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1 Introduction

There is a plethora of evidence for physics beyond the Standard Model of particle physics

(SM). However, there is still no sign of any new physics at the Large Hadron Collider

(LHC), which implies that the models for beyond-the-SM physics needs to be revised in

order to fit the current constraints [1–4].

Among the numerous possibilities that one can imagine, grand unification theories

(GUTs) are especially intriguing and are, in principle, motivated by the fact that the

gauge couplings in the SM are close to unifying at some high-energy scale MGUT. In such

theories, matter fields usually belong to one or more irreducible representations of the group

and this allows to relate masses and mixings in a non-trivial way, reducing at the same time

the number of the independent parameters. From this point of view, an appealing choice

is the SO(10) group, where one generation of the SM fermion fields can be accommodated

within one spinorial 16 representation together with a right-handed neutrino.

The SO(10) group has often been considered in the context of supersymmetry. In this

context, SO(10) can be directly broken to the SM gauge group and such models have been

studied for example in refs. [5–7]. Without the assumption of supersymmetry, unification is

still possible with the additional constraint that there exists an intermediate energy scale

below MGUT. Thus, in the non-supersymmetric case, the symmetry must be broken at

some high-energy scale (usually of 1016GeV) into a gauge group of smaller rank, which

successively breaks to the SM. The non-supersymmetric SO(10) models have been of little

interest, since such were considered to be ruled out due to tachyonic masses in the scalar

spectrum. This can be remedied by taking quantum effects into account, which again have

made these models of interest [8]. Furthermore, there is no indication of supersymmetry in

recent LHC data, which enhances the interest in the non-supersymmetric SO(10) models.

Any extension of the SM is viable only if the observables at the electroweak (EW)

scale, MZ, can be accommodated within the model. Especially, this is true for the fermion

masses and mixings. Many fits to fermion observables in the non-supersymmetric SO(10)

model context have been performed assuming a simple SM running of the Yukawa couplings

from the GUT scale MGUT to the EW scale MZ (or vice versa) [9–11] and have shown that

the minimal choice of the Yukawa sector, which can accommodate all known low-energy

experimental data, is the one with Higgses in the 10H and 126H representations. However,

these did not take the effect of an intermediate energy scale into account. More recently,

we have discussed the effects on such a renormalization group (RG) running given by a

change in the gauge group at an intermediate energy scale MI between MGUT and MZ [12],
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showing that this new energy threshold strongly affects the RG running of the Yukawa

couplings from MGUT to MZ, and thus, the final values of the EW observables.

The next-to-minimal choice is to enlarge the Yukawa sector of non-supersymmetric

SO(10) models adding another Higgs representation, 120H. In the present work, we focus

on models, where SO(10) is broken by the 210H [13, 14] to an intermediate gauge group,

which is the Pati-Salam group PS = SU(4)C ⊗ SU(2)L ⊗ SU(2)R [15]. This model has

recently been discussed in ref. [16]. Given the fact that the 120H contains representations

under the PS group such as (1,2,2) and (15,2,2), it enters not only the relations defining

the fermion masses but also affects the gauge coupling unification from MI to MGUT if we

assume that the whole 120H multiplet has a mass around MI. In this model, neutrino mass

is generated through the type-I seesaw mechanism, where the seesaw scale coincides with

the intermediate scale. The relevant question that we want to address is whether or not

such a model is able to describe all low-energy data on fermion masses and mixings, even

in the presence of the intermediate gauge group, and to quantify how large the difference

would be if a pure SM extrapolation of the SO(10) Yukawa couplings from MGUT to MZ

is performed.

The paper is organized as follows. In section 2, we present the renormalization group

equations (RGEs) and matching conditions for the gauge couplings, the Yukawa couplings,

the Higgs self-couplings, and the effective neutrino mass matrix in the extended non-

supersymmetric SO(10) model with an intermediate scale MI. Then, in section 3, we

discuss the numerical parameter-fitting procedure, which we use to perform the fit and

the RG evolution from MGUT to MZ. Next, in section 4, we state our results for the RG

running of the fermion masses and mixings, comparing the result to a SM-like model. In

section 5, we compare our results of the extended SO(10) model to the minimal SO(10)

model. Finally, in section 6, we summarize and conclude. In appendix A, we give the

RGEs in the minimal SO(10) model, taking the opportunity to correct some errors in our

and other previous works [12, 17].

2 Renormalization group equations of the extended SO(10) model

In this section, the extended non-supersymmetric SO(10) model is presented including the

RGEs and matching conditions of this model. Note that the minimal non-supersymmetric

SO(10) model is discussed in appendix A. We evolve the RGEs to leading order in per-

turbation theory from the scale of a GUT MGUT via an intermediate scale MI down to

the EW scale MZ = (91.1876 ± 0.0021)GeV [18]. The values of MGUT, MI, and α−1
GUT

are determined by the running of the gauge couplings and the requirement that the gauge

couplings should unify at MGUT. In the present case, we find

MGUT = (1.0±0.5) ·1016 GeV , MI = (4.8±2.2) ·1011 GeV , and α−1
GUT = 28.6 . (2.1)

Note that the values of MGUT and MI can be computed using eqs. (2.11)–(2.13)

and (2.43)–(2.45) as well as the matching conditions (2.52)–(2.54), since the one-loop order

RGEs for the gauge couplings only depend on the different gauge couplings [19].

– 2 –



J
H
E
P
0
3
(
2
0
1
7
)
0
4
5

2.1 The Yukawa Lagrangian of the extended SO(10) model and matching

conditions at MGUT

Now, we present the Yukawa sector of the Lagrangian for the extended SO(10) model above

and below MGUT as well as the matching conditions for the Yukawa and gauge couplings

at MGUT. We want to accommodate the 120H Higgs field. At the SO(10) level, i.e. above

MGUT, the Yukawa sector of the Lagrangian reads

− LGUT
Y = 16F

(

h10H + f 126H + g 120H
)

16F , (2.2)

where h ≡ Y (10), f ≡ Y (126), and g ≡ Y (120) are the Yukawa couplings. The couplings

f and g can be represented by a symmetric and an antisymmetric matrix in flavor space,

respectively, whereas h can be represented by a real diagonal matrix. The Higgs representa-

tion 10H is real from the SO(10) perspective but its components could be chosen either real

or complex. However, choosing the components of this representation real, i.e. 10H = 10∗H,

would imply that ku = kd. This issue can be solved by complexifying this representation

and in addition introducing a Peccei-Quinn symmetry, U(1)PQ, which then forbids Yukawa

couplings with a 10∗H [20]. The Peccei-Quinn symmetry is defined as

16F → eiα16F , 10H → e−2iα10H , 126H → e−2iα126H , 120H → e−2iα120H ,

where α is a phase and represents the U(1)PQ charge. Under the PS group, the 120H
decomposes as

120H = (10+ 10,1,1)⊕ (6,3,1)⊕ (6,1,3)⊕ (15,2,2)⊕ (1,2,2) , (2.3)

which means that we have four bidoublets that take part in generating the fermion masses.

For the 126H, we assume that they are close to MI. We introduce the following simplifying

abbreviations for the fields

Φ120 ≡ (1,2,2) , Σ120 ≡ (15,2,2) . (2.4)

At the PS level, i.e. below MGUT and above MI, the Yukawa sector of the Lagrangian for

the extended SO(10) model then reads

−L10+126+120
Y = Y

(10)
F F̄LΦ10FR + Y

(126)
F F̄LΣ126FR + Y

(126)
R FT

RCFR∆R

+ Y
(120)
F,1 F̄LΦ120FR + Y

(120)
F,2 F̄LΣ120FR , (2.5)

where Y
(10)
F and Y

(126)
F are the Yukawa couplings of the SU(4) singlet and the SU(4) 15-

plet of the 10H and 126H, respectively, Y
(120)
F,1 and Y

(120)
F,2 are the analogous for the 120H,

Y
(126)
R is the right-handed Majorana neutrino coupling, and FL = (4,2,1), FR = (4,1,2),

Φ10 = (1,2,2), Σ126 = (15,2,2), and ∆R = (10,1,3). Therefore, at MGUT, we need to

match the two different sets of Yukawa couplings above and below MGUT. These matching
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conditions are [12, 17, 21]

1√
2
Y

(10)
F (MGUT) ≡ h , (2.6)

1

4
√
2
Y

(126)
F (MGUT) =

1

4
Y

(126)
R (MGUT) ≡ f , (2.7)

1√
2
Y

(120)
F,1 (MGUT) = − 1

2
√
2
Y

(120)
F,2 (MGUT) ≡ g . (2.8)

In addition, at MGUT, the gauge coupling constants unify, and therefore, the matching

conditions are simply

g2L(MGUT) ≡ g2R(MGUT) ≡ g4C(MGUT) , (2.9)

where g2L, g2R, and g4C are the SU(2)L, SU(2)R, and SU(4)C gauge coupling constants,

respectively. Note that the value of the gauge coupling at MGUT is given by

αGUT = 0.035 , (2.10)

which follows directly from eq. (2.1).

2.2 RGEs from MGUT to MI

In this subsection, we give the RGEs for the gauge and Yukawa couplings between MGUT

and MI, see sections 2.2.1 and 2.2.2, respectively.

2.2.1 RGEs for the gauge couplings

Between MGUT and MI, the RGEs for the gauge coupling constants g2L, g2R, and g4C read

16π2dg2L
dt

=
22

3
g32L , (2.11)

16π2dg2R
dt

= 14g32R , (2.12)

16π2dg4C
dt

= 3g34C , (2.13)

where t ≡ lnµ (µ being the energy scale), which have the evolutions between two energy

scales M1 and M2 given by the standard formula [22, 23]

g−2
i (M2) = g−2

i (M1)−
ai
8π2

log

(

M2

M1

)

, (2.14)

where the coefficients ai can be obtained from e.g. ref. [23] and are listed in

eqs. (2.11)–(2.13).
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2.2.2 RGEs for the Yukawa couplings

Furthermore, between MGUT and MI, the RGEs for the Yukawa couplings Y
(10)
F , Y

(126)
F ,

Y
(126)
R , Y

(120)
F,1 , and Y

(120)
F,2 are found to be

16π2 dY
(10)
F

dt
=

{

Y
(10)
F Y

(10)
F

†
+ Y

(120)
F,1 Y

(120)
F,1

†
+

15

4

(

Y
(126)
F Y

(126)
F

†
+ Y

(120)
F,2 Y

(120)
F,2

†)
}

Y
(10)
F

+ Y
(10)
F

{

Y
(10)
F

†
Y

(10)
F + Y

(120)
F,1

†
Y

(120)
F,1 (2.15)

+
15

4

(

Y
(126)
F

†
Y

(126)
F + Y

(120)
F,2

†
Y

(120)
F,2 + 2Y

(126)
R

∗
Y

(126)
R

)

}

+ 4 tr
(

Y
(10)
F Y

(10)
F

†)

Y
(10)
F + 4 tr

(

Y
(10)
F Y

(120)
F,1

†)

Y
(120)
F,1 − 9

4

(

g22L+ g22R+ 5g24C

)

Y
(10)
F ,

16π2 dY
(126)
F

dt
=

{

Y
(10)
F Y

(10)
F

†
+ Y

(120)
F,1 Y

(120)
F,1

†
+

15

4

(

Y
(126)
F Y

(126)
F

†
+ Y

(120)
F,2 Y

(120)
F,2

†)
}

Y
(126)
F

+ Y
(126)
F

{

Y
(10)
F

†
Y

(10)
F + Y

(120)
F,1

†
Y

(120)
F,1 (2.16)

+
15

4

(

Y
(126)
F

†
Y

(126)
F + Y

(120)
F,2

†
Y

(120)
F,2 + 2Y

(126)
R

∗
Y

(126)
R

)

}

+ tr
(

Y
(126)
F Y

(126)
F

†)

Y
(126)
F + tr

(

Y
(126)
F Y

(120)
F,2

†)

Y
(120)
F,2 − 9

4

(

g22L+ g22R+ 5g24C

)

Y
(126)
F ,

16π2 dY
(126)
R

dt
=

{

Y
(10)
F

T

Y
(10)
F

∗
+ Y

(120)
F,1

T

Y
(120)
F,1

∗

+
15

4

(

Y
(126)
F

T

Y
(126)
F

∗
+ Y

(120)
F,2

T

Y
(120)
F,2

∗
+ 2Y

(126)
R Y

(126)
R

∗)
}

Y
(126)
R

+ Y
(126)
R

{

Y
(10)
F

†
Y

(10)
F + Y

(120)
F,1

†
Y

(120)
F,1

+
15

4

(

Y
(126)
F

†
Y

(126)
F + Y

(120)
F,2

†
Y

(120)
F,2 + 2Y

(126)
R

∗
Y

(126)
R

)

}

+ 2 tr
(

Y
(126)
R Y

(126)
R

∗)

Y
(126)
R − 9

4

(

2g22R + 5g24C

)

Y
(126)
R , (2.17)

16π2
dY

(120)
F,1

dt
=

{

Y
(10)
F Y

(10)
F

†
+ Y

(120)
F,1 Y

(120)
F,1

†
+

15

4

(

Y
(126)
F Y

(126)
F

†
+ Y

(120)
F,2 Y

(120)
F,2

†)
}

Y
(120)
F,1

+ Y
(120)
F,1

{

Y
(10)
F

†
Y

(10)
F + Y

(120)
F,1

†
Y

(120)
F,1 (2.18)

+
15

4

(

Y
(126)
F

†
Y

(126)
F + Y

(120)
F,2

†
Y

(120)
F,2 + 2Y

(126)
R

∗
Y

(126)
R

)

}

+4 tr
(

Y
(120)
F,1 Y

(120)
F,1

†)

Y
(120)
F,1 +4 tr

(

Y
(120)
F,1 Y

(10)
F

†)

Y
(10)
F − 9

4

(

g22L+ g22R+ 5g24C

)

Y
(120)
F,1 ,

16π2
dY

(120)
F,2

dt
=

{

Y
(10)
F Y

(10)
F

†
+ Y

(120)
F,1 Y

(120)
F,1

†
+

15

4

(

Y
(126)
F Y

(126)
F

†
+ Y

(120)
F,2 Y

(120)
F,2

†)
}

Y
(120)
F,2

+ Y
(120)
F,2

{

Y
(10)
F

†
Y

(10)
F + Y

(120)
F,1

†
Y

(120)
F,1 (2.19)

+
15

4

(

Y
(126)
F

†
Y

(126)
F + Y

(120)
F,2

†
Y

(120)
F,2 + 2Y

(126)
R

∗
Y

(126)
R

)

}

+ tr
(

Y
(120)
F,2 Y

(120)
F,2

†)

Y
(120)
F,2 + tr

(

Y
(120)
F,2 Y

(126)
F

†)

Y
(126)
F − 9

4

(

g22L+ g22R+ 5g24C

)

Y
(120)
F,2 .
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Note that eqs. (2.11)–(2.13) and (2.15)–(2.19) have been computed using the software

SARAH 4 [24]. We briefly discuss the different parts of the RGEs for the Yukawa couplings.

The three first lines of eqs. (2.15)–(2.19) (actually the four first lines of eq. (2.17)) stem

from self-energies of the fermion fields FL and FR. Note that the self-energies of FL and FR

differ by a term containing Y
(126)
R , since the field ∆R does not couple to FL. The two first

terms in the last lines of eqs. (2.15)–(2.19) come from fermion-loop contributions to the self-

energies of the scalars. Finally, the last terms of eqs. (2.15)–(2.19) are contributions from

the gauge couplings to the RGEs. Note that there is a difference in the gauge coupling term

of eq. (2.17), which again stems from the fact ∆R does not couple to FL. The corrections

to the Yukawa coupling vertices do not give any contributions to the RGEs.

In the extended SO(10) model, there are two (1,2,2) representations in the 10H and

120H, respectively, i.e. Φ10 and Φ120, which couple identically to the other representations.

The same applies to the two (15,2,2) representations in the 126H and 120H, respectively,

i.e. Σ126 and Σ120. As a consequence, we can observe that eq. (2.18) can be obtained

from eq. (2.15) by making the replacement Y
(10)
F → Y

(120)
F,1 . Similarly, eq. (2.19) can be

obtained from eq. (2.16) by making the replacement Y
(126)
F → Y

(120)
F,2 . Naturally, eq. (2.18)

cannot be obtained directly from eq. (2.16). However, there are only minor differences in

these two equations. To be precise, the only difference is the factor of 4 in front of the

traces, which is due to their respective group theoretical structure under SU(4)C , where

the representation is either trivial or adjoint. Equation (2.17) differs from the other RGEs,

since Y
(126)
R couples to FR only.

2.3 Matching conditions at MI

In this subsection, we display the matching conditions for the gauge and Yukawa couplings

as well as the quartic scalar Higgs self-coupling and the effective neutrino mass matrix at

MI, see sections 2.3.1, 2.3.2, 2.3.3, and 2.3.4, respectively.

2.3.1 Matching conditions for the gauge couplings

At MI, we impose the following matching conditions for the gauge coupling con-

stants [12, 17, 25, 26]

g−2
1 (MI) ≡

3

5
g−2
2R(MI) +

2

5
g−2
4C (MI) , (2.20)

g2(MI) ≡ g2L(MI) , (2.21)

g3(MI) ≡ g4C(MI) , (2.22)

where g1, g2, and g3 are the gauge coupling constants of U(1), SU(2)L, and SU(3)C , re-

spectively.

– 6 –



J
H
E
P
0
3
(
2
0
1
7
)
0
4
5

2.3.2 Matching conditions for the Yukawa couplings

At MGUT, the fermion mass matrices are defined as

Mu = hku + fvu + g (tu + zu) , (2.23)

Md = hkd + fvd + g zd , (2.24)

MνD = hku − 3fvu + g (−3tu + zu) , (2.25)

Me = hkd − 3fvd + g td , (2.26)

where the vacuum expectation values (VEVs) are defined as

ku,d = 〈Φ10〉u,d , vu,d = 〈Σ126〉u,d , zu,d = 〈Φ120〉u,d , tu,d = 〈Σ120〉u,d . (2.27)

Adopting a rescaling of the VEVs, eqs. (2.23)–(2.26) can be recast in the following way

Mu =
rv√
2

(

kdY
(10)
F +

vds

4
Y

(126)
F

)

+
1√
2

(

zuY
(120)
F,1 − tu

2
Y

(120)
F,2

)

, (2.28)

Md =
kd√
2
Y

(10)
F +

vd

4
√
2
Y

(126)
F +

zd√
2
Y

(120)
F,1 , (2.29)

MνD =
rv√
2

(

kdY
(10)
F − 3vds

4
Y

(126)
F

)

+
1√
2

(

zuY
(120)
F,1 +

3tu
2

Y
(120)
F,2

)

, (2.30)

Me =
kd√
2
Y

(10)
F − 3vd

4
√
2
Y

(126)
F − td

2
√
2
Y

(120)
F,2 . (2.31)

Furthermore, rv ≡ ku/kd and s ≡ vu/(rvvd). Now, we need the matching conditions at MI.

Since at the EW level, i.e. below MI and above MZ, the Yukawa sector of the Lagrangian

for a two-Higgs-doublet model is given by

− L2HDM
Y = Yuq̄Lφ2uR + Ydq̄Lφ1dR + Yeℓ̄Lφ1eR , (2.32)

where Yu, Yd, and Ye are three Yukawa couplings, we have

Mu = Yu
ku√
2
, Me = Ye

kd√
2
, Md = Yd

kd√
2
. (2.33)

Thus, at MI, the matching produces the following relations

Yu(MI) ≡ Y
(10)
F (MI) +

svd
4kd

Y
(126)
F (MI) +

zu
kdrv

Y
(120)
F,1 (MI)−

tu
2kdrv

Y
(120)
F,2 (MI) , (2.34)

Yd(MI) ≡ Y
(10)
F (MI) +

vd
4kd

Y
(126)
F (MI) +

zd
kd

Y
(120)
F,1 (MI) , (2.35)

Ye(MI) ≡ Y
(10)
F (MI)−

3vd
4kd

Y
(126)
F (MI)−

td
2kd

Y
(120)
F,2 (MI) . (2.36)

Note that the corresponding matching conditions for the minimal SO(10) model are ob-

tained from eqs. (2.34)–(2.36) by setting zu,d = tu,d = 0, cf. eqs. (A.12)–(A.14).
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2.3.3 Matching conditions for the quartic scalar Higgs self-couplings

Using the two-Higgs-doublet model, we assume for simplicity the following Higgs potential

below MI

V = λ1

(

φ†
1φ1

)(

φ†
1φ1

)

+ λ2

(

φ†
2φ2

)(

φ†
2φ2

)

, (2.37)

where λ1 and λ2 are the two quartic scalar Higgs self-couplings of the model. Note that

we use the so-called GUT normalization, which means that g1 = g′
√

5/3, where g1 is the

U(1) gauge coupling constant with a normalization based on SU(5) and g′ is the standard

EW coupling constant. At MI, for the matching conditions of λ1 and λ2, we will assume

λ1(MI) ≡ λ2(MI) ≡ const. (2.38)

2.3.4 Matching condition for the effective neutrino mass matrix

The neutrino masses are generated through a type-I seesaw mechanism, for simplicity we

assume that the seesaw scale coincides with MI. We have to make a matching for the

effective neutrino mass matrix at MI. Below MI, the effective neutrino mass matrix is

given by

mν =
κk2u
2

. (2.39)

At MI, this expression must match the form of mν valid from MGUT to MI, which can be

conveniently expressed as

mν =
(

4kdrvY
(10)T
F − 3rvsvdY

(126)T
F + 6tuY

(120)T
F,2 + 4Y

(120)T
F,1 zu

)

× (32MR)
−1

(

4kdrvY
(10)
F − 3rvsvdY

(126)
F + 6tuY

(120)
F,2 + 4Y

(120)
F,1 zu

)

, (2.40)

where MR is a RG running quantity defined as

MR ≡ 1

4

〈

∆R

〉

Y
(126)
R . (2.41)

Therefore, at MI, we have the following matching condition

κ(MI) ≡
{

4kdrvY
(10)T
F (MI)− 3rvsvdY

(126)T
F (MI) + 6tuY

(120)T
F,2 (MI) + 4zuY

(120)T
F,1 (MI)

}

×
{

16 k2uMR(MI)
}−1

(2.42)

×
{

4kdrvY
(10)
F (MI)− 3rvsvdY

(126)
F (MI) + 6tuY

(120)
F,2 (MI) + 4zuY

(120)
F,1 (MI)

}

.

2.4 RGEs from MI to MZ

In this subsection, we give the RGEs for the gauge and Yukawa couplings, the quartic

scalar Higgs self-coupling, and the effective neutrino mass matrix between MI and MZ, see

sections 2.4.1, 2.4.2, 2.4.3, and 2.4.4, respectively.
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2.4.1 RGEs for the gauge couplings

Below MI, we assume that there are two Higgs doublets, in which case the RGEs for the

gauge couplings g1, g2, and g3 read [22]

16π2dg1
dt

=
21

5
g31 , (2.43)

16π2dg2
dt

= −3g32 , (2.44)

16π2dg3
dt

= −7g33 . (2.45)

2.4.2 RGEs for the Yukawa couplings

The Higgs doublets couples to the lepton and quark fields according to eq. (2.32). Thus,

below MI, we have three Yukawa couplings Yu, Yd, and Ye, and for the RGEs of these

Yukawa couplings, we obtain

16π2dYu
dt

= 3tr
(

YuY
†
u

)

Yu −
(

8g23 +
9

4
g22 +

17

20
g21

)

Yu + YuY
†
uYu +

1

2
Yu

(

Y †
uYu + Y †

d Yd

)

,

(2.46)

16π2dYd
dt

=
{

3tr
(

YdY
†
d

)

+ tr
(

YeY
†
e

)}

Yd −
(

8g23 +
9

4
g22 +

1

4
g21

)

Yd + YdY
†
d Yd

+
1

2
Yd

(

Y †
uYu + Y †

d Yd

)

, (2.47)

16π2dYe
dt

=
{

3tr
(

YdY
†
d

)

+ tr
(

YeY
†
e

)}

Ye −
(

9

4
g22 +

9

4
g21

)

Ye +
3

2
YeY

†
e Ye . (2.48)

Note that eqs. (2.46)–(2.48) have been computed using the software SARAH 4 [24]. Similar

RGEs to eqs. (2.46)–(2.48) have been presented previously in the literature [27].

2.4.3 RGEs for the quartic scalar Higgs self-couplings

Then, below MI, the RGEs for λ1 and λ2 described in eq. (2.37) are given by [27, 28]

16π2dλ1

dt
= 24λ2

1 −
(

9g22 +
9

5
g21

)

λ1 +
9

8
g42 +

9

20
g22g

2
1 +

27

200
g41

+ 12tr(YuY
†
u )λ1 − 6tr(YuY

†
uYuY

†
u ) , (2.49)

16π2dλ2

dt
= 24λ2

2 −
(

9g22 +
9

5
g21

)

λ2 +
9

8
g42 +

9

20
g22g

2
1 +

27

200
g41

+ 4tr(YeY
†
e + 3YdY

†
d )λ2 − 2tr(YeY

†
e YeY

†
e )− 6tr(YdY

†
d YdY

†
d ) . (2.50)

Note that we have also checked eqs. (2.49) and (2.50) by recomputing them with the

software SARAH 4 [24]. The first line of eq. (2.50) can be obtained from the first line

of eq. (2.49) by making the replacement λ1 → λ2, and vice versa. The difference between

eqs. (2.49) and (2.50) consists of the terms containing traces of the Yukawa couplings. The

Yukawa couplings are given in eq. (2.32) and the ones in the traces naturally depend on

which Higgs doublet the up, down, and lepton doublet couple to. General formulas for

the RGEs of quartic scalar Higgs self-couplings have been derived earlier, see for example

refs. [12, 17, 27–31]. Some of these derivations are more correct than others.
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2.4.4 RGE for the effective neutrino mass matrix

Finally, below MI, in the case of the two-Higgs-doublet model, the RGE for the effective

neutrino mass matrix κ is given by [28, 32]

16π2dκ

dt
= −3g22κ+ 4λ2κ+ 6tr

(

YdY
†
d

)

κ+ 2tr
(

YeY
†
e

)

κ− 3

2

(

κY †
e Ye + Y T

e Y ∗
e κ

)

. (2.51)

2.5 Matching conditions at MZ

In this subsection, we show the matching conditions for the gauge couplings at MZ. At

MZ, the experimental values of the gauge coupling constants [αk = g2k/(4π)] read [18]

g1(MZ) ≡ 0.463± 0.001 or equivalently α1(MZ) = 0.0170± 0.0001 , (2.52)

g2(MZ) ≡ 0.654± 0.001 or equivalently α2(MZ) = 0.0340± 0.0001 , (2.53)

g3(MZ) ≡ 1.220± 0.003 or equivalently α3(MZ) = 0.1185± 0.0006 , (2.54)

which we impose as the matching conditions at MZ.

3 Numerical parameter-fitting procedure

We perform a full numerical scan of the parameter space for the extended non-

supersymmetric SO(10) model with an intermediate scale MI such that MZ ≤ MI ≤ MGUT.

In this model, there are in total 33 free parameters. The three Yukawa coupling matrices

h, f , and g consist of 21 parameters, which are three real parameters in the real diagonal

matrix h, six complex parameters in the symmetric matrix f , and three complex parame-

ters in the antisymmetric matrix g, respectively. In addition, there are eleven parameters

related to the VEVs, i.e. rv = ku/kd, td, and zd (three real parameters) and vu, vd, tu, and

zu (four complex parameters). Finally, there is one parameter related to the two Higgs

self-coupling constants λ1 and λ2, for which we assume that λ = λ1 = λ2.

We explore the parameter space and make a fit of the parameters using the software

MultiNest [33–35]. In order to further improve the fit we use the software MINUIT, and

especially, the multidimensional simplex algorithm [36]. The sampling algorithm employed

by MultiNest is called nested sampling. Given the size of the parameter space, it is

necessary to use such an algorithm rather than a simple parameter scan. MultiNest is

prominently designed as a tool for computation of Bayesian evidences. In addition, as

byproducts, both the posterior distribution is determined and the likelihood function, L,
is maximized. We are specifically interested in the best-fit point, which is the point that

maximizes L or equivalently minimizes the χ2 function. The two quantities are related

through

χ2 = −2 lnL . (3.1)

The χ2 function is defined as

χ2 ≡
N
∑

i=1

(

Xi − µi

σexp
i

)2

, (3.2)
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Quark sector Lepton sector

Observable Xi σexp
i Observable Xi σexp

i

md (GeV) 2.90 · 10−3 1.22 · 10−3 me (GeV) 4.87 · 10−4 2.43 · 10−5

ms (GeV) 5.50 · 10−2 1.55 · 10−2 mµ (GeV) 1.03 · 10−1 5.14 · 10−3

mb (GeV) 2.89 9 · 10−2 mτ (GeV) 1.75 8.73 · 10−2

mu (GeV) 1.27 · 10−3 4.6 · 10−4 r ≡ ∆m2

21

∆m2

31

3 · 10−2 3 · 10−3

mc (GeV) 6.19 · 10−1 8.4 · 10−2 sin2 θℓ12 3.06 · 10−1 1.2 · 10−2

mt (GeV) 172 3 sin2 θℓ13 2.17 · 10−2 7.5 · 10−4

sin θq12 2.25 · 10−1 1.1 · 10−3 sin2 θℓ23 4.41 · 10−1 2.7 · 10−2

sin θq13 3.5 · 10−3 3 · 10−4

sin θq23 4.2 · 10−2 1.3 · 10−3

δCKM (π) 3.88 · 10−1 1.83 · 10−2

Table 1. The 17 observables used in the χ2 function for the parameter fit at the GUT scale. The

experimental values {Xi} of the observables are the values of the observables at the EW scale and

the values {σexp
i } are the respective experimental errors. The values of the quark and charged-

lepton masses are taken from ref. [37], the quark mixing parameters from ref. [9], and the ratio of

the neutrino mass-squared differences and the leptonic mixing angles from refs. [38, 39].

where Xi are the experimental values of the N observables at MZ, µi are the corresponding

values computed in the extended SO(10) model, and σexp
i are the experimental errors. We

are not performing a Bayesian analysis, but the prior distributions needs to be specified

given the Bayesian nature of MultiNest. In our procedure, we use the priors as limits on

the parameter space. For the Yukawa couplings, we ignore the scale of the couplings, and

therefore, we use logarithmic priors in the interval [10−12, 0.1], where the couplings also

can take on negative values. For the VEVs, we assume the prior range [0.1, 550], where the

components of the complex VEVs also can be negative.

The procedure for the fit is the following. At the GUT scale MGUT, the values of the

free parameters are generated according to the logarithmic prior distributions previously

described. Furthermore, at MGUT, we fit the parameters of the Yukawa couplings and

the VEVs, whereas at MI, the Higgs self-couplings. Then, we perform the RG evolution

from MGUT via MI to MZ. We evolve the gauge couplings according to the RGEs given in

sections 2.2.1 and 2.4.1 and the Yukawa couplings according to the RGEs in sections 2.2.2

and 2.4.2. Next, atMI, we impose the matching conditions presented in section 2.3. Finally,

atMZ, the observables in the extended SO(10) model are computed, and thus, a comparison

to the known SM observables is performed for the quark masses (six observables), the

charged-lepton masses (three observables), the quark mixing parameters (four observables),

the leptonic mixing angles (three observables), and the ratio of the neutrino mass-squared

differences (one observable). This procedure is repeated until the algorithm converges to

a best-fit point.

The experimental values of the 17 observables are given in table 1. Numerically, we

only fit the ratio of the neutrino mass-squared differences r ≡ ∆m2
21/∆m2

31. The absolute
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value of the differences is determined by 〈∆R〉, see eq. (2.41), which is a free parameter

that only affects the size of the neutrino masses and therefore can be fitted afterwards.

Furthermore, instead of using the experimental errors for the charged-lepton masses, we

define the errors to be 5% of the respective masses. The experimental errors of the charged-

lepton masses would render the fit virtually impossible, since they are so small that even

small deviations from the experimental value would have a significant impact on the χ2

function. Finally, the VEVs are defined in eq. (2.27) and the fit of them is carried out in

such a way that
√

k2u + k2d = 246GeV.

4 Numerical results

We follow the procedure described in section 3 and thus perform the fit of the free param-

eters at MGUT in the extended SO(10) model in such a way that we fit the observables

at MZ. We find the best-fit point with χ2 ≃ 11.2 and the best-fit values of the Yukawa

coupling matrices at MGUT are the following1

h ≃





−2.20 · 10−6 0 0

0 −8.91 · 10−4 0

0 0 0.294



 , (4.1)

f ≃





0.00 1.78 · 10−7 − 4.82 · 10−9i −3.46 · 10−5 − 5.84 · 10−5i

1.78 · 10−7 − 4.82 · 10−9i 2.77 · 10−8 − 1.34 · 10−5i 1.49 · 10−4 − 3.70 · 10−4i

−3.46 · 10−5 − 5.84 · 10−5i 1.49 · 10−4 − 3.70 · 10−4i 2.22 · 10−5 + 2.09 · 10−4i



 , (4.2)

g ≃





0 1.69 · 10−9 − 4.93 · 10−7i 1.62 · 10−7 + 5.44 · 10−7i

−1.69 · 10−9 + 4.93 · 10−7i 0 −2.78 · 10−4 + 9.51 · 10−5i

−1.62 · 10−7 − 5.44 · 10−7i 2.78 · 10−4 − 9.51 · 10−5i 0



 . (4.3)

For the VEVs, we first find that rv ≃ 55.7GeV, which implies that ku ≃ 245.9GeV

and kd ≃ 4.44GeV. For the other VEVs, we find the following values td ≃ 342GeV,

zd ≃ 130GeV, vu ≃ (2.47− 0.287i)GeV, vd ≃ (91.3 + 187i)GeV, tu ≃ (1.61− 0.772i)GeV,

and zu ≃ (158 + 2.05i)GeV. However, note that we have the freedom of rescaling all the

VEVs and the Yukawa couplings with an overall factor.

Furthermore, we find that the best-fit value of the Higgs self-coupling λ, which is

introduced at MI with the requirement that λ = λ1 = λ2, is given by λ ≃ 0.677. In

order to limit the number of free parameters and constraints, we only fit the ratio of the

neutrino mass-squared differences r. The absolute value of the mass-squared differences

is then determined by the value of 〈∆R〉, which, in principle, should be considered a free

parameter. However, since this parameter only affects the magnitude of the neutrino masses

and nothing else, it can be determined after performing the fit using the experimental

value for ∆m2
21 = 7.50 · 10−5 eV2. Thus, the resulting value is 〈∆R〉 ≃ 7.03 · 1013GeV.

Furthermore, we determine the values of the masses for the three neutrino mass eigenstates

to be m1 ≃ 2.81 · 10−3 eV, m2 ≃ 9.10 · 10−3 eV, and m3 ≃ 0.0502 eV. Note that the fit has

been performed using normal neutrino mass ordering, and in fact, inverted neutrino mass

ordering cannot be accommodated.

1We present all numerical output with three significant figures.
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Quark sector Lepton sector

Observable µi gi Observable µi gi

md (GeV) 1.72 · 10−4 2.25 me (GeV) 4.88 · 10−4 −0.0597

ms (GeV) 0.0178 2.40 mµ (GeV) 0.103 −0.111

mb (GeV) 2.89 0.0441 mτ (GeV) 1.75 −0.0744

mu (GeV) 1.53 · 10−3 −0.572 r ≡ ∆m2

21

∆m2

31

0.0298 −0.0695

mc (GeV) 0.620 −7.15 · 10−3 sin2 θℓ12 0.309 0.0484

mt (GeV) 172 −0.0197 sin2 θℓ13 0.0216 0.0183

sin θq12 0.225 3.11 · 10−3 sin2 θℓ23 0.441 −0.0454

sin θq13 3.46 · 10−3 0.126

sin θq23 0.0420 −9.29 · 10−3

δCKM (π) 0.387 1.27 · 10−3

Table 2. The values at the EW scale of the 17 observables, {µi}, in the extended SO(10) model

presented together with their respective pulls, {gi}.

We obtain the values of the observables in the extended SO(10) model at MZ, which

are given in table 2 together with the values of the pulls, gi, which are defined as

gi ≡
Xi − µi

σexp
i

. (4.4)

We find that the observables that are clearly the most difficult to fit in this model are

the quark masses md and ms. The other observables can be fitted to good accuracy.

Furthermore, atMZ, we can predict values of three unknown quantities in the lepton sector,

i.e. the leptonic Dirac CP-violating phase δ (δ ∈ [0, 2π)) and the two leptonic Majorana

CP-violating phases α21 and α31 (α21, α31 ∈ [0, 4π)) as defined in ref. [18]. In addition,

we compute three effective parameters related to the leptons: the sum of the masses for

the three neutrino mass eigenstates Σ, the effective neutrino mass parameter measured in

single beta decay experiments mνe , and the effective electron neutrino mass parameter that

could be measured in neutrinoless double beta decay experiments mee, which are defined as

Σ ≡ m1 +m2 +m3 , (4.5)

mνe ≡
√

m2
1 cos

2 θℓ13 cos
2 θℓ12 +m2

2 cos
2 θℓ13 sin

2 θℓ12 +m2
3 sin

2 θℓ13 , (4.6)

mee ≡
∣

∣

∣

(

m1 cos
2 θℓ12 +m2 sin

2 θℓ12e
iα21

)

cos2 θℓ13 +m3 sin
2 θℓ13e

i(α31−2δ)
∣

∣

∣ . (4.7)

We find the following predicted values

δ ≃ 0.883π , α21 ≃ 1.21π , α31 ≃ 2.55π ,

Σ ≃ 0.0621 eV , mνe ≃ 9.22 · 10−3 eV , mee ≃ 1.53meV . (4.8)

The predicted value of δ indicates that the extended SO(10) model is about 10% away

from being leptonic CP-conserving (δ = 0, π) and the value of mee lies perfectly within the
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Figure 1. The RG running of the up-type (left panel) and down-type (right panel) quark masses,

respectively, with (solid curves) and without (dashed curves) the intermediate energy scale MI as

functions of the energy scale µ.

allowed 3σ region based on a recent global fit of neutrino oscillation data [40] for normal

neutrino mass ordering when m1 ≃ 2.81 · 10−3 eV [41]. Concerning the other two effective

neutrino mass parameters Σ and mνe , they lie safely below the current experimental 95%

C.L. upper bounds [42–45].

In figures 1–3, we present the RG running from MGUT to MZ for the three up-type

and three down-type quark masses, the three charged-lepton masses, the three quark mix-

ing angles, the three leptonic mixing angles, and r. In order to estimate the impact of

the intermediate scale MI, we also present the RG running from MGUT with the RGEs

for the SM-like model with two Higgs doublets, i.e. corresponding to the case where the

intermediate scale is placed at MGUT. The RG running in this model is presented with

dashed curves in the figures. We perform the comparison so that the observables in the

two models coincide at MGUT. Thus, we do not fit the experimental values at MZ in the

SM-like model.

In figure 1, we show the RG running of the up-type and down-type quark masses,

respectively, in the extended SO(10) model with an intermediate scale (solid curves) and

the SM-like model without an intermediate scale (dashed curves). For both types of masses,

the slope of the RG running above MI is larger in the extended SO(10) model than in the

SM-like model, and in addition, there is a kink at MI. As a consequence, the up-type

quark masses in the extended SO(10) model are larger by 45%–60% than in the SM-like

model and the down-type quark masses by 60%–80%. Furthermore, for all quark masses,

the direction of the RG running is the same above and below MI. In the left panel of

figure 2, we display the RG running of the charged-lepton masses in the extended SO(10)

model (solid curves) and the SM-like model (dashed curves), whereas in the right panel

of figure 2, we display the RG running of r. Similarly, in the case of the charged-lepton

masses, there is significant RG running above MI in the extended SO(10) model, where the

masses are increasing when running from MGUT to MI. Again, there is a kink at MI, where
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Figure 2. The RG running of the charged lepton masses (left panel) and the ratio of the small and

large neutrino mass-squared differences (right panel), respectively, with (solid curves) and without

(dashed curves) the intermediate energy scale MI as functions of the energy scale µ.
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Figure 3. The RG running of the leptonic mixing angles (left panel) and the quark mixing angles

(right panel), respectively, with (solid curves) and without (dashed curves) the intermediate energy

scale MI as functions of the energy scale µ.

the direction of the RG running changes, and thus, the value of the charged-lepton masses

are decreasing from MI to MZ. Hence, at MZ, me and mµ in the extended SO(10) model

are larger by 4.0% and 51%, respectively, than in the SM-like model, whereas mτ is larger

in the SM-like model by 5.3% than in the extended SO(10) model. The main contribution

to the RG running for r is above MI, where the value of r is decreasing from MGUT to MI.

Below MI, it is mildly increasing down to MZ, and finally, there is a significant difference

for r between the two models, where r in the extended SO(10) model is about half the size

compared to the SM-like model. In figure 3, we present the RG running of the leptonic

mixing angles in the left panel and the quark mixing angles in the right panel in the two

models. For the leptonic mixing angles, the main effect on the RG running is again above

MI. Both θℓ12 and θℓ13 are larger in the extended SO(10) model than in the SM-like model
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by 21% and 41%, respectively, whereas θℓ23 is smaller by 4.4%. Moreover, both θq12 and

θq23 are larger by 5.3% and 8.0%, respectively, in the extended SO(10) model than in the

SM-like model. The value of θq13 is 2.6% smaller in the extended SO(10) model than in the

SM-like model.

As shown in ref. [46], threshold corrections can have a dramatic impact on MGUT and

the prediction of the proton lifetime. In our context, both MGUT and MI can be different

from the ones computed using only the one-loop RGEs. This would in turn imply different

RG running of the fermion observables. The quantification of such effects is beyond the

scope of our work.

5 Comparison between the minimal and the extended SO(10) models

For comparison, we also perform a fit for the minimal non-supersymmetric SO(10) model

with an intermediate scale MI. This model is presented in appendix A, where the RGEs

of the gauge and Yukawa couplings are given. The RGEs of the Yukawa couplings in this

appendix are the corrected versions of the corresponding RGEs in refs. [12, 17]. Thus, we

repeat the procedure and update the results in ref. [12], although the number of Higgs

fields changed from four to two at MZ. In this minimal SO(10) model, there are in total 21

free parameters. There are 15 free parameters in the Yukawa coupling matrices, defined in

eq. (A.1), which are three real parameters in the real diagonal matrix h and six complex

parameters in the symmetric matrix f . In addition, there are five parameters related to the

VEVs, rv = ku/kd (one real parameter) and vu and vd (two complex parameters). Finally,

we fit the Higgs self-coupling constant λ = λ1 = λ2, which is introduced at MI. Similar

to the case of the extended SO(10) model, we assume in the minimal SO(10) model that

there are only two Higgs doublets below MI. Furthermore, we use the same numerical

parameter-fitting procedure as discussed in section 3 for the minimal SO(10) model.

In the minimal SO(10) model, the χ2 function for the best-fit point is χ2 ≃ 8.93. Thus,

we can fit the observables at MZ in the minimal SO(10) model as well. The best-fit values

for the Yukawa coupling matrices at MGUT are given by

h ≃





2.21 · 10−6 0 0

0 −1.65 · 10−3 0

0 0 −0.508



 , (5.1)

f ≃





3.99 · 10−6 − 2.31 · 10−5i 5.74 · 10−6 + 1.32 · 10−4i −1.55 · 10−2 − 4.10 · 10−2i

5.74 · 10−6 + 1.32 · 10−4i 8.08 · 10−7 + 4.59 · 10−4i −0.154 + 6.25 · 10−5i

−1.55 · 10−2 − 4.10 · 10−2i −0.154 + 6.25 · 10−5i −6.89 · 10−2 − 7.58 · 10−5i



 . (5.2)

For the parameters related to the VEVs, we find rv ≃ 55.1GeV, vu ≃ 7.95GeV, and

vd ≃ (0.512 + 1.01i)GeV, whereas we find the Higgs self-coupling to be λ ≃ 2.88 · 10−2.

Furthermore, for the neutrino masses, we find that 〈∆R〉 ≃ 3.46·1012GeV, and therefore, we

determine the values of the masses for the three neutrino mass eigenstates to be m1 ≃ 1.43 ·
10−3 eV, m2 ≃ 8.78 ·10−3 eV, and m3 ≃ 0.0505 eV. Again, the fit has been performed using

normal neutrino mass ordering. Finally, at MZ, we obtain the values of the observables,

µi, together with their corresponding pulls, gi, in the minimal SO(10) model, which are

given in table 3.
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Quark sector Lepton sector

Observable µi gi Observable µi gi

md (GeV) 1.16 · 10−3 1.43 me (GeV) 4.87 · 10−4 −0.0165

ms (GeV) 0.0326 1.44 mµ (GeV) 0.103 −0.0928

mb (GeV) 2.98 −0.961 mτ (GeV) 1.61 1.61

mu (GeV) 1.33 · 10−3 −0.138 r ≡ ∆m2

21

∆m2

31

0.0294 −0.188

mc (GeV) 0.704 −1.02 sin2 θℓ12 0.305 0.0899

mt (GeV) 171 0.337 sin2 θℓ13 0.0217 −0.0676

sin θq12 0.225 0.0549 sin2 θℓ23 0.443 −0.0684

sin θq13 3.55 · 10−3 −0.177

sin θq23 0.0421 −0.0696

δCKM (π) 0.388 −0.0313

Table 3. The values at the EW scale of the 17 observables, {µi}, in the minimal SO(10) model

presented together with their respective pulls, {gi}.

We find that the observables that are the most difficult to fit in this model are the

following masses: md, ms, mc, mb, and mτ . This is similar to the result in the extended

SO(10) model, and furthermore, we can conclude that masses seems to be more difficult

to fit compared to the mixing parameters. Similarly, as for the extended SO(10) model,

we are able to compute predicted values at MZ in this model for the three unknown

quantities in the lepton sector as well as the three effective neutrino mass parameters using

eqs. (4.5)–(4.7), which are

δ ≃ 0.426π , α21 ≃ 1.02π , α31 ≃ 2.07π ,

Σ ≃ 0.0607 eV , mνe ≃ 0.00893 eV , mee ≃ 2.64meV . (5.3)

where δ ∼ π/2 means that the model exhibits maximal leptonic CP violation. As for the

extended model (cf. eq. (4.8)), the predicted value of δ for the minimal SO(10) model is not

similar to the best-fit value from the latest global fit to neutrino oscillation data, which is

around 3π/2 [38]. Nevertheless, all three values of the effective neutrino mass parameters

are below the current experimental 95% C.L. upper bounds [42–45].

6 Summary and conclusions

We have investigated the RG evolution of fermion observables (i.e. the fermion masses

and mixings) in an extended non-supersymmetric SO(10) model with the PS group as the

intermediate group including the 10H, 126H, and 120H Higgs representations. We have

determined the RGEs for the gauge and Yukawa couplings, and most importantly, the ones

for the Yukawa couplings in the range between the GUT scale MGUT and the intermediate

scale MI. At MGUT, we have introduced the free parameters in the Yukawa couplings

in h, f , and g including parameters related to the VEVs. Below MI, we have assumed
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a SM-like model with two Higgs doublets. We have performed the RG evolution of the

fermion observables and numerically computed a fit in the extended SO(10) model. We

have found that all the observables can be satisfyingly fitted at the EW scale for normal

neutrino mass ordering. Moreover, we have found that a satisfactory fit is not possible

to obtain for inverted neutrino mass ordering. The RG running is significant for all the

parameters, although especially so for the fermion masses and the ratio of the neutrino

mass-squared differences. The slope of the RG running, and sometimes also the sign of

its derivative, is changed at MI. In addition, we have made a comparison of this model

to a SM-like model without the intermediate scale. Since the intermediate scale has a

significant effect on the results at the EW scale, the values of the quark masses in the two

models differ by 45%–80%. The differences of the values of the lepton masses are smaller,

especially mτ will be smaller in the SM-like model. The RG running for the mixings is

less significant than the one for the fermion masses, and hence, the difference in the values

of mixings at the EW scale is smaller than the corresponding difference for the fermion

masses. Furthermore, we have presented predictions for the values of the masses of the

three neutrino mass eigenstates, the three Dirac and Majorana CP-violating phases, and

three effective neutrino masses. In particular, we have found that the value of the Dirac CP-

violating phase is about 10% away from π, which means that the extended SO(10) model

is nearly CP-conserving. Finally, we have also made a fit in a more minimal SO(10) model

with an intermediate scale, where the Higgs representations are 10H and 126H. For this

model, we have again assumed that there are two Higgs doublets below the intermediate

scale. We have found that the fermion observables can be well accommodated at the EW

scale for normal neutrino mass ordering in this minimal model too.
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A Renormalization group equations of the minimal SO(10) model

In this appendix, the minimal non-supersymmetric SO(10) model is presented including

the RGEs and matching conditions of this model. We evolve the RGEs to leading order

in perturbation theory from the scale of a grand unified theory (GUT) MGUT via an

intermediate scale MI down to the EW scale MZ = (91.1876± 0.0021)GeV [18]. Here, we

again use MGUT = (1.0± 0.5) · 1016GeV and MI = (4.8± 2.2) · 1011GeV.
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First, in appendix A.1, we present the Yukawa sector of the Lagrangian for the minimal

SO(10) model above and below MGUT as well as the matching conditions for the Yukawa

and gauge couplings at MGUT. Second, in appendix A.2, we give the RGEs for the gauge

and Yukawa couplings between MGUT and MI. Third, in appendix A.3, we display the

matching conditions for the gauge and Yukawa couplings as well as the quartic scalar Higgs

self-coupling and the effective neutrino mass matrix at MI. Fourth, in appendix A.4, we

give the RGEs for the gauge and Yukawa couplings, the quartic scalar Higgs self-coupling,

and the effective neutrino mass matrix between MI and MZ. Finally, in appendix A.5, we

show the matching conditions for the gauge couplings at MZ.

A.1 The Yukawa Lagrangian of the minimal SO(10) model and matching con-

ditions at MGUT

Above MGUT, the Yukawa sector of the Lagrangian is given by

− LGUT
Y = 16 (h10H + f 126H)16 , (A.1)

where h ≡ Y (10) and f ≡ Y (126) are the Yukawa couplings. Equivalently, below MGUT, the

Yukawa sector of the Lagrangian for the minimal SO(10) model is given by [17]

− L10+126
Y = Y

(10)
F F̄LΦFR + Y

(126)
F F̄LΣFR + Y

(126)
R FT

RCFR∆R , (A.2)

where Y
(10)
F and Y

(126)
F are the Yukawa couplings of the SU(4) singlet and the SU(4) 15-plet,

respectively, Y
(126)
R is the right-handed Majorana neutrino coupling, and FL = (4,2,1),

FR = (4,1,2), Φ = (1,2,2), Σ = (15,2,2), and ∆R = (10,1,3). Therefore, we need to

match the two different sets of Yukawa couplings at MGUT. These matching conditions

are [12, 17, 21]

1√
2
Y

(10)
F (MGUT) ≡ Y (10)(MGUT) , (A.3)

1

4
√
2
Y

(126)
F (MGUT) =

1

4
Y

(126)
R (MGUT) ≡ Y (126)(MGUT) . (A.4)

In addition, note that the matching conditions for the gauge coupling constants at MGUT

are the same for the minimal SO(10) model as the ones for the extended SO(10) model

described in section 2.1, see eq. (2.9). However, in this model, the value of the gauge

coupling at the GUT scale is given by

αGUT = 0.027 . (A.5)

A.2 RGEs from MGUT to MI

A.2.1 RGEs for the gauge couplings

Between MGUT and MI, the RGEs for the gauge coupling constants g2L, g2R, and g4C read

16π2dg2L
dt

= 2g32L , (A.6)

16π2dg2R
dt

=
26

3
g32R , (A.7)

16π2dg4C
dt

= −7

3
g34C . (A.8)
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A.2.2 RGEs for the Yukawa couplings

Furthermore, between MGUT and MI, the RGEs for the Yukawa couplings Y
(10)
F , Y

(126)
F ,

and Y
(126)
R are found to be

16π2dY
(10)
F

dt
=

(

Y
(10)
F Y

(10)
F

†
+

15

4
Y

(126)
F Y

(126)
F

†
)

Y
(10)
F

+ Y
(10)
F

{

Y
(10)
F

†
Y

(10)
F +

15

4

(

Y
(126)
F

†
Y

(126)
F + 2Y

(126)
R

∗
Y

(126)
R

)

}

+ 4 tr
(

Y
(10)
F Y

(10)
F

†)

Y
(10)
F − 9

4

(

g22L + g22R + 5g24C

)

Y
(10)
F , (A.9)

16π2dY
(126)
F

dt
=

(

Y
(10)
F Y

(10)
F

†
+

15

4
Y

(126)
F Y

(126)
F

†
)

Y
(126)
F

+ Y
(126)
F

{

Y
(10)
F

†
Y

(10)
F +

15

4

(

Y
(126)
F

†
Y

(126)
F + 2Y

(126)
R

∗
Y

(126)
R

)

}

+ tr
(

Y
(126)
F Y

(126)
F

†)

Y
(126)
F − 9

4

(

g22L + g22R + 5g24C

)

Y
(126)
F , (A.10)

16π2dY
(126)
R

dt
=

{

Y
(10)
F

T
Y

(10)
F

∗
+

15

4

(

Y
(126)
F

T
Y

(126)
F

∗
+ 2Y

(126)
R Y

(126)
R

∗)
}

Y
(126)
R

+ Y
(126)
R

{

Y
(10)
F

†
Y

(10)
F +

15

4

(

Y
(126)
F

†
Y

(126)
F + 2Y

(126)
R

∗
Y

(126)
R

)

}

+ 2 tr
(

Y
(126)
R Y

(126)
R

∗)

Y
(126)
R − 9

4

(

2g22R + 5g24C

)

Y
(126)
R . (A.11)

Note that eqs. (A.6)–(A.8) and (A.9)–(A.11) have been computed using the software

SARAH 4 [24]. Importantly, eqs. (A.9)–(A.11) replace eqs. (24)–(26) in ref. [17] and

eqs. (A.1)–(A.3) in ref. [12], which are not correct.

A.3 Matching conditions at MI

A.3.1 Matching conditions for the gauge couplings

Note that the matching conditions for the gauge coupling constants at MI are the same

for the minimal SO(10) model as the ones for the extended SO(10) model described in

section 2.3.1.

A.3.2 Matching conditions for the Yukawa couplings

Below MI, the Yukawa sector of the Lagrangian for the two-Higgs doublet model is again

given by eq. (2.32). However, at MI, the matching conditions for the different Yukawa

couplings above and below MI are chosen as

Yu(MI) ≡ Y
(10)
F (MI) +

vu
4ku

Y
(126)
F (MI) , (A.12)

Yd(MI) ≡ Y
(10)
F (MI) +

vd
4kd

Y
(126)
F (MI) , (A.13)

Ye(MI) ≡ Y
(10)
F (MI)−

3vd
4kd

Y
(126)
F (MI) , (A.14)

where ku,d ≡ 〈Φu,d〉10 and vu,d ≡ 〈Σu,d〉126 are VEVs of Higgs submultiplets.
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A.3.3 Matching conditions for the quartic scalar Higgs self-couplings

Note that we assume again the same Higgs potential below MI as for the extended SO(10)

model. In addition, the matching conditions for the quartic scalar Higgs self-couplings at

MI are the same for the minimal SO(10) model as the ones for the extended SO(10) model

described in section 2.3.3.

A.3.4 Matching condition for the effective neutrino mass matrix

We have to make a matching for the effective neutrino mass matrix at MI. Below MI, the

effective neutrino mass matrix is given by eq. (2.39). At MI, this expression must match

the form of mν valid from MGUT to MI, which can be conveniently expressed as

mν =
k2u
2
Y

(10)
F

T
M−1

R Y
(10)
F − 3

8
kuvu

{

Y
(126)
F

T
M−1

R Y
(10)
F + Y

(10)
F

T
M−1

R Y
(126)
F

}

+
9

32
v2uY

(126)
F

T
M−1

R Y
(126)
F , (A.15)

where MR is the RG running quantity defined in eq. (2.41). Therefore, at MI, we have the

following matching condition

κ(MI) ≡ Y
(10)
F

T
(MI)M

−1
R (MI)Y

(10)
F (MI)

− 3

4

vu
ku

{

Y
(126)
F

T
(MI)M

−1
R (MI)Y

(10)
F (MI) + Y

(10)
F

T
(MI)M

−1
R (MI)Y

(126)
F (MI)

}

+
9

16

v2u
k2u

Y
(126)
F

T
(MI)M

−1
R (MI)Y

(126)
F (MI) . (A.16)

A.4 RGEs from MI to MZ

A.4.1 RGEs for the gauge couplings

Note that the RGEs for the gauge coupling constants from MI to MZ are the same for the

minimal SO(10) model as the ones for the extended SO(10) model described in section 2.4.1.

A.4.2 RGEs for the Yukawa couplings

Note that the RGEs for the Yukawa couplings from MI to MZ are the same for the minimal

SO(10) model as the ones for the extended SO(10) model described in section 2.4.2.

A.4.3 RGEs for the quartic scalar Higgs self-couplings

Note that the RGEs for the quartic scalar Higgs self-couplings from MI to MZ are the

same for the minimal SO(10) model as the ones for the extended SO(10) model described

in section 2.4.3.

A.4.4 RGE for the effective neutrino mass matrix

Note that the RGE for the effective neutrino mass matrix from MI to MZ is the same

for the minimal SO(10) model as the one for the extended SO(10) model described in

section 2.4.4.
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A.5 Matching conditions at MZ

Note that the matching conditions for the gauge coupling constants at MZ are the same

for the minimal SO(10) model as the ones for the extended SO(10) model described in

section 2.5.
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