplicity is greater than 1, take the last entry of that value), then

picking the largest integer m which is smaller than n − 1 and then change the two

entries to be (n,m)→ (n− 1,m+ 1).

(ii) Repeat the process for the next longest even integer with odd multiplicity.

The Spaltenstein map S of a given partition d is given by (dT)D and we obtain the resulting

Hitchin partition or Hitchin diagram.2

The Spaltenstein map is neither one-to-one nor onto; it is not an involution as the

ordinary transpose either. The set of Young diagram where S is an involution is called

special. More generally, we have S3 = S.

Given a regular puncture data, one wishes to calculate its local contribution to the

Coulomb branch. We begin with the special diagram.

Using the convention in [13], we can construct the local singularity of Higgs field in the

Hitchin system as (2.1) where Λ is an so(2N) nilpotent matrix associated to the Hitchin

diagram and M is a generic so(2N) matrix. Then, the spectral curve is identified as the

SW curve of the theory, which takes the form

det(x− Φ(z)) = x2N +

N−1∑
i=1

x2(N−i)φ2i(z) + φ̃(z)2. (2.5)

We call φ̃ the Pfaffian. This also determines the order of poles for each coefficient φ2i and

φ̃. We will use pα2i to label the order of poles for the former, and p̃α to label the order of

poles for the latter. The superscript α denotes the α-th puncture.

2Unlike [13], here we define the Hitchin diagram to be the one after transpose. So that when reading

Young diagram one always reads column heights.
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The coefficient for the leading order singularity for those φ’s and φ̃ are not independent,

but satisfy complicated relations [13, 14]. Note that, the Coulomb branch dimensions of

DN class S theory are not just the degrees for the differentials; in fact the Coulomb branch

is the subvariety of

VC =

N−1⊕
k=1

H0(Σ,K2k)⊕
N−1⊕
k=3

Wk ⊕H0(Σ,KN ) (2.6)

where Wk’s are vector spaces of degree k. If we take c
(k)
l to be the coefficients for the l-th

order pole of φk, then the relation will be either polynomial relations in c
(k)
l or involving

both c
(k)
l and a(k), where a(k) is a basis for Wk. For most of the punctures, the constraints

are of the form

c
(k)
l = . . . , (2.7)

while for certain very even punctures, as φ̃ and φN may share the same order of poles, the

constraints would become

c
(N)
l ± 2c̃l = . . . . (2.8)

For examples of these constraints, see [13].

When the Nahm partition d is non-special, one needs to be more careful. The pole

structure of such a puncture is precisely the same as taking ds = S2(d), but some of the

constraints imposed on ds should be relaxed. In order to distinguish two Nahm partitions

with the same Hitchin partition, one associates with the latter a discrete group, and the map

dNahm → (S(dNahm), C(dNahm)) (2.9)

makes the Spaltenstein dual one-to-one. This is studied by Sommers and Achar [15–17]

and introduced in the physical context in [12].

Now we proceed to compute the number of dimension k operators on the Coulomb

branch, denoted as dk. We have

d2k = (1− 4k)(1− g) +
∑
α

(pα2k − sα2k + tα2k), (2.10)

where g is the genus of Riemann surface, sα2k is the number of constraints of homogeneous

degree 2k, and tα2k is the number of a(2k) parameters that give the constraints c
(4k)
l =(

a(2k)
)2

. For d2k+1, since there are no odd degree differentials, the numbers are

d2k+1 =
∑
α

tα2k+1, (2.11)

which is independent of genus. Finally, we take special care for dN . When N is even, it

receives contributions from both φN and the Pfaffian φ̃. We have

dN = 2(1− 2N)(1− g) +
∑
α

(pαN − sαN ) +
∑
α

p̃α. (2.12)

When N is odd, it only receives contribution from the Pfaffian:

dN = (1− 2N)(1− g) +
∑
α

p̃α. (2.13)
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Lie algebra g = E6,7,8. Unlike classical algebras, Young tableau are no longer suitable

for labelling those elements in exceptional algebras. So we need to introduce some more

mathematical notions. Let l be a Levi subalgebra, and Ol
e is the distinguished nilpotent

orbit in l. We have

Theorem ([18]). There is one-to-one correspondence between nilpotent orbits of g and

conjugacy classes of pairs (l,Ol
e) under adjoint action of G.

The theorem provides a way to label nilpotent orbits. For a given pair (l,Ol
e), let XN

denote the Cartan type of semi-simple part of l. Ol
e in l gives a weighted Dynkin diagram,

in which there are i zero labels. Then the nilpotent orbit is labelled as XN (ai). In case

there are two orbits with same XN and i, we will denote one as XN (ai) and the other as

XN (bi). Furthermore if g has two root lengths and one simple component of l involves

short roots, then we put a tilde over it. An exception of above is E7, where it has one root

length, but it turns out to have three pairs of nonconjugate isomorphic Levi-subalgebras.

We will use a prime for one in a given pair, but a double prime for the other one. Such

labels are Bala-Carter labels.

The complete list of nilpotent orbits for E6 and E7 theory are given in [19, 20]. We

will examine them in more details later in this section and in section 5.

2.2 Irregular puncture

2.2.1 Grading of the Lie algebra

We now classify irregular punctures of type g. We adopt the Lie-algebraic techniques

reviewed in the following. Recall that for an irregular puncture at z ∼ 0, the asymptotic

solution for the Higgs field Φ looks like [5, 8–10]

Φ ∼ Tk

z2+ k
b

+
∑
−b≤l<k

Tl

z2+ l
b

, (2.14)

where all Tl’s are semisimple elements in Lie algebra g, and we also require that (k, b)

are coprime. The Higgs field shall be singled valued when z circles around complex

plane, z → ze2πi, which means the resulting scalar multiplication of Tl comes from

gauge transformation:

Tl → e
2πil
b Tl = σ Tl σ

−1 (2.15)

for σ a G-gauge transformation. This condition can be satisfied provided that there is a

finite order automorphism (torsion automorphism) that gives grading to the Lie algebra:

g =
⊕
j∈Zb

gj . (2.16)

All such torsion automorphisms are classified in [21–23], and they admit a convenient

graphical representation called Kac diagrams. A Kac diagram D for g is an extended Dynkin

diagram of g with labels (s0, s1, . . . sr) on each nodes, called Kac coordinates, where r is

the rank of g. Here s0 is always set to be 2. Let (α1, . . . , αr) be simple roots, together

– 7 –
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with the highest root −α0 =
∑r

i=1 aiαi where (a1, . . . , ar) are the mark. We also define

the zeroth mark a0 to be 1. Then the torsion automorphism associated with D has order

m =
∑r

i=0 aisi and acts on an element associated with simple root αi as

σ : gαi → εsigαi , i = 1, 2, . . . r, (2.17)

and extend to the whole algebra g via multiplication. Here ε is the mth primitive root of

unity. It is a mathematical theorem [24] that all si can only be 0, 1 or 2. We call D even

if all its Kac coordinates are even, otherwise D is called odd. For even diagrams, we may

divide the coordinate and the order m by 2 since the odd grading never shows up in (2.16).

We will adopt this convention in what follows implicitly.3

There are two quantities in the grading of special physical importance. The rank

of the G0 module gj , denoted as rank(G0|gj), is defined as the dimension of a maximal

abelian subspace of gj , consisting of semisimple elements [25]. We are interested in the

case where g1 has positive rank: r = rank(G0|g1) > 0. Another quantity is the intersection

of centralizer of semi-simple part of g1 with g0, and this will give the maximal possible

flavor symmetry.

As we get matrix Tj out of gj , we are interested in the case where gj generically

contains regular semisimple element. We call such grading regular semisimple. A natural

way to generate regular semisimple grading is to use nilpotent orbits. For g = AN−1 it is

given in [7]. We give the details of DN and E6,7,8 in appendix B. Note when coefficient

matrices are all regular semisimple, the AD theory with only irregular singularity can be

mapped to type IIB string probing three-fold compound Du Val (cDV) singularities [26],

which we review in appendix A. We list the final results in table 1. This is a refinement

and generalization of the classification done in [7, 8]. We emphasize here that the grading

when gj generically contain semisimple elements are also crucial for obtaining SCFTs; here

b may be more arbitrary. Such grading will be called semisimple.

In classical Lie algebra, semisimple element Ti can be represented by the matrices.

In order for the spectral curve det(x − Φ(z)) to have integral power for monomials, the

matrices for leading coefficient Tk is highly constrained. In particular, when g = AN−1,

we have

T =


a1Ξ

.. .

arΞ

0(N−rb)

 . (2.18)

Here Ξ is a b× b diagonal matrix with entries {1, ω, ω2, . . . , ωb−1} for ω a b-th root of unity

exp (2πi/b). For g = DN , things are more subtle and T depends on whether b is even or

odd. A representative of Cartan subalgebra is(
Z 0

0 −ZT

)
, (2.19)

3This convention would not cause any confusion because if even diagrams are encountered, the label s0
would be reduced to 1; for odd diagrams this label remains to be 2, so no confusion would arise.
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g Singularity b

AN−1 x2
1 + x2

2 + xN3 + zkN/b = 0 b|N

x2
1 + x2

2 + xN3 + x3z
k(N−1)/b = 0 b|(N − 1)

DN x2
1 + xN−1

2 + x2x
2
3 + zk(2N−2)/b = 0 b|(2N − 2)

x2
1 + xN−1

2 + x2x
2
3 + zkN/bx3 = 0 b|N

E6 x2
1 + x3

2 + x4
3 + z12k/b = 0 b|12

x2
1 + x3

2 + x4
3 + z9k/bx3 = 0 b|9

x2
1 + x3

2 + x4
3 + z8k/bx2 = 0 b|8

E7 x2
1 + x3

2 + x2x
3
3 + z18k/b = 0 b|18

x2
1 + x3

2 + x2x
3
3 + z14k/bx3 = 0 b|14

E8 x2
1 + x3

2 + x5
3 + z30k/b = 0 b|30

x2
1 + x3

2 + x5
3 + z24k/bx3 = 0 b|24

x2
1 + x3

2 + x5
3 + z20k/bx2 = 0 b|20

Table 1. Classification of irregular singularities with regular semisimple coefficient matrices and

the 3-fold singularities corresponding to them. In the table, b|N means that b is a divisor of N .

where Z ∈ MatN×N (C). When b is odd, we have

Z =


0N−br

a1Ξ
.. .

arΞ

 . (2.20)

When b is even, we define Ξ′ = {1, ω2, ω4, . . . , ωb−2}, then Ξ = Ξ′ ∪ (−Ξ′). Then the

coefficient matrix take the form

Z =


0N−rb/2

a1Ξ′

. . .

arΞ
′

 . (2.21)

Counting of physical parameters in two cases are different, as we will see in section 2.2.2 mo-

mentarily. In particular, the allowed mass parameters are different for these two situations.

2.2.2 From irregular puncture to parameters in SCFT

We have classified the allowed order of poles for Higgs field in (2.14), and write down in

classical algebras the coefficient matrix Ti. The free parameters in Ti encode exact marginal

deformations and number of mass parameters.
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order of singularity b mass parameter exact marginal deformations

b|N N/b− 1 N/b− 1

b|(N − 1) (N − 1)/b (N − 1)/b− 1

Table 2. Summary of mass parameters and number of exact marginal deformations in AN−1.

order of singularity b mass parameter exact marginal deformations

odd, b|N N/b N/b− 1

even, b|N 0 2N/b− 1

odd, b|(2N − 2) (N − 1)/b+ 1 (N − 1)/b− 1

even, b|(2N − 2) 1 or 0 (2N − 2)/b− 1

Table 3. Summary of mass parameters and number of exact marginal deformations in DN . Note

when b is even divisor of 2N − 2 but not a divisor of N − 1, the number of mass parameter is zero,

otherwise it is one.

order of singularity b mass parameter exact marginal deformations

12 0 0

9 0 0

8 1 0

6 0 1

4 2 1

3 0 2

2 2 3

Table 4. Summary of mass parameters and number of exact marginal deformations in E6.

order of singularity b mass parameter exact marginal deformations

18 0 0

14 0 0

9 1 0

7 1 0

6 0 2

3 1 2

2 0 6

Table 5. Summary of mass parameters and number of exact marginal deformations in E7.

Based on the discussion above and the coefficient matrix, we conclude that the number

of mass parameters is equal to rank(g0) and the number of exact marginal deformation is

given by rank(G0|gk) − 1 if the leading matrix is in gk. we may list the maximal number

of exact marginal deformations and number of mass parameters in tables 2–6. We focus

here only in the case when T ’s are regular semisimple, while for semisimple situation the

counting is similar.
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order of singularity b mass parameter exact marginal deformations

30 0 0

24 0 0

20 0 0

15 0 0

12 0 1

10 0 1

8 0 1

6 0 3

5 0 1

4 0 3

3 0 3

2 0 7

Table 6. Summary of mass parameters and number of exact marginal deformations in E8.

Argyres-Douglas matter. We call the AD theory without any marginal deformations

the Argyres-Douglas matter. They are isolated SCFTs and thus are the fundamental build-

ing blocks in S-duality. In the weakly coupled description, we should be able to decompose

the theory into Argyres-Douglas matter connected by gauge groups.

2.2.3 Degeneration and graded Coulomb branch dimension

Our previous discussion focused on the case where we choose generic regular semisimple

element for a given positive rank grading. More generally, we may consider Tk semisimple.

We first examine the singularity where b = 1:

Φ ∼ T`
z`

+
T`−1

z`−1
+ · · ·+ T1

z1
, (2.22)

with T` ⊂ · · · ⊂ T2 ⊂ T1 [27]. For this type of singularity, the local contribution to the

dimension of Coulomb branch is

dimρ
C Coulomb =

1

2

∑̀
i=1

dim(OTi). (2.23)

This formula indicates that the Coulomb branch dimensions are summation of each

semisimple orbit in the irregular singularity. It is reminiscent of the regular puncture case

reviewed in section 2.1.1, where the local contribution to Coulomb branch of each puncture

is given by half-dimension of the nilpotent orbits, dimρ
C Coulomb = 1

2 dimS(Oρ) [12].

To label the degenerate irregular puncture, one may specify the centralizer for each T`.

Given a semisimple element x ∈ g, the centralizer gx is called a Levi subalgebra, denoted

as l. In general, it may be expressed by

l = h⊕
∑

∆′⊂∆

gα, (2.24)
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where h is a Cartan subalgebra and ∆′ is a subset of the simple root ∆ of g. We care about

its semisimple part, which is the commutator [l, l].

The classification of the Levi subalgebra is known. For g of ADE type, we have

• g = AN−1: l = Ai1 ⊕Ai2 ⊕ . . . Aik , with (i1 + 1) + · · ·+ (ik + 1) = N .

• g = DN : l = Ai1 ⊕Ai2 ⊕ . . . Aik ⊕Dj , with (i1 + 1) + · · ·+ (ik + 1) + j = N .

• g = E6: l = E6, D5, A5, A4 + A1, 2A2 + A1, D4, A4, A3 + A1, 2A2, A2 +

2A1, A3, A2 +A1, 3A1, A2, 2A1, A1, 0.

• g = E7: E7, E6, D6, D5 + A1, A6, A5 + A1, A4 + A2, A3 + A2 + A1, D5, D4 +

A1, A
′
5, A

′′
5 , A4 + A1, A3 + A2, A3 + 2A1, 2A2 + A1, A2 + 3A1, D4, A4, (A3 +

A1)
′
, (A3+A1)

′′
, 2A2, A2+2A1, 4A1, A3, A2+A1, (3A1)

′
, (3A1)

′′
, A2, 2A1, A1, 0.

• g = E8: E8, E7, E6 + A1, D7, D5 + A2, A7, A6 + A1, A4 + A3, A4 + A2 +

A1, E6, D6, D5 +A1, D4 +A2, A6, A5 +A1, A4 +A2, A4 + 2A1, 2A3, A3 +A2 +

A1, 2A2 + 2A1, D5, D4 + A1, A5, A4 + A1, A3 + A2, A3 + 2A1, 2A2 + A1, A2 +

A1, D4, A4, A3 +A1, 2A2, A2 + 2A1, 4A1, A3, A2 +A1, 3A1, A2, 2A1, A1, 0.

Fixing the Levi subalgebra for Ti, the corresponding dimension for the semisimple orbit

is given by

dim(OTi) = dimG− dimLi. (2.25)

We emphasize here that Levi subalgebra itself completely specify the irregular puncture.

However, they may share the semisimple part [l, l]. The SCFTs defined by them can be

very different. Motivated by the similarity between (2.23) and that of regular punctures,

we wish to use nilpotent orbit to label the semisimple orbit OTi , so that one can calculate

the graded Coulomb branch spectrum.

The correspondence lies in the theorem we introduced in section 2.1.1: there is a one-

to-one correspondence between the nilpotent orbit Og
ρ and the pair (l,Ol

e). Moreover, we

only consider those nilpotent orbit with principal Ol
e. For g = AN−1, principal orbit is

labelled by partition [N ], while for DN , it is the partition [2N − 1, 1]. Then, given a Nahm

label whose Ol
e is principal, we take the Levi subalgebra piece l out of the pair (l,Ol

e); we

use the Nahm label ρ as the tag such Ti. We conjecture that this fully characterize the

coefficients Ti.

To check the validity, we recall orbit induction [28, 29]. LetOl
ē be an arbitrary nilpotent

orbit in l. Take a generic element m in the center z of l. We define

Indg
lO

l
ē := lim

m→0
Om+ē, (2.26)

which is a nilpotent orbit in g. It is a theorem that the induction preserves codimension:

dimG− dimC Indg
lO

l
ē = dimL− dimCOl

ē. (2.27)

In particular, when Ol
ē is zero orbit in l, from (2.27) we immediately conclude that

dimOT = dimG− dimL = dimC Indg
lO

l
0, (2.28)
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for T the semisimple orbit fixed by L. The Bala-Carter theory is related to orbit induction

via [18]

dimS(Oρ) = dimC Indg
lS(Ol

principal) = dimC Indg
lO

l
0 = dimOT . (2.29)

Therefore, treating each semisimple orbit OT as a nilpotent orbit Oρ, their local contribu-

tion to Coulomb branch is exactly the same.

In the AN−1 case, Levi subalgebra contains only Ai pieces; the distinguished nilpotent

orbit in it is unique, which is [i + 1]. Therefore, we have a one-to-one correspondence

between Nahm partitions and Levi subalgebra. More specifically, a semisimple element of

the form

x = diag(a1, . . . , a1, a2, . . . , a2, . . . , ak, . . . , ak), (2.30)

where ai appears ri times, has Levi subgroup

L = S[U(r1)× U(r2)× · · · × U(rk)]. (2.31)

whose Nahm label is precisely [r1, r2, . . . , rk].

For DN case, if the semisimple element we take looks like

x = diag(a1, . . . , a1, . . . , ak, . . . , ak,−a1, . . . ,−a1, . . . ,−ak, . . . ,−ak, 0, . . . , 0), (2.32)

where ai appears ri times and 0 appears r̃ times with
∑

2ri + r̃ = 0, the Levi subgroup is

given by

L =
∏
i

U(ri)× SO(r̃). (2.33)

We call L of type [r1, . . . , rk; r̃]. Here we see clearly the ambiguity in labelling the coefficient

Ti using Levi subalgebra. For instance, when g = D4, we have [1; 6] and [4; 0] having

the same Levi subalgebra, but clearly they are different type of matrices and the SCFT

associated with them have distinct symmetries and spectrum. We will examine them in

more detail in section 4.

With Nahm labels for each Ti, we are now able to compute the graded Coulomb branch

spectrum. For each Nahm label, we have a collection of the pole structure {pαi1 , . . . , p
α
ir
}

for ik the degrees of differentials. There are also constraints that reduce or modifies the

moduli. Then we conjecture that, at differential of degree k the number of graded moduli

is given by

dk =
∑
α

(pαk − sαk + tαk )− 2k + 1. (2.34)

They come from the term ui in (u0 + u1z + . . . + udk−1z
dk−1)xh

∨−k, with h∨ the dual

Coxeter number.

However, it might happen that there are constraints of the form c(2k) =
(
a(k)

)2
in

which k is not a degree for the differentials. In this case, tk should be added to the some

k′ > k such that dlocal
k′ < k′ − 1.

When a regular puncture with some Nahm label is added to the south pole, one may

use the same procedure to determine the contributions of each differential to the Coulomb

branch moduli. We denote them as {d(reg)
k }. Then, we simply extend the power of zβx

2(N−k)

to −d(reg)
k < β < dk.
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Example. Let us consider an E6 irregular puncture of class (k, 1) where k is very large.

Take T` = · · · = T2 with Levi subalgebra D5, and T1 with Levi subalgebra 0. We associate

to Ti with i ≥ 2 Nahm label D5. As a regular puncture, it has pole structure {1, 2, 3, 4, 4, 6}
with complicated relations [19]:

c
(6)
3 =

3

2
c

(2)
1 a

(4)
2 , c

(8)
4 = 3

(
a

(4)
2

)2
,

c
(9)
4 = −1

4
c

(5)
2 a

(4)
2 , c

(12)
6 =

3

2

(
a

(4)
2

)3
,

c
(12)
5 =

3

4
c

(8)
3 a

(4)
2 .

(2.35)

After subtracting it we have pole structure {1, 2, 2, 3, 3, 4}. There is one new moduli a(4),

and we add it to φ5. The Nahm label 0 has pole structure {1, 4, 5, 7, 8, 11}. Then we have

the Coulomb branch spectrum from such irregular puncture as

φ2 :
2k

k + 1
, . . . ,

k + 2

k + 1
, φ5 :

5k

k + 1
, . . . ,

2k + 3

k + 1
,

φ6 :
6k

k + 1
, . . . ,

4k + 5

k + 1
, φ8 :

8k

k + 1
, . . . ,

5k + 6

k + 1
,

φ9 :
9k

k + 1
, . . . ,

6k + 7

k + 1
, φ12 :

12k

k + 1
, . . . ,

8k + 9

k + 1
.

(2.36)

One can carry out similar analysis for general irregular singularity of class (k, b). The

idea is to define a cover coordinate ω and reduce the problem to integral order of pole.

Consider an irregular singularity defined by the following data Φ = T/z2+ k
b + . . .; we define

a cover coordinate z = ωb and the Higgs field is reduced to

Φ =
T ′

ωk+b+1
+ . . . (2.37)

Here T ′ is another semisimple element deduced from T , see examples in section 4.2. Once we

go to this cover coordinate, we can use above study of degeneration of irregular singularity

with integral order of pole. We emphasize here that not all degeneration are allowed due

to the specific form of T .

2.2.4 Constraint from conformal invariance

As we mentioned, not all choices of semisimple coefficient Ti define SCFTs. Consider

the case b = 1, and the irregular singularity is captured by a sequence of Levi subgroup

l` ⊃ l`−1 ⊃ . . . ⊃ l1. The necessary condition is that the number of parameters in the

leading order matrix Tk should be no less than the number of exact marginal deformations.

As will be shown later, it turns out that this condition imposes the constraint that

l` = l`−1 . . . = l2 = l, (2.38)

with l1 arbitrary. Then we have following simple counting rule of our SCFT:
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• The maximal number of exact marginal deformation is equal to r − rl − 1, where r

the rank of g and rl the rank of semi-simple part of l. The extra minus one comes

from scaling of coordinates.

• The maximal flavor symmetry is Gl ×U(1)r−rl , here Gl is the semi-simple part of l.

Similarly, for b 6= 1, the conformal invariance implies that all the coefficients except

T1 should have the same Levi subalgebra. This is automatic when the grading is regular

semisimple, but it is an extra restriction on general semi-simple grading. For example,

consider AN−1 type (2, 0) theory with following irregular singularity whose leading order

matrix takes the form:

T =


a1Ξ

.. .

arΞ

0(N−rb)

 . (2.39)

When the subleading term in (2.14) has integral order, the corresponding matrix can take

the following general form:

T
′

=


a′1Ib

. . .

a′rIb
K(N−rb)

 . (2.40)

Here Ib is the identify matrix with size b, and KN−rb is a generic diagonal matrix. However,

due to the constraints, only for KN−rb = κ IN−rb, T
′

has the same Levi-subalgebra as T .

This situation is missed in previous studies [7].

2.3 SW curve and Newton polygon

Recall that the SW curve is identified as the spectral curve det(x − Φ(z)) in the Hitchin

system. For regular semisimple coefficient Ti without regular puncture, we may map the

curve to the mini-versal deformation of three fold singularity in type IIB construction. For

given Lie algebra g, we have the deformed singularity:

AN−1 : x2
1 + x2

2 + xN3 + φ2(z)xN−2
3 + . . .+ φN−1(z)x3 + φN (z) = 0,

DN : x2
1 + xN−1

2 + x2x
2
3 + φ2(z)xN−2

2 + . . .+ φ2N−4(z)x2 + φ2N−2(z) + φ̃N (z)x3 = 0,

E6 : x2
1 + x3

2 + x4
3 + φ2(z)x2x

2
3 + φ5(z)x2x3 + φ6(z)x2

3

+ φ8(z)x2 + φ9(z)x3 + φ12(z) = 0,

E7 : x2
1 + x3

2 + x2x
3
3 + φ2(z)x2

2x3 + φ6(z)x2
2 + φ8(z)x2x3 + φ10(z)x2

3

+ φ12(z)x2 + φ14(z)x3 + φ18(z) = 0,

E8 : x2
1 + x3

2 + x5
3 + φ2(z)x2x

3
3 + φ8(z)x2x

2
3 + φ12(z)x3

3

+ φ14(z)x2x3 + φ18(z)x2
3 + φ20(z)x2 + φ24(z)x3 + φ30(z) = 0, (2.41)

and φi is the degree i differential on Riemann surface.
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Figure 1. An example of Newton polygon for A5 theory with semisimple grading. Each black

dot represents a monomial in SW curve. The white dots mean that the monomials are omitted.

The letters have scaling dimension [x] = 3/5, [z] = 2/5. In general, if the vertex at the top has

coordinate (a, b), then we have the relation (N − a)[x] = b[z] and [x] + [z] = 1.

A useful diagrammatic approach to represent SW curve is to use Newton polygon.

When irregular singularity degenerates, the spectrum is a subset of that in regular semisim-

ple Ti’s, so understanding Newton polygon in regular semisimple case is enough.

The rules for drawing and reading off scaling dimensions for Coulomb branch spectrum

is explained in [5, 8]. In particular, the curve at the conformal point determines the

scaling dimension for x and z, by requiring that the SW differential λ = xdz has scaling

dimension 1.

• g = AN−1. The Newton polygon for regular semisimple coefficient matrices is al-

ready given in [5] and we do not repeat here. Here we draw the polygon when T is

semisimple for some semisimple grading, in the form (2.18). We give one example

See figure 1.

• g = DN . There are two types of Newton polygon, associated with Higgs field

Φ ∼ T

z2+ k
N

, Φ ∼ T

z2+ k
2N−2

, (2.42)

We denote two types and their SW curves at conformal point as

D
(N)
N [k] : x2N + z2k = 0,

D
(2N−2)
N [k] : x2N + x2zk = 0.

(2.43)
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Figure 2. A collection of Newton polygon for examples of SCFT with g = DN . Each black dot

represents a monomial in SW curve in the form of xαzβ ; except that for the x0 axis, each term

represents the Pfaffian φ̃, so we shall read it as
√
zβ . The white dots mean that the monomials

are omitted. The upper left diagram gives D
(4)
4 [3] theory, while the upper right diagram gives

D
(6)
4 [5]. The two lower diagrams represent the same irregular puncture, but with an additional

regular puncture (e.g. maximal) at south pole. We denote them as (D
(4)
4 [3], F ) and (D

(6)
4 [5], F )

theory, respectively.

The full curve away from conformal point, and with various couplings turned on, is

given by (2.5). In figure 2, we list examples of such Newton polygon.

• g = E6,7,8. We can consider Newton polygon from the 3-fold singularities. In this

way we may draw the independent differentials unambiguously. We give the case for

E6 with b = 8, 9, 12 in figure 3. The other two exceptional algebras are similar.

3 Mapping to a punctured Riemann surface

As we mentioned in section 1, to generate S-duality we construct an auxiliary Riemann

sphere Σ′ from the initial Riemann sphere Σ with irregular punctures. We now describe the

rules. The motivation for such construction comes from 3d mirror in class S theory [30–

32]. To recapitulate the idea, from 3d mirror perspective we may interpret the Gaiotto

duality as splitting out the quiver theories with three quiver legs. Each quiver leg carries a
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Figure 3. A collection of Newton polygons for examples of SCFT with g = E6. Each black dot

represents a monomial in SW curve in the three fold form. The white dots mean that the monomials

are omitted. The upper left diagram gives b = 12, k = 6 theory, while the upper middle diagram

gives b = 9, k = 6 theory and the upper right gives b = 8, k = 6 theory. The three lower diagrams

represent the same irregular puncture, but with an additional regular puncture (e.g. maximal) at

south pole.

corresponding flavor symmetry on the Coulomb branch and can be gauged. The 3d mirror

of AN−1 type Argyres-Douglas theories are know and they are also constructed out of

quiver legs. We then regard each quiver leg as a “marked points” on the Riemann sphere

Σ′. Unlike the class S counterpart, now there will be more types of marked points with

different rank.

Recall our setup is that the initial Riemann sphere Σ is given by one irregular singu-

larity of class (k, b), with coefficient satisfying

T` = T`−1 = · · · = T3 = T2, T1 arbitrary, ` = k + b+ 1, (3.1)

possibly with a regular puncture Q. We denote it as
(
III

{li}`i=1
k,b , Q

)
, where li is the Levi

subalgebra for the semisimple element Ti. We now describe the construction of Σ′.

Lie algebra g = AN−1. A generic matrix looks like

Ti = diag

(
a1Ξb, . . . , a1Ξb︸ ︷︷ ︸

r1

, . . . , asΞb, . . . , asΞb︸ ︷︷ ︸
rs

, 0, . . . , 0︸ ︷︷ ︸
N−(

∑
rj)b

)
, 2 ≤ i ≤ `, (3.2)
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The theory is represented by a sphere with one red marked point (denoted as a cross ×)

representing regular singularity; one blue marked point (denoted as a square ) representing

0’s in Ti, which is further associated with a Young tableaux with size N−(
∑
rj)b to specify

its partition in T1. There are s black marked points (denoted as black dots •) with size

rj , j = 1, . . . , s and each marked point carrying a Young tableaux of size rj . Notice that

there are s−1 exact marginal deformations which is the same as the dimension of complex

structure moduli of punctured sphere.

There are two exceptions: if b = 1, the blue marked point is just the same as the black

marked point. If k = 1, b = 1, the red marked point is the same as the black marked point

as well [7].

Lie algebra g = DN . We have the representative of Cartan subalgebra as (2.19) and

when b is odd,

Z = diag(a1Ξb, . . . , a1Ξb︸ ︷︷ ︸
r1

, . . . , asΞb, . . . , asΞb︸ ︷︷ ︸
rs

, 0, . . . , 0︸ ︷︷ ︸
N−(

∑
rj)b

),
(3.3)

while when b is even,

Z = diag(a1Ξ′b/2, . . . , a1Ξ′b/2︸ ︷︷ ︸
r1

, . . . , asΞ
′
b/2, . . . , asΞ

′
b/2︸ ︷︷ ︸

rs

, 0, . . . , 0︸ ︷︷ ︸
N−(

∑
rj)b/2

).
(3.4)

The theory is represented by a Riemann sphere with one red cross representing regu-

lar singularity, one blue puncture representing 0’s in Ti; we also have a D-partition of

2[N − (
∑
rj)b] to specify further partition in T1. Moreover, there are s black marked point

with size rj , j = 1, . . . , s and each marked point carrying a Young tableaux of size rj (no

requirement on the parity of entries).

Lie algebra g = E6,7,8. Let us start with the case b = 1, and the irregular puncture is

labelled by Levi-subalgebra Ll = . . . = L2 = l and a trivial Levi-subalgebra L1. We note

that there is at most one non-A type Lie algebra for l: l = Ai1 + . . .+Aik + h; let’s define

a = rank(g)− rank(h)−
∑k

j=1(ij + 1), we have the following situations:

• a ≥ 0: we have k black punctures with flavor symmetry U(ij + 1), j = 1, . . . , k, and

a more black marked point with U(1) flavor symmetry; we have a blue puncture with

H favor symmetry (h = Lie(H)), and finally a red puncture representing the regular

singularity.

• a < 0: when there is a 2A1 factor in l, we regard it as D2 group and use a blue

puncture for it; when the rank of l is rank(g) − 1, we put all A-type factor of l in a

single black marked point.

The b 6= 1 case can be worked out similarly.

3.1 AD matter and S-duality

We now discuss in more detail about the AD matter for b = 1. Recall that the number of

exact marginal deformations is equal to r − rl − 1, where r = rank(g), and rl = rank(l).

The AD matter is then given by the Levi subalgebra with rank r − 1. We can list all the

possible Levi subalgebra for AD matters in table 7.
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Lie algebra g Levi subalgebra associated to AD matter

AN−1 An +Am, (n+ 1) + (m+ 1) = N

DN An +Dm, n+ 1 +m = N

E6 D5, A5, A4 +A1, 2A2 +A1

E7 E6, D6, D5 +A1, A6, A5 +A1, A4 +A2, A3 +A2 +A1

E8 E7, E6 +A1, D7, D5 +A2, A7, A6 +A1, A4 +A3, A4 +A2 +A1

Table 7. Possible Levi subalgebra for T` that corresponds to AD matter without exact marginal

deformations.

Figure 4. An example of Argyres-Douglas matter of type g. The theory has no exact marginal

deformations, and in the meantime the punctured Riemann sphere Σ′ has no complex structure

moduli.

S-duality frames. With the auxiliary Riemann sphere Σ′, we conjecture that the S-

duality frame is given by different degeneration limit of Σ′; the quiver theory is given by

gauge groups connecting Argyres-Douglas matter without exact marginal deformations.

For AD theories of type g, the AD matter is given by three punctured sphere Σ′: one red

cross, one blue square and one black dot. The rank of black dot plus the rank of blue

square should equal to the rank of the red cross. See figure 4 for an illustration. Each

marked points carry a flavor symmetry. Their flavor central charge is given by [7, 33]

kred
G = h∨ − b

k + b
, k

black/blue
G = h∨ +

b

k + b
, (3.5)

where h∨ is the dual Coxeter number of G. This constraints the configuration such that one

can only connect black dot and red cross, or blue square with red cross to cancel one-loop

beta function.

3.2 Central charges

The central charges a and c can be computed as follows [33, 34]:

2a− c =
1

4

∑
(2[ui]− 1), a− c = − 1

24
dimH Higgs, (3.6)

This formula is valid for the theory admits a Lagrangian 3d mirror. We know how to

compute the Coulomb branch spectrum, and so the only remaining piece is to the dimension

of Higgs branch which can be read from the mirror.
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For theories with b = 1, the local contribution to the Higgs branch dimension with

flavor symmetry G for red marked point is

dimred
H Higgs =

1

2
(dimG− rank(G)), (3.7)

while for blue and black marked point, we have

dim
blue/black
H Higgs =

1

2
(dimG+ rank(G)). (3.8)

The total contribution to the Higgs branch is the summation of them, except that for

AN−1, we need to subtract one.

4 S-duality for DN theory

4.1 Class (k, 1)

In this section we first consider g = DN , and the irregular singularity we take will be

Φ =
T`
z`

+
T`−1

z`−1
+ · · ·+ T1

z
+ Treg, (4.1)

where Treg is the regular terms. This amounts to take k = ` − 2, b = 1.4 We settle the

questions raised in previous sections: (i) we show which choices of Ti’s give legitimate

deformation for SCFT; (ii) we illustrate how to count graded Coulomb branch spectrum

and (iii) how to obtain its S-dual theory. In dealing with these questions, we first utilize

the case D3 ' A3, where we already know the results [7].

4.1.1 Coulomb branch spectrum

Recall that in section 2.2.3, one maps each semisimple orbit OTi to a nilpotent orbit with

the same dimension. We may use the recipe of section 2.1.1 to calculate the Coulomb

branch spectrum. Let us see how this works.

Example 1: non-degenerating D4 theory of class (1, 1). As we have ` = 3, there are three

regular punctures whose labels are
[
18
]
. For such a maximal puncture, the pole structure

for the differential is {p2, p4, p6; p̃} = {1, 3, 5; 3} and there are no relations. Then, the total

contributions to the moduli are {d2, d4, d6; d̃4} = {0, 2, 4; 2}. This is consistent with the

Newton polygon of D
(4)
4 [4].

Example 2: degenerating D4 theory of class (1, 1). In this example we take T3 and T2 to be

labelled by Levi subalgebra of type [1, 1, 1; 2], while T1 is still of type [1, 1, 1, 1; 0]. For the

former, we see that it is the same as the Levi subalgebra [1, 1, 1, 1; 0]. Then we are back to

the previous example. This is indeed the same spectrum as indicated by Newton polygon

of D
(6)
4 [6].

4Careful readers may wonder whether n1 = 1 comes from D
(N)
N [k′] or D

(2N−2)
N [k′], as their relevant

matrices in section 2.2.2 are different. However, in the case n1 = 1, leaving two diagonal entries to be zero

has the same Levi subgroup (SO(2)) as that of leaving it to be diag(a,−a), which is U(1). So two cases

actually coincide.
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Example 3: degenerating D3 theory of class (1, 1). We take T3 and T2 to have Levi sub-

algebra of type [2, 1; 0], giving a regular puncture labelled by Nahm partition [2, 2, 1, 1].

In terms of Nahm partition for A3, they are equivalent to [2, 1, 1]. We also take T1 to be

maximal. From A3, the algorithm in [5] determines the set of Coulomb branch operators to

be {3/2}. In the language of D3, the partition [2, 2, 1, 1] gives the pole structure {1, 2; 2},
while the maximal puncture has pole structure {1, 3; 2}; both of them have no constraints.

Then, {d2, d4; d̃3} = {0, 0; 1}, giving a Coulomb branch moduli with dimension 3/2. So we

see two approaches agree.

4.1.2 Constraints on coefficient matrices

As we mentioned before, not every choice of {T`, T`−1, . . . , T1} is allowed for the SCFT to

exist. Those which are allowed must have T` = · · · = T2, and T1 is a further partition of

them. In this section we show why this is so.

The idea of our approach is that, the total number of exact marginal deformations

shall not exceed the maximum determined by the leading matrix T`. We examine it on a

case by case basis.

D3. In this case we may directly use the results of [7]. Our claim holds.

D4. First of all we list the correspondence between Nahm label of the regular puncture

and the Levi subalgebra in table 8. The regular puncture data are taken from [13]. There

are several remarks. For very even partitions, we have two matrix representation for two

nilpotent orbits; they cannot be related by Weyl group actions.5 Moreover, we also see

that there are multiple coefficient matrices sharing the same Levi subalgebra; e.g. [4; 0]

and [1; 6]. Therefore, we do need regular puncture and Nahm label to distinguish them.

Finally, we need to exclude orbit which is itself distinguished in D4, as their Levi subalgebra

is maximal, meaning we have zero matrix.

Now consider ` = 3, and T3 has the Levi subalgebra [1, 1; 4], with one exact marginal

deformation. One can further partition it into the orbit with Levi subalgebra [2, 1, 1; 0] and

[1, 1, 1, 1; 0]. If we pick T2 to be [2, 1, 1; 0], then no matter what we choose for T1, there will

be two dimension 2 operators, this is a contradiction. So T2 must be equal to T3.

The second example has ` = 3, but T3 now is associated with [3, 3, 1, 1]. This puncture

has a relation c
(6)
4 = (a(3))2, so we remove one moduli from φ6, and add one moduli to

φ4. The possible subpartitions are [22, 14], [18]. If T2 6= T3 then there will be two exact

marginal deformations from φ4 and φ̃. This is a contradiction, so we must have T2 = T3.

As a third example, we may take ` = 4 and T4 corresponding to the regular punctures

[24], whose pole structure is {1, 3, 4; 3}, with one constraints c
(4)
3 ± 2c̃3 = 0. Then each of

the local contribution to Coulomb moduli is {d2, d4, d6; d3} = {1, 2, 4; 3}. From the matrix

representation we know there is one exact marginal coupling. If we pick T3 to be [22, 14],

then by simple calculation we see that there are two dimension 2 operators. So we have to

pick T3 = T4. Similarly, we have to pick T2 = T3 = T4. Therefore, we again conclude that

we must have T4 = T3 = T2, while T1 can be arbitrary.

5The Weyl group acts on entries of Z = diag(a1, a2, . . . , aN ) by permuting them or simultaneously flip

signs of even number of elements.
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Levi subalgebra matrix Z regular puncture pole structure constraints flavor symmetry

[1, 1, 1, 1; 0]


a

b

c

d

 [18] {1, 3, 5; 3} − −

[2, 1, 1; 0]


a

a

b

c


[
22, 14

]
{1, 3, 4; 3} − SU(2)

[1, 1; 4]


0

0

b

c


[
3, 15

]
{1, 3, 4; 2} − SO(4)

[2, 2; 0]


a

a

b

±b


[
24
]I,II {1, 3, 4; 3} c

(4)
3 ± 2c̃3 = 0 SU(2)× SU(2)

[3, 1; 0]


a

a

a

b

 [3, 3, 1, 1] {1, 2, 4; 2} c
(6)
4 = (a3)2 SU(3)

[2; 4]


a

a

0

0

 [3, 2, 2, 1]∗ {1, 2, 4; 2} − SU(2)× SO(4)

[1; 6]


0

0

0

a

 [5, 1, 1, 1] {1, 2, 2; 1} − SO(6)

[4; 0]


a

a

a

±a

 [4, 4]I,II {1, 2, 3; 2}
c

(4)
2 ± 2c̃2 = (c

(2)
1 )2/4,

c
(6)
3 = ∓c̃2c

(2)
1

SU(4)

Table 8. Association of a nilpotent orbit to a Levi subalgebra for D4. Here Z follows the convention

in (2.19). The partition [3, 2, 2, 1] is non-special, and we use the * to mark it. In the last column

we list the semisimple part of maximal possible flavor symmetry. The partition [5, 3] and [7, 1] are

excluded; the first one is non-principal in so(8) while the second gives trivial zero matrix.
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Levi subalgebra matrix Z regular puncture pole structure constraints flavor symmetry

[1, 1, 1, 1, 1; 0] diag(a, b, c, d, e) [110] {1, 3, 5, 7; 4} − −
[2, 1, 1, 1; 0] diag(a, a, b, c, d)

[
22, 16

]
{1, 3, 5, 6; 4} − SU(2)

[1, 1, 1; 4] diag(0, 0, a, b, c)
[
3, 17

]
{1, 3, 5, 6; 3} − SO(4)

[2, 2, 1; 0] diag(a, a, b, b, c)
[
24, 12

]
{1, 3, 4, 6; 4} − SU(2)× SU(2)

[3, 1, 1; 0] diag(a, a, a, b, c)
[
32, 14

]
{1, 3, 4, 6; 3} c

(8)
6 =

(
a(4)
)2

SU(3)

[2, 1; 4] diag(a, a, b, 0, 0)
[
3, 22, 13

]∗ {1, 3, 4, 6; 3} − SU(2)× SO(4)

[3, 2; 0] diag(a, a, a, b, b) [3, 3, 2, 2] {1, 3, 4, 6; 3} c
(8)
6 =

(
c

(4)
3

)2
/4 SU(3)× SU(2)

[3; 4] diag(0, 0, a, a, a) [3, 3, 3, 1] {1, 2, 4, 5; 3} − SU(3)× SO(4)

[1, 1; 6] diag(0, 0, 0, a, b)
[
5, 15

]
{1, 3, 4, 4; 2} − SO(6)

[4, 1; 0] diag(a, a, a, a, b) [4, 4, 1, 1] {1, 2, 4, 5; 3}
c

(6)
4 = (a(3))2,

c
(8)
5 = 2a(3)c̃3

SU(4)

[2; 6] diag(0, 0, 0, a, a) [5, 2, 2, 1]∗ {1, 2, 4, 4; 2} − SU(2)× SO(6)

[5; 0] diag(a, a, a, a, a) [5, 5] {1, 2, 3, 4; 2}

c′
(4)
2 ≡ c(4)

2 − (c
(2)
1 )2/4,

c
(6)
3 = c

(2)
1 c′

(4)
2 /2,

c
(8)
4 =

(
c′

(4)
2

)2
SU(5)

[1; 8] diag(0, 0, 0, 0, a) [7, 1, 1, 1] {1, 2, 2, 2; 1} − SO(8)

Table 9. Association of a nilpotent orbit to a Levi subalgebra for D5. Z is the convention taken

in (2.19). the Nahm partition [5, 3, 1, 1], [7, 3] and [9, 1] are excluded.

D5. We now check the constraints for the Lie algebra D5. To begin with, we list the

type of Levi-subgroup and its associated regular puncture in table 9. Now we examine the

constraints on coefficient matrices. We first take ` = 3, and pick T3 to be of the type [3, 2; 0]

whose associated regular puncture is [3, 3, 2, 2]. There is a constraint c
(8)
6 =

(
c

(4)
3

)2
/4, so the

local contribution to Coulomb branch is {d2, d4, d6, d8; d5} = {1, 3, 4, 5; 3}. If we take T2 to

be e.g., [24, 12], then the moduli from φ̃ contribute one more exact marginal deformations

other than φ4, which is a contradiction. Therefore, we again conclude that we must have

T3 = T2, with arbitrary subpartition T1.

Based on the above examples and analogous test for other examples, we are now

ready to make a conjecture about the classification of SCFT for degenerating irregular

singularities:

Conjecture. In order for the maximal irregular singularity (4.1) of type D to define a

viable SCFT in four dimensions, we must have T` = T`−1 = · · · = T2 (` ≥ 3), while T1 can

be arbitrary subpartition of Ti.

We emphasize at last that when ` = 2, the scaling for x in SW curve is zero. Therefore,

we may have arbitrary partition T2 and T1, so that OT2 ⊂ OT1 .

4.1.3 Generating S-duality frame

With the above ingredients in hand, we are now ready to present an algorithm that gener-

ates S-duality for various Argyres-Douglas theories of D type. This may subject to various

consistency checks. For example, the collection of Coulomb branch spectrum should match
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on both sides; the conformal anomaly coefficients (central charges) (a, c) should be identi-

cal. The latter may be computed from (3.6).

Duality at large k. For such theories with ` = k + 2, if we take the Levi subalgebra of

T` = · · · = T2 to be of type [r1, . . . rn; r̃], then there are n − 1 exact marginal couplings.

For each ri, 1 ≤ i ≤ n as well as r̃ there is further partition of it in T1:

[ri; 0]→
[
m

(i)
1 , . . . ,m(i)

si

]
,

si∑
j=1

m
(i)
j = ri,

[0; r̃]→
[
m̃1, . . . , m̃s; r̃

′], 2
s∑
j=1

m̃j + r̃′ = r̃.

(4.2)

The Argyres-Douglas matter is given by Z in (2.19) of the leading coefficient matrix T`:

Z1 =



a
. . .

a

0
. . .

0


. (4.3)

They are given by a three-punctured sphere with one black dot of type [r1, . . . , rm] with∑
ri = n for n being the number of a’s, one blue square which is degeneration of [0; 2N−2n]

and one red cross. However, we note the exception when N = 2: in this case, since the

theory is in fact given by two copies of SU(2) group, so the Argyres-Douglas matter is

represented differently. We will see this momentarily.

Example 1: D3 ' A3. This case can be analyzed from either Lie algebra perspective. Let

us take T` to be regular semisimple. We also add a regular puncture labelled by a red

cross. One duality frame is given in the first line of figure 5.

We can perform various checks for this duality. First of all, (A1, D2k+2) theory has

Coulomb branch spectrum

∆(Oi) = 2− i

k + 1
, i = 1, 2, . . . , k. (4.4)

For the middle theory, for simplicity we focus on the case where the regular puncture

is maximal, but replacing it with any regular puncture does not affect the result. The

Coulomb branch spectrum for this theory is

∆(O) =
2k + 3

k + 1
,

2k + 4

k + 1
, . . . ,

4k + 4

k + 1
,

2k + 3

k + 1
,

2k + 4

k + 1
, . . . ,

3k + 3

k + 1
,

k + 2

k + 1
,
k + 3

k + 1
, . . . ,

2k + 2

k + 1
.

(4.5)
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Figure 5. Comparison of S duality from A3 (upper half) and D3 (lower half) perspective. From the

A3 point of view, each black dot is given by [1], and the new red marked point after degeneration is

given by SU(2) puncture [1, 1]. The two theories on the left and right sides are (A1, D2k+2) theory,

which is given by irregular puncture whose Tk+2, . . . , T1 = [1, 1], and one regular puncture. The

theory in the middle is (III
[2,2]×(k+1),[1,1,1,1]
k,1 , F ) theory. Here F denotes maximal puncture. From

the D3 point of view, two (A1, D2k+2) theories combine together and form a D2 type theory. The

theory on the right is (III
[1;4]×(k+1),[13;0]
k,1 , F ).

We see that along with two SU(2) gauge groups, the combined Coulomb branch spectrum

nicely reproduces all the operators of the initial theory. Secondly, we may calculate the

central charge. We know the central charges for (A1, D2k+2) theory are

a =
k

2
+

1

12
, c =

k

2
+

1

6
. (4.6)

The central charges for the initial theory are, with the help of (3.6) and three dimen-

sional mirror,

a = 5k +
55

8
, c = 5k +

58

8
. (4.7)

The central charges for the middle theory are obtained similarly:

a = 4k +
131

24
, c = 4k +

142

24
. (4.8)

We find that

a(I4,4k,F ) = 2aVSU(2) + 2a(A1,D2k+2) + a
(III

[2,2]×(k+1),[1,1,1,1]
k,1 ,F )

,

c(I4,4k,F ) = 2cVSU(2) + 2c(A1,D2k+2) + c
(III

[2,2]×(k+1),[1,1,1,1]
k,1 ,F )

.
(4.9)

Here aV and cV denote the contribution from vector multiplet. Finally, we may check the

flavor central charge and beta functions for the gauge group. The flavor central charge for

SU(2) symmetry of (A1, D2k+2) theory is (2k + 1)/(k + 1). The middle theory has flavor

symmetry SU(2)2 × SU(4). Each SU(2) factor has flavor central charge 2 + 1/(k + 1), so

we have a total of 4, which exactly cancels with the beta function of the gauge group.

– 26 –



J
H
E
P
0
3
(
2
0
1
8
)
1
8
6

Now we use D3 perspective to analyze the S-duality. See the second line of figure 5

for illustration. It is not hard to figure out the correct puncture after degeneration of the

Riemann sphere. To compare the Coulomb branch spectrum, we assume maximal regular

puncture. For the theory on the left hand side, using Newton polygon we have

∆(O) =
k + 2

k + 1
,
k + 3

k + 1
, . . . ,

2k + 1

k + 1
,

k + 2

k + 1
,
k + 3

k + 1
, . . . ,

2k + 1

k + 1
.

(4.10)

We see it is nothing but the two copy of (A1, D2k+2) theories. For the theory on the right

hand side, the spectrum is exactly the same as the A3 theory (III
[2,2]×(k+1),[1,1,1,1]
k,1 , F ). We

thus conjecture that:

a
(III

[1;4]×(k+1),[13;0]
k,1 ,F )

= 4k +
131

24
, c

(III
[1;4]×(k+1),[13;0]
k,1 ,F )

= 4k +
142

24
. (4.11)

This is the same as computed by the recipe in section 3.2.

There is another duality frame described in figure 6. From D3 perspective, we get

another type of Argyres-Douglas matter and the flavor symmetry is now carried by a

black dot, which is in fact SU(3). It connects to the left to an A2 theory with all Ti’s

regular semisimple. This theory can further degenerate according to the rules of AN−1

theories, and we do not picture it. We conjecture that the central charges for the theory(
III

[3;0]×(k+1),[1,1,1;0]
k,1 , F

)
are

a(
III

[3;0]×(k+1),[1,1,1;0]
k,1 ,F

) = 3k +
17

4
, c(

III
[3;0]×(k+1),[1,1,1;0]
k,1 ,F

) = 3k +
19

4
. (4.12)

Example 2: D4. Now we consider a more complicated example. Let us take a generic large

` > 3 and all the coefficient matrices to be regular semisimple, T` = · · · = T1 = [14; 0].

There are several ways to get weakly coupled duality frame, which is described in figure 7.

The regular puncture can be arbitrary. We have checked their Coulomb branch spectrum

matches with the initial theory, as well as the fact that all gauge couplings are conformal.

For (a) in figure 7, we can compute the central charges for the theory(
III

[1;6]×(k+1),[14;0]
k,1 , Q

)
when Q is a trivial regular puncture. Recall the initial theory may

be mapped to hypersurface singularity in type IIB construction:

a(
III

[14;0]×(k+2)

k,1 , S

) =
84k2 − 5k − 5

6(k + 1)
, c(

III
[14;0]×(k+2)

k,1 , S

) =
42k2 − 2k − 2

3(k + 1)
, (4.13)

while we already know the central charges for (A1, D2k+2) and
(
III

[1;4]×(k+1),[13;0]
k,1 , F

)
theory

in (4.11). Therefore we have

a(
III

[1;6]×(k+1),[14;0]
k,1 , S

) =
54k2 − 95k − 65

6(k + 1)
, c(

III
[1;6]×(k+1),[14;0]
k,1 , S

) =
108k2 − 185k − 125

12(k + 1)
.

(4.14)

This is the same as computed from (3.6).
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Figure 6. Another S-duality frame. The upper one is from A3 perspective. Here in the weakly

coupled description, the rightmost theory is still (A1, D2k+2), the middle theory is given by(
III

[2,1]×(k+1),[1,1,1]
k,1 , F

)
, and the leftmost theory is given by

(
III

[3,1]×(k+1),[1,1,1,1]
k,1 , F

)
. The lower

one is from the D3 perspective. The left theory without blue marked points should be understood

as A2 theory. The right hand theory is given by
(
III

[3;0]×(k+1),[1,1,1;0]
k,1 , F

)
. All the computation can

be done similarly by replacing full puncture F to be other arbitrary regular puncture Q.

Notice that in (a) of figure 7, the leftmost and middle theory may combine together,

which is nothing but the theory
(
III

[13;0]×(k+2)

k,1 , F
)
. We can obtain another duality frame

by using an SU(3) gauge group. See (b) of figure 7.

We can try to split another kind of Argyres-Douglas matter, and use the black dot to

carry flavor symmetry. The duality frames are depicted in (c) and (d) in figure 7. Again,

we can compute the central charges for the Argyres-Douglas matter
(
III

[4;0]×(k+1),[14;0]
k,1 , S

)
:

a(
III

[4;0]×(k+1),[14;0]
k,1 , S

) =
108k2 − 145k − 85

12(k + 1)
, c(

III
[4;0]×(k+1),[14;0]
k,1 , S

) =
27k2 − 35k − 20

3(k + 1)
,

(4.15)

same as computed from (3.6).

By comparing the duality frames, we see a surprising fact in four dimensional quiver

gauge theory. In particular, (a) in figure 7 has SO(2n) gauge groups while (c) in figure 7 has

SU(n) gauge groups. The Argyres-Douglas matter they couple to are completely different,

and our prescription says they are the same theory!

General DN . Based on the above two examples, we may conjecture the S-duality for

DN theories of class (k, 1) for large. The weakly coupled description can be obtained re-

cursively, by splitting Argyres-Douglas matter one by one. See figure 8 for illustration

of two examples of such splitting. In the first way we get the Argyres-Douglas mat-

ter
(
III

[1;2N−2]×(k+1),[1N ;0]
k,1 , Q

)
, with remaining theory

(
III

[1N−1;0]×(k+2)

k,1 , F
)
. The gauge

group in between is SO(2N − 2). In the second way, we get the Argyres-Douglas mat-
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Figure 7. The weakly coupled duality frame for D4 theory of class (k, 1). For (a), the leftmost

theory is two copies of (A1, D2k+2), the middle theory is given by
(
III

[1;4]×(k+1),[13;0]
k,1 , F

)
, and the

rightmost theory is given by
(
III

[1;6]×(k+1),[14;0]
k,1 , Q

)
where Q is any D4 regular puncture. For (b), the

leftmost theory is (A1, D2k+2), followed by the theory
(
III

[2,1]×(k+1),[13]
k,1 , F

)
. This is then followed

by
(
III

[3,1]×(k+1),[14;0]
k,1 , F

)
, and the rightmost theory is still

(
III

[1;6]×(k+1),[14;0]
k,1 , Q

)
. For (c) and (d),

the rightmost theory is given by
(
III

[4;0]×(k+1),[14;0]
k,1 , Q

)
. Then there are two different ways the

theory
(
III

[14]×(k+2)

k,1 , F
)

can be further degenerated. Finally for (e), the leftmost theory is again

two copies of (A1, D2k+2) theory. The middle theory is D4 theory
(
III

[2;4]×(k+1),[14]
k,1 , F

)
, and the

rightmost theory is given by (A1, D2k+2).
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Figure 8. The weakly coupled duality frame for DN theory of class (k, 1). One starts with maximal

irregular puncture and a regular puncture, and recursively degenerate a sequence of Argyres-Douglas

matter. The first line gives Argyres-Douglas matter
(
III

[1;2N−2]×(k+1),[1N ;0]
k,1 , Q

)
and the second line

gives
(
III

[N ;0]×(k+1),[1N ;0]
k,1 , Q

)
. We get in general a quiver with SU and SO gauge groups.

ter
(
III

[N ;0]×(k+1),[1N ;0]
k,1 , Q

)
, with remaining theory

(
III

[1N ]×(k+1)

k,1 , F
)
. The gauge group is

SU(N). The central charges (a, c) for special cases of regular puncture can be computed

similarly.

Duality at small k. We see previously that when k is large enough, new punctures

appearing in the degeneration limit are all full punctures. We argue here that when k is

small, this does not have to be so. In this section, we focus on D5 theory, with coefficient

matrices T` = · · · = T1 = [1, . . . , 1; 0] and one trivial regular puncture. The auxiliary

Riemann sphere is given by five black dots of type [1], one trivial blue square and one

trivial red cross. We will focus on the linear quiver only.

D5 theory. The linear quivers we consider are depicted in figure 9.

After some lengthy calculations, we find that, for the first quiver (where red crosses

are all connected with blue squares), when k = 1, the quiver theory is

(
III

[1;8]×2,[12;6]
1,1 , [9, 1]

)
.

SO(3)(
III

[1;6]×2,[14;0]
1,1 , [5, 13]

)SO(5)(
III

[1;4]×2,[13;0]
1,1 , [16]

)SO(4)(
III

[12;0]×3

1,1 , [14]
)

In particular, we have checked the central charge and confirm that the middle gauge group

is indeed SO(5). Moreover, its left regular puncture is superficially [16] but only SO(5)

symmetry remains, similar for the right blue marked points [; 6].6

6We could imagine a similar situation of three hypermultiplets with SO(6) symmetry for six half-
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Figure 9. The linear quiver that we will examine for k small, when g = D5.

For k = 2, we have the quiver

(
III

[1;8]×3,[13;4]
2,1 , [9, 1]

)
.

SO(5)(
III

[1;6]×3,[14;0]
2,1 , [3, 15]

)SO(6)(
III

[1;4]×3,[13;0]
2,1 , [16]

)SO(4)(
III

[12;0]×4

2,1 , [14]
)

For k = 3, we have the quiver

(
III

[1;8]×4,[15;0]
3,1 , [9, 1]

)
.

SO(8)(
III

[1;6]×4,[14;0]
3,1 , [18]

)SO(6)(
III

[1;4]×4,[13;0]
3,1 , [16]

)SO(4)(
III

[12;0]×5

3,1 , [14]
)

Finally, for k > 3 we reduce to the case in previous section. It is curious to see that some

of the gauge group becomes smaller and smaller when k decreases, due to appearance of

next-to-maximal puncture. Moreover, there are theories (i.e.
(
III

[1;8]×2,[12;6]
1,1 , [9, 1]

)
) whose

Coulomb branch spectrum is empty. When this happens, the theory is in fact a collection

of free hypermultiplets.

The same situation happens for the second type of D5 quiver. When k starts decreas-

ing, the sizes of some gauge groups for the quiver theory decrease. When k = 1 we get:

(
III

[5;0]×2,[2,2,1;0]
1,1 , [9, 1]

)
.

SU(2)(
III

[4,1]×2,[15]
1,1 , [2, 2, 1]

)SU(4)(
III

[3,1]×2,[14]
1,1 , [14]

)SU(3)(
III

[2,1]×2,[13]
1,1 , [13]

)SU(2)(
III

[1,1]×3

1,1 , [12]
)

When k = 2, we have the quiver

(
III

[5;0]×3,[15;0]
2,1 , [9, 1]

)
.

SU(5)(
III

[4,1]×3,[15]
2,1 , [15]

)SU(4)(
III

[3,1]×3,[14]
2,1 , [14]

)SU(3)(
III

[2,1]×3,[13]
2,1 , [13]

)SU(2)(
III

[1,1]×4

2,1 , [12]
)

Finally when k > 2, all the gauge groups do not change anymore and stay as those in

previous section.

hypermultiplets. We then only gauge five of them with SO(5) gauge group. In this way, one mass parameter

is frozen, so we get a total of two mass parameters.
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We can carry out similar analysis for all DN theory when k is small. This indicates

that as we vary the external data, the new punctures appearing in the degeneration limit

vary as well.

4.2 Class (k, b)

For general b > 1 and (k, b) coprime, we need to classify which irregular punctures engi-

neer superconformal theories, and study its duality as before. One subtlety that appears

here is that, unlike b = 1 case in previous section, here we need to carefully distinguish

between whether b is an odd/even divisor of N/2N −2, as their numbers of exact marginal

deformations are different. See section 2.2.2 for details.

4.2.1 Coulomb branch spectrum and degenerating coefficient matrices

We have mentioned in section 2.2.3 how to count graded Coulomb branch dimension for

general b > 1. We elaborate the procedure here.

(i) b is an odd divisor of N . We may label the degenerating matrices similar to labelling

the Levi subgroup: [r1, . . . , rn; r̃], where
∑

2bri + r̃ = 2N , and there are n − 1

exact marginal deformations. To calculate the Coulomb branch spectrum, we first

introduce a covering coordinate z = wb, such that the pole structure becomes:

T`

z2+ k
b

→
T ′`

wk+b+1
, (4.16)

and T ′` is given by Levi subgroup of type [r1, . . . , r1, . . . , rn, . . . rn; r̃], where ri is

repeated b times. Then we are back to the case b = 1 and we can repeat the procedure

in section 2.2.3. This would give the maximal degree d2i in the monomial wd2ix2N−2i

that gives Coulomb branch moduli. The monomial corresponds to the degree 2i

differential φ2i, and after converting back to coordinate z, we have the degree of z in

zd
′
2ix2N−2i as:

d′2i ≤
⌊
d2i − 2i(b− 1)

b

⌋
, (4.17)

and similar for the Pfaffian φ̃.

(ii) b is an even divisor of N . We can label the matrix T` as [r1, r2, . . . , rn; r̃] such that∑
bri + r̃ = 2N . Then, we take the change of variables z = wb, and T ′` is given by

repeating each ri (b/2) times, while r̃ is the same. This reduces to the class (k, 1)

theories.

(iii) b is an odd divisor of 2N − 2. We use [r1, . . . , rn; r̃] to label the Levi subgroup,

which satisfies 2b
∑
ri + r̃ = 2N − 2. To get the Coulomb branch spectrum, we again

change the coordinates z = wb, and the new coefficient matrix T ′` is now given by

Levi subgroup of type [r1, . . . , r1, . . . , rn, . . . , rn; r̃], where each ri appears b times.

This again reduces to the class (k, 1) theories.

(iv) b is an even divisor of 2N − 2. This case is similar once we know the procedure in

cases (ii) and (iii). We omit the details.
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The above prescription also indicates the constraints on coefficient matrices in order

for the resulting 4d theory is a SCFT. We conclude that Ti should satisfy T` = · · · = T2,

T1 is arbitrary.

To see our prescription is the right one, we can check the case D4. As an example, we

can consider the Higgs field

Φ ∼ T`

z2+ 1
4

+ . . . , ` = 6, (4.18)

and all Ti to be [1, 1; 0]. Using the above procedure, we know that at φ6 there is a non-

trivial moduli whose scaling dimension is 6/5. This is exactly the same as that given by

hypersurface singularity in type IIB construction. Similarly, we may take D5 theory:

Φ ∼ T`

z2+ 1
4

+ . . . , ` = 6, (4.19)

and all Ti’s given by [1, 1; 2]. After changing variables we have T ′i given by [1, 1, 1, 1; 2],

which is the same as [15; 0]. Then we have two Coulomb branch moduli with scaling

dimension {6/5, 8/5}, same as predicted by type IIB construction.

4.2.2 Duality frames

Now we study the S-duality for these theories. As one example, we may consider D4

theory of class (k, b) = (3, 2), and T` is given by [1, 1, 1, 1; 0]. We put an extra trivial

regular puncture at the south pole. This theory has Coulomb branch spectrum

∆(O) =

{(
6

5

)×4

,

(
8

5

)×3

, (2)×3,

(
12

5

)×3

,
14

5
,

16

5
,

18

5

}
. (4.20)

In the degeneration limit, we get three theories, described in figure 10. The middle theory(
III

[1;4]×5,[1,1,1;0]
3,2 , [3, 1, 1, 1]

)
gets further twisted in the sense mentioned in next subsec-

tion 4.3, and has Coulomb branch spectrum {6/5, 8/5, 12/5, 12/5, 14/5, 16/5, 18/5}. Be-

sides it, the far left theory is two copies of (A1, D5) theory with Coulomb branch spectrum

{8/5, 6/5} each. The far right theory is an untwisted theory, given by
(
III

[1;6]×5,[1,1;4]
3,2 , S

)
,

giving spectrum {12/5, 6/5}. Along with the SO(4) and SU(2) gauge group, we see that

the Coulomb branch spectrum nicely matches together. We conjecture that this is the

weakly coupled description for the initial Argyres-Douglas theory.

In this example, each gauge coupling is exactly conformal as well.

As a second example, we consider D3 theory of class (3, 2). The coefficient matrices

are given by T6 = · · · = T2 = T1 = [1, 1; 2]. We put a trivial regular puncture at the south

pole. This theory has Coulomb branch spectrum

∆(O) =

{
6

5
,

6

5
,

7

5
,

8

5
,

9

5
, 2,

12

5

}
, (4.21)

and is represented by an auxiliary Riemann sphere with two black dots of type [1], one

blue square of size 2 and one trivial red cross. See figure 11. After degeneration, we
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Figure 10. S-duality for D4 theory of class (3, 2). Here we pick the coefficient matrices to be of

type [1, 1, 1, 1; 0], with a trivial regular puncture (this setup can be relaxed to general D4 regular

punctures). In the degeneration limit, we get SO(4)×SU(2) gauge group plus three Argyes-Douglas

matter. The leftmost theory is in fact two copies of (A1, D5) theory, while the middle theory is given

by twisted D3 theory, given by twisting the theory
(
III

[1;4]×5,[1,1,1;0]
3,2 , [3, 1, 1, 1]

)
. The rightmost

theory is
(
III

[1;6]×5,[1,1;4]
3,2 , S

)
theory.

Figure 11. S-duality for D3 theory of class (3, 2). Here we pick the coefficient matrices to be

of type [1, 1; 2], with a trivial regular puncture (this setup can be relaxed to general D3 regular

punctures).

get two theories. We compute that the first theory is a twisting of
(
III [1;2]×5,[1,1;0], [14]

)
,

having spectrum {6/5, 7/5, 8/5, 9/5}. The second theory
(
III

[1;4]×5,[1,1,1;0]
3,2 , S

)
has spectrum

{12/5, 6/5}. The middle gauge group is SO(3), although the two sides superficially have

SO(4) symmetry.

4.3 Z2-twisted theory

If the Lie algebra g has a nontrivial automorphism group Out(g), then one may consider

twisted punctures. This means as one goes around the puncture, the Higgs field undergoes

an action of nontrivial element o ∈ Out(g):

Φ(e2πiz) = h[o(Φ(z))]h−1, (4.22)

where h ∈ g/j∨ with j∨ the invariant subalgebra under Out(g). Let us denote j the Lang-

lands dual of j∨.

In this section we solely consider DN theory with automorphism group Z2. It has

invariant subalgebra j∨ = BN−1 whose Langlands dual is j = CN−1. For more details
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of other Lie algebra g, see [12, 35–39]. We review some background for twisted regular

punctures as in [36], and then proceed to understand twisted irregular punctures and their

S-duality. For previous study of S-duality for twisted theory, see [40, 41].

4.3.1 Twisted regular punctures

Following [36], a regular twisted DN punctures are labelled by nilpotent orbit of CN−1, or

a C-partition d of 2N − 2, where all odd parts appear with even multiplicity. To fix the

local Higgs field, note that Z2 automorphism group split the Lie algebra g as g = j1 ⊕ j−1,

with eigenvalue ±1 respectively. Apparently, j1 = BN−1. The Higgs field behaves as

Φ ∼ Λ

z
+

Λ′

z1/2
+M, (4.23)

where Λ′ is a generic element of j−1 and M is a generic element of j1. Λ is an element

residing in the nilpotent orbit of BN−1, which is given by a B-partition of 2N − 1, where

all even parts appear with even multiplicity. It is again related to the C-partition d via the

Spaltenstein map S. To be more specific, we have S(d) =
(
d+T

)
B

:

• First, “+” means one add an entry 1 to the C-partition d;

• Then, perform transpose of d+, corresponding to the superscript T;

• Finally, (·)B denotes the B-collapse. The procedure is the same as D-collapse in

section 2.1.1.

For later use we will also introduce the action S on a B-partition d′. This should give a

C-partition. Concretely, we have S(d′) = (d′T−)C :

• First, “T” means one take transpose of d′;

• Then, perform reduction of d′T, corresponding to subtract the last entry of d′T by 1;

• Finally, (·)C denotes the C-collapse. The procedure is the same as B- and D-collapse

except that it now operates on the odd part which appears even multiplicity.

Given a regular puncture with a C-partition, we may read off its residual flavor sym-

metry as

Gflavor =
∏
h even

SO(nh)×
∏
h odd

Sp
(
nh
)
. (4.24)

We may also calculate the pole structure of each differential φ2i and the Pfaffian φ̃ in the

Seiberg-Witten curve (2.5). We denote them as {p2, p4, . . . , p2N−2; p̃}; in the twisted case,

the pole order of the Pfaffian φ̃ is always half-integer.

As in the untwisted case, the coefficient for the leading singularity of each differential

may not be independent from each other. There are constraints for c
(2k)
l , which we adopt

the same notation as in section 2.1.1. The constraints of the form

c
(2k)
l =

(
a

(k)
l/2

)2
(4.25)

– 35 –



J
H
E
P
0
3
(
2
0
1
8
)
1
8
6

effectively remove one Coulomb branch moduli at degree 2k and increase one Coulomb

branch moduli at degree k; while the constraints of the form

c
(2k)
l = . . . (4.26)

only removes one moduli at degree 2k. For the algorithm of counting constraints for each

differentials and complete list for the pole structures, see reference [36]. After knowing all

the pole structures and constraints on their coefficients, we can now compute the graded

Coulomb branch dimensions exactly as those done in section 2.1.1. We can also express

the local contribution to the Coulomb branch moduli as

dimρ
C Coulomb =

1

2

[
dimCS(Oρ) + dim g/j∨

]
, (4.27)

here Oρ is a nilpotent orbit in CN−1 and S(Oρ) is a nilpotent orbit in BN−1.

4.3.2 Twisted irregular puncture

Now we turn to twisted irregular puncture. We only consider the “maximal twisted irreg-

ular singularities”. The form of the Higgs field is, in our Z2 twisting,

Φ ∼ T`
z`

+
U`

z`−1/2
+
T`−1

z`−1
+

U`−1

z`−3/2
+ · · ·+ T1

z
+ . . . . (4.28)

Here all the Ti’s are in the invariant subalgebra so(2N−1) and all Ui’s are in its complement

j−1. To get the Coulomb branch dimension, note that the nontrivial element o ∈ Out(g)

acts on the differentials in the SW curve as

o : φ2i → φ2i for 1 ≤ i ≤ N − 1,

φ̃N → −φ̃N .
(4.29)

Then, the Coulomb branch dimension coming from the twisted irregular singularities can

be written as [8]:

dimρ
C Coulomb =

1

2

[∑̀
i=1

dimTi +
∑̀
i=2

(dim g/j∨ − 1) + dim g/j∨

]
. (4.30)

In the above formula, the −1 term in the middle summand comes from treating Ui, 2 ≤ i ≤ `
as parameter instead of moduli of the theory. It corresponds to the Pfaffian φ̃N which

switches sign under o ∈ Out(g).

As in the untwisted case, we are also interested in the degeneration of Ti and the

graded Coulomb branch dimension. First of all, we know that as an so(2N − 1) matrix, Ti
can be written down as 

0 u v

−vT Z1 Z2

−uT Z3 −Z1

, (4.31)

with Z1,2,3 (N − 1) × (N − 1) matrices, and Z2,3 are skew symmetric; while u, v are row

vectors of size N − 1. After appropriate diagonalization, only Z1 is nonvanishing. So a
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Levi subalgebra can be labelled by [r1, . . . , rn; r̃ + 1], with r̃ + 1 always an odd number.

The associated Levi subgroup is

L =
∏
i

U(ri)× SO(r̃ + 1). (4.32)

Now we state our proposal for whether a given twisted irregular puncture defines a

SCFT in four dimensions. Similar to untwisted case, we require that T` = T`−1 = · · · = T2

and T1 can be further arbitrary partition of Ti≥2. When all the Ti’s are regular semisimple,

we can draw Newton polygon for these theories. They are the same as untwisted case,

except that the monomials living in the Pfaffian φ̃N get shift down one half unit [8].

Example: D4 maximal twisted irregular puncture with ` = 3. We consider all Ti to be

regular semisimple so(7) element [1, 1, 1; 1], plus a trivial twisted regular puncture. From

Newton polygon, we know the spectrum for this theory is {2, 3/2, 3, 5/2, 2, 3/2, 7/4, 5/4}.

4.3.3 S-duality for twisted DN theory of class (k, 1)

Having all the necessary techniques at hand, we are now ready to apply the algorithm

previously developed and generate S-duality frame. We state our rules as follows for theory

of class (k, 1) with k = `− 2.

• Given coefficient matrices T` = · · · = T2 = [r1, . . . , rn; r̃ + 1], and T1 being further

partition of Ti, we represent the theory on an auxiliary Riemann sphere with n black

dots with size ri, 1 ≤ i ≤ n, a blue square with size r̃, and a red cross representing

the regular puncture, labelled by a C-partition of 2N − 2.

• Different S-duality frames are given by different degeneration limit of the auxiliary

Riemann sphere.

• Finally, one needs to figure out the newly appeared punctures. The gauge group can

only connect a red cross and a blue square (Sp gauge group). This is different from

untwisted case we considered before.

Let us proceed to examine examples. We first give a comprehensive discussion of

D4 theory.

Duality at large k . We have initially three black dots of type [1], a trivial blue square

and an arbitrary red cross representing a regular puncture. This theory has a part of

Coulomb branch spectrum coming from irregular puncture:

∆(O) =
k + 2

k + 1
, . . . ,

2k

k + 1
,

=
k + 2

k + 1
, . . . ,

4k

k + 1
,

=
k + 2

k + 1
, . . . ,

6k

k + 1
,

=
k + 3/2

k + 1
, . . . ,

4k − 1/2

k + 1
.

(4.33)

The S-duality frame for this theory is given in figure 12.
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Figure 12. S-duality for twisted D4 theory of class (k, 1) with large k. Each Argyres-Douglas

matter is connected with Sp gauge group. Assembling the black dot and the blue square we can

read off the data for the irregular puncture and thus identify the theory.

The duality frame in figure 12 tells us the Coulomb branch spectrum of each piece.

The leftmost theory
(
III

[1;1]×(k+2)

k,1 , F
)

has the spectrum

∆1(O) =
k + 2

k + 1
, . . . ,

2k + 1

k + 1
,

=
k + 3/2

k + 1
, . . . ,

2k + 3/2

k + 1
.

(4.34)

The rightmost theory is given by
(
III

[1;5]×(k+1),[1,1,1;1]
k,1 , Q

)
whose spectrum comes from the

irregular part is

∆2(O) =
k + 2

k + 1
, . . . ,

2k

k + 1
,

=
2k + 3

k + 1
, . . . ,

4k

k + 1
,

=
4k + 5

k + 1
, . . . ,

6k

k + 1
,

=
3k + 7/2

k + 1
, . . . ,

4k − 1/2

k + 1
.

(4.35)

Finally, the middle theory is
(
III

[1;3]×(k+1),[1,1;1]
k,1 , F

)
. It contributes to the Coulomb branch

spectrum coming from the irregular puncture

∆3(O) =
k + 2

k + 1
, . . . ,

2k + 1

k + 1
,

=
2k + 3

k + 1
, . . . ,

4k + 3

k + 1
,

=
2k + 5/2

k + 1
, . . . ,

3k + 5/2

k + 1
.

(4.36)
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These three pieces nicely assemble together and form the total spectrum of original theory.

We thus have Sp(2)× Sp(4) gauge groups.

Duality at small k. Similar to the untwisted case, we expect that some of the gauge

group would be smaller. We now focus on a trivial twisted regular puncture in figure 12.

Analysis for other twisted regular punctures are analogous.

We find that for k = 1,

(
III

[1;5]×2,[1,1;3]
1,1 , [6]

)
.

Sp(2)(
III

[1;3]×2,[1,1;1]
1,1 , [2, 1, 1]

)Sp(2)(
III

[1;1]×3

1,1 , [1, 1]
)

When k ≥ 2, the second Sp(2) gauge group becomes Sp(4) and we reduce to the large k

calculations.

S-duality of DN theory. When k is large, the intermediate gauge group in the degen-

eration limit does not depend on which twisted regular puncture one puts, and they are all

full punctures. To obtain the duality frames, we can again follow the recursive procedure

by splitting the Argyres-Douglas matter one by one. See the example of such splitting in

figure 13. Again, due to twisting things become more constraining, and all matter should

have a blue square on its auxiliary Riemann sphere.

When k is small, some of the intermediate puncture would be smaller. One needs to

figure out those punctures carefully. We leave the details to interested readers.

5 Comments on S-duality for E-type theories

Finally, we turn to the duality frames for g = e6,7,8. We focus on the Lie algebra e6 while

state our conjecture for e7 and e8 case.

A complete list of all the relevant data for regular punctures can be found in [19, 20, 38].

We will use some of their results here for studying irregular puncture.

5.1 Irregular puncture and S-duality for E6 theory

We focus on the irregular singularity (4.1). The first task is to characterize the degeneration

of coefficient matrices. Those matrices Ti, 1 ≤ i ≤ ` shall be represented by a Levi

subalgebra l. See section 2.2.3 for the list of conjugacy classes. For each Levi subalgebra l,

we associate a nilpotent orbit with Nahm label. Since we are already using Bala-Carter’s

notation, we can directly read of l. See table 10. Here we exclude Bala-Carter label of the

form E6(·), as it gives maximal Levi subalgebra so the irregular puncture is trivial.

We are now ready to count the Coulomb branch spectrum for a given E6 irregular

puncture of class (k, 1), were ` = k+ 2. We use the SW curve from type IIB construction,

whose isolated singularity has the form7

x2
1 + x3

2 + x4
3 + z12k = 0, (5.1)

7As we consider (k, 1) theory, there is no distinction between whether it comes from b = 8, 9 or 12. We

can simply pick anyone of them.
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Figure 13. S-duality for twisted DN theory of class (k, 1) with large k. Here we present the

duality frame recursively by splitting the Argyres-Douglas matter. In the first line we split a

theory
(
III

[1;1]×(k+2)

k,1 , F
)

with F a full D2 twisted puncture; in the second line we split a theory(
III

[1;2N−3]×(k+1),[1N−1;1]
k,1 , Q

)
with original regular puncture Q.

whose deformation looks like

x2
1 + x3

2 + x4
3 + φ2(z)x2x

2
3 + φ5(z)x2x3 + φ6(z)x2

3 + φ8(z)x2 + φ9(z)x3 + φ12(z) = 0, (5.2)

where at the singularity φ12 = z12k. The Coulomb branch spectrum is encoded in these

Casimirs. For example, when k = 1 and regular semisimple coefficients, we know the scaling

dimensions for each letter are

[x1] = 3, [x2] = 2, [x3] =
3

2
, [z] =

1

2
. (5.3)

By enumerating the quotient algebra generator of this hypersurface singularity we know

that the number of moduli for each differential is {d2, d5, d6, d8, d9, d12} = {0, 3, 4, 6, 7, 10}.
This is consistent with adding pole structures and subtract global contribution of three

maximal E6 regular punctures.

5.1.1 S-duality for E6 theory

We now study the S-duality for E6 theory of class (k, 1), with coefficient all regular semisim-

ple. From the DN S-duality, we know that the Levi subalgebra directly relates to the flavor

symmetry. If we take the coefficient matrix to be regular semisimple, then our initial theory
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Levi subalgebra l Nahm Bala-Carter label

0 0

A1 A1

2A1 2A1

3A1 (3A1)∗

A2 A2

A2 +A1 A2 +A1

2A2 2A2

A3 A3

2A2 +A1 (2A2 +A1)∗

A2 + 2A1 A2 + 2A1

A3 +A1 (A3 +A1)∗

D4 D4

A4 A4

A4 +A1 A4 +A1

A5 (A5)∗

D5 D5

Table 10. The correspondence between Nahm label and the Levi subalgebra. The Levi subalgebra

E6 is omitted as it does not give any irregular puncture. We use ∗ to denote the non-special

nilpotent orbit. The pole structure and constraints can be found in [19]. Again, we exclude those

with non-principal orbit in the Levi subalgebra.

is given by a sphere with six black dots, one trivial blue square and one red cross (which

is an arbitrary E6 regular puncture.

We only consider large k situation. In type IIB construction (5.2), the scaling dimen-

sions for each letter are

[x1] =
6k

k + 1
, [x2] =

4k

k + 1
, [x3] =

3k

k + 1
, [z] =

1

k + 1
. (5.4)

So we have the spectrum of initial theory coming from irregular puncture as:

φ2 :
2k

k + 1
, . . . ,

k + 2

k + 1
, φ5 :

5k

k + 1
, . . . ,

k + 2

k + 1
,

φ6 :
6k

k + 1
, . . . ,

k + 2

k + 1
, φ8 :

8k

k + 1
, . . . ,

k + 2

k + 1
,

φ9 :
9k

k + 1
, . . . ,

k + 2

k + 1
, φ12 :

12k

k + 1
, . . . ,

k + 2

k + 1
.

(5.5)

There are several ways to split Argyres-Douglas matter. For example, we may pop out two

black dots and one trivial blue square. We get the duality frame

(
III

[1,1;0]×k+2

k,1 , [14]
)

,

SO(4)(
III

(2A1)×(k+1),0
k,1 , QE6

)
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and here the right hand side theory is two copies of (A1, D2k+2) theory. This duality frame

persists to k = 1. We have checked that the central charge matches.

The second way is to pop out a trivial black dot and the E6 regular puncture. This

results in D5 gauge group:

(
III

(D5)×(k+1),0
k,1 , Q

)
,

SO(10)(
III

[15;0]×(k+2)

k,1 , [110]
)

where the theory
(
III

[15;0]×(k+2)

k,1 , [110]
)

can be further degenerate according to DN type

rules. The spectrum counting is explained in the example in section 2.2.3. We see it

correctly reproduces SO(10) flavor symmetry. We have also checked that the central charge

matches.

Another way is to give SU(6) gauge group in the degeneration limit, by poping out a

trivial blue puncture and red cross.

(
III

(A5)×(k+1),0
k,1 , QE6

)
,

SU(6)(
III

[16]×(k+2)

k,1 , [16]
)

We find that the central charges match as well.

5.2 E7 and E8 theory

Finally, we turn to E7 and E8 Argyres-Douglas theories. Tinkertoys for E7 theories have

been worked out in [20]. Similar ideas go through and we will outline the steps here. The

key ingredient is to use type IIB construction to count the moduli. For E7 theory, the

deformed singularity has the form

x2
1 + x3

2 + x2x
3
3 + φ2(z)x2

2x3 + φ6(z)x2
2 + φ8(z)x2x3

+ φ10(z)x2
3 + φ12(z)x2 + φ14(z)x3 + φ18(z) = 0,

(5.6)

where {φ2, φ6, φ8, φ10, φ12, φ14, φ18} are independent differentials. For E8 theory, the de-

formed hypersurface singularity has the form:

x2
1 + x3

2 + x5
3 + φ2(z)x2x

3
3 + φ8(z)x2x

2
3 + φ12(z)x3

3

+ φ14(z)x2x3 + φ18(z)x2
3 + φ20(z)x2 + φ24(z)x3 + φ30(z) = 0,

(5.7)

where {φ2, φ8, φ12, φ14, φ18, φ20, φ24, φ30} are independent differentials.

The regular puncture for these two exceptional algebras are again given the Bala-Carter

label. One can read off the Levi subalgebra similar as before. This then provides the way of

counting Coulomb branch spectrum. The duality frame can then be inferred by comparing

the spectrum in the degeneration limit, and checked with central charge computation (3.6).

For example, we have in e7 theory one duality frame which looks like

(
III

(E6)×(k+1),0
k,1 , Q

)
,

E6(
III

(0)×(k+2)

k,1 , Fe6

)
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where Fe6 is the full E6 regular puncture. Another duality frame is

(
III

(A6)×(k+1),0
k,1 , Q

)
.

SU(7)(
III

[17]×(k+2)

k,1 , [17]
)

For e8 theory, we have the duality frames

(
III

(E7)×(k+1),0
k,1 , Q

)
,

E7(
III

(0)×(k+2)

k,1 , Fe7

)

and

(
III

(A7)×(k+1),0
k,1 , Q

)
,

SU(8)(
III

(0)×(k+2)

k,1 , [18]
)

We have checked that the central charges and the Coulomb branch spectrum matches.

The left hand theory of each duality frames can be further degenerated according to known

rules for lower rank ADE Lie algebras, and we do not picture them anymore. Here we see

the interesting duality appears again: the quivers with EN type gauge group is dual to

quivers with AN−1 type quivers.

6 Conclusion and discussion

In this paper, we classified the Argyres-Douglas theory of DN and E6,7,8 type based on

classification of irregular punctures in the Hitchin system. We developed a systematic

way of counting graded dimension. Generalizing the construction in [7], we also obtained

duality frames for these AD theories, and find a novel duality between quivers with SO/EN
gauge groups and quivers with SU gauge groups.

An interesting question to ask is whether one can understand the duality from geom-

etry. In other words, whether one can engineer these quiver theories in string theory, and

the duality is interpreted as operations on the geometry side. A related question would be

whether such exotic duality exist in three dimensions. In AN−1-type AD theories, we can

perform dimensional reduction and mirror symmetry to get a Lagrangian theory, which is

in general a quiver with SU gauge groups [42]. One expects that such mirror theory also

exists for DN and E-counterpart. Then, the three dimensional mirror of the above duality

would be a natural construction.

S-duality in four dimensional superconformal theories sometimes facilitate the calcu-

lation of partition functions [43]. It will be interesting to see the duality frames obtained

for AD theories can give partition function of some of them. Partition functions of certain

AN−1 type AD theories were recently computed in [44–47]. In particular, the Schur index

encodes two dimensional chiral algebra [48, 49] while Coulomb branch index gives geomet-

ric quantization of Hitchin moduli space [50–52] and new four manifold invariants [53]. As

we mentioned in section 2.1.1, there are more fundamental invariants arise for DN Hitchin

system, so one may wonder its Hitchin fibration structure, as well as its fixed point under

U(1) action.
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In our construction, we have obtained many AD theories whose coefficient matrices

in the Higgs field degenerate. Then one can try to study their chiral algebra, characters

and representations. A useful approach is taken in [54]. Study of the associated chiral

algebra would have further implication on the dynamics of the theory, for instance chiral

ring structure, symmetries and the presence of a decoupled free sector. Furthermore, one

may explore if there are corresponding N = 1 Lagrangian theories that flows to DN type

AD theory, following the construction in [55–58]; see also [59–61].

Our study of S-duality may have many implication for the general investigation of

conformal manifold for four dimensional N = 2 superconformal theories. In particular,

with those duality frames, one can ask if they exhaust all the possible frames, what is the

group action on the conformal manifold and how the cusps look like. There are progress

in computing S-duality group from homological algebra point of view [62, 63]. We hope to

better understand these structures in future publications.
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A Type IIB construction for AD theories

Consider type IIB string theory on isolated hypersurface singularity in C4:

W (x1, x2, x3, x4) = 0, W (λqixi) = λW (xi), (A.1)

where the condition of isolation at xi = 0 means dW = 0 if and only if xi = 0. The quasi-

homogeneity in above formula plus the constraint
∑
qi > 1 guarantees that the theory has

U(1)r symmetry, i.e it is superconformal.

The Coulomb branch of resulting four dimensional N = 2 SCFT is encoded in the

mini-versal deformation of the singularity:

F (xi, λa) = W (xi) +

µ∑
a=1

λaφa, (A.2)

where {φa} are a monomial basis of the quotient algebra

AW = C[x1, x2, x3, x4]

/〈
∂W

∂x1
,
∂W

∂x2
,
∂W

∂x3
,
∂W

∂x4

〉
. (A.3)

The dimension µ of the algebra as a vector space is the Minor number, given by

µ =
4∏
i=1

(
1

qi
− 1

)
. (A.4)

The mini-versal deformation can be identified with the SW curve of the theory.
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BPS particles in the SCFT can be thought of as D3 brane wrapping special Lagrangian

cycles in the deformed geometry. The integration of the holomorphic three form,

Ω =
dx1 ∧ dx2 ∧ dx3 ∧ dx4

dF
(A.5)

on the three cycles give the BPS mass of the theory. Thus, we require that Ω should have

mass dimension 1. This determines the scaling dimension of the parameter λa:

[λa] = α(1− [φa]), (A.6)

where α = 1/(
∑
qi − 1).

The central charges of the theory is given by [34]:

a =
R(A)

4
+
R(B)

6
+

5r

24
+

h

24
, c =

R(B)

3
+
r

6
+

h

12
. (A.7)

Here R(A) is given by summation of Coulomb branch spectrum:

R(A) =
∑

[ui]>1

([ui]− 1), (A.8)

and r, h are number of free vector multiplets and hypermultiplets of the theory at generic

point of the Coulomb branch. In our cases, r equals the rank of Coulomb branch and h is

zero. Finally, we have [64]

R(B) =
µα

4
. (A.9)

B Grading of Lie algebra from nilpotent orbit

A natural way of generating torsion automorphism is to use nilpotent orbit in g. Let e be

a nilpotent element, which may be included in an sl2 triple {e, h, f} such that [e, f ] = h,

[h, e] = 2e, [h, f ] = −2f . With respect to the adjoint action ad h, g decompose into

eigenspaces:

g =

d⊕
i=−d

gi, (B.1)

where d is called the depth. Proper re-assembling of gi gives (2.16), hence fixes a torsion

automorphism σe of order m. We call the nilpotent element e even (odd) if the correspond-

ing Kac diagram De is even (odd). In fact De is identical to the weighted Dynkin diagram

D̂e [18]. Moreover, we have the relation m = d+ 2 and g2 = g2 + g−d.

A cyclic element of the semisimple Lie algebra g associated with nilpotent element e

is the one of the form e + F , for F ∈ g−d. We say e is of nilpotent (resp. semisimple

or regular semisimple) type if any cyclic element associated with e is nilpotent (resp. any

generic cyclic element associated with e is semisimple or regular semisimple). Otherwise,

e is called mixed type [25]. A theorem of [25] is that e is of nilpotent type if and only if the

depth d is odd. We see that T2 precisely corresponds to the cyclic element. In order to get

regular semisimple coefficient matrices, it is clear that one needs e of regular semisimple
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type. In fact, except for g = AN−1 case, all nilpotent elements of regular semi-simple type

generate even Kac diagram De.8

However, nilpotents e of regular semisimple type do not exhaust all the torsion auto-

morphism we are interested in. To complete the list, we examine the problem from another

point of view. When a cyclic element e + F is regular semisimple, its centralizer h′ is a

Cartan subalgebra. σe leaves h′ invariant, thus induces a regular element we in the Weyl

group. When e gives even De, we and σe have the same order, called the regular number of

we. Regular element and its regular number are classified in [65], and nilpotents of regular

semisimple type do not cover all of them.

The remaining regular numbers, fortunately, are all divisors of those of σe. Hence,

we can obtain the Kac diagrams from taking appropriate power of some σe. Their Kac

coordinates are determined from the following algorithm [22, 23]. Suppose we start with

automorphism σe of order m and Kac coordinates (s0, s1, . . . , sr) and we wish to construct

automorphism of order n < m by taking σm/n. We first replace the label s0 by

s0 → n−
N∑
i=1

aisi. (B.2)

Now s0 will be necessarily negative. After that, we pick one negative label sj at each time

for j = 0, 1, . . . , N , and change the label into (s′0, s
′
1, . . . , s

′
r) such that

s′i = si − 〈αi, α∨j 〉sj , i = 0, 1, . . . , r, (B.3)

where α∨ is the coroot. One repeats the procedure until finally all (s0, . . . , sr) are positive.

This gives the Kac diagram that corresponds to the automorphism with order n. The Kac

diagram obtained is unambiguous, independent of which element e we start with.

We now use nilpotent elements to obtain the grading. For g = AN−1, this is done

in [7]. We mainly examine the classification when g = DN and E6,7,8.

The Lie algebra g = DN . Nilpotent element e is of semi-simple type if and only if

(i) The embedding is [n1, . . . , n1, 1, . . . , 1] where n1 has even multiplicity;

(ii) [2m+ 1, 2m− 1, 1, . . . , 1] with m ≥ 1;

(iii) [n1, 1, . . . , 1] for n1 ≥ 5.

In particular, e is of regular semi-simple type if and only if in (i) n1 is odd and 1 occurs

at most twice; in (ii) p ≤ 4; in (iii) p ≤ 2. In each case we can compute b = d+ 2 where d

is the depth. They are (i) d = 2n1 − 2; (ii) d = 2n1 − 4 = 4m − 2; (iii) d = 2n1 − 4 [25].

As is known, these nilpotent elements are all even. Next we examine each case of regular

semi-simple type in more detail.

8By this we mean that the nilpotents with partition [n, n, . . . , n, 1] for g = AN−1, though of regular

semisimple type, are not even.
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Nilpotent embedding of case (i). When the partition is [n1, n1, . . . , n1], we see n1 must be

a divisor of N . Therefore we have the Higgs field

Φ ∼ T

z
2+ k

n1

(B.4)

with (k, n1) = 1. Note that when N is even, the partition [N,N ] is not allowed. This case

will be recovered in case (ii).

When the partition is [n1, . . . , n1, 1], then we know n1 divides 2N − 1. But n1 must

have even multiplicity, so this case is excluded.

When the partition is [n1, . . . , n1, 1, 1], then n1, being an odd number, must divide

N − 1. Then we get (B.4) as well (but the matrix T is different).

Nilpotent embedding of case (ii). There can only be no 1 or two 1’s in the Young tableaux.

For the former, we have 4m = 2N . So this case exists only when N is even number. The

Higgs field is

Φ ∼ T

z2+ k
N

(B.5)

with (k,N) = 1. For the latter, we have 4m = 2N − 2 (which means N − 1 must be even),

and the Higgs field is

Φ ∼ T

z2+ k
N−1

(B.6)

for (k,N − 1) = 1.

Nilpotent embedding of case (iii). When p = 1, we have the partition [2N ]. This violates

the rule for D-partition.

When p = 2 we have n1 = 2N − 1, so the order of ε is 4N − 4. We get the Higgs field

Φ ∼ T

z2+ k
2N−2

. (B.7)

In summary, with classification of nilpotent orbit of regular semi-simple type, for N

odd, we have recovered b = N and all its divisors b = n1 (no even divisors). For N even,

we can recover b = N as well and all its odd divisor. But we could not recover its even

divisors using the above technique. Similarly, we have recovered b = 2N −2 and b = N −1

as well as all odd divisors of N − 1, but we missed all the even divisors of 2N − 2 except

N − 1 itself.

The recovery of the missing cases can be achieved with the prescription introduced

around (B.2) and (B.3). We give some examples in appendix C. Here we only mention

that such procedure is unambiguous, i.e. the resulting Kac diagram is the same regardless

of which parent torsion automorphism we use.9

9More specifically, they should descend from the same “parent”. For instance, fix DN , if n1 and n2 are

both divisors of N and n1|n2, then the torsion automorphism of σ1 of order n1 is the same whether we

start with σ[2m+1,2m−1] by taking N/n1-th power, or with σ2 of order n2 by taking n2/n1-th power. See

appendix C for more detail.
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nilpotent orbit depth order Higgs field

D4(a1) 6 4 Φ ∼ T/z2+ k
4

E6(a3) 10 6 Φ ∼ T/z2+ k
6

D5 14 8 Φ ∼ T/z2+ k
8

E6(a1) 16 9 Φ ∼ T/z2+ k
9

E6 22 12 Φ ∼ T/z2+ k
12

Table 11. Summary of nilpotent elements of regular semi-simple type in E6.

nilpotent orbit depth order Higgs field

E7(a5) 10 6 Φ ∼ T/z2+ k
6

A6 12 7 Φ ∼ T/z2+ k
7

E6(a1) 16 9 Φ ∼ T/z2+ k
9

E7(a1) 26 14 Φ ∼ T/z2+ k
14

E7 34 18 Φ ∼ T/z2+ k
18

Table 12. Summary of nilpotent elements of regular semi-simple type in E7.

nilpotent orbit depth order Higgs field

E8(a7) 10 6 Φ ∼ T/z2+ k
6

E8(a6) 18 10 Φ ∼ T/z2+ k
10

E8(a5) 22 12 Φ ∼ T/z2+ k
12

E8(a4) 28 15 Φ ∼ T/z2+ k
15

E8(a2) 38 20 Φ ∼ T/z2+ k
20

E8(a1) 46 24 Φ ∼ T/z2+ k
24

E8 58 30 Φ ∼ T/z2+ k
30

Table 13. Summary of nilpotent elements of regular semi-simple type in E8.

The Lie algebra g = E6,7,8. As in the previous case, we would like to first find all

nilpotent elements of regular semi-simple type. They are listed in table 11 - table 13, along

with their order and the singular Higgs field behavior. One can also use the pole data to

read off the 3-fold singularity.

Again, the above classification does not exhaust the possibility of the order of poles.

We expect that we should be able to get all divisors for the denominator. We still can use

the same algorithm to generate them; and they are unambiguous. We recover the missing

Kac diagram in appendix C.

C Recover missing Kac diagrams

Here we shall give examples of how to generate those Kac diagrams of torsion automor-

phisms that are missing from considering nilpotent embedding, as in appendix B. To begin
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with, we first explain in g = DN case how to write down the weighted Dynkin diagrams

for automorphisms of the form σe. For a thorough mathematical treatment, the readers

may consult [18].

Assume that e is represented by a Young tableau Y = [n1, n2, . . . , np], and n1 + · · ·+
np = 2N . Moreover we assume Y is not very even,10 which is what we concern. For each

ni we get a sequence {ni − 1, ni − 3, . . . ,−ni + 3,−ni + 1}. Combining the sequences for

all i, we may arrange them in a decreasing order and the first N elements are apparently

non-negative, and we denote them as {h1, h2, . . . , hN}. Now the Kac coordinate on the

Dynkin diagram of DN is given as follows:

σY :

h1 − h2 h2 − h3 hN−2 − hN−1

hN−1 − hN

hN−1 + hN

Then, we add the highest root α0 and make it an extended Dynkin diagram, and put the

label s0 = 2 for it. If in addition the Kac diagram is even, by our convention we divide

each label by 2.

Now we present examples showing the unambiguity of generating Kac diagrams. We

take N = 12. The order 12 torsion automorphism is obtained by the nilpotent element

with partition [13, 11], so its affine weighted Dynkin diagram is

σ[13,11] :

1 0

1

1 0 1 0 1 0 1 0

1

1

where we used dashed line to indicate the affine root. We may use the algorithm from (B.2)

and (B.3) to generate an order 6 torsion automorphism. It is given by:

σ{6} :

0 1

0

0 0 0 1 0 0 0 1

0

0

Since this diagram does not come from any nilpotent element e, we just use a subscript

{6} to indicate its order. With this diagram, we can further generate an order 3 nilpotent

element by taking a twice power of σ{6}. The same algorithm gives a Kac diagram:

σ{3} :

0 0

1

0 0 0 0 0 1 0 0

0

0

10For weighted Dynkin diagrams of very even element, see [18].
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This Kac diagram is precisely the same as the affine weighted Dynkin diagram of the

nilpotent element
[
38
]
. So we see there is no ambiguity.

As a second example, we take N = 9. The same argument as above shows that the Kac

diagram for order 8 torsion automorphism constructed from nilpotent element of partition

[9, 7, 1, 1], is exactly identical to the one obtained by square of the torsion automorphism

from the element [17, 1].

For g = E6,7,8 case, the Kac diagrams for nilpotent elements of regular semisimple

type are given in [25]. With the same procedure, we can recover missing Kac diagrams

as follows.

For g = E6, we missed order 2 and order 3 element, their Kac diagrams are,

respectively:

σE6

{2} : , σE6

{3} :

0

0

1

0 0 0 0

0

0

0

0 1 0 0

For g = E7 we also missed the order 2 and order 3 torsion automorphisms. There Kac

diagram can also be obtained:

σE7

{2} :

0 0

1

0 0 0 0 0

σE7

{3} :

0 0

0

0 0 1 0 0

Finally, for g = E8, we have missed the torsion automorphisms of order 2, 3, 4, 5, 8.

They can be recovered by weighted Dynkin diagrams of nilpotent elements of regular semi-

simple type. We list them as follows:

σE8

{2} :

0 0 0 0 0 0 0 1

0

σE8

{3} :

0 0 0 0 0 0 0 0

1
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σE8

{4} :

0 0 0 1 0 0 0 0

0

σE8

{5} :

0 0 0 0 1 0 0 0

0

σE8

{8} :

0 1 0 0 0 1 0 0

0
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