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1 Introduction

Supersymmetric gauge theories are building blocks for many extensions of the Standard

Model that aim to describe the physics of fundamental interactions beyond the TeV scale.

In general, the non-perturbative properties of these theories play an essential role, in par-

ticular concerning the scenarios for a dynamical supersymmetry (SUSY) breaking. Monte-

Carlo simulations on the lattice are the method of choice for non-perturbative investigations

of quantum field theories. They provide a tool to investigate if and how the theoretical

predictions about supersymmetric theories are realised, see [1] for a more general discussion.

A specific application of numerical simulations of supersymmetric theories is the deter-

mination of the spectrum of bound states and the study of the gluino condensate in N = 1

supersymmetric Yang-Mills theory (SYM). In fact, scenarios have been proposed for the

multiplet structure of the lightest bound states of this theory [2–4], and several analytical

calculations have been presented for the chiral condensate, see [5] and references therein.

The bound state spectrum is the main focus of our current investigations. In our previous
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project we have mainly considered SYM with gauge group SU(2). We have investigated

the particle spectrum of the theory and observed the expected degeneracy of the states

in the lightest supermultiplet [6]. We have now extended our studies to the multiplet of

excited states, and first results have been reported in a contribution to the Lattice2017

conference [7].

Our most recent efforts are the numerical simulations of N = 1 supersymmetric Yang-

Mills theory with gauge group SU(3). This theory is more appealing from a phenomeno-

logical point of view, since it corresponds to the gauge part of supersymmetric QCD. First

results for this theory by our collaboration can be found in [8–10]. Another investigation

of this theory is presented in [11]. Our simulations rely on the specific approach of using

Wilson fermions and a tuning of the gluino mass to restore chiral symmetry and supersym-

metry. As has been found by Veneziano and Curci, this tuning is enough to recover both

symmetries in the continuum limit [12]. We crosscheck the correctness of our tuning using

the supersymmetric Ward identities.

Simulations of theories with dynamical fermions in the adjoint representation of SU(3),

such as SYM, require significantly more resources than QCD with quarks in the fundamen-

tal representation. Therefore, at present we are bound to relatively small lattice sizes. The

removal of the leading order lattice cut-off terms from the fermion action is crucial in this

case, since lattice artefacts lead to an explicit supersymmetry breaking. From our previous

investigations we have found that the clover improved fermion action is definitively a better

choice than the unimproved stout smeared Wilson fermions used in our first simulations [9].

Further details of our lattice formulation are explained in section 2.

The main focus of our project are the investigations of the lightest bound states

masses in SU(3) SYM. In particular, we want to check whether the mass degeneracy be-

tween bosonic and fermionic particles expected in a supersymmetric theory is realised

non-perturbatively in the spectrum of bound states. Analytic calculations based on low-

energy effective actions predict a supermultiplet of bound states consisting of mesonic

gluinoballs and fermionic gluino-glue particles [2]. It was later extended by an additional

multiplet containg states created by glueball operators [3, 4]. We investigate the members

of both multiplets on the lattice by means of suitable operators. The results at one value

of the lattice spacing, presented in section 5, already indicate the expected formation of

the supermultiplets of the lowest-lying states as in the case of gauge group SU(2).

In section 3 the methods for the determination of the dimensionful reference scales are

explained. Issues concerning the systematic errors, like the check for an efficient sampling

of topological sectors, are discussed in section 6. Finally, as an outlook we provide first

results at three additional lattice spacings in section 7.

2 The improved lattice formulation of supersymmetric Yang-Mills the-

ory

Supersymmetric SU(3) Yang-Mills theory describes gluons, the particles associated with

the non-Abelian gauge field for gauge group SU(3), and their superpartners, the gluinos.

Gluinos are Majorana fermions transforming under the adjoint (octet) representation of
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SU(3). SU(3) SYM is of a complexity comparable to QCD [13]. It is expected that in the

continuum the particles described by this theory are bound states of gluons and gluinos,

that form supermultiplets degenerate in their masses, if supersymmetry is unbroken. Since

supersymmetry is broken explicitly by the lattice discretisation, one important task of the

project is to demonstrate that the data of the numerical simulations are consistent with

restoration of supersymmetry in the continuum limit.

In the continuum the (on-shell) Lagrangian of SYM, containing the gluon fields Aµ

and the gluino field λ, reads

L = tr

[

−
1

2
FµνF

µν + i λ̄γµDµλ−m0λ̄λ

]

, (2.1)

where Fµν is the non-Abelian field strength and Dµ denotes the gauge covariant derivative

in the adjoint representation. The gluino mass term with the bare mass parameter m0

breaks supersymmetry softly.

We employ the lattice formulation of SYM proposed by Curci and Veneziano [12]. The

gauge field is represented by link variables Uµ(x). The corresponding gauge action is the

Wilson action built from the plaquette variables Up. The gluinos are described by Wilson

fermions in the adjoint representation. In its basic form the lattice action reads

SL = β
∑

p

(

1−
1

3
Re trUp

)

+
1

2

∑

xy

λ̄x(Dw)xyλy , (2.2)

with the Wilson-Dirac operator

(Dw)x,a,α;y,b,β = δxyδa,bδα,β − κ
4

∑

µ=1

[

(1− γµ)α,β(Vµ(x))abδx+µ,y

+(1 + γµ)α,β(V
†
µ (x− µ))abδx−µ,y

]

, (2.3)

where Vµ(x) are the link variables in the adjoint representation. The hopping parameter

κ is related to the bare gluino mass via κ = 1/(2m0 + 8).

In our current simulations we have implemented the clover term in order to reduce the

leading lattice artefacts of the Wilson fermion action. The additional term is

−
csw
4

λ̄(x)σµνF
µνλ(x). (2.4)

where Fµν is the clover plaquette. We have used the one-loop value for the coefficient

csw [14], leading to a one-loop O(a) improved lattice action. This is a systematic and

feasible approach for setting the clover coefficient. Alternative tunings of the coefficient

are possible. In the SU(2) case we have tested a tadpole resummation [6], that leads to a

considerable improvement of the mass degeneracy for finite lattice spacings. At our current

parameter range the value of csw obtained with the proposed tadpole formula is not much

different from the one-loop prediction.

The integration of the Majorana fermions yields
∫

[dλ] e−
1

2
λ̄Dwλ = Pf(CDw) = ±

√

detDw (2.5)
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which is the Pfaffian of the Wilson-Dirac operator Dw multiplied with the charge conjuga-

tion matrix C. The square root of the determinant is handled by the RHMC algorithm,

whereas the sign of the Pfaffian has to be considered in a reweighting of the observables.

The effect of the Pfaffian sign is discussed in section 6.1.

3 Scale setting and simulation parameters

We have performed simulations at four different values of the inverse gauge coupling β =

5.4, 5.5, 5.6, and 5.8. The lattice size is 163× 32, except for β = 5.4, where we have chosen

a 123 × 24 lattice, and some additional large volume runs at β = 5.6. The most reliable

results are obtained at β = 5.5, whereas especially the results at β = 5.8 are in most cases

excluded due to considerable finite size effects, as discussed in detail in section 6.

The scale is determined from an independent measurement of gluonic observables in

order to estimate the lattice spacing and the physical volume. We are using two different

quantities: the Sommer parameter r0 and the scale w0 from the gradient flow [15, 16].

The results in units of r0 can be converted to QCD units fm or MeV using the QCD scale

setting r0 = 0.5 fm. The methods for the determination of r0/a from a fit of the static

quark-antiquark potential are explained in our earlier work on SU(2) SYM [6]. At each β

the final values of the scales w0/a and r0/a are obtained by linearly extrapolating them as

a function of the square of the adjoint pion mass to the chiral limit.

The determination of w0/a follows the standard methods [15, 16] up to a modification

of the reference point. We have chosen a reference value of u = 0.2 (w0.2
0 ) instead of

the common value 0.3 (w0.3
0 ). This method is explained in [17] and reduces the effect of

topological freezing that we observe at our smallest lattice spacings. The scaling between

β = 5.4 and β = 5.5 is compatible for w0.2
0 /a and w0.3

0 /a. Up to β = 5.6 the scaling of

w0.2
0 is consistent with the r0 scaling. The smaller value of u also considerably reduces the

quite large uncertainties for the chiral extrapolation of w0 at β = 5.6.

4 Signals for supersymmetry and chiral symmetry restoration

As shown by Veneziano and Curci [12], supersymmetry and chiral symmetry are restored

in the continuum limit by the same tuning of the bare gluino mass m0. Chiral symmetry

restoration cannot be probed directly from the chiral Ward identities as in the case of two-

flavour QCD, since the U(1) axial symmetry is broken explicitly by an anomaly and not

only by the Wilson term. An alternative way is provided by the mass of the adjoint pion

(a–π). The adjoint pion is not a physical particle in SYM. It can, however, be defined by

arguments based on the OZI-approximation [2], or in the framework of partially quenched

chiral perturbation theory [18]. When SYM is considered as the partially quenched limit

of Yang-Mills theory with two Majorana flavours, the adjoint pion can be interpreted as

a pseudo-Nambu-Goldstone particle arising from spontaneous chiral symmetry breaking.

In the presence of an explicit chiral symmetry breaking by a non-vanishing renormalised

gluino mass, the square of the adjoint pion mass scales proportional to the renormalised

gluino mass. This relation is used to extrapolate our numerical results to the chiral limit.
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Figure 1. Linear extrapolations of the adjoint pion mass squared (m2
π) (black) and the renormalised

gluino mass (amSZ
−1
S ) obtained by SUSYWard identities (blue) as a function of the bare parameter

κ towards the chiral point (κc).

The mass of the adjoint pion (mπ) is measured from the exponential decay of the connected

part of the a–η′ meson correlator.

The reliability of our approach for the tuning to the chiral-supersymmetric continuum

limit has to be crosschecked with different prescriptions. Supersymmetric Ward identities

provide an alternative solid signal for the remnant chiral symmetry breaking without fur-

ther assumptions about the structure of chiral effective actions. Another approach is to

determine the transition point for the discrete subgroup of chiral symmetry that is left

unbroken by the anomaly. Below we discuss in detail the theoretical expectations and

the results of these different tunings towards the chiral limit. All of these signals must

agree in the continuum limit, but we will show that already at finite lattice spacings the

discrepancies are small and even negligible compared to other systematic uncertainties.

We have investigated the supersymmetric Ward identities at many different values of

our bare mass parameter. A combination of the supercurrent renormalisation constant

(ZS) and the renormalised gluino mass (mS) can be determined from this measurement.

The techniques of the measurement and analysis can be found in [19, 20]. We developed

a generalised least squares method [20, 21] to obtain more reliable estimates of amSZ
−1
S

and its statistical error. Note that the tuning of the clover coefficient in the fermion action

up to one-loop order does not ensure automatically the O(a) improvements of the SUSY

Ward identities, as explained in [19]. Further perturbative calculations of improvement

coefficients would be required to reach an O(a) scaling of the same order, and we plan to

investigate this aspect in the future.

The value of the critical parameter κc, where the renormalised gluino mass vanishes, is

obtained from an extrapolation of m2
π to zero, and it is compared with the determination

from the supersymmetric Ward identities, as shown in figure 1. The two values of κc are very

close to each other, but there is a small difference of around 0.00023(5). This discrepancy

is presumably due to lattice artifacts, and is expected to disappear in the continuum limit.

Results at other values of β in view of the continuum limit are discussed in [20].
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(a) Single Gaussian fit.
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(b) Double Gaussian fit.

Figure 2. Double peak structure of the histogram of the chiral condensate at κ = 0.1665 and

β = 5.6 from 1200 configurations. A single Gaussian does not fit our data, which are instead

consistent with a sum of two Gaussian functions.

A third determination of κc could be found by studying the change of the gluino

condensate at zero temperature occurring at the chiral phase transition. In fact, chiral

symmetry is the invariance of the continuum action of SYM with respect to the U(1)

rotation of the fermion field

λ → exp {−iθγ5}λ . (4.1)

An anomaly breaks chiral symmetry down to Z2Nc at the quantum level, such that only

2Nc values of θ leave the partition function invariant. At zero temperature even the discrete

group Z2Nc is broken down spontaneously to Z2 by a non-vanishing expectation value of

the gluino condensate. The coexistence of Nc degenerate vacua is a signal for a first order

phase transition crossing the chiral limit as a function of the gluino mass. We can search

the transition in the chiral condensate 〈λ̄λ〉, corresponding to the real part of the gluino

condensate. The condensate on each configuration should hence fluctuate between two

distinct values at the critical point κc. However, simulations close to the critical point are

very difficult and we are limited to small volumes, like 64 and 84, to ensure the convergence

of the inverter of the Dirac-Wilson operator. We have used periodic boundary conditions

to reduce the breaking of supersymmetry that would otherwise appear at non-zero temper-

ature due to the difference between the thermal statistics of fermions and bosons. Running

our simulations at β = 5.6, we find signals of a double-peak structure of the chiral conden-

sate at κ = 0.1665, see figure 2. The determined value of κc is consistent with the other

determinations (κc(mπ) = 0.16635(4), κc(〈λ̄λ〉) = 0.1662(4)). Taking into account the un-

certainties from finite size effects, we can conclude that there is a good agreement with the

theoretical expectations concerning the vacuum structure of the theory at zero temperature.

5 Results for the lightest supermultiplet in supersymmetric SU(3) Yang-

Mills theory

The estimation of the masses of bound states in SU(3) SYM is the main focus of the

current work. The particle spectrum is composed of bound states of gluons and gluinos.
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Figure 3. Mass plateau of the gluino-glue and the 0++ glueball for β = 5.5, κ = 0.1673, on a 163×

32 lattice. The final value indicated by the gray line is obtained from a fit of the correlation function.

One expects composites of gluino fields (gluinoballs), of gluon fields (glueballs), and of both

(gluino-glueballs). The physical states would be mixtures of those. The measurement of

these particles is quite challenging. For the mesonic gluinoballs, which are flavour singlet

mesons, and the glueballs this can be understood by comparison with the corresponding

particles in QCD. Hence a rather large statistics is required in order to get reliable estimates

for the masses. As detailed in section 4, the adjoint pion mass is used for the extrapolations

of the masses to the chiral limit. All masses are determined from the exponential decay of

the correlators in the corresponding channels. Further details of the different measurements

are explained in the following. First we consider the simulations at β = 5.5 on a 163 × 32

lattice, since these are our most precise and most reliable results.

5.1 Glueballs, gluino-glueballs and the supermultiplet formation

A reliable determination of the glueball masses is challenging. In the current work we

have focused on the 0++ glueball, since it provides the best signal-to-noise ratio. We have

applied variational methods to reduce the effects of excited states. More about our methods

is explained in our work on SU(2) SYM [6] and in [22]. An example of an effective mass

determined from the exponential decay of the correlators is shown in figure 3a.

The fermionic partners of the glueballs are particles created from gluino and gluon

fields. The corresponding operator is composed of the field strength Fµν and the gluino field,

Õgg̃ =
∑

µν

σµνTr [F
µνλ] , (5.1)

with σµν = 1
2
[γµ, γν ]. Fµν is represented by the clover plaquette on the lattice. The mea-

surement of this particle from the ensemble of gauge configurations uses Jacobi and APE

smearing techniques in order to improve the signal and to suppress the excited state con-

taminations. Figure 3b shows an example of the effective mass and of the quality of our

fits. Further details can be found in our earlier publications [6].

As in our previous investigations of SU(2) SYM, the degeneracy of the fermionic gluino-

glue and its bosonic partners is the most important signal for the supermultiplet formation.
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Figure 4. The masses of the gluino-glue and the 0++ glueball at β = 5.5 in lattice units. The

figure shows a linear and a quadratic fit of the data. The two largest values of the adjoint pion

mass mπ are excluded in the linear fit of the gluino-glue.

The chiral extrapolation of the 0++ glueball and gluino-glue masses at β = 5.5 are shown

in figure 4. At large adjoint pion masses, corresponding to a large soft supersymmetry

breaking, the gluino-glue is about twice as heavy as the glueball. However, in the chiral

limit the two masses become degenerate up to our current statistical precision.

In general, supersymmetry breaking lattice artefacts, indicated by a mass gap between

the states of the lightest supermultiplet, are expected at any finite lattice spacing. In our

current simulations at β = 5.5 their influence seems to be under control since the mass

gap is not significantly larger than other uncertainties of the measurements. At these

parameters our simulations therefore are already close enough to the continuum limit to

reproduce main features of the continuum theory.

5.2 The completion of the chiral multiplet by mesonic gluinoballs

Two chiral supermultiplets are expected to represent the degrees of freedom at low energies.

The supermultiplet of the lightest bound states should contain a scalar, a pseudoscalar,

and a fermionic particle. The scalar and pseudoscalar particles described by the low-energy

effective actions are either of glueball or of mesonic type. The actual states would, however,

be mixtures of those, and on the lattice the states created by the corresponding glueball

and mesonic operators cannot be distinguished unambiguously.

In our previous investigation of SU(2) SYM we have found that the mesonic operator

provides a better signal for the lightest pseudoscalar state, whereas the scalar meson is

degenerate with the scalar glueball. We complete the results for the masses of the lowest

multiplet with the additional data from the a–η′ meson for the pseudoscalar channel and

use the a–f0 as a cross check for the scalar glueball data.

The singlet mesonic operators are named similar to their QCD counterparts, the pseu-

doscalar a–η′ (λ̄γ5λ) and the scalar a–f0 (λ̄λ). The disconnected part is an essential

– 8 –
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Figure 5. Mass plateau for the mesons a–η′ and a–f0 for β = 5.5, κ = 0.1673, on a 163×32 lattice.

The final value indicated by the gray line is obtained from a fit of the correlation function.
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Figure 6. The masses of the different bosonic particles (singlet scalar and pseudoscalar mesons)

in comparison to the glueball mass at β = 5.5. a–η′(top.) indicates the pseudoscalar meson mass

obtained from the topological charge density correlator.

contribution to the correlation functions of these particles. The signal for this part of the

correlators is rather noisy. Our methods for the measurement include truncated eigenmode

approximation and preconditioning to improve the signal, see [23] for further details. The

results contain still quite large uncertainties, see figure 5, but we are able to obtain the

first estimates of the masses also in the mesonic channel. We have also done an alternative

determination of the a–η′ mass from the topological charge density correlator [24], which

is in good agreement with the results obtained from the mesonic correlators.

The signal in the scalar and pseudoscalar channels can be improved using a variational

approach combining different mesonic and gluonic operators. We have recently tested this

in SU(2) SYM [7], and we plan to use it also in the SU(3) case. Most likely it will reduce the

remnant excited state contamination of the ground state signal, especially in the mesonic

sector.
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As shown in figure 6, the masses of the scalar and pseudoscalar mesons are almost

degenerate with the scalar glueball mass within our current precision. Similar to the scalar

glueball, they show only a weak fermion mass dependence. There is indeed a formation of

a complete supersymmetry multiplet in the chiral limit and the a–f0 provides a signal for

the same lightest scalar state as the glueball.

The final extrapolated values of the particle masses in units of the Sommer scale r0 are

gluino-glue glueball 0++ a–η′ a–f0

2.83(44) 3.22(95) 3.70(71) 3.69(63)

6 Estimation of systematic uncertainties

Several systematic uncertainties of our current results need to be considered. The most

important limitation is the remnant supersymmetry breaking by the lattice discretisation.

We are currently not able to perform a complete extrapolation to the continuum, but as

explained in section 7, the remaining uncertainties are currently at the order of the statis-

tical errors. We plan more in-depth investigations to get a better signal for the continuum

extrapolation. The finest accessible lattice spacing is limited by two effects. Since the

number of lattice points is limited, the finer lattice spacing leads to a smaller volume.

The lattice spacing can, consequently, only be reduced until the finite volume effects sig-

nificantly affect the results. The second important effect is the topological freezing, that

leads to large autocorrelation times when the lattice spacing becomes too small. As we

will discuss below, our simulations at β = 5.6 and β = 5.8 are affected by these effects.

6.1 The Pfaffian sign

The sign of the Pfaffian has to be taken into account in our simulations. We expect

that the Pfaffian sign is not significant at our current parameters, but this has to be

confirmed by measurements. The fluctuations of the Pfaffian sign become more significant

at smaller gluino masses and coarser lattices. It is hence possible to approach the chiral

continuum limit from simulations without a relevant contribution of the sign. However,

we have to check explicitly that we are indeed in the region without relevant negative sign

contributions. It is enough to consider the run with the smallest gluino mass to confirm

this. As explained in our earlier investigations, the sign of the Pfaffian is obtained from

the number of degenerate pairs of real negative eigenvalues of the Dirac-Wilson operator,

see also [25] for the methods of this measurement. Sign changes are hence only possible,

if there are negative real eigenvalues. As shown in figure 7 we do not observe any of these

negative eigenvalues at least for a large subset of configurations. We conclude that the

Pfaffian sign for the current runs at β = 5.5 is not relevant.

6.2 Finite size effects

Finite size effects play an important role in the estimations of the mass spectrum. In earlier

investigations with gauge group SU(2) we have found that for small volumes the gluino-glue

gets heavier and the degeneracy of the spectrum is lost, but larger volumes (L/r0 > 2.4)
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Figure 7. The eigenvalues of the Dirac-Wilson operator in the complex plane, relevant for the

sign of the Pfaffian, from 1022 configurations at β = 5.5, κ = 0.1683. The green points indicate

eigenvalues with a significant chirality of the eigenvector 〈v|γ5|v〉 > 0.001. Possible Pfaffian sign

changes might occur if there are real negative eigenvalues, i. e. green points in the shaded region.

are not affected [26]. We check whether similar finite volume effects also appear for gauge

group SU(3) at a rather small lattice spacing (β = 5.6). The results shown in figure 8 have

a considerable uncertainty for the gluino-glue data. At the lattice size of Ns = 16, where we

have performed most of the simulations, the adjoint pion mass shows around 10% finite size

effects. We conclude that on a 163×32 lattice the finite size effects are negligible at β = 5.5;

at β = 5.6 they are of the order of our current still quite limited accuracy. At β = 5.8

rather large finite size effects are expected. Consequently we have focussed here on β = 5.5

and plan to increase the lattice volume in our future more precise simulations at β = 5.6.

6.3 The sampling of topological sectors

As known from QCD, topological sectors are not efficiently sampled at lattice spacings

smaller than roughly 0.05 fm, leading to the loss of ergodicity of Monte-Carlo lattice simu-

lations. Very large autocorrelation times are especially observed for topological quantities,

and the topological charge is effectively frozen towards the continuum limit. Our simu-

lations are already at a very fine lattice spacing, therefore we must ensure a reasonable

sampling of the topological sectors. We have measured the average topological charge 〈Q〉,

the corresponding integrated autocorrelation time τQ, and the topological susceptibility

χQ. The topological freezing is under control for β = 5.5 (τQ is between 17 and 46), but

starts to become more significant at β = 5.6 (τQ is between 58 and 185), which might

also be related to the small volume, see figure 9. The histogram of the topological charge

for β = 5.8 shows a nearly frozen topology. Hence, for this β the values of τQ and other

quantities are not reliable.
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of finite size effects. The results have been fitted assuming a finite size correction proportional to

exp(−αL)/L with some positive coefficient α.
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Figure 9. Left hand side: the history of the topological charge from simulations at β = 5.5 and

β = 5.6 on a 163 × 32 lattice. Right hand side: the history of the topological charge at β = 5.6,

κ = 0.1660 for two different volumes.

7 Outlook: continuum limit and comparison to the SU(2) case

Currently our most precise results are from β = 5.5. The results from the finer lattices are

limited by finite size effects and topological freezing. In addition we have done simulations

at one coarser lattice at β = 5.4. Our first preliminary results for the glueball and the

gluino-glue at the coarse lattice spacing are shown in figure 10. There is a considerable

gap between the constituents of the multiplet, but further investigations are required to

crosscheck the chiral extrapolations.
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Figure 11. A comparison of the gluino-glue mass in units of the Sommer scale r0 and of w0.2
0 for

different lattice spacings (corresponding to different β) and SU(Nc) gauge groups as a function of

the squared adjoint pion mass. The simulations of SU(3) SYM at β = 5.4, 5.5, 5.6, and 5.8 have

been done with a clover improved fermion action and a plain Wilson gauge action; the simulations

of SU(2) SYM at β = 1.9 with a plain Wilson fermion action, one level of stout smearing, and a

tree level Symanzik improved gauge action.

– 13 –



J
H
E
P
0
3
(
2
0
1
8
)
1
1
3

With the current results we are already able to make the first estimations of the scaling

towards the continuum limit. The results in units of the scales w0.2
0 and r0 for the gluino-

glue are shown in figure 11. As expected, the results at β = 5.8 are unreliable. From the

other lattice spacings a trend towards smaller gluino-glue masses is seen in the continuum

limit.

The preliminary results of the extrapolations at different β in units of the scale w0.2
0

are

β gluino-glue glueball 0++

5.4 0.90(13) 0.6240(59)

5.5 0.743(77) 0.84(20)

5.6 0.673(66) 0.60(15)

The masses in units of r0 can be compared to our previous results for SU(2) SYM as

shown in figure 11. It is remarkable that the masses of the lightest states in physical units

are comparable for SU(2) and SU(3) SYM.

8 Conclusions

Our current results for the lightest bound states in supersymmetric SU(3) Yang-Mills

theory on the lattice already provide strong indications for a supermultiplet formation

in the chiral continuum limit. As in the case of gauge group SU(2), there is no unexpected

signature for supersymmetry breaking, and the lattice artefacts can be controlled. The non-

perturbative numerical investigation of this theory with Wilson fermions is hence possible

and the theoretical suggestions of Veneziano and Curci can be applied in practice.

The simulation parameters are quite restricted, since an SU(3) Yang-Mills theory with

fermions in the adjoint representation demands considerably more computational efforts

than in the case of the fundamental representation. The implementation of an improved

fermion action is hence quite essential, as shown by our numerical results.

Further studies at larger lattices are required to complete the continuum extrapolation

and reduce finite volume uncertainties. Nevertheless, the present data already indicate

that the multiplet formation persists towards the continuum limit. We are currently also

exploring more advanced methods to reduce the excited state contamination from the

determination of the masses of the bound spectrum.
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A Data

In the following we list the data of our most relevant ensembles. The main part of the

paper considers the runs on a 163 × 32 lattice at β = 5.5 with a one-loop clover coefficient

csw = 1.598. These are summarised in the following table:

κ amπ r0/a amgg amgpp amη amf0 amη,top Nconfigs

0.1637 0.9202(49) 3.86(11) 1.185(62) 0.63(13) – – 0.900(90) 500

0.1649 0.7888(19) 4.39(16) 0.995(28) 0.619(53) 0.76(11) 0.81(22) 0.680(80) 3212

0.1667 0.5475(19) 5.56(13) 0.739(24) 0.576(78) 0.620(35) 0.68(17) 0.580(80) 4415

0.1673 0.4437(26) 6.15(16) 0.648(28) 0.429(21) 0.582(31) 0.537(67) 0.550(80) 5984

0.1678 0.3360(23) 6.88(33) 0.492(36) 0.460(49) 0.439(75) 0.544(79) – 3591

0.168 0.2651(51) 8.31(40) 0.420(21) 0.439(72) – – – 2673

0.1683 0.138(15) 8.96(50) 0.429(39) – – – – 1645

All the quantities are in units of the lattice spacing a. The summarised quantities are

the Sommer parameter r0/a and the masses of the a–π (amπ), the gluino-glue (amgg), the

0++ glueball (amgpp), the a–η
′ meson (amη), and the a–f0 meson (amf0). In addition there

is an alternative measurement of the a–η′ meson mass from the correlator of the topological

charge density (amη,top). Nconfigs is the number of generated thermalised configurations.

Currently not the complete statistic is used in all measurements.
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