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1 Introduction and review

Conformal field theories (CFT) in higher than two dimensions are interesting in several

different contexts, e.g. condensed matter physics (three dimensions), particle physics (four

dimensions), AdS/CFT correspondence [1] and entanglement [2]. There has been a lot

of development in higher dimensional CFTs1 since the breakthrough in conformal boot-

strap [3], where the authors numerically determined an upper bound on the dimensions of

leading primaries in the OPE, and after the analytical approaches to the bootstrap program

for higher dimensional theories [4, 5], where they studied the large spin behavior of CFTs.

The results from [4, 5] are generalized in [6], where a large spin perturbation theory is

developed. This method is later used in [7].2 Some notable examples of analytical develop-

ments in higher dimensional theories are [8–17], as well as numerical developments [18–22].

1I.e. theories in more than two dimensions.
2We thank Alday for telling us about this development.
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More important for this paper, are higher dimensional O(N) models, which also have had

a lot of development lately [7, 23–31]. It is interesting to study O(N) models since they

are important for the AdS/CFT correspondence, see [26] and references therein.

Lately there has been a lot of development in CFTs with a defect, i.e. defect conformal

field theories (DCFT), both analytically [32–36] and numerically [37–40]. Such theories

may be used to explain boundary conditions, magnetic-like impurities in spin systems,

Rényi entropy and entanglement, see [34, 35, 39, 41, 42] and references therein. A defect

is a subspace in the space of a theory, where new operators and interactions between op-

erators may occur. It is therefore important to distinguish between bulk-local operators,

which live in the entire space of the theory, and defect-local operators, which only live on

the defect. Using the operator product expansion (OPE), it is possible to write bulk-local

and defect-local operators in terms of each other when the bulk-local operators are close

to the defect [33, 43]. We call these OPEs the bulk-defect as well as defect-bulk expansion.

These expansions contain OPE coefficients, that are promoted to tensors (with arbitrary

many indices) in theories with a global symmetry, as is the case of O(N) models. The ten-

sors/coefficients in these expansions do not need to be real-valued, unlike the coefficients in

the OPE between two bulk-local operators. We expect the global symmetry of the theory

to be broken after insertion of a defect, since in general the latter is only left invariant under

some subgroups of the global symmetry group. A conformal defect behaves like a CFT on

its own. Meaning, conformal transformations parallel to the defect is preserved, i.e. if a con-

formal defect of codimension m is inserted into a d-dimensional CFT, SO(d−m+1, 1) is left

unbroken.3 If the defect is flat or spherical, rotations SO(m) around the defect is preserved

as well. This rotation group will act as a global or internal symmetry of the defect-local

operators. So a conformal flat defect will break the SO(d + 1, 1) conformal group into

SO(m)×SO(d−m+1, 1). In this case, defect-local operators may carry both SO(m)- and

SO(d−m+ 1, 1)-spin, while bulk-local operators may carry SO(d+ 1, 1)-spin. Bulk-local

operators are transformed under an element from the global symmetry group as they are

transported around a monodromy defect. We may define several different defects using dif-

ferent group elements from the global symmetry group in the monodromy transformation.

In this paper we study the implications of inserting a monodromy line defect into a

conformal, three dimensional O(N) model using the bulk-defect expansion. Inserting this

defect will break the conformal SO(4, 1) symmetry into SO(2)×SO(2, 1). The monodromy

action tells us about the SO(2)-spin of the defect-local operators as well as how the global

O(N) symmetry is broken after the defect is inserted, while symmetry of the residual sub-

groups of O(N) tell us what kinds of OPE tensors may exist in the bulk-defect expansion,

and thus also restricts what kinds of defect-local operators will live on the defect. We

find that the global O(N) symmetry is broken into two or three subgroups, depending

on what group element we use in the monodromy action. Operators that transform in

different unbroken subgroups do not mix with each other, and defect-local operators in

the bulk-defect expansions will transform under the same subgroup as their corresponding

bulk-local operator. The SO(2)-spin of the defect-local operators will differ depending on

3In this paper we use Euclidean signature.

– 2 –



J
H
E
P
0
3
(
2
0
1
8
)
0
5
8

what subgroup they transform under. This spin, sX , can be generic, and does not need to

be integer or half-integer

sX ∈ Z+ υ , υ ∈ [0, 1) . (1.1)

We denote bulk- and defect-local operators that transform in one of the subgroups that

are left unbroken, say O(X), as φjX and ψjX , where ψjX has SO(2)-spin sX . By studying

this O(X) symmetry we find that only vector operators will appear in the bulk-defect

expansion, with OPE tensors of rank zero, i.e. OPE constants (denoted cX), in the bulk-

defect expansion.

The 3D Ising model with a monodromy line defect was studied analytically in [43].

They started from the Wilson-Fisher (WF) fixed point in 4− ǫ dimensional φ4 theory and

let ǫ go to one (the defect is always of co-dimension two). The scaling dimensions of bulk-

and defect-local primaries as well as some of the OPE coefficients were found to the first loop

order through comparison of the two-point Green’s functions for two bulk-local operators

on the defect found in two different ways. One being from the bulk-defect expansion, the

other from Feynman diagrams. Their results are in agreement with the numerical data

from [38]. We will generalize this approach to an O(N) model by promoting the scalar

operators in φ4-theory into vector multiplets of O(N). We call this theory the WF O(N)

model. The CFT data we find through this approach are4

|cX | = 1− ψ̃(|sX |+ 1)− ψ̃(1)

4
ǫ+O(ǫ2) ,

∆ψX = |sX |+ 1−
(

1− υ(υ − 1)(X + 2)

(X + 8)|sX |

)
ǫ

2
+O(ǫ2) ,

∆φX = 1− ǫ

2
+O(ǫ2) .

(1.2)

Another analytical approach is the ǫ-expansion for the 3D Ising model created by

Rychkov and Tan in 2015 [44]. This approach (we will call it the Rychkov-Tan analysis)

constrains the theory by defining three axioms that contain information about its dynam-

ics. One of these axioms states that every φn , n ≥ 0 , n ∈ Z is a primary, except φ3

which is a descendant of φ. This follows from the equations of motion. The Rychkov-Tan

analysis has been applied to several different theories, e.g. scalar theories in different dimen-

sions [45–47], the Gross-Neveu model [48, 49], O(N) models [50], theories studied in Mellin

space [51, 52], the Lee-Yang model [53], generalized free CFTs [54] and the 3D Ising model

with a monodromy line defect [55]. The same scaling dimension of defect-local operators as

those from [43] was found using the Rychkov-Tan analysis in [55]. At the end of this paper

we generalize the Rychkov-Tan analysis in [55] to the WF O(N) model. We find that the

anomalous dimensions for bulk- and defect-local operators are in agreement with the corre-

sponding ones found using the approach in [43], see (1.2), indicating that they are correct.

This paper is outlined as follows. In section 2 we study the implications of inserting a

monodromy, line defect into a three dimensional O(N) model. Here we study constraints on

the bulk-defect expansion that arises from the monodromy of the defect and the symmetry

of the unbroken subgroups of O(N) that are left preserved after the defect has been inserted.

4Here ψ̃(x) is the digamma function.
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Some technical details about the monodromy constraint are gathered in appendix A. We

generalize the approach in [43] to the WF O(N) model in section 3. The Green’s function

for two bulk-local operators are studied using both the bulk-defect expansion and Feynman

diagrams (up to one loop level). The results (1.2) are found in this section. We have placed

technicalities about the one-loop Feynman integrals in appendix B. Finally in section 4 we

generalize the Rychkov-Tan analysis to the WF O(N) model with a monodromy, line defect.

This section serves as a check that our results from section 3 are correct.

2 Monodromy line defect in a three dimensional O(N) model

Let us consider a three dimensional CFT with a global O(N) symmetry and a monodromy

line defect. We expect a breaking of the O(N) symmetry by inserting this defect. Thus we

will consider bulk-local fields that are in a vector representation of the residual symmetry

group G. A monodromy defect is defined with the action

Φj(r, θ + 2π, y) = gjj′Φ
j′(r, θ, y) , gjj′ ∈ O(N) , j ∈ {1, . . . , N} . (2.1)

Here r and θ are polar coordinates transverse to the defect, and y is the coordinate parallel

to the defect. This condition means that if we transport Φj around the defect, we get back

a transformed operator. The choice of the group element gjj′ from O(N) will define the

defect.

Example 1 In the 3D Ising model, the global symmetry group is Z2. Thus the monodromy

defect in this theory can be defined with either g = ±1. In this case, g = 1 is the trivial

case when there is no defect. See [43] for the implications of g = −1.

If one of these bulk-local operators is close to the defect, we may write it in terms of defect-

local operators using the bulk-defect expansion [56]. In a three-dimensional CFT with a

codimension two defect, the bulk-defect expansion for the rescaled Φj presented in [43] is

generalized into

Φj(r, θ, y) =
∑

ΨRs

Cj
R,s

e−isθ

r∆Φ−∆Ψ
B∆Ψ

(r2, ∂2
y)Ψ

R
s (y) ,

B∆(x, y) =
∑

m≥0

(−1)m(∆)m
m!(2∆)2m

xmym ,

Cj
R,sΨ

R
s ≡

(
Cj

R,s

)

k1...kl

(
ΨR
s

)k1...kl , ∆Ψ ≡ ∆ΨRs
(R, s) .

(2.2)

Here we sum over all tensor primaries, ΨR
s , that lives on the defect. These defect-local

operators are in irreducible representations R of G, and different defect-local operators

may transform in different representations of G. In this expansion Cj
R,s is an OPE tensor

that transforms as a vector of G when contracted with ΨR
s , s is the SO(2)-spin of ΨR

s ,

∆Ψ is the scaling dimension of ΨR
s and (x)m is the Pochhammer symbol. Note that

both Cj
R,s and ∆Ψ depend on R and s, i.e. they may differ for each ΨR

s . We can see

that the original SO(d + 1, 1) conformal symmetry has been broken into SO(2)×SO(d −
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1, 1), where SO(2) describes rotations around the defect, and SO(2, 1) describes conformal

transformations parallel to the defect. This expansion is valid only when Φj is close to the

defect. Since SO(2) is an Abelian group, s will act as a charge under the global SO(2)≃U(1)

transformations that ΨR
s enjoys

ΨR
s (y) = eisθΨR

s (y) . (2.3)

Note that the continuous parameter θ in this SO(2)-transformation is one of the polar

coordinates in the CFT bulk. The factor e−isθ in (2.2) makes sure that ΨR
s (y) can transform

globally under SO(2) without affecting Φj(r, θ, y). Reality of Φj implies that [43]

ΨR
−s = Ψ̄R

s . (2.4)

The first thing we need to ask ourselves is what kinds of defect-local operators may

appear in the expansion (2.2). We may be able to constrain the theory using the definition

of a monodromy action (2.1) as well as the residual symmetry G. Since we expect the

global O(N) symmetry to be broken by the monodromy of the defect, we have to study

constraints on the dynamics from it first.

2.1 Monodromy action constraint

By conjugation, an O(N)-matrix is given by5

(gjj′)(ϑ) =






Rϑ 0 0

0 1χ×χ 0

0 0 −1(N−χ−2)×(N−χ−2)




 , Rϑ =

[

± cosϑ ∓ sinϑ

sinϑ cosϑ

]

. (2.5)

Here χ ∈ {0, 1, . . . , N − 2}. Monodromy of the defect (2.1) together with the bulk-defect

expansion (2.2) yields







e−2πisC1
R,sΨ

R
s = ± cosϑC1

R,sΨ
R
s ∓ sinϑC2

R,sΨ
R
s ,

e−2πisC2
R,sΨ

R
s = sinϑC1

R,sΨ
R
s + cosϑC2

R,sΨ
R
s ,

e−2πisCq
R,sΨ

R
s = Cq

R,sΨ
R
s , q ∈ {3, . . . , χ+ 2} ,

e−2πisCr
R,sΨ

R
s = −Cr

R,sΨ
R
s , r ∈ {χ+ 3, . . . , N} .

(2.6)

There are two important special cases for the above equation system. These special cases

occur when we cannot write C1
R,sΨ

R
s in terms of C2

R,sΨ
R
s and vice versa, i.e. when

sinϑ = 0 ⇔ ϑ =

{

0 mod 2π ,

π mod 2π .
(2.7)

We will get two different sets of solutions depending on whether Rϑ describes a proper

(detRϑ = 1) or improper (detRϑ = −1) rotation.

5We can think of this as a general O(N) transformation where we have chosen the basis vectors in this

O(N) space such that it only rotates the first two vectors.
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2.1.1 Proper rotation

We consider first the two special cases (2.7). If ϑ equals zero, (2.6) reduces to
{

e−2πisCp
R,sΨ

R
s = Cp

R,sΨ
R
s , p ∈ {1, . . . , χ+ 2} ,

e−2πisCr
R,sΨ

R
s = −Cr

R,sΨ
R
s , r ∈ {χ+ 3, . . . , N} . (2.8)

This system has two solutions. Either

Cr
R,sΨ

R
s = 0 ∀ r ∈ {χ+ 3, . . . , N} , s = n , (2.9)

where Cp
R,sΨ

R
s , p ∈ {1, . . . , χ+ 2} , does not receive any constraints, or

Cp
R,sΨ

R
s = 0 ∀ p ∈ {1, . . . , χ+ 2} , s = n+

1

2
, (2.10)

where Cr
R,sΨ

R
s , r ∈ {χ+ 3, . . . , N} does not receive any constraints. In this section n is

an integer, i.e. n ∈ Z. The solutions (2.9) and (2.10) tell us that the global O(N) symmetry

group has been broken into

G = O(χ+ 2)×O(N − χ− 2) . (2.11)

The branching rule tells us that Φj can be separated into bulk-local operators that

transform in O(χ+ 2) and bulk-local operators that transform in O(N − χ− 2)

Φj = φaχ+2 ⊕ φbN−χ−2 , a ∈ {1, . . . , χ+ 2} , b ∈ {1, . . . , N − χ− 2} . (2.12)

Both φaχ+2 and φbN−χ−2 will have bulk-defect expansions similar to (2.2). The defect-local

operators in these expansions will transform under the same orthogonal symmetry group

as their corresponding bulk-local operator, e.g. the defect-local operators, ψχ+2, in the

bulk-defect expansion of φaχ+2 will transform under O(χ+2). The SO(2)-spin of ψχ+2 will

be an integer, while the SO(2)-spin of ψN−χ−2 will be a half-integer spin, i.e.

sχ+2 = n , sN−χ−2 = n+
1

2
. (2.13)

More precisely, we can write the bulk-defect expansion (2.2) for the original bulk-local op-

erator (that transforms in G) as two sums. One that sums over defect-local primaries with

integer spins, and one that sums over defect-local primaries with half-integer spins. The

first of these sums corresponds to φaχ+2 and contains ψχ+2, while the second corresponds

to φbN−χ−2 and contains ψN−χ−2. A similar decomposition is possible for all of the other

cases studied in this section as well.

Φj(r, θ, y) =
∑

ψχ+2

Cj
χ+2

e−isχ+2θ

r
∆φχ+2

−∆ψχ+2

B∆ψχ+2
ψχ+2+

+
∑

ψN−χ−2

Cj
N−χ−2

e−isN−χ−2θ

r
∆φN−χ−2

−∆ψN−χ−2

B∆ψN−χ−2
ψN−χ−2 ,

Cj
XψX ≡ (Cj

X)k1...kl(ψX)
k1...kl ,

∆ψX ≡ ∆ψX (RX , sX) , Cj
X ≡ Cj

X(RX , sX) .

(2.14)
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Here X ∈ {χ+2, N −χ−2} and ψX is a defect-local primary that is in the irreducible

representation RX of O(X), and transforms as a vector of O(X) when contracted with

the OPE coefficient Cj
X . It has SO(2)-spin sX and scaling dimension ∆ψX . The OPE

coefficients, the scaling dimensions (for both the bulk-local and defect-local operators) as

well as the irreducible representations of the defect-local operators in these two sums may

be different to each other.

It is a similar story when ϑ = π. The O(N) symmetry is then broken into O(χ) ×
O(N−χ), and defect-local operators that transform in O(χ) have integer SO(2)-spin, while

defect-local operators that transform in O(N − χ) have half-integer SO(2)-spin.

A more interesting case is when we consider ϑ to be generic, i.e. sinϑ 6= 0. Then (2.6)

yields the following system of equations6







C1
R,sΨ

R
s = ±iC2

R,sΨ
R
s , s = n+ ϑ

2π , n ∈ Z ,

e−2πisCq
R,sΨ

R
s = Cq

R,sΨ
R
s , q ∈ {3, . . . , χ+ 2} , s = n′ , n′ ∈ Z ,

e−2πisCr
R,sΨ

R
s = −Cr

R,sΨ
R
s , r ∈ {χ+ 3, . . . , N} , s = n′′ + 1

2 , n′′ ∈ Z .

(2.15)

These constraints are on the dynamics of the theory coming from the monodromy action.

We see that the first two components of Cj
R,sΨ

R
s relate to each other, and do not mix with

other components of the tensor. The system of equations (2.15) has three solutions.7 Either

C1
R,sΨ

R
s = ±iC2

R,sΨ
R
s , Cv

R,sΨ
R
s = 0 ∀ v ∈ {3, . . . , N} , s = n+

ϑ

2π
, (2.16)

or

Cv′
R,sΨ

R
s = 0 ∀ v′ ∈ {1, 2, χ+ 3, . . . , N} , s = n , (2.17)

where Cq
R,sΨ

R
s , q ∈ {3, . . . , χ+ 2} does not receive any constraints, or

Cv′′
R,sΨ

R
s = 0 ∀ v′′ ∈ {1, . . . , χ+ 2} , s = n+

1

2
, (2.18)

where Cr
R,sΨ

R
s , r ∈ {χ + 3, . . . , N} does not receive any constraints. Thus the O(N)

symmetry has been broken into O(2) × O(χ) × O(N − χ − 2), where defect-local op-

erators that transform under O(2) have generic SO(2)-spin, defect-local operators that

transform under O(χ) have integer SO(2)-spin and defect-local operators that transform

under O(N − χ − 2) have half-integer SO(2)-spin. Note that the two components of the

bulk-defect expansion for the bulk-local operator, (φa2) = (Φ1,Φ2), that transforms in O(2)

are related through (2.16).

Note 1 If we consider an O(N)-model where the OPE tensors need to be real, the rela-

tion (2.16) yields that C1
R,sΨ

R
s and C2

R,sΨ
R
s are zero and thus also Φ1 and Φ2 are zero.

In this case the O(N) symmetry is broken into O(χ)×O(N − χ− 2).

6See the “Proper Rotation” section of appendix A for details on this. In this paper we assume that the

OPE tensors can be complex-valued.
7The solutions can be read off by matching the spin required for the equations to hold.
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2.1.2 Improper rotation

The solutions to (2.6) considering the special cases when ϑ equals zero or π will yield

similar solutions as those in the proper case. In both of these cases the global O(N)

symmetry is broken, leaving a O(χ+1) × O(N −χ− 1) symmetry. Defect-local operators

that transform in O(χ+ 1) will have integer SO(2)-spin, while defect-local operators that

transform in O(N −χ− 1) will have half-integer SO(2)-spin. The procedure of finding this

is exactly the same as that discussed in the previous section.

If we consider a generic angle, i.e. sinϑ 6= 0, the results will differ from the proper case.

The system of equations (2.6) yields8







C1
R,sΨ

R
s = sin(ϑ)

e−2πis+cos(ϑ)
C2

R,sΨ
R
s , s = n

2 , n ∈ Z ,

e−2πisCq
R,sΨ

R
s = Cq

R,sΨ
R
s , q ∈ {3, . . . , χ+ 2} , s = n′ , n′ ∈ Z ,

e−2πisCr
R,sΨ

R
s = −Cr

R,sΨ
R
s , r ∈ {χ+ 3, . . . , N} , s = n′′ + 1

2 , n′′ ∈ Z .

(2.19)

As in the proper case, these are constraints on the OPE tensors coming from the mon-

odromy action. Here it is convenient to define two linear combinations of C1
R,sΨ

R
s and

C2
R,sΨ

R
s

C̃1
R,sΨ

R
s ≡ C1

R,sΨ
R
s +

sinϑ

1− cosϑ
C2

R,sΨ
R
s ,

C̃2
R,sΨ

R
s ≡ C1

R,sΨ
R
s − sinϑ

1 + cosϑ
C2

R,sΨ
R
s .

(2.20)

The system of equations (2.19) have two solutions. Either

C̃2
R,sΨ

R
s = 0 , Cr

R,sΨ
R
s = 0 ∀ r ∈ {χ+ 3, . . . , N} , s = n , (2.21)

where C̃1
R,sΨ

R
s and Cq

R,sΨ
R
s , q ∈ {3, . . . , χ+ 2} does not receive any constraints, or

C̃1
R,sΨ

R
s = 0 , Cq

R,sΨ
R
s = 0 ∀ q ∈ {3, . . . , χ+ 2} , s = n+

1

2
. (2.22)

where C̃2
R,sΨ

R
s and Cr

R,sΨ
R
s , r ∈ {χ+3, . . . , N} does not receive any constraints. These

solutions tells us that the symmetry group has again been broken into O(χ+1) × O(N−χ−
1), where defect-local operators that transform in O(χ+ 1) have integer SO(2)-spin, while

defect-local operators that transform in O(N − χ − 1) have half-integer SO(2)-spin. The

linear combination C̃1
R,sΨ

R
s will appear in the bulk-defect expansion of φaχ+1, and C̃2

R,sΨ
R
s

will appear in the bulk-defect expansion of φbN−χ−1. We can check that this result is correct

by representing the Cj
R,sΨ

R
s -terms in the bulk-defect expansions of bulk-local operators

that transform in O(χ+1) and O(N−χ−1) as vectors, σχ+1 and σN−χ−1, both containing

N elements. These elements are the coefficients in front of C1
R,sΨ

R
s , . . . , C

N
R,sΨ

R
s , i.e.

σχ+1 ≡ (C1
R,s, . . . , C

N
R,s) = (1, (1− cosϑ)−1 sinϑ, 1, . . . , 1

︸ ︷︷ ︸

χ

, 0, . . . , 0
︸ ︷︷ ︸

N−χ−2

) ,

σN−χ−1 ≡ (C1
R,s, . . . , C

N
R,s) = (1,−(1 + cosϑ)−1 sinϑ, 0, . . . , 0

︸ ︷︷ ︸

χ

, 1, . . . , 1
︸ ︷︷ ︸

N−χ−2

) .
(2.23)

8See the “Improper Rotation” section of appendix A for details on this.
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Since operators that transform in O(χ+ 1) should not mix with operators that transform

in O(N − χ − 1), the two vectors σχ+1 and σN−χ−1 should be orthogonal to each other.

Indeed, using the trigonometric identity we see that this is the case. Moreover, these two

vectors should be eigenvectors to improper O(N) matrix (2.5). One can check that this is

the case, where σχ+1 has eigenvalue +1, and σχ+1 has eigenvalue −1. Actually, eigenvec-

tors of improper gjj′(ϑ) can only obtain the two different eigenvalues ±1, indicating that

our results are correct.

Putting it all together, inserting a monodromy defect using a proper O(2) rotation,

i.e. detRϑ = 1, possibly (depending on the angle ϑ) breaks the global O(N) symmetry

into three parts O(2) × O(χ) × O(N − χ − 2), where operators that transform in one

of these subgroups does not mix with operators from the other subgroups. Each of these

bulk-local operators will have a bulk-defect expansion with defect-local operators that

transform under the same unbroken subgroup as their corresponding bulk-local operator.

The defect-local operators will have different SO(2)-spins depending on what subgroup they

transform under. The situation is very similar when considering an improper O(2) rotation,

i.e. detRϑ = −1, when defining the defect. In this case however, the global O(N) symmetry

(independently of the angle ϑ) breaks into O(χ+1) × O(N−χ−1), meaning that in general,

using detRϑ = −1 does not break the symmetry as much as when using detRϑ = 1.

Note 2 Similar to [43], the monodromy action constrains the spin of defect-local operators.

The theory is consistent with flipping the defect, i.e. the discussion in this section is the

same when we use the following monodromy action

Φj(r, θ − 2π, y) = (gjj′)
−1Φj

′

(r, θ, y) , gjj′ ∈ G . (2.24)

2.2 Symmetry constraints

In this section we study constraints from the broken O(N) symmetry. The transformed

bulk-local operator, φjX , is to be the same as when we transform the defect-local opera-

tors, ψk1...klX , inside the bulk-defect expansion (2.2). Let Ωjk ∈O(X) be a transformation

matrix from one of the subgroups that is preserved after the global O(N) symmetry has

been broken. Then the transformation of φjX under Ωjk must be compatible with the

transformation of ψk1...klX under the same Ωjk

Ωjj′φ
j′

X =
∑

ψ
k1...kl
X

(Cj
X)k′1...k′l

e−isXθ

r∆φX−∆ψX
B∆ψX

(r, ∂y)
l∏

n=1

Ωk
′

n
kn(ψX)

k1...kl . (2.25)

Comparing the two sides of this constrains the OPE tensors. It tells us that (Cj
X)k1...kl

is an isotropic tensor (or tensor invariant) of O(X)9

(Cj
X)k1...kl = Ωj′

j(Cj′

X)k′1...k′l

l∏

n=1

Ωk
′

n
kn . (2.26)

9Remember that the inverse of an O(X) matrix is its own transpose.
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Since there are no vector invariants of O(X), there cannot be any scalars on the defect.

A general isotropic tensor of O(X) is given by a sum over all possible permutations of

Kronecker deltas [57].10 Since the defect-local operators are in irreducible representations

of O(X), and since tensors with two or more indices in such representations are traceless,11

we end up with only vector-operators on the defect

φjX(r, θ, y) =
∑

ψj
X

cX(sX)
e−isXθ

r∆φX−∆ψX
B∆ψX

(r, ∂y)ψ
j
X(y) . (2.27)

Here cX is an OPE coefficient and ψjX is an O(X) vector primary on the defect. Note

that it only exist one vector representation of O(X).

In this section we inserted a monodromy line defect into a three dimensional CFT

with a global symmetry. From the monodromy action we found how the global symmetry

is broken as well as what kinds of SO(2)-spin the defect-local operators will carry, while

from symmetry arguments we found what kinds of defect-local operators can appear in the

bulk-defect expansion. All we needed in order to perform this procedure was essentially the

bulk-defect expansion (2.2), which can be used for any three-dimensional CFT with bulk-

local vector operators and a codimension two defect. Thus we should be able to apply this

procedure to other three-dimensional CFTs with other global symmetries as well. It would

be interesting to study bulk-defect expansions in d-dimensional CFTs with a monodromy

defect of codimension other than two, such that we could perform this procedure to those

kinds of theories as well. Note that equation (2.26) should hold for any symmetry preserved

by the defect. Thus OPE tensors in bulk-defect expansions will always be isotropic tensors

of the global symmetry group their respective bulk-local operators transform under.

3 Green’s function

In this section we generalize the steps in [43] to the case with O(X) symmetry. Our starting

point for this discussion is Green’s function, i.e. the correlator, for two bulk-local operators

close to the defect that transform under the same unbroken symmetry group, say O(X).

If the bulk-local operators in this correlator would not be close to the defect, this Green’s

function would be the usual one we encounter in a CFT without a defect. We proceed to

find this Green’s function from both the bulk-defect expansion and Feynman diagrams.12

The WF O(N) model is governed by the Lagrangian

L =
1

2
(∂µΦ

j)2 +
λ

4!
[(Φj)2]2 , j ∈ {1, . . . , N} . (3.1)

10These tensors can also be written as a sum over products of Kronecker deltas, even number of Levi-

Civitas and combinations of those two. However, even numbers of Levi-Civitas can be written as a product

of several Kronecker deltas. Terms with uneven numbers of Levi-Civitas are not invariants of O(X), but of

the smaller group SO(X). We thank Jian Qiu for telling us about this.
11Meaning that if we contract any two of one of these tensors’ indices with eachother, it is zero.
12Our results from section 2.1 tell us that if the bulk-local operators in the two-point correlators transform

in same unbroken symmetry group, the SO(2)-spin in their bulk-defect expansions will be of the same kind,

i.e. integer, half-integer or neither.
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We renormalize it using dimensional regularization, i.e. we consider 4− ǫ dimensions.

The β-function is given by [58]

β(λ) =
λ

3!

(

−ǫ+
N + 8

3!8π2
λ

)

+O(ǫ3) , (3.2)

which have fixed points at

λ = 0 and λ =
3!8π2ǫ

N + 8
+O(ǫ2) . (3.3)

We consider the CFT at the fixed point where the coupling constant is non-zero.

3.1 Green’s function from the bulk-defect expansion

Since we expand (in ǫ) around the free theory, the CFT data will not be degenerate, i.e.

there will only be one defect-local operator with SO(2)-spin sX . Thus we can sum over sX
instead of the defect-local primaries in the bulk-defect expansion (2.27). This yields the

full two-point correlator for two bulk-local operators that transforms in O(X)13

Gjj′ ≡ 〈0|φjX(r1, θ1, y1)φ
j′

X(r2, θ2, y2)|0〉

=
∑

sX ,s
′

X

c†XcX
ei(sXθ1−s

′

X
θ2)

r
∆φX−∆ψX
1 r

∆φX−∆ψ′

X

2

×

×
[
1 +O(r21∂

2
y1) +O(r22∂

2
y2)

]
〈0|ψjX(y1)ψ

′j′

X (y2)|0〉 ,

(3.4)

where the SO(2)-spins, sX and s′X , will be of the same kind

sX , s′X ∈ Z+ υ , υ ∈ [0, 1) . (3.5)

Here υ is fixed and the same for both sX and s′X since operators with different kinds

of SO(2)-spin do not mix with each other (see section 2.1). The defect-local operators are

normalized through its two-point correlator

〈0|ψjX(y1)ψ
′j′

X (y2)|0〉 =
δψ

j
X
ψ′j′

X

|y12|2∆ψX
, δψ

j
X
ψ′j′

X = δsXs′X δ
jj′ , y12 ≡ y1 − y2 . (3.6)

We place the bulk-local operators on the same distance from the defect, i.e. r ≡ r1 = r2

Gjj′

sX
= |cX |2

eisXθ12

r2∆φX
ρ2∆ψX δjj

′ [
1 +O(ρ2)

]
, θ12 ≡ θ1 − θ2 , ρ ≡ r

|y12|
. (3.7)

Here Gjj′
sX is the summand of (3.4). By comparing this OPE with the result that

we will calculate from diagrams at tree-level, we find the zeroth loop order correction to

∆φX ,∆ψX and |cX |. The logarithm of Gjj′
sX will be useful when finding correction from

one-loop diagrams

logGjj′

sX
= (2 log |cX |+ isXθ12 − 2∆φX log r + 2∆ψX log ρ) δjj

′

+O(ρ2) . (3.8)

Note 3 Since bulk-local operators will not be affected by the defect if they are far away

from it, we expect the CFT data (in our case ∆φX ) for those kind of operators to be the

same as the theory without a defect.
13We do not make any assumptions on whether the OPE coefficients, cX , are real-valued.
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3.2 Green’s function from Feynman rules

When calculating diagrams using Feynman rules, we calculate one loop order at a time,

hence we write Green’s function as a sum over loop order corrections, where Gn represents

the correction from the nth loop order

Gjj′ =
∑

n≥0

Gjj′

n . (3.9)

The logarithm of Gjj′ will be useful when finding first loop order corrections to the

CFT data. We Taylor expand the logarithm of the above sum so it later can be compared

with the result from the OPE (3.8)

logGjj′ = logGjj′

0 +
(
G−1

0

)j
j′′G

j′′j′

1 +O(ǫ2) . (3.10)

3.2.1 Tree-level diagram

The calculation of the tree-level diagram is the same as in [43], but with an overall factor

of δjj
′

as well as different spin in the spectrum of defect-local operators. These calculations

will be expressed in terms of the dimension of the defect

D = 2− ǫ . (3.11)

Our starting point is the Laplace equation for the two-point correlator

−∇2Gjj′

0 (x1, x2) =
4πD/2+1

Γ(D/2)
δjj

′

δD(x1 − x2) . (3.12)

Note 4 This Green’s function is normalized such that it has the asymptotic

Gjj′

0 (x1, x2) ≡ 〈0|φjX(x1)φ
j′

X(x2)|0〉 =
δjj

′

|x1 − x2|D
. (3.13)

In momentum space, the Laplace equation (3.12) has the solution

Gjj′

0 (x1, x2) =
2πD/2

Γ(D/2)
δjj

′
∑

sX

∫
dDk

(2π)D
eisXθ12eiky12I|sX |(kr−)K|sX |(kr+) ,

r− = min(r1, r2) , r+ = max(r1, r2) .

(3.14)

Here I|sX | and K|sX | are modified Bessel functions. Using some relations that the

modified Bessel functions satisfy, we can rewrite the summand, Gjj′

0sX
, of Gjj′

0 as

Gjj′

0sX
(x1, x2) =

Γ(|sX |+D/2)

Γ(D/2)Γ(|sX |+ 1)

eisXθ12

(r1r2)
D/2

(4ξ)−(|sX |+D/2)δjj
′×

× 2F1

(
|sX |+D/2, |sX |+ 1/2, 2|sX |+ 1,−ξ−1

)
,

ξ =
y212 + r212
4r1r2

, r12 = r1 − r2 .

(3.15)
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Here 2F1 is a hyper geometric function, and ξ is one of the two conformally invariant

cross-ratios. The other one being the relative angle, θ12, between the two bulk-local opera-

tors with respect to the defect [32]. We place the bulk-local operators on the same distance

from the defect, i.e. r ≡ r1 = r2, so we can compare it with the result from the OPE

Gjj′

0sX
(x1, x2) =

Γ(|sX |+D/2)

Γ(D/2)Γ(|sX |+ 1)

eisXθ12

rD
ρ2|sX |+Dδjj

′ [
1 +O(ρ2)

]
. (3.16)

Comparing this with (3.7) yields14

|cX |0 = 1− ψ̃(|sX |+ 1)− ψ̃(1)

4
ǫ+O(ǫ2) ,

∆0
φX

= 1− ǫ

2
, ∆0

ψX
= |sX |+ 1− ǫ

2
.

(3.17)

Here ψ̃(x) is the digamma function, |cX |m is them-loop correction to |cX |, and ∆m
φ /∆

m
ψ

is the m-loop correction to ∆φX/∆ψX . We do not have any constraints on whether OPE

coefficients in bulk-defect expansions are real.

Note 5 It is important to remember that in all of the ǫ-expansions in this section, ǫ is not

small, but one. Taking ǫ to one is not strictly speaking justified, but it is common practice,

and it is known to be a good approximation, e.g. the results in the φ4 case seems to be true

by comparing it to numerical data [38, 43].

3.2.2 One-loop diagram

The two-point, one-loop diagram (not in momentum space) for bulk-local operators on the

defect is given by

Gjj′

1 (x1, x2) =
∑

sX

Gjj′

1sX
(x1, x2) ,

Gjj′

1sX
(x1, x2) = − 2λ

(2π)4S

∫

R4

d4x0

(

Gjk
0sX

(x1, x0)G0kl(x0, x0)G
lj′

0sX
(x0, x2)+

+Gjk
0sX

(x1, x0)G0lk(x0, x0)G
lj′

0sX
(x0, x2)+

+Gjk
0sX

(x1, x0)G
l
0l(x0, x0)G0sXk

j′(x0, x2)
)

,

S = 3!2 .

(3.18)

Here λ is the coupling constant at the WF fixed point, see (3.3), and S is the symmetry

factor. Please note that in each of the terms in Gjj′

1sX
, one of the Green’s functions, Gjj′′

0 ,

is the whole sum and not only the summand, Gjj′′

0sX
, of (3.15). In appendix section B.1 we

rewrite Gjj′′

0sX
using hypergeometric function relations

Gjj′′

0sX
(xk, xl) = eisXθkl

(4rkrl)
|sX |

d−kld
+
kl

(
d−kl + d+kl

)2|sX |
δjj

′

,

d±kl =
√

y2kl + (r±kl)
2 + z2kl , r±kl = rk ± rl .

(3.19)

14Here we have Taylor expanded |cX |0 around ǫ = 0.
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The sum Gjj′′

0 is the propagator for the theory. Renormalization yields that we only

need to care about the finite piece of this propagator when we perform the resummation15

Gjj′

0 (x0, x0) =
υ(υ − 1)

2r20
δjj

′

. (3.20)

Inserting Gjj′

0sX
and Gjj′

0 back into (3.18) yields

Gjj′

1sX
(x1, x2) = −υ(υ − 1)λ

(2π)4S
eisXθ12

(

2 + δll

)

δjj
′×

×
∫

κ

dy0dz0r0dr0dθ0
r20

(4rr0)
2|sX |

d−10d
+
10

(
d−10 + d+10

)2|sX |
d−02d

+
02

(
d−02 + d+02

)2|sX |
,

κ = {y0, z0 ∈ R , r0 ∈ {0,∞} , θ0 ∈ {0, 2π}} .

(3.21)

Here we are using cylindrical coordinates and the positions x1 and x2 are at the same

distance from the defect, i.e. r ≡ r1 = r2, as well as z1 = z2 = 0. We rewrite this integral

using the variable change

y′0 = y0 +
y

2
, y ≡ y12 , (3.22)

which yields

d±10
(3.22)
=

√
(

y′0 −
y

2

)2
+ (r0 ± r)2 + z20 ≡ e±− ,

d±02
(3.22)
=

√
(

y′0 +
y

2

)2
+ (r0 ± r)2 + z20 ≡ e±+ .

(3.23)

Thus

Gjj′

1sX
(x1, x2)

(3.22)
= −υ(υ − 1)(X + 2)λ

(2π)3S
eisXθ12δjj

′

HsX (r, y) ,

HsX (r, y) =

∫

R2

dy′0dz0

∫ ∞

0
dr0

1

r0

(4rr0)
2|sX |

e−−e
+
−e

−
+e

+
+

(
e−− + e+−

)2|sX | (
e−+ + e++

)2|sX |
.

(3.24)

The asymptotic of the integral HsX (r, y) is carefully studied in [43].

Gjj′

1sX
(x1, x2) =

υ(υ − 1)(X + 2)ǫ

(X + 8)|sX |
eisXθ12δjj

′ ρ2(|sX |+1)

r2
log ρ+O(ρ0) . (3.25)

From (3.10) we know that we can find the first loop order correction to some of the CFT

data from (G−1
0sX

)jj′′G
j′′j
1sX

, withGjj′

0sX
from (3.16). Taylor expanding (G−1

0sX
)jj′′ around ǫ = 0

(G−1
0sX

)jj′′G
j′′j
1sX

=
υ(υ − 1)(X + 2)ǫ

2(X + 8)|sX |
δjj

′

log ρ+O(ρ0) +O(ǫ2) . (3.26)

Comparing this with the result from the OPE (3.8) and we find that only ∆ψX receives

corrections from the one-loop diagram. This correction is given by

∆1
ψX

=
υ(υ − 1)(X + 2)ǫ

2(X + 8)|sX |
. (3.27)

15Details about this resummation is in appendix section B.2.
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Putting it all together, up to one-loop corrections (or up to order ǫ), we have

|cX | = δjj
′ − ψ̃(|sX |+ 1)− ψ̃(1)

4
δjj

′

ǫ+O(ǫ2) ,

∆ψX = |sX |+ 1−
(

1− υ(υ − 1)(X + 2)

(X + 8)|sX |

)
ǫ

2
+O(ǫ2) ,

∆φX = 1− ǫ

2
+O(ǫ2) .

(3.28)

Note 6 As a consistency check, one can see that this reduces to the results in [43] when

X = 1 and υ = 2−1

X = 1 , υ =
1

2
⇒ ∆ψ = |s|+ 1−

(
1

12|s| + 1

)
ǫ

2
+O(ǫ2) . (3.29)

4 Rychkov-Tan analysis

In this section we generalize the O(N) framework created in [44] to the WF O(N) model

with a co-dimension two, monodromy defect. This approach is very similar to that in [55].

We define three axioms for the theory that contains information about its dynamics. This

section will serve as another consistency check on the results (3.28). In this section we

need to rescale the bulk-local fields so that they matches the normalization (3.13)

Φj → 1

2π
Φj . (4.1)

Axiom 1 The WF fixed point in the WF O(N) model, see (3.3), is conformally invariant,

hence the theory at this point is a CFT.

Axiom 2 Correlators in the WF fixed point approach free theory correlators (when the

coupling constant is zero) in the limit

ǫ → 0 . (4.2)

This is because the coupling constant at this fixed point is proportional to ǫ. It yields that

every operator in the 4− ǫ dimensional theory tends to operators in the free theory in the

above limit.

Axiom 3 The operators

T2p =
(

φkXφ
k
X

)p
, T j2p+1 = φjX

(

φkXφ
k
X

)p
, j , k ∈ {1, . . . , X} , (4.3)

are all primary except T j3 . The equations of motion from (3.1), with the rescaling of bulk-

local operators (4.1), tells us that it is a descendant of T1

αT j3 = ∂2
µT

j
1 , α =

λ

3!(2π)2
=

2ǫ

X + 8
+O(ǫ2) . (4.4)
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We will find T j3 first from (4.3) using Wick’s theorem, and then compare it with the

T j3 that we find from (4.4). The Wick contraction between two bulk-local primaries close

to the defect is the propagator (3.20). From (4.3) we find

T j3 =
υ(υ − 1)(X + 2)

2r2
φjX +O(r0) . (4.5)

Using the bulk-defect expansion (2.27) of φjX

T j3 =
υ(υ − 1)(X + 2)

2

∑

sX

(

cX
e−isXθ

r∆φX−∆ψX+2
ψjX +O(r∆φX−∆ψX )

)

. (4.6)

We move on to find T j3 using (4.4). With cylindrical coordinates

T j3 = α−1
∑

sX

(

cX

[

(∆φX −∆ψX )
2 − s2X

] e−isXθ

r∆φX−∆ψX+2
ψjX +O(r∆φX−∆ψX )

)

.

Compare the r−∆φX+∆ψX−2-terms above with those in (4.6) to get the relation

υ(υ − 1)(X + 2)

2
=

(∆φX −∆ψX )
2 − s2X

α
. (4.7)

The scaling dimension, ∆φX , for bulk-local operators is found using the framework for

O(N) models from [44]. It is the same as in section 3, see (3.28). If we write ∆ψX as a

power series in ǫ, we find it to be the same as in section 3 as well.
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A Proper and improper O(2) solutions

In this appendix we solve the first two equations from (2.6) when sinϑ 6= 0
{

e−2πisC1
R,sΨ

R
s = ± cosϑC1

R,sΨ
R
s ∓ sinϑC2

R,sΨ
R
s ,

e−2πisC2
R,sΨ

R
s = sinϑC1

R,sΨ
R
s + cosϑC2

R,sΨ
R
s .

(A.1)

The first of these equations yields

C1
R,sΨ

R
s = ∓ sinϑ

e−2πis ∓ cosϑ
C2

R,sΨ
R
s . (A.2)

Inserting this into the second equation in (A.1) gives us
(
e−2πis − cosϑ

) (
e−2πis ∓ cosϑ

)
= ∓ sin2 ϑ . (A.3)

This will yield different results depending on whether Rϑ in (2.5) has determinant one

or minus one.
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A.1 Proper rotation

A proper Rϑ, i.e. detRϑ = 1, yields

(
e−2πis − cosϑ

)2
= − sin2 ϑ . (A.4)

Solving for s

e−2πis = cosϑ± i sinϑ = e±i(ϑ+2πn) , n ∈ Z ⇔ s = n+
ϑ

2π
. (A.5)

Insert this back into (A.2) and we find the relation

C1
R,sΨ

R
s = ±iC2

R,sΨ
R
s . (A.6)

A.2 Improper rotation

An improper Rϑ, i.e. detRϑ = −1, yields

(
e−2πis − cosϑ

) (
e−2πis + cosϑ

)
= sin2 ϑ . (A.7)

Solving for s

e−4πis = 1 ⇔ s =
n

2
, n ∈ Z . (A.8)

B One-loop diagram integral

If we study the components of the integral (3.18), we can solve it by carefully study its

asymptotic expansion. First though, we need to massage the expression for the summand,

Gjj′

0sX
, and then resum this expression to find the propagator Gjj′

0 . The asymptotic behavior

of (3.18) will not be studied here. The interested reader may find details on its asymptotics

in [43].

B.1 Summand

We start with the summand Gjj′

0s . We cannot consider r ≡ r1 = r2, which corresponds

to (3.16), since we are integrating over one of the coordinates. Thus we need to mas-

sage (3.15) using hypergeometric function relations

Gjj′

0s (xk, xl) =
Γ(|s|+ 1)

Γ(1)Γ(|s|+ 1)

eisθkl

rkrl
α−(|s|+1)δjj

′×

× 2F1 (|s|+ 1, |s|+ 1/2, 2|s|+ 1,−4/α) +O(ǫ)

=
eisθkl

rkrl

4s

√
α
√
4 + α

(√
α+

√
4 + α

)2|s|
δjj

′

+O(ǫ) , α = 4ξ .

(B.1)
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Taylor expand this expression around ǫ = 0

Gjj′

0s (xk, xl) =
eisθkl

rkrl

4s

(rkrl)
−1

√

y2kl + r2kl + z2kl

√

4rkrl + y2kl + r2kl + z2kl

×

× 1

(rkrl)
−s

(√

y2kl + r2kl + z2kl +
√

4rkrl + y2kl + r2kl + z2kl

)2|s|
δjj

′

+

+O(ǫ)

= eisθkl
(4rkrl)

|s|

d−kld
+
kl

(
d−kl + d+kl

)2|s|
δjj

′

+O(ǫ) ,

d±kl =
√

y2kl + (r±kl)
2 + z2kl , r±kl = rk ± rl .

(B.2)

Note 7 The z-components are zero unless it is one of the integration variables in (3.18)

zk = 0 if k 6= 0 . (B.3)

B.2 Resummation

The next component in (3.18) that we need to study is the sum Gjj′

0 (x0, x0). This com-

ponent will be divergent, but we renormalize the theory such that we only care about its

finite part. Let us denote

x ≡
√

y200 + z200 ⇒ d−00 = lim
x→0

x , d+00 = lim
x→0

√

(2r0)2 + x2 . (B.4)

We consider the defect-local operators in the bulk-defect expansion to have generic

spin (3.5) with υ fixed (since the operators we study in our Green’s function transform in

the same unbroken subgroup, O(X), of O(N)). Using (B.2)

Gjj′

0 (x0, x0) = lim
x→0

δjj
′

x
√

(2r0)2 + x2

∑

s∈Z+υ







2r0
(

x+
√

(2r0)
2 + x2

)







2|s|

. (B.5)

Resumming a geometric sum on the form

∑

s∈Z+υ

η|s| = 2
∑

s≥υ

ηs − δυ0 =
[
s′ = s− υ

]
= 2

∑

s′≥0

ηs
′+υ − δυ0 =

2ηυ

1− η
− δυ0 , (B.6)

and using the following Taylor expansions

1
√

(2r0)2 + x2
=

1

2r0
+O(x2) , (B.7)

1
√

(2r0)2 + x2

(

x+
√

(2r0)
2 + x2

)−2υ

1− (2r0)
2

(

x+
√

(2r0)
2 + x2

)−2 = (B.8)

=
1

(2r0)
2υ

(
1

2x
+

1− 2υ

2 (2r0)
+

υ(υ − 1)

(2r0)
2 x

)

+O(x2) ,
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yields

Gjj′

0 (x0, x0) = δjj
′

(

lim
x→0

1

x

(
1

x
+

1− 2υ − δυ0
2r0

)

+
υ(υ − 1)

2r20

)

. (B.9)

We renormalize the theory such that we can ignore the divergent part (x−2- and x−1-

terms) in the above propagator. This propagator is correct since we reproduce the result

from [43], with an overall factor of δjj
′

, in the half-integer case (υ = 1/2), i.e.

Gjj′

0 (x0, x0) = δjj
′

(

lim
x→0

1

x2
− 1

8r20

)

. (B.10)
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