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1 Introduction

The exceptional supergroup D(2, 1;α) describes the most general N = 4 supersymmetric

extension of the conformal group in one dimension SO(2, 1). It is parametrized by one

real number α. As far as realizations in superspace are concerned, the generators of the

corresponding Lie superalgebra are associated with time translations, dilatations, special

conformal transformations, supersymmetry transformations and their superconformal part-

ners, as well as with two variants of su(2)-transformations. One su(2) is interpreted as the

R-symmetry subalgebra, while the other affects only fermions. Recent interest in D(2, 1;α)

and specifically in SU(1, 1|2) which arises at α = −1 was motivated by a possible link to a

microscopic description of the near horizon extreme Reissner-Nordström black hole and the

desire to better understand peculiar features of extended supersymmetry in d = 1 which

are absent in higher dimensions.1 It is curious that none of the D(2, 1;α) superconformal

mechanics models considered thus far assigned any physical meaning to the parameter α

(for geometric interpretations see [3]).

A related line of research is the construction of superconformal particles propagating

on near horizon extreme black hole backgrounds. Such systems can be linked to the con-

ventional superconformal mechanics by applying a proper coordinate transformation [4, 5].

It is believed that they will help to establish a precise relation between supergravity Killing

spinors and supersymmetry charges of superparticles on curved backgrounds.

In a recent work [1], couplings in SU(1, 1|2) superconformal mechanics have been re-

considered from the perspective of the R-symmetry subgroup SU(2). It was shown that any

realization of su(2) in terms of phase space functions can be extended to a representation of

the full su(1, 1|2) superconformal algebra. Novel interactions of supermultiplet of the type

1The literature on the subject is rather extensive. For recent developments and further references

see [1, 2].
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(0, 4, 4) to either (1, 4, 3)-, or (3, 4, 1)-, or (4, 4, 0)-supermultiplet have been constructed by

arranging the su(2)-generators so as to include both bosons and fermions. Soon after, in

ref. [2] the off-shell superfield method has been applied so as to generalize the results in [1]

to the case of D(2, 1;α) and even more general coupling involving three supermultiplets of

the type (1, 4, 3), (4, 4, 0), and (0, 4, 4) has been built.

Conventional means of building superconformal mechanics include the superfield ap-

proach, the method of nonlinear realizations, and the direct construction of a representation

of the desired superconformal algebra within the Hamiltonian framework. While the su-

perfield technique is definitely more powerful, the Hamiltonian approach is more efficient in

analyzing the dynamical content and the structure of interactions because non-dynamical

auxiliary fields are absent.

The goal of this work is to extend the Hamiltonian analysis in [1] to the case of the

exceptional supergroup D(2, 1;α). In doing so, we recover the results in a recent work [2]

and further extend them by constructing a D(2, 1;α)-invariant model which describes cou-

pling of arbitrary number of supermultiplets of the type (1, 4, 3) and (0, 4, 4) to a single

supermultiplet of either the type (3, 4, 1), or (4, 4, 0). We also discuss D(2, 1;α) supercon-

formal mechanics in the so called AdS basis [4] and connect the systems based on (3, 4, 1)-,

and (4, 4, 0)-supermultiplets to superparticles propagating near the horizon of the extreme

Reissner-Nordström-AdS-dS black hole in four and five dimensions. In that context, the

parameter α is linked to the cosmological constant and thus, for the first time in the

literature, it is given a clear physical interpretation.

The work is organized as follows. In the next section it is argued that any representa-

tion of the R-symmetry subalgebra su(2) in terms of phase space functions can be automat-

ically extended to a representation of the Lie superalgebra associated with D(2, 1;α). In

section 3, based on the earlier work [6], we construct a novel coupling of an arbitrary number

of supermultiplets of the type (1, 4, 3) and (0, 4, 4) to a single supermultiplet of either the

type (3, 4, 1), or (4, 4, 0). D(2, 1;α)-superparticles on black hole backgrounds are considered

in section 4. Models associated with the near horizon geometry of the extreme Reissner-

Nordström-AdS-dS black hole in four and five dimensions are linked to D(2, 1;α) supercon-

formal mechanics based on supermultiplets of the type (3, 4, 1) and (4, 4, 0), respectively.

The parameter α is linked to the cosmological constant. Our spinor conventions are gath-

ered in appendix. Throughout the paper summation over repeated indices is understood.

2 Extending su(2) to D(2, 1;α)

Consider a representation of su(2) in terms of functions on some phase space

{Ja, Jb} = ǫabcJc, (2.1)

where a = 1, 2, 3 and ǫabc is the totally antisymmetric symbol with ǫ123 = 1. In what

follows three realizations we will of interest. The first is given by the angular momentum
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of a free particle moving on two-dimensional sphere

J1 = −pΦ cotΘ cosΦ− pΘ sinΦ,

J2 = −pΦ cotΘ sinΦ + pΘ cosΦ,

J3 = pΦ, JaJa = p2Θ + p2Φ sin−2Θ, (2.2)

where (Θ, pΘ) and (Φ, pΦ) form canonical pairs obeying the conventional Poisson brackets

{Θ, pΘ} = 1, {Φ, pΦ} = 1. The second is provided by the same model in external field of

the Dirac monopole

J1 = −pΦ cotΘ cosΦ− pΘ sinΦ + q cosΦ sin−1Θ,

J2 = −pΦ cotΘ sinΦ + pΘ cosΦ + q sinΦ sin−1Θ,

J3 = pΦ, JaJa = p2Θ + (pΦ − q cosΘ)2 sin−2Θ+ q2, (2.3)

where q is the magnetic charge. The third is linked to the geodesic motion on the group

manifold SU(2) and is given by the vector fields dual to the conventional left-invariant

one-forms

J1 = −pΦ cotΘ cosΦ− pΘ sinΦ + pΨ cosΦ sin−1Θ,

J2 = −pΦ cotΘ sinΦ + pΘ cosΦ + pΨ sinΦ sin−1Θ,

J3 = pΦ, JaJa = p2Θ + (pΦ − pΨ cosΘ)2 sin−2Θ+ p2Ψ, (2.4)

with (Θ, pΘ), (Φ, pΦ) and (Ψ, pΨ) forming the canonical pairs.

Note that (2.3) follows from (2.2) by introducing the coupling to the external vector

field potential pa → pa+Aa(Θ,Φ) and imposing the structure relations of su(2), while (2.4)

results from (2.3) by implementing the oxidation q → pΨ with respect to the constant q. Fo-

cusing on the Casimir element JaJa, it is important to stress that all the su(2)-realizations

exhibited above are characterized by a non-degenerate metric which accompanies terms

quadratic in momenta. Direct sums of Ja in (2.2), (2.3), (2.4) yield degenerate metrics

which prove to be unsuitable for the applications to follow.

Each realization of su(2) in a phase space can be extended to a representation of the

Lie superalgebra corresponding to D(2, 1;α). It suffices to introduce an extra bosonic

canonical pair (x, p) along with a fermionic SU(2)-spinor ψα, α = 1, 2, and its complex

conjugate (ψα)
∗ = ψ̄α, and impose the brackets2

{x, p} = 1 , {ψα, ψ̄β} = −iδα
β . (2.5)

2Within the Hamiltonian formalism the canonical bracket {ψα, ψ̄
β} = −iδα

β is conventionally under-

stood as the Dirac bracket {A,B}
D

= {A,B} − i{A, λα}{λ̄α, B} − i{A, λ̄α}{λ
α, B} associated with the

fermionic second class constraints λα = pψ
α − i

2
ψ̄α = 0 and λ̄α = pψ̄α − i

2
ψα = 0. Here (pψ

α, pψ̄α)

stand for the momenta canonically conjugate to the variables (ψα, ψ̄
α), respectively. Choosing the right

derivative for the fermionic degrees of freedom, the action functional, which reproduces the Dirac bracket

for the fermionic pair, reads S =
∫

dt
(

i
2
ψ̄αψ̇α − i

2

˙̄ψαψα
)

. Similar consideration applies to the fermionic

pair (χα, χ̄
α) which appears in section 3.
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Then it is straightforward to verify that the functions

H =
p2

2
+

2α2

x2
JaJa +

2α

x2
(ψ̄σaψ)Ja −

(1 + 2α)

4x2
ψ2ψ̄2, D = tH − 1

2
xp,

K = t2H − txp+
1

2
x2, Ja = Ja +

1

2
(ψ̄σaψ),

Qα = pψα − 2iα

x
(σaψ)αJa −

i(1 + 2α)

2x
ψ̄αψ

2 , Sα = xψα − tQα,

Q̄α = pψ̄α +
2iα

x
(ψ̄σa)

α
Ja −

i(1 + 2α)

2x
ψαψ̄2, S̄α = xψ̄α − tQ̄α,

I− =
i

2
ψ2, I+ = − i

2
ψ̄2, I3 =

1

2
ψ̄ψ, (2.6)

where σa are the Pauli matrices (for our spinor conventions see appendix), do obey the

structure relations of the Lie superalgebra corresponding to D(2, 1;α)

{H,D} = H, {H,K} = 2D,

{D,K} = K, {Ja,Jb} = ǫabcJc,
{Qα, Q̄

β} = −2iHδα
β , {Qα, S̄

β} = −2α(σa)α
βJa + 2iDδα

β + 2(1 + α)I3δα
β,

{Sα, S̄β} = −2iKδα
β, {Q̄α, Sβ} = 2α(σa)β

αJa + 2iDδβ
α − 2(1 + α)I3δβ

α,

{Qα, Sβ} = 2i(1 + α)ǫαβI−, {Q̄α, S̄β} = −2i(1 + α)ǫαβI+,

{D,Qα} = −1

2
Qα, {D,Sα} =

1

2
Sα,

{K,Qα} = Sα, {H,Sα} = −Qα,

{Ja, Qα} =
i

2
(σa)α

βQβ , {Ja, Sα} =
i

2
(σa)α

βSβ ,

{D, Q̄α} = −1

2
Q̄α, {D, S̄α} =

1

2
S̄α,

{K, Q̄α} = S̄α, {H, S̄α} = −Q̄α,

{Ja, Q̄α} = − i

2
Q̄β(σa)β

α, {Ja, S̄α} = − i

2
S̄β(σa)β

α,

{I−, Q̄α} = ǫαβQβ , {I−, S̄α} = ǫαβSβ ,

{I+, Qα} = −ǫαβQ̄
β , {I+, Sα} = −ǫαβS̄

β ,

{I3, Qα} =
i

2
Qα, {I3, Sα} =

i

2
Sα,

{I3, Q̄α} = − i

2
Q̄α, {I3, S̄α} = − i

2
S̄α,

{I−, I3} = −iI−, {I+, I3} = iI+,

{I−, I+} = 2iI3. (2.7)

When verifying the structure relations (2.7), the properties of the Pauli matrices and the

spinor identities gathered in appendix were extensively used.

As far as dynamical realizations are concerned, H is interpreted as the Hamiltonian.

D and K are treated as the generators of dilatations and special conformal transforma-

tions. Qα are the supersymmetry generators and Sα are their superconformal partners. Ja
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generate the R-symmetry subalgebra su(2). So do also I±, I3 for which the Cartan basis

is chosen. The extra su(2), which is realized on the fermions, makes the main difference

with the su(1, 1|2) superconformal algebra, which arises at α = −1.

It should be mentioned that a representation similar to (2.6) was first considered in [3].

Yet, the functions Ja were assigned quite a different meaning. In [3] they involved non-

dynamical harmonic variables which represented spin degrees of freedom. In this work,

we suggest to realize Ja in terms of the fully fledged dynamical variables as displayed

in eqs. (2.2), (2.3), (2.4) above. Then eqs. (2.6) provide a Hamiltonian description of

D(2, 1;α)-supermultiples of the type (3, 4, 1) (two on-shell versions) or (4, 4, 0). Worth

mentioning is also the work in [7] where it was demonstrated that the angular part of a

generic conformal mechanics can be lifted to a D(2, 1;α)-invariant system.

3 Couplings of D(2, 1;α) supermultiplets from the su(2) perspective

In a recent work [1], we reexamined dynamical realizations of the superconformal algebra

su(1, 1|2) and constructed novel on-shell couplings of supermultiplet of the type (0, 4, 4) to

a single supermultiplet of either the type (1, 4, 3), or (3, 4, 1), or (4, 4, 0). This was achieved

by introducing an extra pair of complex conjugate fermions χα, χ̄
α = (χα)

∗, α = 1, 2, which

obey the canonical bracket

{χα, χ̄β} = −iδα
β, (3.1)

and promoting Ja in (2.1) to

J̃a = Ja +
1

2
(χ̄σaχ). (3.2)

While one cannot consistently combine two bosonic realizations of su(2) within an uncon-

strained dynamical system with D(2, 1;α)-superconformal symmetry, the direct sum of Ja
in (2.2), or (2.3), or (2.4) with 1

2
(χ̄σaχ) is admissible. All one needs in verifying the struc-

ture relations of the Lie superalgebra corresponding to D(2, 1;α) is that J̃a form su(2). The

resulting (on-shell) model can be viewed as describing a particular interaction of (0, 4, 4)-

supermultiplet realized on the pair (χα, χ̄
α) with either (3, 4, 1)-, or (4, 4, 0)-supermultiplet.

The corresponding off-shell superfield Lagrangian formulations have been constructed in [2]

which generalize the on-shell su(1, 1|2)-superconformal models in [1]. Yet, in [2] it was also

shown that the superfield approach is capable of describing a similar interaction between

three distinct supermultiplets of the type (1, 4, 3), (4, 4, 0), and (0, 4, 4). Below we gener-

alize that result by coupling an arbitrary number of (1, 4, 3)-, and (0, 4, 4)-supermultiples

to a single supermultiplet of either the type (3, 4, 1), or (4, 4, 0). The idea is to build a

many-body generalization of the representation (2.6) in the spirit of [8].

Consider a set of canonical pairs which involves bosons (xi, pi) and fermions (ψiα, ψ̄
iα),

(χAα , χ̄
Aα), with i = 1, . . . ,M + 1, A = 1, . . . , N , α = 1, 2, obeying the brackets

{xi, pj} = δij , {ψiα, ψ̄jβ} = −iδijδα
β , {χAα , χ̄Bβ} = −iδABδα

β . (3.3)
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Guided by our previous study of the su(1, 1|2) superconformal mechanics [8], on such a

phase space we introduce ansatze for the D(2, 1;α)-generators

H =
1

2
pipi +

1

2
∂iV ∂iV J̃aJ̃a + ∂i∂jV J̃a(ψ̄

iσaψ
j) D = tH − 1

2
xipi,

− 1

2
∂iW jkl(ψiψj)(ψ̄kψ̄l),

K = t2H − txipi +
1

2
xixi, I3 =

1

2
(ψ̄iψi),

I− =
i

2
(ψiψi), I+ = − i

2
(ψ̄iψ̄i),

Qα = piψiα + i∂iV (σaψ
i)αJ̃a + iW ijkψ̄iα(ψ

jψk) , Sα = xiψiα − tQα,

Q̄α = piψ̄iα − i∂iV (ψ̄iσa)
α
J̃a + iW ijkψiα(ψ̄jψ̄k), S̄α = xiψ̄iα − tQ̄α,

Ja = J̃a +
1

2
(ψ̄iσaψ

i), (3.4)

which involve two scalar prepotentials V = V (x), F = F (x) with W ijk = ∂i∂j∂kF (x) and

J̃a = Ja +
1

2
(χ̄Aσaχ

A). It is assumed that Ja is one of the su(2) realizations exposed in

eqs. (2.2), (2.3), (2.4) above. The structure relations (2.7) impose the following constraints

on the prepotentials:

∂i∂jV + ∂iV ∂jV − 2W ijk∂kV = 0, W ijkW klm = WmjkW kli,

xi∂iV = −2α, xiW ijk = −1

2
(1 + 2α)δjk. (3.5)

When verifying (2.7), the spinor algebra and the properties of the Pauli matrices given

in appendix were extensively used. Note that for a nonzero value of the parameter α

the system (3.5) does not allow the prepotential V to vanish. The restrictions (3.5) have

been obtained under the assumption that the su(2) generators Ja in eqs. (3.2), (3.4) are

nontrivial. The choice Ja = 0, which is also compatible with (2.1), would have altered the

leftmost equation entering the first line in (3.5) [6, 8].

Inspired by the earlier work [3], a representation similar to (3.4) has been constructed

in [6].3 In particular, a plenty of interesting solutions to the master equations (3.5) have

been found, which relied upon the root systems and their deformations. Yet, like in [3],

the functions J̃a were realized in terms of non-dynamical spin degrees of freedom and the

possibility to include into the consideration N copies of (0, 4, 4)-supermultiplet described

by (χAα , χ̄
Aα) remained unnoticed.

Being combined with the solutions to eq. (3.5) in [6], the representation (3.4) gives a

clue to building novel couplings in D(2, 1;α) superconformal mechanics. Given a particular

solution to (3.5), the resulting model (3.4) describes an interaction of M supermultiplets of

the type (1, 4, 3) with N (0, 4, 4)-supermultiplets and a single supermultiplet of either the

type (3, 4, 1), or (4, 4, 0). Alternatively, one can regard this system as describing a coupling

of M + 1 copies of either (3, 4, 1)-, or (4, 4, 0)-supermultiplet, in which angular degrees of

freedom are identified, to N supermultiplets of the type (0, 4, 4).

3The constraints (3.5) fit those in [6] after the redefinition V → −V , 2W ijk →W ijk.
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Completing this section, we exhibit the on-shell Lagrangian formulations associated

with the Hamiltonian description (3.4) and assume α 6= 0 which excludes V = 0. Given Ja
in (2.3), let us introduce the 3-vector λa parameterizing a point on the unit sphere

λa = (cosΦ sinΘ, sinΦ sinΘ, cosΘ), λaλa = 1, (3.6)

and the 3-vector La

La = Θ̇

(

∂Ja
∂pΘ

)

+ Φ̇ sin2Θ

(

∂Ja
∂pΦ

)

+ q∂iV ∂iV λa, Laλa = q∂iV ∂iV, (3.7)

which has the components

L1 = −Θ̇ sinΦ− Φ̇ sinΘ cosΘ cosΦ + q∂iV ∂iV sinΘ cosΦ,

L2 = Θ̇ cosΦ− Φ̇ sinΘ cosΘ sinΦ + q∂iV ∂iV sinΘ sinΦ,

L3 = Φ̇ sin2Θ+ q∂iV ∂iV cosΘ, LaLa = Θ̇2 + Φ̇2 sin2Θ+ q2
(

∂iV ∂iV
)2
. (3.8)

Then the on-shell Lagrangian which describes a coupling of a single supermultiplet of the

type (3, 4, 1) to and arbitrary number of (1, 4, 3)-, and (0, 4, 4)-supermultiplets reads

S=

∫

dt

(

1

2
ẋiẋi +

i

2
ψ̄iψ̇i − i

2
˙̄ψiψi +

i

2
χ̄Aχ̇A − i

2
˙̄χAχA +

1

2

(

∂iV ∂iV
)−1
(

Θ̇2 + Φ̇2 sin2Θ
)

−q2

2

(

∂iV ∂iV
)

+ qΦ̇ cosΘ−
(

∂lV ∂lV
)−1

(

∂i∂jV (ψ̄iσaψ
j) +

1

2
∂iV ∂iV (χ̄Aσaχ

A)

)

La

−1

2

(

∂iV ∂iV
)−1

[(

∂i∂jV (ψ̄iσaψ
j) +

1

2
∂iV ∂iV (χ̄Aσaχ

A)

)

λa

]2

+

(

∂iW jkl − (∂pV ∂pV )−1

[

1

2
∂i∂jV ∂k∂lV + ∂i∂lV ∂k∂jV

])

(ψ̄iψj)(ψ̄kψl)

)

. (3.9)

In obtaining (3.9), one has to rewrite the phase space functions (2.3) within the Lagrangian

framework

Ja =
(

∂iV ∂iV
)−1

(La −Ba + (Bcλc)λa) , (3.10)

where Ba =
(

∂i∂jV (ψ̄iσaψ
j) + 1

2
∂iV ∂iV (χ̄Aσaχ

A)
)

. Note that the kinetic terms for the

fermions correlate with the form of the canonical (Dirac) bracket chosen above (see the

footnote on page 3). Alternatively, the system (3.9) can be viewed as describing an inter-

action of M + 1 copies of (3, 4, 1)-supermultiplet, in which angular degrees of freedom are

identified, with N supermultiplets of the type (0, 4, 4).

The Lagrangian system based on the realization of su(2) in (2.4) is constructed likewise.

Introducing the 3-vector La

La = Θ̇

(

∂Ja
∂pΘ

)

+
(

Φ̇ + Ψ̇ cosΘ
)

(

∂Ja
∂pΦ

)

+
(

Ψ̇ + Φ̇ cosΘ
)

(

∂Ja
∂pΨ

)

, (3.11)

which has the components

L1 = −Θ̇ sinΦ + Ψ̇ sinΘ cosΦ, L2 = Θ̇ cosΦ + Ψ̇ sinΘ sinΦ,

L3 = Φ̇ + Ψ̇ cosΘ, LaLa = Θ̇2 + Φ̇2 sin2Θ+ (Ψ̇ + Φ̇ cosΘ)
2
, (3.12)
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and implementing the inverse Legendre transformation to the Hamiltonian in (3.4), one gets

S =

∫

dt

(

1

2
ẋiẋi +

i

2
ψ̄iψ̇i − i

2
˙̄ψiψi +

i

2
χ̄Aχ̇A − i

2
˙̄χAχA (3.13)

+
1

2

(

∂iV ∂iV
)−1

(

Θ̇2 + Φ̇2 sin2Θ+ (Ψ̇ + Φ̇ cosΘ)
2
)

−
(

∂lV ∂lV
)−1

(

∂i∂jV (ψ̄iσaψ
j) +

1

2
∂iV ∂iV (χ̄Aσaχ

A)

)

La

+

(

∂iW jkl − (∂pV ∂pV )−1

[

1

2
∂i∂jV ∂k∂lV + ∂i∂lV ∂k∂jV

])

(ψ̄iψj)(ψ̄kψl)

)

.

When shuffling between the Lagrangian and Hamiltonian formulations, it proves helpful to

use the identity

Ja =
(

∂lV ∂lV
)−1

(

La −
(

∂i∂jV (ψ̄iσaψ
j) +

1

2
∂iV ∂iV (χ̄Aσaχ

A)

))

, (3.14)

which relates Ja in (2.4) and La in (3.12). A possible alternative interpretation of the

action (3.13) is that it describes a coupling of M + 1 copies of (4, 4, 0)-supermultiplet, in

which angular degrees of freedom are identified, to N supermultiplets of the type (0, 4, 4).

4 D(2, 1;α) superparticles on near horizon black hole backgrounds

By applying an appropriate canonical transformation, (3, 4, 1)-supermultiplet of the super-

group SU(1, 1|2) can be linked to the model of a massive relativistic superparticle propa-

gating near the horizon of the extreme Reissner-Nordström black hole carrying the electric

charge [4, 5] or both the electric and magnetic charges [9]. Likewise, the near horizon

geometry of the d = 5, N = 2 supergravity interacting with one vector multiplet turns out

to be a proper background in the case of (4, 4, 0)-supermultiplet of SU(1, 1|2) [1]. The two

coordinate systems are referred to as the conformal and AdS bases [4]. In this section, we

generalize the previous studies in [1, 5, 9] to the case of the exceptional superconformal

group D(2, 1;α) and link the parameter α to the cosmological constant.

Consider the canonical transformation

x′ =

[

2M2

x

(

√

b2 + (xp)2 + α2JaJa − b

)]

1

2

,

p′ = −2xp

[

2M2

x

(

√

b2 + (xp)2 + α2JaJa − b

)]−
1

2

,

J ′

a = Ja, ψ′

α = ψα, (4.1)

where M and b are real constants, α is the parameter entering D(2, 1;α), and the prime

designates coordinates in the conformal basis. Being rewritten in the AdS basis, the phase
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space functions (2.6) read

H =
x

M2

(

√

b2 + (xp)2 + α2JaJa + b

)

+
x

M2

(

α(ψ̄σaψ)Ja −
1

8
(1 + 2α)ψ2ψ̄2

)(

√

b2 + (xp)2 + α2JaJa − b

)−1

,

D = tH + xp, K = t2H + 2txp+
M2

x

(

√

b2 + (xp)2 + α2JaJa − b

)

,

Sα = ψα

(

2M2

x

(

√

b2 + (xp)2 + α2JaJa − b

))

1

2

− tQα,

S̄α = ψ̄α
(

2M2

x

(

√

b2 + (xp)2 + α2JaJa − b

))

1

2

− tQ̄α,

Qα = −2
(

(xp)ψα + iα(σaψ)αJa +
i
4
(1 + 2α)ψ̄αψ

2
)

(

2M2

x

(

√

b2 + (xp)2 + α2JaJa − b

))
1

2

,

Q̄α = −2
(

(xp)ψ̄α − iα(ψ̄σa)
α
Ja +

i
4
(1 + 2α)ψαψ̄2

)

(

2M2

x

(

√

b2 + (xp)2 + α2JaJa − b

))
1

2

,

Ja = Ja +
1

2
(ψ̄σaψ), I− =

i

2
ψ2, I+ = − i

2
ψ̄2, I3 =

1

2
ψ̄ψ. (4.2)

Because the transformation (4.1) is canonical, they do obey the structure relations of the

Lie superalgebra corresponding to D(2, 1;α).

The important point regarding the realization (4.2) is that omitting the fermions one

obtains a bosonic system whose structure is typical for a massive relativistic particle prop-

agating in a curved spacetime. Let us identify backgrounds corresponding to D(2, 1;α) su-

perconformal mechanics based on three realizations of su(2) in eqs. (2.2), (2.3), (2.4) above.

As the first step, consider the metric and the gauge field one-form

ds2 =
( r

M

)2

dt2 −
(

M

r

)2

dr2 −
(

M

α

)2

(dθ2 + sin2 θdφ2),

A =
Q

M2
rdt+ P cos θdφ, (4.3)

where M , Q, P , and α are constants. One can readily verify that these fields do obey the

Einstein-Maxwell equations with the cosmological term

Rnm − 1

2
gnm(R+ 2Λ) = −2

(

FnsFm
s − 1

4
gnmF

2

)

, ∂n(
√−gFnm) = 0, (4.4)

provided the conditions

M =

√

2(Q2 + α4P 2)

1 + α2
, Λ =

α2 − 1

2M2
(4.5)

hold. Eq. (4.3) describes the near horizon geometry of the extreme Reissner-Nordström-

AdS-dS black hole, M , Q, and P being the mass, the electric and magnetic charges,
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respectively. Remarkably enough, the parameter α is linked to the cosmological constant.

In particular, α2 = 1 yields Λ = 0, while the domains α2 < 1 and α2 > 1 correspond to

the negative and positive cosmological constants. The value α = 0 is excluded from the

consideration as the metric becomes singular.

Then let us demonstrate thatD(2, 1;α) superconformal mechanics based on the realiza-

tions of su(2) in (2.2), (2.3) can be linked to the superparticle propagating near the horizon

of the extreme Reissner-Nordström-AdS-dS black hole in four dimensions. Consider the

static gauge action functional of a massive particle coupled to the background fields (4.3)

S = −
∫

(mds+ eA) = −
∫

dt

(

m

√

(r/M)2 − (M/r)2ṙ2 − (M/α)2(θ̇2 + sin2 θφ̇2)

+eQr/M2 + eP cos θφ̇

)

, (4.6)

where m and e designate its mass and electric charge. Introducing momenta (pr, pθ, pφ)

canonically conjugate to the configuration space variables (r, θ, φ), one can readily construct

the Hamiltonian

H =
r

M2

(

√

(mM)2 + (rpr)
2 + α2

(

p2θ + sin−2 θ(pφ + eP cos θ)2
)

+ eQ

)

. (4.7)

Taking into account the last line in eq. (2.3) and the first line in eq. (4.2), one concludes that

the model (4.7) is amenable to D(2, 1;α) superconformal extension provided the BPS-like

condition is imposed on the particle parameters

(eQ)2 = (mM)2 − (αeP )2. (4.8)

For α2 = 1 the latter correctly reproduces the analysis in [5, 9]. The two (on-shell) versions

of (3, 4, 1)-supermultiplet associated with the realizations of su(2) in (2.2) and (2.3) can

thus be linked to a D(2, 1;α) superparticle propagating near the horizon of the extreme

Reissner-Nordström-AdS-dS black hole which carries either electric or both the electric and

magnetic charges.

Finally, let us identify background geometry which can be connected to (4, 4, 0)-

supermultiplet of D(2, 1;α) based on eq. (2.4). Consider the equations of motion which

describe the bosonic limit of the d = 5, N = 2 supergravity interacting with one vector

multiplet4 in spacetime with cosmological constant

Rmn −
1

2
gmn(R+ 2Λ) + e

2

3
ϕ

(

FmkFn
k − 1

4
gmnF

2

)

+ e−
4

3
ϕ

(

GmkGn
k − 1

4
gmnG

2

)

(4.9)

−1

3

(

∂mϕ∂nϕ− 1

2
gmn∂kϕ∂

kϕ

)

= 0, ∇m

(

e
2

3
ϕFmn − 1√

2g
ǫmnpqrFpqBr

)

= 0,

∇m

(

e−
4

3
ϕGmr

)

+
1

4
√
2g

ǫmnpqrFmnFpq = 0, ∇2ϕ+
1

2
e

2

3
ϕF 2 − e−

4

3
ϕG2 = 0,

4Our notations are similar to those in [10]. We use the mostly minus signature convention for the metric

gmn and set g = det gmn.
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where ϕ is a scalar field, and Fnm = ∂nAm−∂mAn, Gnm = ∂nBm−∂mBn, F
2 = FnmF

nm,

G2 = GnmG
nm. It is straightforward to verify that the set of fields

ds2 =
( r

M

)2

dt2 −
(

M

r

)2

dr2 −
(

M

α

)2
(

dθ2 + sin2 θdφ2 + (dψ + cos θdφ)2
)

,

A =
Qr

M
dt, B =

Qr√
2M

dt, ϕ = 0, (4.10)

where M , Q, and α are constants, does solve (4.9) provided the constraints

Λ =
α2 − 1

2M2
, Q = ±

√

2 + α2

3
(4.11)

hold.

Because a charged massive particle couples only to the electromagnetic field and grav-

ity, the static gauge action functional reads

S = −
∫

dt

(

m

√

(r/M)2 − (M/r)2ṙ2 − (M/α)2
(

θ̇2 + sin2 θφ̇2 + (ψ̇ + cos θφ̇)
2
)

+eQr/M

)

, (4.12)

where m and e are the mass and electric charge of a particle probe. The corresponding

canonical Hamiltonian takes the form

H =
r

M2

(

√

(mM)2 + (rpr)
2 + α2

(

p2θ + sin−2 θ(pφ − pψ cos θ)
2 + p2ψ

)

+ eQM

)

, (4.13)

where (pθ, pφ, pψ) denote momenta canonically conjugate to (θ, φ, ψ). As follows from the

last line in eq. (2.3) and the first line in eq. (4.2), the model (4.13) is amenable to D(2, 1;α)

superconformal extension provided the BPS-like condition on the particle parameters

m2 =
(2 + α2)e2

3
(4.14)

holds.

We thus conclude that (4, 4, 0)-supermultiplet of D(2, 1;α) based on the realization of

su(2) in (2.4) can be linked to a near horizon BPS-superparticle minimally coupled to fields

of the d = 5, N = 2 supergravity interacting with one vector multiplet in spacetime with

cosmological constant. As in the preceding case, the parameter α turns out to be related

to the cosmological constant.

5 Conclusion

To summarize, in this work we generalized the analysis in [1] to the case of the most

general N = 4 superconformal group in one dimension D(2, 1;α). It was shown that any

realization of the R-symmetry subalgebra su(2) in terms of phase space functions can be
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extended to a representation of the Lie superalgebra corresponding to D(2, 1;α). Novel

coupling of arbitrary number of supermultiplets of the type (1, 4, 3) and (0, 4, 4) to a single

supermultiplet of either the type (3, 4, 1), or (4, 4, 0) has been constructed by arranging

the su(2)-generators so as to include both bosons and fermions. Alternatively, this system

can be viewed as describing an interaction of M + 1 copies of either (3, 4, 1)-, or (4, 4, 0)-

supermultiplet, in which angular degrees of freedom are identified, with N supermultiplets

of the type (0, 4, 4). A canonical transformation which relates D(2, 1;α) superconformal

mechanics based on supermultiplets of the type (3, 4, 1) and (4, 4, 0) to BPS-superparticles

propagating near the horizon of the extreme Reissner-Nordström-AdS-dS black hole in four

and five dimensions was found. The parameter α was linked to the cosmological constant.

There are several directions in which the present work can be continued. First of all,

it would be interesting to construct an off-shell superfield Lagrangian formulation for the

component Hamiltonian framework presented in section 3. Interacting systems in section 3

were interpreted as describing a coupling of arbitrary number of supermultiplets of the type

(1, 4, 3) and (0, 4, 4) to a single supermultiplet of either the type (3, 4, 1), or (4, 4, 0). As

was mentioned above, in principle, an alternative interpretation is possible in which several

copies of (3, 4, 1)-, or (4, 4, 0)-supermultiplets are first identified along angular degrees of

freedom and then they are coupled to (0, 4, 4)-supermultiplets. It is interesting to under-

stand whether superfield constrains leading to such an identification along the angular de-

grees of freedom can be formulated in superspace. A κ-symmetric Lagrangian formulation

for the BPS-superparticles in section 4 and a possible connection between the supersym-

metry charges and the Killing spinors characterizing the background geometry are worth

studying as well. Finally, it is of interest to study the models in this work from the perspec-

tive of the Kirillov-Kostant-Souriau method (see a recent work [11] and references therein).
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A Spinor conventions

Throughout the text SU(2)-spinor indices are raised and lowered with the use of the in-

variant antisymmetric matrices

ψα = ǫαβψβ, ψ̄α = ǫαβψ̄
β ,

where ǫ12 = 1, ǫ12 = −1. Introducing the notation for the spinor bilinears

ψ2 = (ψαψα ), ψ̄2 = (ψ̄αψ̄
α), ψ̄ψ = (ψ̄αψα),

one gets

ψαψβ =
1

2
ǫαβψ

2, ψαχ̄β − ψβχ̄α = ǫαβ(χ̄ψ),

ψ̄αψ̄β =
1

2
ǫαβψ̄2, ψαχ̄β − ψβχ̄α = −ǫαβ(χ̄ψ).
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The Pauli matrices (σa)α
β are chosen in the standard form

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

,

which obey

(σaσb)α
β + (σbσa)α

β = 2δabδα
β , (σaσb)α

β − (σbσa)α
β = 2iǫabc(σc)α

β ,

(σaσb)α
β = δabδα

β + iǫabc(σc)α
β , (σa)α

β(σa)γ
ρ = 2δα

ρδγ
β − δα

βδγ
ρ ,

(σa)α
βǫβγ = (σa)γ

βǫβα , ǫαβ(σa)β
γ = ǫγβ(σa)β

α ,

where ǫabc is the totally antisymmetric tensor, ǫ123 = 1. Throughout the text we denote

ψ̄σaψ = ψ̄α(σa)α
βψβ. Our conventions for complex conjugation read

(ψα)
∗ = ψ̄α, (ψ̄α)

∗
= −ψα, (ψ2)

∗
= ψ̄2, (ψ̄σaχ)

∗
= χ̄σaψ.
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