PUBLISHED FOR SISSA BY €} SPRINGER

RECEIVED: February 2, 2018
ACCEPTED: February 26, 2018
PUBLISHED: March 21, 2018

Deformation of N/ = 4 SYM with varying couplings
via fluxes and intersecting branes

Jaewang Choi,* José J. Fernandez-Melgarejo®® and Shigeki Sugimoto®*®

@ Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,
Kyoto 606-8502, Japan

b Departamento de Fisica, Universidad de Murcia,

Campus de Espinardo,
30100 Murcia, Spain

¢ Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo,
Kashiwanoha, Kashiwa 277-8583, Japan
E-mail: jchoi@yukawa.kyoto-u.ac.jp, josejuan@yukawa.kyoto-u.ac.jp,

sugimoto@yukawa.kyoto-u.ac.jp

ABSTRACT: We study deformations of NV = 4 supersymmetric Yang-Mills theory with
space-time dependent couplings by embedding probe D3-branes in supergravity back-
grounds with non-trivial fluxes. The effective action on the world-volume of the D3-branes
is analyzed and a map between the deformation parameters and the fluxes is obtained. As
an explicit example, we consider D3-branes in a background corresponding to (p, ¢) 5-branes
intersecting them and show that the effective theory on the D3-branes precisely agrees with
the supersymmetric Janus configuration found by Gaiotto and Witten in [1]. D3-branes
in an intersecting D3-brane background is also analyzed and the D3-brane effective ac-
tion reproduces one of the supersymmetric configurations with ISO(1,1) x SO(2) x SO(4)

symmetry found in our previous paper [2].
KEYWORDS: Brane Dynamics in Gauge Theories, Gauge-gravity correspondence

ARX1v EPRINT: 1801.09394

OPEN AcCESs, (© The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP03(2018)128


mailto:jchoi@yukawa.kyoto-u.ac.jp
mailto:josejuan@yukawa.kyoto-u.ac.jp
mailto:sugimoto@yukawa.kyoto-u.ac.jp
https://arxiv.org/abs/1801.09394
https://doi.org/10.1007/JHEP03(2018)128

Contents

1 Introduction 1
2 Deformations of N' =4 SYM with varying couplings 2
3 D3-branes in curved backgrounds with fluxes 6
4 Examples 10
4.1 (p,q) 5-branes and Gaiotto-Witten solution 10
4.2 Backgrounds with D3-branes 14

5 Conclusions and outlook 17
A Conventions for supergravity fields 18
B Derivation of the D3-brane effective action 19
B.1 Dp-branes in curved backgrounds (review) 20
B.1.1 Bosonic part 20

B.1.2 Fermionic part 21

B.2 D3-brane effective action 22
B.2.1 DBI action 23

B.2.2 CS term 24

B.2.3 Bosonic part 27

B.2.4 Fermionic part 27

1 Introduction

As it is well-known, the effective theory on D3-branes in flat space-time becomes N =
4 supersymmetric Yang-Mills (SYM) theory in the field theory limit (o/ — 0). If the
background has non-trivial fluxes, the effective theory on the D3-branes will be deformed
accordingly. This is one of the useful ways to obtain 4 dimensional gauge theories with
less (or no) supersymmetry (SUSY). In fact, various deformations realized in this way have
been investigated, for instance, in [3-6] in the context of flux compactifications. In these
works, because the main motivation was to obtain a model beyond the Standard Model,
the deformations were assumed to preserve 4 dimensional Poincaré symmetry ISO(1,3).
One of the main purposes of this paper is to generalize the deformations to the cases where
ISO(1,3) is explicitly broken. In particular, the couplings' in the action may depend on
the space-time coordinates.

n this paper, all the parameters, such as gauge couplings, Yukawa couplings, theta parameter, masses,
etc., in the action are called “couplings”.



In our recent paper [2], we wrote down the conditions to preserve part of the super-
symmetry in deformed N' = 4 SYM with varying couplings and found various non-trivial
solutions.? Though the motivation was in string theory, the analyses in [2] were purely field
theoretical. In this paper, we try to realize such systems in string theory by putting probe
D3-branes in supergravity backgrounds with fluxes and find a map between the couplings
in the action of the deformed N’ =4 SYM and the fluxes in the background.

One way to obtain a theory with varying couplings is to consider a background corre-
sponding to D-branes (or other branes) intersecting with the probe D3-branes. A typical
example is a system with D3-branes embedded in a background with [p,q| 7-branes that
appear as codimension 2 defects in the D3-brane world-volume [10-12].3 In this system, it
is known that the complex coupling (2.9) is not a constant but depends holomorphically on
a complex coordinate which is a complex combination of 2 spatial coordinates transverse
to the 7-branes. Our results for the D3-brane effective action can be applied to this system
as well as various other intersecting brane systems. We demonstrate it in two explicit
examples; intersecting D3-(p, ¢)5-brane and D3-D3 systems. In the former example, we
show that the effective action on the probe D3-branes precisely reproduces the action for
the supersymmetric Janus configuration found in [1]. The latter example reproduces one
of the supersymmetric solutions with ISO(1, 1) x SO(2) x SO(4) symmetry obtained in [2].

The contents of the paper is as follows. In section 2, we review the deformations of
N =4 SYM with varying couplings that were studied in [2]. In particular, we summarize
the SUSY conditions and a few explicit solutions that will be used in section 4. In section 3,
we study the effective action of a stack of D3-branes in curved backgrounds with fluxes.
Upon the leading order expansion with respect to o', we establish a map between the
background fields and the deformation parameters of the theory in section 2. In section 4,
we apply the results of the previous section to study two cases: backgrounds with (p, q) 5-
branes and those with D3-branes. These two examples correspond to the realization of the
deformed N' = 4 SYM studied in [1] and [2] in string theory. In section 5, we conclude the
paper with various discussions on the present work and further applications. In addition,
two appendices are included. In appendix A, we summarize our conventions used for the
supergravity fields. In appendix B, we show the explicit calculations to obtain the effective
action of D3-branes given in section 3.

2 Deformations of N/ =4 SYM with varying couplings

In this section, we review some of the results obtained in [2]. Following [2], we use a
10-dimensional notation, in which N =4 SYM is regarded as a dimensional reduction of
10-dimensional N” = 1 SYM. The 10-dimensional gauge field Ay (I = 0,...,9) is reduced
to a 4-dimensional gauge field A, (4 = 0,...,3) and 6 scalar fields A4 (A = 4,...,9),
and the 10-dimensional Majorana-Weyl spinor field ¥ describes 4 Weyl fermion fields in

2See, e.g., [1, 7-9] for closely related works.
3See also [2, 13-15] for recent related works.



4-dimensions. V¥ is a 32-component Majorana spinor satisfying the Weyl condition
r0y = 4y, (2.1)

where I'10 =T0 19 is the 10-dimensional chirality operator.* The gamma matrices r!
(f =0,...,9) are 10-dimensional gamma matrices which are realized as 32 x 32 real ma-
trices satisfying {Fj, Pj} = 277fj, where nfj = diag(—1,+1,...,+1) is the 10-dimensional
Minkowski metric.

Let us consider the following deformation of the N'= 4 SU(N) supersymmetric Yang-
Mills theory:

]. ! / —_
S :/d% —gatr{ - 5g” 9" FryFpy +i VT Dr¥ + EGMVPUFMVFPU

mAB o
—dYAF AL — 5 Aadp - z’\IJM\I/}, (2.2)
where I,J =0,...,9; p,v=0,...,3; A,B=4,...,9. Fryis defined as

FMV = 8MAV - &/AM + i[AM7 AV] ’ (23)
Fua=—Fa, =0,As+i[A,, As) =D, Ay,

Fap = i[AA,AB] .

The covariant derivatives on the fermion field ¥ are defined as

. 1 ;5 .
DU = 90 +ilAu, W) + 7w,/ Typ ¥, Da¥ = i[Aa, V], (2.6)
where the indices i, = 0,...,3 are flat indices, I';; = %(FZ;F,; —I';I'y) and w,f’é is the

spin connection. We assume that the metric gy; has the form
ds* = gryda’da’ = g, (zP)datdz” + Sapda’dz® (2.7)

and g’/ denotes its inverse. The 4-dimensional Levi-Civita symbol e#*?? is defined such

that €923 = 1/,/=g, where \/—g = \/— det(g,). We also introduce a vielbein e{ satisfying
e}ejni j = g1y and its inverse e}. The gamma matrices with the curved indices are defined

by I'l = e}Ff.

The quantities a, ¢, d//4, mAB

m**® are real parameters and M is a 32 x 32 real anti-
symmetric matrix. All of them may depend on the space-time coordinates x*. In this
paper, we call these parameters as “couplings”, though m“? and M are related to masses.
The couplings a and ¢ are related to the gauge coupling gyn and the theta parameter 6 as
follows:

1 g3t

a = —— CcC =
2 ’ 2
IVM 8w

(2.8)

“In [2], the fermions are chosen to have negative chirality (minus sign in the right hand side of (2.1)).
Here, we choose the chirality to be positive, in order to match the convention used in [16]. One way to relate
our convention here and that in [2] is to use a transformation 2° — —z° which induces ¥"*™® = Fg\llthere,
AR = —Aghere . Abere — Athere for I £ 9. and similar sign changes for the parameters al’A, mAB

and MIJK -



It is useful to define the complex coupling 7 in terms of these quantities:

0 4
T=—+ zTW =dma(c+1) . (2.9)
2 IvMm
The parameters d//4 and mA8 exhibit the following symmetries

alIA — _gl1A. dHAB — _guBA JABC _ 4IABC) 7 mAB — mBA (2.10)
whereas the most general form for M is given by
M = mp 7K (2.11)
where my ki is a real rank-3 anti-symmetric tensor and
/K — plpJrK]
1
3!
The ansatz for the SUSY transformation is

@ir/rk  o/r&r!  rfrin/ —p/rirk —pirKp/ —rEp/rh 0 (2.12)

_ 1 _
6 A =ielr¥, 60 = e (~FT" + A4B"), (2.13)

where € is the SUSY parameter represented as a 10-dimensional Majorana-Weyl spinor and
Blisa 32 x 32 real matrix. Both € and B may depend on space-time.

Then, the invariance of the action (2.2) under this SUSY transformation implies the
following equations:

VR 7N ] 1 1 J
0= 661 J' K FK/ <72]-_‘I/J’]-_JJ + ZF[I/FU(sJJ] — (5}/55/) s (214)
—e(Letrr Ly, ! IR V) 1
0=c¢ 56 [JK—§ uoga— T6€MJK—3mMJK — s (2. 5)
— 1

eB' == (FFA + <—4eAJK + IZmAJK) FJK) , (2.16)

B 1_ 1 JK
8Me: — 16 FFqu *Zeujk+12mujf<*wujk I , (2.17)

— — 1

DM(EBA)F“ =€ (—2a1F1DM(a dHAy - mABTp — B* (M + 51““8“ log a>> , (2.18)

where F' is a real 32 x 32 matrix acting on the spinor indices and

K = 0710, (ac) 1K 4 30K 24 1T K (2.19)

The condition (2.14) has a trivial solution, e//% = 0, which is equivalent to
0= a '9,(ac) e +24m"*7 (2.20)
0= d/A y gml/4 (2.21)

Using the symmetries of the deformation parameters (2.10), the latter is written as
A = —24mpr A grAB = _qoqpAB L gABC — g ABC (2.22)

Further discussions on the nature of these equations and their solutions, we refer to [2].
Let us summarize a few explicit solutions that are relevant for our discussion.



1. ISO(1,2) x SO(3) x SO(3)

The case with ISO(1,2) x SO(3) x SO(3) symmetry is analyzed by Gaiotto and Witten
in [1]. (See also section 3.4 in [2]) It is a solution of the SUSY conditions (2.14)—(2.18)
with the parameters depending only on 23. ISO(1,2) is the Poincaré group acting on
%52 and SO(3) x SO(3) acts on 2456 and 2739, The metric is assumed to be flat

and the non-trivial components of the couplings in the action are given as follows:®

T =dna(c+1i) = 19 + 4nD ¥ (2.23)
m® =2 (1/1’2 — (¢ cot w)') 5 (a,b=4,5,6)
mP? =2 (" + (¢ tanvp)') 677, (p,q=1,8,9) (2.24)
2 2
J456 — © 49— 2 2.25
3sine’ 3cost)’ (2.25)
Y o2 Vs Y,
M=-—T1"?*"-—"7-—TI""—-—-T 2.26
2 2sin 2 cos 1) ’ (2.26)

where 79 and D are real constants and 1 is an arbitrary real function of z3 with
0 < < /2 assuming D > 0.

2. ISO(1,1) x SO(2) x SO(4)

The case with ISO(1,1) x SO(2) x SO(4) symmetry is given in section 4.1 in [2].
Here, 1SO(1, 1), SO(2) and SO(4) act on x%!, 245 and 25789 respectively, and the
couplings in the action may depend on x23. The metric (2.7) is assumed to be

ds® = nagdxadacﬁ + P8 pmda™dz"™ + Sgpdadx® + dpqdaPdz? (2.27)
where the indices are o, = 0,1; m,n = 2,3; a,b = 4,5 and p,q = 6,7,8,9. In
this case, the complex coupling (2.9) turns out to be an arbitrary holomorphic (or

anti-holomorphic) function of a complex coordinate z = %(932 +i2?) with Im7 > 0

and ¢ in the metric (2.27) is an arbitrary real function of 2%3. M is of the form:
M = a,, T 4 3,145 (2.28)

and a,, and (,, are determined by 7 and ¢ as

Q= %am loglm7 = %(Im T)ilan(Re 7)€ (2:29)
B = Zg”man (¢ —logImT) + oA, (2.30)

®Qur convention is slightly different from that in [1]. The solution shown here is taken from section 3.4
in [2] with by = 2 and I(2) = —iz/+/2. We also made a transformation z° — —2°. (See the footnote in p.3.)



where s = &, " = G"m,gm/m is the Levi-Civita symbol for the z?3-plane and A is

an arbitrary real function.® The non-trivial components of d’/4 and m*? are

dnab — _ganb — _ggneab. (2.31)
m® = (—;gm”qmqn — 9" Omtn + 89" B Bn — 483m5n6m”> 5", (2.32)
mPl — <_;gmnqmqn — gmnaan> oPa (2.33)
where
Gm = O logIm T = 0y, loga . (2.34)

3. 1SO(1, 1) x SO(6)

When 5, = 0 in the previous example, the symmetry is enhanced to ISO(1,1) x
SO(6). In this case, (¢ — logIm7) is a harmonic function on x?3-plane satisfying

9" 0 0n (¢ —logIm7) =0 . (2.35)

This is the case studied in [10-12]. (See also section 3.3 in [2]) It is related to the
effective theory on the D3-branes embedded in a 7-brane background as mentioned
in the introduction.

3 D3-branes in curved backgrounds with fluxes

In this section, we study the effective action of D3-branes in curved backgrounds with fluxes
and try to relate the couplings in the action (2.2) with the supergravity fields. As reviewed
in appendix B.1, the effective action of Dp-branes in general backgrounds is known, at
least, to the extent needed for our purpose. (See (B.1) and (B.13) for the bosonic and
fermionic parts, respectively.) However, the expression of the effective action reviewed in
appendix B.1 is not convenient for a direct comparison with the action (2.2) used in the
field theoretical analysis.

To find a relations between couplings in (2.2) and the fluxes in the supergravity back-
ground, we expand the D3-brane effective action with respect to o/ = I2 and keep only the
terms that survive in the o’ — 0 limit, assuming that the background fields are of O(a/?).

We consider N D3-branes embedded in a 10 dimensional space-time parametrized by
(x#, %) with 4 = 0,1,2,3 and i = 4,...,9. We use the static gauge, in which the world-
volume of the D3-branes is parametrized by x* (1 = 0,1,2,3). The scalar fields, which are
related to A4 (A =4,...,9) in the previous section, are denoted here as ® (i = 4,...,9).
The scalar field ®° describes the position of the D3-branes in the z° direction. Assuming
that the D3-branes are placed at ' = 0 when ®' = 0, the relation between the position
of D3-branes and the value of scalar fields is given by ®' = Az’ with A = 27a’ = 2712
(See (B.9) for the precise meaning of this identification for N > 1.)

A can be absorbed by a local SO(2) rotation of the z*®-plane. See appendix C.2 in [2].



To simplify the analysis, we assume that (x,7) components of the metric g,; vanish
everywhere, and all the components of the Kalb-Ramond 2-form fields and all the R-R
fields, except the R-R 0-form Cp, vanish at 2/ =0 (i = 4,...,9):"

0207 Cnxi:():(), (’fl?éO) (3]_)

Note that unlike in (2.7), the (7,j) component of the metric g;; may have non-trivial x#

guizoa BZ

rt=

dependence.
Here, we simply state our results on the D3-brane effective action and leave the details
to appendix B. Neglecting the O(a’) terms in the action (B.1) and (B.13), we obtain:

2
Sboson - T3 A
D3

e 0
=5 /d4x\/—g tr{ — 7g“yngFMpFW + ZE“VPGFWFPU

- o |
— e 99" g;;D,®'D,®7 + %gii’gjj’ (@', d7][@", dT ] — 2V (D)
i y ~ , .
(G0 (@0, 0F) (nF@%ﬂﬂDuqﬂ} , (3.2)

+ (GE)" O Fu F 3

. T2 _ — — 1
glermi _ 32/d4x —ge®tr {z (wrﬂDuqf UL i[0F, \1;]) — iU (Mi - 4wngr“”> \11} :
(3.3)

where the upper (lower) signs correspond to the case of D3- (D3-) branes, D, denotes
the 4 dimensional covariant derivative defined in (2.6) and (B.10), and w ;- is the (, )
component of the spin connection® related to the vielbein e;l, as

Lok

“uij = 3¢

Ouey; — e?@uekz) . (3.4)
The fluxes (G),", (GH)iji and (x4F5)"; in (3.2) are defined in (B.59), (B.60)
and (B.54). See also appendix A for our conventions for the supergravity fields.
The quantity My in (3.3) is given by
e (1 v R i . L, AR ijk o ij
Mz = F- | 5B )upl™ = (GL)ipu I + 5 (GL)igel™" = (kal5),g 1" | (3.5)

where (x4F"),p0 is defined in (B.74).
The potential V(®%) in (3.2) has two contributions:

V(@) = A7 (Vopi(®') + Ves(9)), (3.6)
where
. N2 o
Vopr(®Y) = e™? (1 + APBlo! 2mijBI<I>’<I>9> : (3.7)
. N2 o
Vs () = Sl + 7mfjsqﬂqﬂ, (3.8)

"It is generically possible to choose a gauge such that Ba|,i_o = 0 and Cyp|,i_o = 0 (n # 0) (at least
locally) provided the components H,,, and F,,, vanish at ' = 0. Obviously, the reason for considering a
non-vanishing Cy is that we want to capture the theta parameter 6 in the SYM action (2.2).

8The hatted indices are the flat indices as in the previous section. We assume efl =0 and eg‘ = 0 without
loss of generality under the assumption (3.1).



with

PPL= 00+ Sg" 00 = dilog (Vge?) (39)
m?jBI = U?BIU?BI — 0;0;¢ + % (g"”é?i@jgw - g““'&igu/y,g’/'yajgw _ g““,g””/Hw/,,/ij)

= \/_7;6_(1)6@-@- (\/Tg e—¢) + %Hi“”HjW, (3.10)

v = — (xaF5);, (3.11)

mi = - % (5i(*4ﬁ5)j + %(*4ﬁ3)j’“‘”Hum + (i ¢ j)> : (3.12)

and (¥4F5); and (*4ﬁ3)j“l’ are defined in (B.54).

All the supergravity fields and their derivatives in the action (3.2) and (3.3) are eval-
uated at ' = 0. The first term in Vppg (3.7) can be discarded in the comparison with the
field theory results, because it doesn’t depend on ®°. If we require ®* = 0 and A, =0to
be a solution of the equations of motion, the linear term in (3.6) has to vanish:

0= e PB4 5 (3.13)

which is the condition that the force due to NS-NS and R-R fields cancel each other. In
this case, we can safely take the Iy — 0 limit.

Since the metric used in the action (2.2) is assumed to be of the form (2.7), we introduce
a new metric

guy = ezwguu , JAB = 5AB ; guA = 07 (314)

where y,v =0,...,3; A,B=4,...,9 and w is a real function. Here, we put a factor e in
the 4-dimensional metric, because it is often convenient to make a Weyl transformation to
get a metric g7y that can be identified with g7; used in the previous section.? In addition,
we redefine the scalar fields as

Al = e el (3.15)

where ef‘ is the vielbein for the transverse space e% with the identification A = =4,...,9.
so that the kinetic term can be written as in (2.2) with the metric gr; defined in (3.14).
Then, discarding the total derivative terms, the bosonic part of the D3 brane ac-
tion (3.2) becomes
T3\ -9 C
By =5 / d'ay/=gtr {— G T PPy S Fy Bk e (G JYANE,

T e (G ancAMAP, A] + (F(saF5)uap + 26 *wyan) ¢ A D, AP

w

— mapAtAP — 264WV(q>i)} : (3.16)

See appendix C.1 in [2] for useful formulas for the Weyl transformation.



where €77 is the Levi-Civita symbol with €*?% = 1/,/—g, supergravity fields with indices
A, B, C are defined as (GF)apc = (GF)ijrelyelzel, ete., and map is defined as

e
V=3

N 1/ _,_ /
MAB = B} (6 ¢9WE;LA’AEVAB -
+ (A < B)

with

Oy <\/—7£_I €_¢§MVEMAB) + e_Qw(*4ﬁ5)“AA/EﬂAé>

(3.17)

~ . 1 .
Eyap=e Yejndy(e¥e) = 3 g7 eiae;B + 0pwdap + wuaB - (3.18)

The fermionic part (3.3) is rewritten as

T3 \2

fermi

where we have defined

_ TN S, T = == 1 = =
Sp3 :2/d4x —ge tr {Z(\IJP“DM\IJ-F\I/FAZ[AA,\I/]) —Z\P<Mi—4wﬂA3F“AB>‘II},

(3.19)

]/W\:tEe_wMi
e? [e* Tuvp _  w( R TAuv e " R TABC 5 TuAB
=F g | 5 CaF Do I = *(GL) 4 T+ == (GL) ape T — (4 F5) uapT ;
(3.20)
and
[H=¢“I*, TI4= et U =e 290 . (3.21)
Here, I (I=0,1 ...,9) are the gamma matrices satisfyin
» 4 g ymg
(T 177} = 2g" . (3.22)

Now, we can readily find the correspondence between the couplings and the super-
gravity fields. By comparing the action (2.2) with (3.16) and (3.19), assuming (3.13),

we obtain
T3)\?
a= 32 efd’, c::i:ed’Co,

.

dyaB = :F?(*4F5),u,AB + WuAB
2wt

Muyvp = :FT(*4F1)uup7
e? ~ 1

muAB = iﬂ(*4F5),uAB - EwyAB )

and

d"h = ger (G (3.23)
Ao L €T g
d =+ (Gi)ABC , (3.24)
ewte
MuvA = iT(Gi)AulM (325)
ewte
masc = F 5, (G apc, (3.26)

map = 2(Map + e 2miBl + e~ 2003 (3.27)



Note that the first equation of (3.25) can be written as

2wt

e?
Myvp = :FT l,pga Co = ﬂ ,,pgﬁ Co . (328)

Then, the relations (3.23)—(3.27) imply (2.20) and (2.22), which is equivalent to the con-
dition e//K = 0 that solves one of the SUSY condition (2.14) as discussed in the previous
section.

In the following section, we are going to check these identifications by explicitly insert-
ing some particular backgrounds in the effective action for the D3-branes and comparing
with the supersymmetric deformations of the N'= 4 SYM reviewed in section 2.

4 Examples

4.1 (p,q) 5-branes and Gaiotto-Witten solution

In this subsection, we consider D3-branes embedded in a background with (p, ¢) 5-branes.'?
The brane configuration is summarized as
01 2 3 456 7 89
(probe) D3 o o o o (4.1)
(p,q) 5 0o 0 o o 0 o

The effective action on the D3-brane world-volume can be written down by using (3.2)
and (3.3). As we will soon see, because the (p,q) 5-branes are not extended along the
x3-direction, the gauge coupling and the theta parameter of the D3-brane action depend

on the coordinate x°.

This brane configuration is related to the supersymmetric Janus
configurations considered in [1]. We will show that the action obtained by using (3.2)
and (3.3) is indeed consistent with that obtained in [1], which provides a consistency check
of our results in section 3.

In this subsection, the letters for the indices are chosen as a, 6=0,1,2;a,b,c=4,5,6
and p,q,r = 7,8,9. Let us consider n (p, q) 5-branes placed at 3 = 0, 2P = 28 (p = 7,8, 9).
The supergravity solution corresponding to the (p, q) 5-branes can be obtained by applying

SL(2,7) duality to the D5-brane solution. Its explicit form is!?

ds%, = h(r)*i(nagdmo‘dxﬁ + Ogpdzdax®) + h(r)%((dac?’)2 + OpgdaPdx?) , (4.2)
0 P o = Pall = h(r)) + pxogs (4.3)
p2gs ' h(r)Y2 + (g + pxo)?gsh(r) /2 295 th(r) + (¢ + pxo)?gs
Hs = 2nplZes, F3 = 2nq gsl2e3, (4.4)
where ds% denotes the line element in the Einstein frame, x¢ is a constant,
n\/pgs 12 _
h(r)y=1+ —3 P =pg. + (¢ +pxo)gs, = () + Z — :co . (4.5)

p=7.8,9

UHere, p and ¢ are relativley prime integers and a (p, q) 5-brane is a bound state of p NS5-brane and ¢
D5-brane.
"See, e.g., [17-19].

,10,



€3 in (4.4) is the volume form of the unit S® embedded in the R* parametrized by x3789
with its center at the position of the (p,q) 5-brane. e3 can be written explicitly as
€3 = sin? @sin ¢1dO A dpy A dos (4.6)

where (0, ¢1,¢2) are the coordinates on the unit S% with 0 < § < 7, 0 < ¢; < 7 and
0 < 9 < 27, related to 23789 ag

z3 = rcosf,
7 T __ inéd
z' —xg =rsinfcos ¢y,
xg—xgzrsinesinqblcosd)g,
2 — ) = rsin O sin ¢y sin py . (4.7)

Note that Hs and Fj in (4.4) can be written as

H

p ’ /9 /
pg'r — W EP/qI,r/S 8s/h(7”) y Fp’q’r’ =dq ;S €p/q/,,./5 as/h(r) y (48)
vV PYs

where p’, ¢, 7", s’ = 3,7,8,9 and ap,q,r,sl = Ep/qrrrtdt/sl is the Levi-Civita symbol for the flat
R* parametrized by 23789 with e3759 = +1.12 In the the expressions (4.2), (4.3) and (4.8),
the function h(r) can be replaced with an arbitrary positive harmonic function on R*,
which corresponds to a supergravity solution describing parallel multiple (p,q) 5-branes
distributed in R*.

The dilaton and R-R 0-from combined into a complex scalar field 7 = g5 *(Cp + ie~?)
can be written as

T =10+ 4nD €Y, (4.9)
where
q P
rn=-244rD, dxD=- " 4.10
p 2p(q + pXxo)9s (4.10)
are real constants and () is a real function satisfying
h(r)1/2
tanp(r) = LT (4.11)
(¢ + px0)9s
Here, we have assumed p, q, xo are all positive and 0 < ¢ < §. The complex scalar

field (4.9) evaluated at 2’ = 0 corresponds to the complex coupling (2.9). In fact, the
expression in (4.9) agrees with the complex coupling obtained in [1]. (See (2.23).) Note
here that 1[,i_, can be chosen to be a generic real function of 3, because as mentioned
above, h(r) in (4.11) can be replaced with an arbitrary positive harmonic function on R*
transverse to the (p,q) 5-branes.

120ne can easily recover the expressions of Hz and F3 in (4.4) from (4.8) by using the polar coordi-
nates (4.7) with metric of R*: ds?® = dr? +r?(d6? +sin?0d¢] +sin?0 sin®¢1d¢3) and €,94, 4, = 7° sin®f sin ¢;.
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The metric in the string frame is given by

ds2ine = e%¢ds% (4.12)

string —

2
(Napda®dz® + 8,pdzda®) + ( P tan 1/1) ((dz®)? + SpgdaPdat?) |.

_ p
~ /pgs sin 8w Dp?

It is easy to show that both Vppr and Vs in the potential (3.6) are flat (i.e. ®°
independent), because F5 = 0, H;y, = Fj = 0, By, = 0 and Lpp; defined in (B.31) is a

constant:
Lppr = e ?\/—det(g) =1 . (4.13)

Next, consider N probe D3-branes placed at ' =0 (i = 4,...,9) in this background. The
metric (4.12) evaluated at x° = 0 is written as

A sing oo = € | muvdydy” + Sapda®da® + 15y daPda’ | (4.14)
where we have defined
€ _ p n = pb(r)/2 Y 4.1
<= VPgs sinp(r) | o ¢" = hir) @i=0 8w Dp? any(r) e (4.15)

and introduced new coordinates y* (u = 0,1, 2, 3) satisfying
PO =20 yt=2b, ?=22, dyP=e"da? . (4.16)
Then, using the coordinates y*, the bosonic part of the effective action (3.2) becomes

T3)\2

1 C
SpF" = 5 d'ye ?tr < - §n“”np”Fupra 20

PO F F oy
+ eXn"6,,D,0° D, @ + 2 ET s, D, &P D, 3
b bt B0, B 8] 4 L NE5,5, (0, 5[0 0]
A5 00, 00, 0] LG 0 ) (0
In order to compare with the action (2.2), it is convenient to rescale the scalar fields as
A, =00, A, =eSTOP (4.18)
Then, the kinetic term of the scalar fields can be rewritten as

e~ %tr (X753, D, 0 D, " + 2E 5, D, 07D, 1)

1
= e %tr (n“”éABDMA 4D, Ap + §mABA AAB> + (total derivative), (4.19)
where A, B =4,...,9 and the non-zero components of m*? are
mab -9 (5/2 + 5// _ qb’ﬁ') 6ab —9 (,¢/2 _ (w/ cot w)/) 5ab’
mP =2 +n)2+&" +7" = ¢ +1)) P =2 (* + (¢ tan)’) 677 . (4.20)
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Here, the prime denotes the derivative with respect to 43, e.g., £ = 0y3€. These expressions
precisely agree with (2.24)
Note that the non-zero components of (GI);;x are

(G156 = —e®1(Frsg + CoHrsy) = 24/ %(q + 95 ' Cop)1t’, (4.21)
_ 4 2p
GH)rs9 = Fe PHrgg = +e ¢——e*yf 4.22
(G¥) N (4.22)
and one can show the following relations:
_ 2 e 21/
o—€(ORY, . _ p—e-3n( Ry _
e? > (GE)a56 s € (GE)7s9 :tcosq/) : (4.23)

Using these, the last term of (4.17) can be written as

1 —_ ) _ e
¥§€2£+¢(Gi)i]’k@[¢”, F) = F2i <€¢ $(G)a56 Aa[As, Ag] + S 3G ) 759 A7 [ As, A9}>

= 4i <3FS;£¢A4[A5,A6] - CoiwAﬂAs,Ad) : (4.24)

These terms (with the upper sign) agree with (2.25). (The lower sign is obtained, e.g., by
a transformation (z!,2%) — (—2!, —2%).)
In summary, the bosonic part is written as

ed)Cg

T3\? 1o gy
SB%SOH = 732 /d4y e Ptr ( — 577” n’” FriFpy + e Fpo

/ /

AslAs, Ag) - C;Z}wAﬂAs, A9]>

A (:F SiQIl)l’gZ)

- (= 0 ot 0N Ay — (074 (O ) )AL, (5)
with ¢ and Cy given by (4.9).

Let us next consider to the fermionic part. The action (3.3) in the back-
ground (4.2)—(4.4) is

T3\ T T T
Glermi _ 732 d'ye* e % tr {z’(\I/F“DM\I/ + UTi[®", U]) — i‘I/M:t\I’} (4.26)
with
¢
e
My = Fr ((+aF1)012T "2 + (GH)a56T*° + (GF) 780D ™) (4.27)

Rescaling ¥, My and the gamma matrices as

U= B%E\If, M, = et2M, (4.28)

[F=ef/2r% T, =T%= /21 = ¢~ &/240, r, = [P = /217 = eié/QI‘p,
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we obtain

. Ta)\2 =~ ~ =~ _— ~
St = =2 /d4y e tr {z‘(\I/F“D#\I/ + BT Ay, T]) — i\I!Mi\II} . (4.29)
Here, the rescaled gamma matrices ! (I =0,1,...,9) satisfy the anti-commutation rela-

tions with the flat metric {T'/, T/} = 5!/, and we have used WIH(9,£)¥ = 0, which follows
because I''T* is a symmetric matrix.
Again, using (4.23), we obtain

— 1 ~ B ~ . ~
My =F7 <€¢3300T012 + e8GR 4560 4 ¢ 3"(G£)789F789)
R
e /F012 v F456 v F789 4.30
2 < v + sin 1) cos 1 ’ (4.30)
which reproduces (2.26). (Again, the lower sign is obtained by the transformation
(56171174) - (_:Clv _I4)‘)
4.2 Backgrounds with D3-branes

Let us next consider probe D3-branes extended along x%!?3 directions in a background

0717

corresponding to n D3-branes extended along z%1*% directions:

01 2 3 456 789
(probe) D3 o o o o (4.31)
D3

o

o O

In this subsection, we use the letters for the indices as o, 3 = 0,1; m,n = 2,3; a,b = 4,5
and p,q =6,7,8,9.

The supergravity solution corresponding to n D3-branes placed at 2™ = 0 and 2P = 2,
in the string frame, is

e? =1, Cp = constant, (4.32)
dsgmng = h(r)_% (Napdr®dz’ 4 Sapda®dz®) + h(r)% (Omndz™dz™ + 6pgdaPdx?),  (4.33)
Fs = fs+xfs, f5=dh(r)" Ada® A da! Ada* A da?, (4.34)

where g5 is a constant and h(r) is given as

9
h(r) =1+ % . Q3 =dmgenly, 17 (@™)?+) (aF —ah) . (4.35)

m=2,3 p=6

As in the previous subsection, the function A(r) can be replaced with an arbitrary positive

harmonic function on the R® parametrized by 2236789,

The metric evaluated at the position of the probe D3-branes, i.e. 2/ =0 (i = 4,...,9), is

dsgtrmg wicg = eféw(gwdx“dx” + Sapdada® + % 6,qdaPdz?) (4.36)
where we have defined
@) = h(r)|,ice s (4.37)
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and
Gudatds” = na/gdmadazﬁ + ePOmndxdx™ . (4.38)

This metric (4.36) has ISO(1, 1) x SO(2) x SO(4) isometry, where ISO(1, 1) is the Poincaré

4,5

symmetry acting on z%!, SO(2) and SO(4) are rotational symmetry acting on x*° and

25789 respectively.!® The supersymmetry condition for the deformed V' = 4 SYM (2.2)

with this symmetry is analyzed in section 4.1 of [2]. Since our brane configuration (4.31)
preserves part of the supersymmetry, the action (3.2) and (3.3) for this background should
reproduce one of the general solutions obtained there.

It is again easy to see that both Vppr and Vg in the potential (3.6) are flat, because
F3 = H3 = 0, Fupei = 0 and Lppr defined in (B.31) is a constant. Then, the bosonic
part (3.2) becomes

Spy = 1%2/\2/61436\/@“{ - %g“"gﬂ"Fuprg + %E“VpoFuqua
— §" (e #0ay D@ D,y ®" + 6,4 D, PP D, Y
+ %e*%(sabaa,b, (@2, &) [0, &) + %%5,3,(, (@7, &[0, 7]
€700y 0pq [ B, BO)[BF, D] F e (54 F5)", jqﬁDHqﬂ} , (4.39)

where €77 is the Levi-Civita symbol with e123 = 1/,/=g. In order to compare with the
results in [2], we redefine the scalar fields as

Ag=e #2080 A, =P . (4.40)
Then, the kinetic terms for the scalar fields become
J=Gtr (e_@g“”éabDucbaD,,cbb + g“l’équuqﬂ’DV@q)

1
= /—gtr (g“”&ABDNAAD,,AB + 2mABAAAB> + (total derivative), (4.41)

where

1
m® = gmn (2amtp8ng0 — (9m3n90) 5% mPl=0. (4.42)

The non-zero components of (x4 F5 )", ; are
(*4ﬁ5)n45 = —€"0np, (4.43)
where €23 = —&32 = /22§33 = ¢=%. The last term in (4.39) becomes

P (14 I )1 "D 0T = —E™" 0™ Ay D Ay (4.44)

137f we use h(r) in (4.35), the metric also has a rotational symmetry on the 2*® plane. However, as
mentioned above, h(r) can be replace with an arbitrary positive harmonic function on R®, in which case
the rotational symmetry on z*? is broken in general.
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where €% = —¢% = 1. This gives
nab 1 —-mn ab
d = :|:§6 mPE
in (2.2).
Collecting all these results, (4.39) becomes
T3\? Ly gy C
SB%SOH = 32 /d4$\/ —gtl‘{ — igll gJJ FryFp g+ ZOE/WPUFMVFI;U

1 1
— igm" <28mg08n<p — 8m8n<p> 6% A Ay £ @0, z-:“bAaDnAb} .

The fermionic part (3.3) for this configuration is

i T3\ T T T
S]f:%ml _ 32 dr —ge ¥tr {Z(\I’F”DM\I’ + \Il]_—‘kz[(l)k, \I/]) — Z\IfMi\IJ}

with
1 \n 17m45
Mi = :EZ(*4F5) 45F 9mn -

As in the previous subsection, we rescale ¥, M, and the gamma matrices by

~ — 1

3
e 3P0, My =Mie 1%,

N 1 ~ A _1 1 =
It = e a¥TH I',=T%=¢e a¥T* =¢ea¥l',, T

1l
=
bS]

I1l
@
T
AS)
—
bS]
Il
D
|
=
)
—
hS]

The rescaled gamma matrices satisfy
{T+ TV} =2, {T*T° =26%, {IP T7} =25,
Then, we obtain

S = T32A2

/ d'e /G e {i (T04D, T 4 BE4i[A,,§]) i BAL T}
with

r 1 =~ n Tmd5 — 1 —n m45

My = :I:Z(*F5) s G, = :er Ol ,

/_ . .
where €', = € gp/y,. This gives

1
Bm = F5€0,0n¢p -

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

The results (4.42), (4.45) and (4.53) agree with (2.32), (2.31) and (2.30), respectively,

for the case with 7 = constant, A = constant and s = F.14

See the case (C3) with Bm = F1€",,0n¢ in section 4.1.2 of [2].
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5 Conclusions and outlook

In this work, we have complemented the study of deformations of ' = 4 SYM with
varying couplings that we initiated in [2] by showing that some of these gauge theories can
be realized on the probe D3-branes in curved backgrounds with fluxes. In particular, we
obtained the effective action on the D3-branes for general backgrounds satisfying (3.1) and
gave an explicit map between the couplings in the deformed A/ =4 SYM and the fluxes of
the curved background on which the D3-branes are embedded.

As a check, we explicitly showed that the effective action on the D3-branes in a back-
ground with (p,q) 5-branes (see (4.1)) reproduces that of the supersymmetric Janus con-
figuration found in [1]. We also studied D3-branes in a background with another stack of
D3-branes intersecting with them (see (4.31)) and found that the action agrees with one of
the solutions of SUSY conditions with ISO(1,1) x SO(2) x SO(4) symmetry found in [2].

On the other hand, in [2], we found a lot of solutions of SUSY conditions, for which
the realization in string theory is not known. Our results in (3.23)-(3.27) suggest that
it is possible to extract some information of supergravity fields from the couplings in the
deformed N = 4 SYM. Indeed, it is now easy to know which fluxes have non-trivial profiles
for the brane configuration that realizes the deformed N' = 4 SYM. For example, for the
cases with ISO(1, 1) x SO(3) x SO(3) symmetry, solutions with non-trivial mg12, mo13, mas6
and myzgg are found in [2]. Such configurations, assuming that they can be realized in string
theory, should have non-trivial (*4F1)o12, (*4F1)013, (G¥)as6 and (GF)7z9 fluxes. Despite
we have not shown this explicitly, this fact suggests that such a configuration corresponds
to D3-branes in a background with (p, ¢)5- and [p/, ¢']7-branes:

01 2 3 456 7 89
(probe) D3 o o o o (5.1)
(p,q) 5 0 0 o 0
P,d]17 |o o o o o

It would be interesting to see this more explicitly.

Finally, we want to stress that we didn’t use the equations of motion for the super-
gravity fields in our analysis in section 3. That is to say, some additional constraints are
imposed on the couplings from the supergravity equations of motion. In this respect, some
works has been done in [3, 20|, where it has been shown that the couplings have to satisfy
some algebraic equations obtained from the supergravity equations of motion. Further-
more, if we require SUSY, the background as well as the D3-brane configurations should
satisfy BPS conditions. It would be interesting to see whether such conditions agree with
the SUSY conditions found in [2]. Actually, there is a logical possibility that the deformed
N =4 SYM action (2.2) could have some additional SUSY solutions which are not neces-
sarily related to backgrounds satisfying the equations of motion in supergravity. It would
be important to study the correspondence in more detail and clarify this issue.
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A Conventions for supergravity fields

We follow the conventions for the supergravity fields used in [21]. The bosonic part of the
type IIB supergravity action in the string frame is

1 _ 1 1 ~ 1, ~
Sun = gz [ %oyl e (R alaof - i) - § (IRP+ 1B+ 51 ) |
1

T

1
/ (04 + 532 VAN CQ) ANF3 AN Hs, (Al)

where

Hy=dBy, F,=dC,_,, F,=F,+H3NC,_ 3. (AQ)
and |wy,|? for an n-form w, is defined as

1
|Wn|2 = ﬁwllw-lanr"Jnthl o 'gIan : (A.3)

In our convention, the dilaton ¢ vanishes asymptotically and x is related to the New-
ton’s constant G, string length [5 and string coupling gs as

2k% = 167G x = (2m) 71842 . (A.4)
In addition, we have to impose the self-duality condition
Fy = «F . (A.5)
Here, the Hodge star * is defined by

w(dzlt A ANdx!n) = g G A Ada?10 ) (AL6)

(10 — n)!

where M1 js the 10-dimensional Levi-Civita symbol with ¢/ = 1/,/—g.
It is useful to define F;, with n > 5 by

Fp=(—1)zm0H By (A.7)
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Then, the equations of motion and the Bianchi identities for the R-R fields are written as
dF, + HsANFp_o=0, (n=1,3,57,9), (A.8)

which allows us to introduce C),_; satisfying (A.2) for n =1,3,5,7,9.
¢, Ba, Cy, Cy and Cy are related to those used in [22], denoted with superscript “P”, as

P B B _ 1
€¢ :gse¢a B2P:7B25 C(l)):gslc()a CZP:gleQ? C}f:gsl<c4+2B2/\C2>

(A.9)
The metric in the Einstein frame is defined as
gy =21 . (A.10)
The action can be written as
Siim = 5 [ v/~ % - (100t + Vit + IR + IR+ IFR) |

1 1
+M/(C4+2BQACQ> A F3 N\ Hg

1 1 OMTONT 1~
| 10, /_gE{RE_2<gé4N]V[N+MijF§.F§+2’F5|]23)}

T 22 (Im 7)2
€ij 1 N
+8/€2 / <C4—|—2BQ/\CQ> /\Fg/\F3 , (A.ll)

where |w, |3 is defined as in (A.3) with the metric in the Einstein frame,

T= gs_l(Co + z'e_¢) , F31 = —g;/QHg , F32 = g;I/ng , (A.12)
1 I7|> —Rert 1
)= — ) = A.13
(M”) ImT <—ReT 1 ) ’ (6”) (—1 ) ( )
and
I R j Ly Iods I3
F;-F] = QF}JQI:;FLJAJQJggEl Lo P (A.14)

This action is invariant under the SL(2,R) transformation:

at +0b F? ab F} ab
—_— SL(2,R A.15
_>cv'—i—d’ (Fg)_)<cd)<F31 ’ cd €SL2R), ( )
with k&, 91];34N and Cy + %Bg A Cy kept fixed.

B Derivation of the D3-brane effective action

In this appendix, we show the detailed derivation of the action (3.2) and (3.3).
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B.1 Dp-branes in curved backgrounds (review)

For convenience, we first review the effective action of Dp-branes embedded in general
backgrounds in appendix B.1, following [21] and [16] for bosonic and fermionic parts,
respectively.

B.1.1 Bosonic part

In this subsection, we review the bosonic part of the effective action on Dp-branes embedded
in a curved background with fluxes following [21].

The 10-dimensional space-time coordinates are denoted as x! (I =0,1,...,9). We
choose the static gauge in which z# (1 = 0,1,2,3) are identified as the coordinates on the
Dp-brane world-volume and z® (i = 4,...,9) parametrize the transverse directions. The
bosonic sector of the effective theory contains a U(N) gauge field A, (© =0,...,p), (9—p)
scalar fields ®* (i =p+1,...,9), which belong to the adjoint representation of the gauge
group U(N). The reference position of the Dp-brane is chosen to be 2' = 0 and small
deviations from it is described by the values of the scalar fields.

The effective action that describes the light open-string bosonic fluctuations of a set
of N coincident Dp-branes in type II string theory consists of

Sboson SDBI + SDp ’ (Bl)

where the Dirac-Born-Infeld (DBI) and Chern-Simons (CS) terms are given by

SOBl— T, / B Str{e_a\/— det(M,,) det(Q' j)} , (B.2)

D,p = up/Str{ ghane <Z Ch A e§2>] A e’\F} . (B.3)

Here, the parameters T}, i, and A are given by

_ 1 _ _ 2
T, = T +T,, \=2nl2, (B.4)
S

where [, is the string length, g5 is the string coupling, and the upper (lower) sign appearing
in p1,,, which is proportional to the R-R charge of the Dp-brane, corresponds to the case of
Dp-branes (Dp-branes). The quantities M v and Q" ; are given by

My, =P B+ Eu(Q! - 5)”’1@-4 +AFL, (B.5)
Q' = 6 +iND, OF| By,
where I is the field strength of the gauge field A living on the brane,
F=dA+iANA= %Fuydaj“/\dx”, (B.7)
and

Ery=grs+ By . (B.8)
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¢ is the dilaton field, g;; is the background metric, By = %BUd:LJ A dz” is the Kalb-
Ramond 2-form field and C,, (n = 0,2,4,6,8) are the Ramond-Ramond (R-R) n-form
potential. The hat “~” on the background fields indicates that they are evaluated at the
position of the Dp-branes placed at 2’ = A®’, which is defined via a Taylor expansion
as, e.g.,

Bzt ADY) Z <I>“ L X N I ) (B.9)

=0 "

The symbol P[---] in (B.3) and (B.5) denotes the pull-back of the bulk fields over the
Dp-brane world-volume, in which the ordinary derivative 8M<I>i is replaced by the covariant
derivative Duq)i:

D,®" = 0,0" +i[A,, ' . (B.10)
For example, the pull-back of E,, is given by
P[E,] = Eu + AE,;D,® + \E;, D, + \2E;;D,®'D,® . (B.11)
15 in (B.3) denotes the interior product by a vector (®?), e.g.,

1 4 , 1 o
1pLP <2Cijd.%'z VAN dl’J) = —§Cz'j [(I)Z, (I)]] . (B.12)

The symbol Str{---} in (B.2) and (B.3) denotes the symmetrized trace, which means

@' in the expansion (B.9), F,,,, D,®" and [®, ®/] are symmetrized before taking the trace.

B.1.2 Fermionic part

In this subsection, we write down the fermionic part (quadratic terms with respect to
the fermion fields) of the effective action on a Dp-brane embedded in any supergravity
background following [16]. Here, we consider the cases with a single Dp-brane in type IIB
string theory.

The action, after fixing the k-symmetry, is given by

Slsrmi TQI’/dexe — det(My) {0 [(M )T, Vi — AW 4
— iy (M) T, W, - AP (B.13)

where ¢ is the fermion field (dimensional reduction of the 10-dimensional positive chirality
Majorana-Weyl spinor field), I', =T fefauxl is the pull-back of the 10-dimensional gamma
matrices, M, is the Abelian version of (B.5):

My, = PGy + B + AFu (B.14)

and other quantities are defined as follows.

(H)

The covariant derivative V"’ is the pull-back of the 10-dimensional covariant deriva-

tive including the H-flux:

1 i 1
v§H>EaI+ZwIJKrJK+4 HpT75 (B.15)
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where wI K is the spin connection and Hyjx is the field strength of the Kalb-Ramond
2-form field.

W, AWM and A®@ are defined as

1 1~
W, = ge(b <—FJFJ + QFJKLFJKL - ”FJKLMNFJKLMN> Ly, (B.16)
1 1
AW =~ (T10r¢+ — Hi TN ) (B.17)
2 2.3l
L
A®= Lol _ppry Y g prix B.18
2 L+ 5. 31 1K ) ( )

where F7, F 77K and ﬁ] Jr Ly are the field strength of the R-R fields defined as

:F[dl'IEdC(), ﬁ ?FIJde Adz? A da® = dCy + CoHs ,
- 1~

Fs= gFUKLMozg:I Adz? A da® A dat A deM = dCy 4+ Hz A Cy . (B.19)
(See appendix A for our conventions.)
Finally, I" D is defined by
(_1)p—2r(0)

-1 _
FDp =

‘F.IL1/L2 o FH‘ZQ*IHZ(} 5 (BQO)

>
\/TW '2‘1
where \/j = /—det P[guu] )

Fuw = PBy] + AP, (B.21)

and

o _ 1
Iy, = o 1)!6“1 LA U (B.22)

with the Levi-Civita symbol e/ #»+1 with 9P = 1/,/—g.

B.2 D3-brane effective action

In this appendix, we consider the particular case of D3-branes under some simple and
relatively general assumptions (3.1). We will study the expansion of the full action to
leading and sub-leading orders that survive in the field theory limit and establish a relation
between the backgrounds fields and the couplings in the action (2.2) of the deformed N' = 4
SYM. The first two subsections B.2.1 and B.2.2 correspond to the analyses for the DBI
action and the CS term, respectively, and appendix B.2.3 is the summary of the total
bosonic sector. In appendix B.2.4, we carry out the calculations for the fermionic sector.
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B.2.1 DBI action

In this section, we present the extended calculations of the expansion of the DBI term (B.2)
with respect to A. Let us first consider the quantity M, defined in (B.5). The pull-back
of the first term of (B.5) is given in (B.11) and it is expanded as

= By + X9, By® D, ®" + 9;B;, & D, & + g;;D,9' D, &) + O(\®), (B.23)
where we have used the assumptions in (3.1). The expansion of Q'; in (B.6) is
Q'j = 0" +iN®", D¥gr; + iN*[@7, DF]919, Eyj + O(N?) . (B.24)
Because (Q~! — 5)3 = O(N\), it is easy to see that

P[Eu(Q '~ 0)1Ej] = 00N, (B.25)

under the assumptions (3.1) and we can discard such higher-order contributions.
On the other hand, using the formula

1 1
Vdet(X +0X) =Vdet X (1 +3 tr(X10X) + g(tr(X—l(sX))Q
1
- tr(X 10X X 16X) + O(5X3)> (B.26)
for general matrices X and 0.X, we get
/ ; Nk A2 i it i’ 3
Similarly, \/—det(M,,) is expanded as

/= det(M,,) =\/— det(E,,) (B.28)

A2 , 1 ,
+v/—¢ ) (g“”gijD“q)ZD,,qﬂ + ig“”gpoFupFw + (&B“”)@ZFW) +0()\3).

Now, making use of the partial results of the expansions (B.27) and (B.28), we calculate
the full integrand of the DBI term (B.2):

Str {e*¢\/ — det(M,,) det(Q' j)}
= Str {e_q?\/ - det(Ew,)}
N oo i (Lo v ip @i _ L i i[e" | o7
+ 56 —gtr 59 g Fuprg +g gz]D,u,q) DZ,CD — Eg“/gjjr [@ ,(I) Hq) ,q) ]

+ (0; B")®'Fy,, — i(0; Bj)®'[®, q)k]) + O\
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f— Str {€_$ —det(Eluy)}

1 ; : -/ -/
¢\/ tI‘ < glwgngupFua + g gZ]D o D (I)] 2gii’gjj’ [(I)Za CI)J][(I)Z 7(I)j ])
+ H, “”cbiFW - %Hijk@[cbj, q)k]) + 0\ . (B.29)

The first term in (B.29) gives the DBI part of the scalar potential. Let us define

1 5/ ~ 1
Vpei(®) = \/_7967(;5 —det(EL) Z CI)l” -+ 0;, LpBi|zi—g  (B.30)

with
Lppi = e %y /—det(E,,) . (B.31)
The derivatives are
O;Lpp1 = e~ ?1/—det(E,) <—a,¢ + ;(El)“”aiEW) : (B.32)

1 1 1.,
8@6jLDBI =e % /- det(E/W) |:<—az¢ + 2(E_1)’“’8iEw> (—8j¢ + i(E_l)M v ajEl,/“/>
—aza]¢ + % (-(E_l)p'”/aiEM’V’(E_I)V’VajEV,U« + (E_l)“yaiajEV,u>:| . (B33)

Evaluating these quantities at ' = 0, we obtain

Vopi(®) = e~ <1 + APBlot 4 /\;mgBI@iqﬂ + O(A?’)) , (B.34)
where the coefficients are
PPl = — g+ 1g“”&gm = d;log(v—ge™?), (B.35)
mpPt = 0P PPl — 0,0, + = (9“”3i8jguu — 4" i 6"V 0 Gy — g”“/Hmwg”/”ij)
- \/jglw)aiaj (V=9 e*¢) + %Hi“”HjW . (B.36)

Then, the final expression for the DBI action is
SEBL — T3)\2 / d*z/—ge ?tr < — Zg’“’gp”FM)FW — §g’“’gijD#<I>ZDZ,CI>] (B.37)

1 . . . iy 1 .
+ 199y (@, PN, 7] — SHMRE,, +

i o N
1 S Hjp 07 dF — e? ) QVDBI(CI))>.

3!

B.2.2 CS term

Let us study now the expansion of the CS-term of the D3-brane action, (B.3).
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First, we define

K=Y Cone® =Ko+ Ky+Ky+Kg+---, (B.38)

n:even

wherel®

1
Ko=Cy, Koy=0Cy+CyBy, K4EC4+02B2+§COB§,

1 1
K¢g=Cg+ CyBsy + 502322 + 5003% . (B.39)
Note that it satisfies
dK = > FoneP . (B.40)

n:odd

For an n-form w,,, we define an m-form with (n—m) indices in the transverse directions

(wn)m7il"'in,—nz as

1
(W) iy = ﬁ(wn)m...umil...infmd:r“l coodatm (B.41)
For example,
~ 1 ~ ~ 1 ~
(F5)3,ij = g(Fg,)m,pijdx“dx”dxp, (F5)aj = EFMVpUjdxﬂdedxpdx“, etc. (B.42)

Under the assumptions (3.1), the CS-term (B.3) is expanded as
SSS = s / Str{P {GMZ‘I’Z‘PIA(} A e } (B.43)
N . . 1 f
= 13 / Str{P[K4] + A2 (iP[zwqﬁiK@-](I)’ + P[0; K2]®"F + 200F2> + (’)()\3)} :

Expanding the first term, we get

~ A . N2 o
P[K4) = {)\&-Kﬂﬂ + N20i(Ky)3,;9' DDI + Qaiajmq%ﬂ] + O\, (B.44)
0
where [---]o denotes the pull-back on the world-volume at x° = 0 (obtained by setting
7' =0 and da' = 0), D®’ is a 1-form defined as
D = D, & dat = dP’ +i[A, D], (B.45)

and we have used the notation (B.41).
The trace of the second term in (B.44) can be rewritten as

[A\20;(Ky)s, tr(®'DP)]

A2 T1 o o
=5 [2(8i(K4)3,j + 0j(K4)3,)dtr(®'®7) + (9;(K4)3; — 0;(K4)3.) tr((I)’Dqﬂ)]
0
2 -~ . .
- % [(aid(Kzl)&j tr(@qﬂ') — (F)3.4 tr(®'D®7) + (total derivative)}O . (B.46)

'5Tn this section, we often omit the symbol “A” in the products of differential forms.
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Using this equation and the identities

[0iK4]o = [(Fs)ado,
[0:d(K4)3,j + 0;0;Kalo = [0i(dK4)azlo = [0:(F5)aj + (F3)2,5(Hs)z,ilo (B.47)

which are valid under the assumptions (3.1), we obtain

~ ~ )2 ~ S Ve . )
/StrP[K4] :/tr{)\(F5)47i<I>l + o5 (a,‘(F5)47j+(F3)27j(H3)27i> (I)z(I)J—2(F5)37Z‘j<I>ZD(I>J} .

(B.48)
The second and third terms in (B.43) are rewritten by using
tr{iP 10100, K] 2'} = — 5[0i(Ko)4,jk]o tr{[®7, 2*]9'} = ~5il(F7) ikl tr{[®/, 2*]o'}
(B.49)
P[0, Ko)®' Fy = [(F3)2.)0 ®'F, (B.50)

respectively.
Plugging these results in (B.43), the CS-term becomes

SB3 = p3A? /tr {A‘l(ﬁ5)4,i¢>i + % (8i(ﬁ5)4,j + (ﬁg)Q,j(Hg)g,i) PIPI — %(E)gﬂjqﬂpqﬂ
- %(ﬁ7)4,ijkq)i[q>j, OF] 4 (Fy)0,@'F + ;Con} : (B.51)
It can also be written as
SS§ = u3A2/d4ijgtr {;(Mﬁg)im’@iFﬂy — %(*6ﬁ3)ijk¢i[¢)j, "]
- %(*4@)‘2]-@@“@ + éCoFWFpgeWP” — >\_2Vcs(<1>)} , (B.52)

where the potential Vog(®) is

~ N2 ~ 1 ~ o
Vcs(‘P) = —)\(*4}7‘5)1@Z — 3 <8¢(*4F5)j + 5(*4F3)j'u (H3)ul/i> ' PJ (B53)

and we have defined

(x4F3)," = %Epgwjﬁipaa (%6 F3)ijk = %elmm’jkﬁlmna
(*4}?5)’% = %e”p"“]},,pmj , (*4ﬁ5)i = %e””p"ﬁ’wpgi , (B.54)
and used the relation
Fr=—xF;. (B.55)
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B.2.3 Bosonic part
Summing (B.37) and (B.52), we obtain

Ts)\2 e~ C
Shoson — 232 / d*z/—g tr< 5 —g" g F,,Fyo j:zo’“’p"F F,y

- e—¢gﬂ”gijDuc1>iDV<I>j + i g | @, B[, D] — 2V (D)

e
2
+ (G, Fu F 3 (Gim@’[@ oM (*4fs>“ij<1>"Du<1>j> : (B.56)
where we have set

for D3-branes and D3-branes, respectively, and defined

G3 = F3+ (CO + ie_qs)Hg = ﬁg + i€_¢H3 , (B58)
(GE),™ = Re((x4G3)," +iG,M™) = (x4 F3),"™ F e PHM (B.59)
(Gﬁ)”k = Re((*GGg)ijk + ’LG”k) = (*6ﬁ3)ijk F e_(bHijk s (B.GO)
and
V(®) = A\ 2(Vppi(®) £ Ves(®)) . (B.61)

B.2.4 Fermionic part

Let us consider the fermionic action (B.13) for a D3-brane. To make the kinetic term of
the fermions O(\"), we rescale the fermion as

= AT . (B.62)

Since we are interested in the terms that survive in the I, — 0 limit, we can set M, = g,
and f‘Bé = —Fg)?)’ =T® where

@ = roplp2ps | (B.63)

Inserting (B.15)—(B.18) into the action (B.13) we obtain

Sferrm . T:;)\2 iz ¢ [F“V + =i HMIJF“U _ ﬁHIJKFUK
T T (;pu <—FIFI + %ﬁ]JKFIJK -3 .15!1%?]JKL1—\IJKL> T,
— 5Flrf + HFUKPUKH 0, (B.64)
where V, is
V., =0 \IJ+4w I (B.65)
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Again, the upper (lower) signs correspond to the case of D3- (D3-) branes. Note that the
first term in (B.17) does not contribute, because I'’T is a symmetric matrix. In general,
one can show

Uiy =0 for n#3 (mod4) . (B.66)

Using this fact and the identities:

TH(F DT, = — 2F,TF — AR, (B.67)
TH(Fryg DY, = 2F,,, 0P — 6F, 3, TH% — 4F;;, 1% (B.68)
FM(FVIJKLMFIJKLM)F;L = 2Oﬁyupomrwj{mm + 2Oﬁw/plmrwjplm
— L0F,jimTPH™ — A j DR (B.69)
we obtain
. T3\? _ 1 . y
Sps = —32 / d'z/=ge ? il [rﬂv# + 31 (Hiw T — Hijp'0F)
1 1~ -
FeTW ( = Ful" 5 BF T — Fij D7)
1 ~ < |

= 3755 (2B T — kalrwkl)ﬂ v . (B.70)

Furthermore, using the following identities

1 1
e — geuvwlﬂym , Ty — iﬁuwwppa ’ rArwe — _chvpop ,
g 1 .. y 1 ..
1—\(4)Fz]k _ 561]k:lmnl—\lmnl—\(10) ’ F(4)1"Z]kl _ —§6wklmn1—‘mnr(10) ’ (B?l)

together with the chirality condition (2.1) and the relation

(kaF5)ij = (+6F5) s » (B.72)
that follows from the self-duality condition (A.5), the action can be rewritten as
o T3)\? ~ 1 ; i
Glermi 3? / d*z\/—ge iU [F“vu + 4_—3!(3HWFW — H;j Tk

1 1 ~ ) ~ B
F €¢< 130 (kaF1) s p TP + T3 (3(*4F3)iwrmy - (*GFs)z’ij”k>

1 ~ g
+ 8(*4F5)l“'j]__“uw>:| 1\ N (B73)
where we have used the notation (B.54) and defined
(*4F1)Vpa = e,uzzpaFH = e'uypaauc() . (B'74)

For the non-Abelian case, the covariant derivative V, should be replaced with

. 1 an
AV, ¥ —  THED,W + il [% U] + 1@ (B.75)
where D,V is defined in (2.6) and we have assumed g,; =0 and w ;2 = —w 5, = 0.
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Then, our final expression for the fermionic part of the action is

o T3A? — — — 1
Glermi 3? d'z/—ge ®tr {z‘(\IJF“DM\I/ + UTi[®F, U)) — i® <Mi — 4wuiﬁ.rmf> 11;}

(B.76)

with

e’ (1 v Ry im . LiARy gk = ij
My =7 ] g(*4F1)uz/pF“ - (Gi)iuuF e g(Gi)iij - (*4F5)W'J'FH 7, (BIT)

where (G%);,, and (G);j1, are defined in (B.59) and (B.60), respectively.
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