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1 Introduction

Kaluza-Klein theory was discovered long ago [1, 2] in an attempt to unify the only known
forces at that time, electromagnetism and gravity. By postulating a fifth dimension of
space-time, the electromagnetic field is considered as a component of gravity, rather than
a fundamental force. Since then, a multitude of new ideas have been added to the original
five-dimensional proposal, among them supersymmetry and the extension to all possible
space-time dimensions and compactification manifolds. Some beautiful and almost suc-
cessful attempts to describe our four-dimensional world have appeared in the literature [3].

No matter which scenario is being considered though, they all have one common fea-
ture: the appearance of additional massless scalars (not present in electromagnetism nor
gravity) and an infinite tower of massive Kaluza-Klein states. Initially, physicists tried
to deal with this by truncating the higher dimensional theory in order to find models re-
sembling our four-dimensional world, but often such truncations were not consistent (see
e.g. [4]). In the modern approach to Kaluza-Klein theory (pioneered in refs. [5-7]) extra di-
mensions and the corresponding massive harmonics are treated as physical and not merely
as mathematical structures. In the meantime a precise definition of a consistent truncation
has been found (see e.g. [8]). Some of these truncations involve a finite number of massive
states [9, 10], which become relevant e.g. in the context of non-relativistic conformal field
theories.

More recently, in the context of type IIA and M-theory compactifications to two,
three, and four dimensions on G2 and Spin(7) structure manifolds, the conditions for
having a supersymmetric vacuum were derived from the dynamics of massive Kaluza-Klein
modes [11]. In particular, certain interactions in space-time were inferred and used to
determine the F- and D-term conditions for unbroken supersymmetry. Classically these
conditions mean that the G or Spin(7) structure manifolds have a Gy or Spin(7) holonomy
metric. Explicitly, a superpotential was conjectured and the invariance of the space-time
action under gauge transformations of the M-theory three-form required the associated
moment map to vanish. In the Go case these two conditions imply the existence of a
closed three-form and closed four-form. Moreover, classically the Kahler potential for
chiral multiplets is related to the volume of the internal space which implies that the
three-form is the Hodge dual of the four-form. Consequently the internal space has a Go
holonomy metric. Beyond the classical limit there still exists a closed three-form and a
closed four-form but they are no longer Hodge dual to each other.

In ref. [12] we started constructing explicitly the space-time theory obtained when
reducing (super-) gravity and certain matter fields (including p-form tensor fields) to any
number of space-time dimensions. The type of theories considered is quite general and
includes type II string theory and M-theory reduced to two, three, and four dimensions.
The actions obtained in ref. [11] for M-theory compactified to four dimensions involved
bosonic fields only, and the aim of our program is to describe the manifestly supersym-
metric completion. To achieve this, the fields and interactions described in ref. [11] will be
assembled into superfields of d = 4 and N = 1 supersymmetry.

The approach we are using is quite general and actually not new. An early publication
writing a higher dimensional theory in lower dimensional superspace is ref. [13] in which



the formulation of ten-dimensional supersymmetric Yang-Mills theory in four-dimensional,
N = 1 superspace was presented.! The inclusion of gravity has (to our knowledge) not
been worked out and remains a challenging problem. Even before coupling to gravity it
would be interesting to work out the three-dimensional version of the tensor hierarchy
presented in this paper in superspace. This would be a step in the direction of writing the
three-dimensional quantum field theory obtained by compactifying type ITA /IIB theories
to three dimensions in three-dimensional superspace.

The actions of the type considered in ref. [11] result from splitting the spacetime coor-
dinates into two parts and are, being a rewriting of the original theory, more general than
a compactification. Nevertheless, many compactification phenomena will have analogues
in such a splitting, an important one of which is the existence of a “gravitational tensor
hierarchy” [15]. This consists of a collection of p-form gauge fields coming from the di-
mensionally reduced component forms of the original supergravity theory organized into
a hierarchy and coupled to non-Abelian gauge fields resulting from the vector-like part
of the dimensionally reduced graviton. Any complete, manifestly 4D, N = 1 description
of eleven-dimensional supergravity will have a superspace analogue of such a non-abelian
tensor hierarchy.

Apart from their appearance in maximal supergravities, tensor hierarchies may be
considered in their own right as an extension of charged matter fields to forms of degree
higher than 1. In six dimensions, this idea has been used in attempts to construct con-
formal theories with N = (1,0) supersymmetry [16-18]. In such models, the forms do not
(necessarily) arise from the reduction of differential forms in higher dimensions and it is,
therefore, useful to construct such tensor models in a formalism that does not commit to
a differential-geometric origin.

This paper represents a modest step the direction of constructing the actions with
local supersymmetry in superspace. We present a model consisting of anti-symmetric
tensor fields subjected to some symmetries to which we will refer as the “Abelian tensor
hierarchy”. We present the bosonic form and the corresponding superspace version (with
global four-dimensional, N = 1 supersymmetry). In a forthcoming publication this is
generalized to a non-Abelian tensor hierarchy by gauging [19]. The construction of the
locally supersymmetric generalization is in progress [20].

2 Bosonic tensor hierarchy

In this section we present the bosonic Abelian tensor hierarchy. It consists of a series of
p-form fields in d-dimensional space-time taking values in some vector spaces V,,. The di-
mension of V), is the number of p-forms, which could be infinite. We take the space-time
metric to be flat and subject the p-form tensor fields to a set of Abelian gauge transfor-
mations. These gauge transformations are inspired by, but not identical to, those obtained
when compactifying the eleven-dimensional three-form to four space-time dimensions. We
show how the system obtained from dimensional reduction arises as a special case of the
more general Abelian tensor hierarchy.

!This result was rediscovered more recently in ref. [14].



2.1 Potentials and gauge transformations

Consider a collection of real scalars, one-forms, two-forms, and so on up to p-forms in d
dimensions. In this section we keep d arbitrary, while in the rest of this paper we take
d = 4. We write

qua ¢£a ¢%7 ¢gbca gbég)cda s (21)

where A runs over the set of scalars, I runs over the vectors, M over the two-forms, and
so on. In the remainder of this section we also use an alternative indexing for the fields in
some equations, writing I, I1,-- -, I,, - - instead of A, I,---. This allows us to write more
general formulae. In equations without explicit space-time indices we use a subscript [p]
to make clear that the given object is a p-form, i.e. d)lg The fields gi)é’iap are functions
taking values in a real vector space V,, with I, = 1,...,dim(V}). In the concrete examples
discussed in this paper V, will be the space of differential forms of some degree, Q" P (M),
on a manifold M. But for now we keep matters general and do not specialize to this case.

For each p > 0 there is a gauge transformation parameterized by a differential (p — 1)-

form A{;’_H, which generates Abelian p-form transformations. In addition, there is a shift

by the parameter A[I;]H. For instance

56 = (40" A,
5L = 9,AT + (q“))L AM, (2.2)
Say = 20, A3 + (q(z))f/\fb,

or in general

Ip _ Ip (p) Ty JIp+1
068y = POy ALl 1+ (q ) AR, (2.3)
where (q(p))?; ., are linear maps
¢? Vo1 =V, (24)
In differential form notation,
sotr — dAl 1 (¢ ap)" (2.5)
e I VA '

Here, d denote the exterior derivative and we introduced the notation

(4 A[p])fp _ <q<p>)l” AT, (2.6)

Ip+1

We define the field strengths

I I L
Fry = dey) - (q<p> : %H]) . (2.7)
which satisfy
1,
S =~ (q<p> g LAy, +1}) " (2.8)



In order for the field strengths to be gauge invariant, we thus require that

I
(q(p) . q(p+1)) =0, Vp>o0. (2.9)

Kpi2

It is then natural to interpret ¢ as the boundary operator for a chain complex V,,

(p+1) (p) (p—1) (p—2) (0)
V,:{...q”_> Vo1 L5 v, %_1qp—>---q—>%}. (2.10)
Because of eq. (2.9),
img**Y C kerq™®, (2.11)

but in general there is no equality. It is this mismatch which gives rise to interesting
physical quantities, as we explain in detail in section 2.3.

In addition to V,, we have the d-dimensional de Rham complex,
0 (Rd—lvl):{Qoi>911>---i>gpl>---}. (2.12)

Then the gauge fields ¢y, take values in Q2 ® V;, the gauge parameters Ap,_;) in eV,
and the field strengths FJ,; ) in QPTL@V,,. The field strengths satisfy the Bianchi identities,

I 1,
dFP = - (q<p> . F[p+21) " (2.13)

There is one more phenomenon that we will need which is the extension of the com-
plex (2.10) one step further to the right, i.e. a new space V_; and a linear operator
¢V Vo — V_ satisfying ¢ - ¢©@ =0

(0) (=1)
‘/_:{,_,q_>‘/0<z_>v_1}_ (2.14)

In terms of matrices, if we let Z index V_q, then we require

(q<—1>>z (qw))A 0 (2.15)

A I

With this understood, we can naturally define a new “field strength”,
zZ 0\ A
F[o} = <q >A¢[o]- (2.16)

This is a gauge-invariant linear combination of the scalars qbﬁ‘)] which is handed to us in the
case that the complex is extended as in (2.14). Note that since there are no (—1)-forms
on R* | ie. Q_1(R*) = 0, there is no corresponding gauge field ¢€1]’ and thus (2.16) is

completely consistent with (2.7). Also, Fi satisfies a Bianchi just like (2.13)

[0]

Z
dFf = - <q<0>>AF[§‘]. (2.17)



2.2 Example from dimensional reduction

As an example of how this construction can arise naturally, consider a D-dimensional
theory that has an n-form potential field C,). A good example to keep in mind is eleven-
dimensional supergravity, with D = 11 and n = 3, or its close cousin with D = 5 and n = 1.
Let d be an integer d < D. We can formally split the D coordinates into d space-time
coordinates 2 and D — d coordinates 3° which are treated as internal labels. The resulting
theory is formulated in d space-time dimensions.

For simplicity, we take the space-time to be a product R¥11 x M, where M is a
(D — d)-dimensional manifold. The n-form Cj,] then decomposes into pieces

Coay-apitig» p<d, k<D-d, p+k=n. (2.18)

Explicitly, we have
Vp, = Q"P(M), (2.19)

the space of differential (n — p)-forms on M. The boundary case V_; needed to accom-
modate Fg) is then QL (M). In general, Q" P(M) are infinite-dimensional vector spaces.
Consequently, an infinite number of d-dimensional fields can arise. Some fields are massless
and arise from harmonic forms on M. If M is compact, the number of such fields is finite.
However, there is also an infinite set of massive fields.

The decomposition of Cf,| in eq. (2.18) reflects the Kiinneth decomposition

Q"R x M) = PH PR @ QP (M), (2.20)

The operators ¢P) are also easy to identify. They are the exterior derivative dy; of M,
acting on Q""P(M). The field strength Fj,, is the projection of d(',, onto the appropriate
summand in eq. (2.20).

It can be instructive to formulate these matters a bit more explicitly. Differential
p-forms in space-time, qﬁ{;’] are labeled by a multi-index

Iy = (i1, In—p; ), (2.21)

which includes (n—p) indices on M, as well as the dependence on the “internal” coordinate
y. Thus, for this example

I
(ﬁ[;;] = C’alu.apil...infp(a:,y). (2.22)

(Note that although we wrote the ¢'s previously with an upper field index I, in this
context it is more natural to use lowered indices.) The contraction of these field indices
then includes an integral over the position y. This is called deWitt notation. For example,

given two fields
u (z) = w'(x,y)  and vy (@) = vi(z,y), (2.23)

then
U(Z;y) (a:)v(i;y) (.’,U/) = Z /M dD_dy u' (.’,U, y)U’L (xlv y)v (224)

and analogously for fields carrying any number of indices along M.



We take ¢ to be the set of operators
(jl"'jnfpfﬂyl) 1 y
(p) R N v s U Py o
()i = (1" —p)olt ol o, sy—y). (2.25)
It is not difficult to verify that ¢ = 0. Indeed, q applies djs so, being a bit schematic,

q(p)  Ppr1] = A bpr1- (2.26)

Here ¢,41) is a differential (n —p — 1)-form in M and dj increases the internal degree
by one, leaving the space-time degree fixed. Then both sides of eq. (2.26) have space-time
degree p + 1 and internal degree n — p.

The gauge transformations and field strengths in egs. (2.5) and (2.7) become

60&1"'apil"'in7p = pa[alAagwap]il---in_p + <_1)p (n - p) a[ilA\alwap\igndn_p]?

Foyapirinin, = (P +1) a[alCa2~"ap+1]i1~~~in—p + (_1)p+1 (n —p) a[ilClal"'aPJrlliZ"'in*p*l]'
(2.27)

These correspond to the decomposition of the eleven-dimensional equations §C = dA and
F = dC in accordance with eq. (2.20).

2.3 DMassless spectrum and chain homology

Given a chain complex like (2.10) or (2.14), it is natural to consider the associated ho-
mology groups Hp(V,) = ker(¢?~1))/im(¢®)). What is the physical significance of this
construction? Any field that lies in the image of ¢ is pure gauge and can be fixed to zero,
while another field that is not in the kernel of ¢ gets a mass via the Stiickelberg mechanism.
It is sometimes said that the latter field has “eaten” the former and become massive. The
homology of the chain complex measures what is left, i.e. the fields that are in the kernel
of ¢ but not in the image of ¢, and these are precisely the fields that remain massless. Let’s
see how this works in more detail.

To start with, we will build a basis for each V,,. We could denote an initial basis as
{er,}, so that we have expansions like

Ip
¢[p] = Z ¢[p]elp- (2.28)
I

Now we would like to decompose our space further using the boundary maps ¢, and
change basis appropriately. We start at the top of the complex, with p = d. For V; we
first construct a basis {aq, } for the subspace ker(¢(®~") C V. Then we complete this with
vectors {b,,} to get a basis for all of V;. Of course, this new basis could be expanded in
terms of the old one {ey,},

I I
Ao, = Zaa”fiejd, bu, = Zb/fdefd. (2.29)
I, Iy

Next, for each p < d we build a basis with three disjoint collections of vectors. First we

take the collection {c,,,, = (¢® - b, )}, where very explicitly,

Hp+1
o (@) e . N (2.30)
pp+1 — \ 4 Jouy HerL tpt1 = fip+1 €1, - .
p+ Ip



These are a basis for im(¢(®)). Next, since im(¢?)) is a subspace of ker(¢?~1), we can
complete this with vectors {aq,} to get a basis for all of ker(¢?~1). Finally, we complete
this to a basis for all of V, with a collection of vectors {b,,}. Now any vector in V}, can be
expanded, for instance

O = D S i + Z Ot an, + D Sy, (2.31)
Hp+1 Hp

Denote the subspaces of V;, spanned by the {c,,.,}, {@a,}, and {b,,} by Cp, 4,, and By,
respectively. Then we have

V, = im(q) @ ker(q")/im(¢®) @ V,/ker(q)

(2.32)
= (¢, @ Ap ® B,
In particular, we have im(¢()) = C,, ker(¢®»~1)) = C, ® A, and
q» : Bpy1 — G, (2.33)
Bpt1
is an isomorphism, and the homology is given by
H,(V,) = A,. (2.34)
We now plug these into some of our formulae. The variations become
. MUp+1 Mp+1 Hp+1
Cpi Odp = BTy + A,
Ap: 6¢[p’]’ = dA[pP 1 (2.35)
. Hp __ Hp
B, : 5d> = dA[p 1"

We can use the shift symmetry in the first line to set qﬁ’[; ’i“ = 0, thus fixing the gauge

symmetry parameterized by A‘[;‘]?“ There is still, in principle, a symmetry corresponding
to Afp” *11], but it must be compensated by AE; ’]’H = —dAf; ”jll} in order to preserve our gauge

choice and nothing transforms under this combination. After implementing this gauge
fixing for each p, we are left with the second and third groups of potentials, taking values
in A, and By, respectively. The ¢§ff still enjoy their gauge transformations, parameterized
by A[p 1
longer transform, since we fixed their gauge transformations.

P but they are standard Abelian transformations with no extra shift. The gﬁ’[; 1]’ no

After gauge fixing, the field strengths thus break into

Flhy = =0, (2.36)
Fphyy = doy), (2.37)
Fphyy = ol (2.38)
Recall that for p = —1 there is no potential, and in this case the only non-vanishing

components of the field strength are of the first type (taking values in C_; = By),

B = —¢lg (2.39)



We see immediately that the potentials valued in A, = H,(V,) appear only differenti-
ated (dgﬁ[o;’]’ ) and hence these fields must remain massless. On the other hand the remaining
fields (ﬁﬁ) ’]’ that take values in B, do appear undifferentiated inside of F[‘; f To make it
explicit that these fields are truly massive, and to compute the details of their spectrum,
requires some further assumption about the precise form of the kinetic terms. However,
there is nothing protecting them from being massive, and indeed if the kinetic terms have
a reasonably standard form

3

_ (») J

Lin = Y GP) Flog A*FL) (2.40)
p=—1

(where * is the space-time Hodge duality operator, so *F[‘;il] is a (3—p)-form in space-time
and G is some non-degenerate metric on Vp), then mass terms arise explicitly from the
pieces where we restrict G® to Cp @ Cy.

In the dimensional reduction case, this story translates to something more familiar.
In particular, as mentioned before, the chain complex V, is just the co-chain complex
Q"= *(M), with ¢ being identified with the de Rham exterior derivative dy; on M. The
homology groups of V4 are just the real de Rham cohomology groups of M:

H,(V,) = H"P(M,R). (2.41)
When translated into this context, the discussion above amounts to the statements
1. We can gauge away the fields corresponding to exact forms on the internal space.

2. The massless fields correspond to the above cohomology groups (with harmonic forms
typically used as representatives for the cohomology classes).

3. The fields corresponding to non-closed internal forms generally get masses. In a spec-
tral decomposition, the masses (squared) would be given in terms of the eigenvalues
of the Laplacian operator acting on Q®(M).

We now turn to the superfield embedding of this hierarchy of bosonic p-forms.

3 Superfields

In this section we will specialize to d = 4 and embed the hierarchy of bosonic p-forms into
superfields. For clarity, we give more conventional names to our potentials: instead of qb[?)},
we will have an axion a. QS[IH o qbf\é[] ab? qf)‘[%} abe and qﬁﬁ] abeq Will become AL B% ) Cfbc
D(ﬁcd respectively. The gauge parameters are denoted by Ap,_ij, and the field strengths

are denoted by FJ,; 1], including the case p = —1. Our superspace conventions are those of

and

ref. [21], which mostly agree with those of ref. [22]; some useful conventions are summarized
in appendix A.



0-forms | 1-forms | 2-forms 3-forms 4-forms
at FLo | auF =0
Al Foip | Qb =0
BM FM a[aFggi] =0
Cohe Fiea
Dibed

Table 1. Bosonic fields of the four dimensional Abelian tensor hierarchy. The potentials are on
the main diagonal, field strengths in the next and the Bianchi identities in the upper diagonal.
Space-time j-forms are in the j-th column. When embedded into superfields entries in the same
column appear in the same type of superfield. Table 2 displays the superspace version of this table.

0-forms | 1-forms 2-forms 3-forms 4-forms
P4 FA | D’DoFA4 =0
v wl DWI — DyWé =0
»M HM D?HM =0
XS GS
FX

Table 2. Superspace version of table 1. The prepotentials are on the main diagonal, field strength
superfields in the next and the Bianchi identities in the upper diagonal. Superfields in the same
columns are of the same type. Starting on the left these are chiral, real, chiral spinor, real and
chiral superfields.

3.1 Without shifts

We begin by reviewing how one embeds the usual potential fields in N = 1 superspace
using prepotential superfields [23] (see also [24]). Following the superspace literature, we
call these superfields “prepotentials” because there is another notion of superfields that
deserve to be called potentials, namely we simply promote the bosonic p-forms to super p-
forms, ¢q;...ay — ®a,...4,, where A; are superspace indices (e.g. running over (2%, 6°, 0%)).
After imposing certain constraints to ensure that the @, give irreducible representations of
supersymmetry, the potentials ®, can be solved in terms of the prepotentials we describe
below [23, 24].

3.1.1 The zero-forms

The zero form a? will be the real part of the bottom component of a chiral superfield ®4,
Dy®4 = 0:

at =

(o).

~10 -



In this section and below, the | means that we should extract only the bottom component,
ie. set § = 0 = 0. Gauge zero-forms differ from scalar fields in that they shift by a
real constant under transformations 6®4 = ¢4 (with ¢4 € R) leaving the classical action

invariant. The field strength invariant under this shift is?

FA = 2% (@A - 6A) . (3.2)

This field strength satisfies a Bianchi identity (the coefficients chosen will make more sense

once we turn on the shifts)

1._
- 1DZ’DQFA = 0. (3.3)

To extract the component field strength, we take the 69 component

A 1

a 1 (Ua)ad [Da’ Dd] FA

, (3.4)

giving the bosonic field strength Ff = 9,a".
Of course there are other component fields in the same multiplet, all of which are, like
a?, valued in Vj. There is a real scalar partner to a**, which we will call p?, given by

2%, (24 -] (3.5)

Note that ¢* is invariant under the shift above and therefore really a scalar instead of a
zero-form. There is also a complex auxiliary field

1
_ ZDQ@‘“. (3.6)

And finally there are the fermionic superpartners

1 A L
WA = \EDO}I)A‘ and g = =Dy ®

3.1.2 The one-forms

(3.7)

The vector Al naturally lives inside a real scalar superfield V!, which suffers the gauge
transformation,

1 ~I

oVl = (AT-1"), 3.8

2i (38)
where Al is chiral, DsA! = 0. The gauge field itself is extracted by
AI _ 1 D¢ Dd VI

- _Z (Ua)ad [ ) ]

a

) (3-9)

and one can verify that

SAL = 9\, (3.10)

2We apologize for the over-use of the letters a and F, but it should hopefully be clear from context and
indices whether we are talking about a bosonic field, a superfield, or an index.

- 11 -



where

A = % (AI+K1> . (3.11)

Note that we can use the other components of A’ to go to Wess-Zumino gauge, in which
we have (see e.g. [21, 22, 24])

VI’ - DaVI‘ - def‘ - DZVI‘ - DZVI‘ —0. (3.12)
The remaining component fields in V'’ consist of a real auxiliary field
1 _
Dl = — {p?, DV ! ) 1
Loy v (313)

and fermions

AL = —%DQDQVI), X = %D2DQVI‘. (3.14)

~I . . . .
The components DY, M, and X" are all gauge-invariant. We can make this manifest
by constructing an invariant field strength which is a chiral spinor superfield

a

1_
wil= —EDQDQVI, (3.15)
that contains (in addition to D! and A?) the appropriate component field strength

i R
Fy = D) ((Uab)aﬁ DaWé — (Gab) 'DaWIB> ‘ . (3.16)

— (D*W! — DsW'%) = 0. (3.17)

3.1.3 The two-forms

The two-form potentials B% reside in a chiral spinor superfield £ in the same way that
FI lives inside of W/, i.e.

i e o s
By = -3 ((Jab)aﬁ D“E% - (Uab)ag DaEMB> ’ . (3.18)
The superfield ¥ has a gauge transformation
1=
oxM — —ZDzDaUM, (3.19)

where UM is a real scalar superfield. We of course have

1 _ .
AM = -3 (0a)ug [P, D] UM, (3.20)
and
0By = 201,y (3.21)

- 12 —



The remaining components of UM either drop out entirely (if they are part of a chiral
superfield plus its conjugate), or they can be used to set some components of ng to zero,
in an analog of Wess-Zumino gauge. Explicitly, we can set

=0, (3.22)

and we can set the real part of DX (which also equals the real part of Ds XM ¢) to zero.
The remaining gauge-invariant components are a real scalar

1 I
oM = I (DS — DeIM e |, (3.23)
i
and fermions
M= Xo = ——DZZ (3.24)
4\/ 42
The corresponding invariant field strength is
1 o
HM = R (DB — DM, (3.25)
i
with .
Fly = 8€abcdaé‘id (D, D] HM ‘ (3.26)
This invariant superfield strength obeys the Bianchi identity
1._
— ZD2HM = 0. (3.27)
3.1.4 The three-forms
The three-form Cfbc is embedded in a real scalar superfield X,
1 .
Cabc - geabcdaid [Da7 Da] XS . (328)
The gauge transformation is parameterized by a chiral spinor superfield Tg , with
i _ a4 A =S4
A% = =5 ((0w)s” DT = (Gu)*; DaT7) . (3.29)
and the superfield transformation is
§X5 = R (Dar — DY) (3.30)
i
Going to (an analog of) Wess-Zumino gauge, we can ensure that
XS‘ - DaXS’ - DdXS‘ ~0, (3.31)
leaving us with a complex scalar
1_
y® = —ZD2XS), (3.32)
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a real auxiliary scalar,

1 _
25 = 5 {D? D*} x|, (3.33)
and fermions 1 1
S 2 S =S 2 S
S—_ = D’D.X5|,  7i=-——D?DsX ) 3.34
n VG n WG (3.34)
The field strength is a chiral superfield,
1_ ’ o
G% = —1D’X°, Fju= %eabcd (D2GS — D*GS))|. (3.35)

There’s no corresponding Bianchi identity since the bosonic field strength Ffbcd is auto-
matically closed by virtue of being a 4-form.

3.1.5 The four-forms

Finally, the four-form potential Dg‘l;cd can be placed in a chiral superfield 'Y,

Dot = ~eaea (DTX - DQFX)’ | (3.36)

The gauge parameter lives in a real scalar superfield =X,

1 .
Adbe = geabeath [P D] EX|, (3.37)
and the superfield transforms as
1=
orX = —-p?=X, (3.38)

4

There is no field strength in this case, and the space of gauge transformations is large
enough to gauge away every component of I'Y except for Déicd (and even this can be
X )

gauged away locally, using the residual bosonic symmetry parameterized by A7,

3.2 With shifts

With the details above, it is not hard to incorporate the shifts. For instance, the zero-form
now transforms, so we should have (we drop the (P) superscripts on ¢ since the degree is
clear from the indices),

504 = (q- N7, (3.39)

and correspondingly we must deform the field strength (3.2) to,
1 —A
A_ - A _ . A
P = (<I> T ) (q- V). (3.40)
This modifies the Bianchi identity to

1_
- EDQDQFA = —(q-Wa)™. (3.41)
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Proceeding similarly for the other fields, we arrive at the variations®

§PA = + (g- N
1 _
vi= o (AI—AI> +(q-U)
soM = _Lpep pu + (q-To)M 3.42
a 1 a g Lo (3.42)
1 .
0XS = - (DTZ = DaX¥) + (¢-5)°,
I = _Lpezx,

4

These prompt us to construct invariant field strength superfields

E7 = — (q-®)?
FA — %((I)A ) —(q-V)A
Wy = —if??DaVI — (g-Za)" (3.43)
HM — %(Dazg‘% — DaEME) — (g x)M
@ = XS (T,

Notice that we have also introduced the “zero-form field strength” EZ, which is a chiral
superfield, with component

1 _
F? =2 (EZ n EZ> . (3.44)
Finally, these field strengths obey Bianchi identities
0= l(EZ—EZ) + (¢-F)?
2i
1._
0= — D’DaF*  + (g Wa)'
) (3.45)
0= (DW= DaW'?) + (¢-H)
1-
0= —-D?HM + (¢- M.

4

3There is one more possibility, which is that we could add a term (q“”)ﬁﬁm (with m indexing the space
Vs) to the last line of (3.42), where Q™ is a chiral superfield. In components, this would generate a shift
DX . = ¢XA™ ., but there is no corresponding field labeled by m for which A™ is an ordinary gauge
parameter. In the dimensional reduction case, this would happen only if g > d, i.e. we are reducing a form
in D dimensions whose degree is greater than the spacetime dimension d.
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Note the beautiful symmetry* between (3.42), (3.43) and (3.45). The same operations
appear in each set of equations to relate forms of different space-time degree.

The rest of the discussion goes mostly the same. We can still access Wess-Zumino
gauge® for VI, ¥M X9 and I'X, and these fields still have the same component expansions.
The field strengths have been modified, but the relations to components (3.4), (3.16), (3.26),
and (3.35) are the same, only now in terms of the properly gauge-invariant bosonic field
strengths (2.7).

3.3 (Gauge invariant kinetic terms

Since the superfield strengths are gauge invariant, a supersymmetric and gauge invariant
Lagrangian can be obtained by combining superfield strengths into chiral superfields and
integrating them over half of superspace or into real combinations and integrating over
all of superspace. Here, we present the simplest possibility, namely that we have a con-
stant metric on each V, and use it to build simple quadratic combinations of the field
strengths. Explicitly,

1 1 14
/ d'zd'0 gapFFP = / d'zgap [ — P = S0 0up" + S 1 I

_EAQ*B_B Anl Y oavr 1 —AsT

1
Re ( / d*zd®0 gr Wl WJ> = / diz [Im(gI 7) (—2D1q{W€M + 4e“bchijc§>

+ Re(gr) (—;Ff“ijb + DD — kgl MY — 2\ 59,3’ >
+ V2igrsgd MM — Va2igrrgl N 7 } , (3.47)
/d4xd49 gunHMHY = / d*z gun [;FM abCFa]Xc + 20M 90N — 2ixM 20,7
+2q8 (=025 —ix™n® +ixM7%) + 23 of ySyT] : (3.48)
and®
/d4a?d49 QSTGSGT = /d4:1: gsT [ — iFsadeFg;Cd + 2927 — 9%%0,7" — in®o anT] .
(3.49)

4If we have one more map, (q(_Q))’Z", then we could make the symmetry even clearer by adding a line
0 = g% E? at the top of the third set of equations, (3.45). Indeed, in the dimensional reduction example
where ¢ is just the exterior derivative on the internal space, we do have such a map; q(f2> is just the exterior
derivative acting on (g + 2)-forms. For the other possible lack of symmetry, see footnote 3.

5 Actually, this depends a bit delicately on the fact that ¢q-g = 0. For example, suppose we do an arbitrary
UM transformation. This will not generally leave V' in Wess-Zumino gauge, so we need to perform a
compensating A’ U M) transformation to return V’ to Wess-Zumino gauge. A priori, this compensating
transformation would affect the scalars, but in fact they remain invariant provided q<0> . q(l) =0.

50n dimensional grounds, we need to take this D-term action to give a kinetic term for Cfbc, rather
than the F-term possibility [ d*0gsrG°GT.
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Here gap, gy, and gs are constant real metrics. gy can a priori be complex, and unlike
in the usual case (without shifts), the action proportional to the imaginary part of gy is
not purely topological.

4 Bosonic Chern-Simons actions

With the invariant field strengths constructed in section 3, it is easy to write down gauge-
invariant supersymmetric actions simply by building real scalar (or chiral) combinations
and integrating them over all (or half) of superspace. However, there is another important
possibility, which is to have a Lagrangian that is not gauge invariant, but whose variation
vanishes when integrated over superspace. This is the hallmark of a Chern-Simons form.
In the next subsection we will review the typical example of this in the bosonic case, where
we build a d-form in d dimensions by wedging one potential ¢, and some number of field
strengths Fj, ), -, F[p,), with > o pi = d. Without shifts this would be gauge invariant
when integrated, since its variation is an exact form. This is what we will mean when
we say “Chern-Simons actions”. With shifts, we still have a chance of building something
invariant by taking linear combinations of such terms. After explaining the bosonic case
in this section, we will construct the supersymmetric analog in the next section.

4.1 Actions

Again, we restrict to the case d = 4, and denote our potential p-form fields a4, A, BM,
C%, and DX, for p running from zero to four respectively. We will consider the cases
n =0, 1,2, where n is the number of field strengths. It is not difficult to work out the story
for higher n, though such actions are then higher order than quadratic in derivatives.

4.1.1 Linear Chern-Simons terms

For n = 0, we can only construct a four-form by using DX,
So,cs = /OZXny (4.1)

where ay are some set of constants. These terms are gauge invariant for any choice’ of
ax, since sDX = dAX is exact. An example of this sort of coupling is given by D3-branes,
on which we have a coupling | 3 Cla-

4.1.2 Quadratic Chern-Simons terms

For n = 1, we have five possible terms,

Sics = / {mAsaAF[i} + oo AT A F[g/][

—|—Oé3M]BM/\Fé] —|—OZ4SACS/\F[114] —|—045X2DXF[g]}. (4.2)

"This is true up to the possible caveat mentioned in footnote 3. In this case, gauge invariance under the
shifts parameterized by Q™ would require axgir = 0.
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The BF coupling proportional to asg is probably the most familiar of these terms, but they
can all occur. Note also that in the case without shifts the terms are not all independent:
the a1 and a4 terms are related to each other by integration by parts, as are the ag and
ag terms. With shifts this is no longer true (although there can still be relations).

Under the gauge transformations (2.5), we have

851,08 =/ {mASQflAfo}F[i]JrOéle <dA[IQ]+QJIVAfY]> A Fﬁ;,fmsm (dAf\ﬁ+qg4A[92}) A F[é]
+auyusa (dA[g] + q}g(A[)g]) A F[fll] + Oé5XchA[)§]F[g]}
=/ {(OémSC]fl + a2rnqs’) A[Io]F[?j] + (a2rnghy — asmrgl) Af\ﬁ A F[]g\?

+ (asnrqs’ + cusaqr') ARy A Fiy + (usagy — asxzq3) Afg A F[f]} , (4.3)

where we have integrated by parts and used the Bianchi identities for the field strengths. In
order for this to be gauge invariant, we must require each of the combinations in parentheses
to vanish, i.e.

0= 061,45(1}4 + 0421ng*/17
0 = aurNgh — sk,
0 = asmrgd + ausaqy, (4.4)

0 = ausaqy — asx245.
4.1.3 Cubic Chern-Simons terms

Now we have nine possible terms
52,08 =/ {amzsaAF[g]F[*?;] +agapma A FY + azarsa” Fiy A F
+arnapBY A Fiy A + asszaC® A FGFR + agxzz/DXF[g]F[ﬂ’} . (4.5)

Without loss of generality we can take agar; = asayr and agxzzr = agxz/z to be sym-
metric in their last two indices, and a7y;ap = —arprpa to be antisymmetric. The ag term
is the familiar axionic coupling in four dimensions. The variation is given, after integration
by parts and use of Bianchi identities, by

6.52,cs =/ {Afo] [(OZMZSQ? +ourzmas ) FoF
+ (c2Bamaf + curzmas — asrasaiy) Fﬁl} A F[%[
+ (asasxai +asrasai) Fij A F[éﬂ A A [(CWZN‘J&* acnz1an) Fig P
+ (assa1qi; — cemzial + 2arnanar) F[‘?] A F[IQ]]
+AZ) A [(aGMZIqé‘(I +agszaqr) Fify Fy+ (arapad’ — asszagh) Fijj A F[fﬂ

+Af A <OéSSZAQ§( - 2049XZZ/(]£/) F[g]F[ﬁ} . (4.6)
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Recalling that F[g] = —qiaA always carries a qi , the vanishing of this variation is
equivalent to four equations that are linear in the gs,

0 = aapanq? + aurzmds — asrasdi,
A A
0 = azasxar + asradx)
0 = assa1qh; — ®%6MzI94 + 2070 aB4Y (4.7)

M z
0 = armABYs — 08524407,

and four that have an extra factor of qi,

0 = a1pzsq?d + 044IZM(L]5\'/IQ£7
_ I 7 Iz
0 = curzNagyaa — M zIqNdA s
0 = aenmz1qy 44 + asszBar 44, (4.8)

S 7z A
0 = agszBax A — 2090x22'94495 -

4.2 Descent formalism

Each of the cases above (linear, quadratic, and cubic) can be combined into a nicely
packaged formalism by writing

Scg = / {CLAC[4]A + Al A Cl3)r + BM A Co|m + C% A crys + DXC[O]X} , (4.9)
where each cjy_p)7, is a polynomial in the field strengths. This action is invariant if

I
a7, Cu—pr, — (=" de_pr,,, =0, (4.10)

for each p=0,---,3.
In this formalism, the linear case is given by the solution ¢} = ¢jg] = ¢3) = ¢y = 0,
Cjojx = ax Is constant. The quadratic case has

cya = a1asF,

cgyr = aarm iy
ClaM = asMIF[IQ]v (4.11)

s = 044SAF[114]7

Clo)x = assz[g].

Note that the requirement (4.10) that the forms c, must satisfy is very similar to the
Bianchi identities (2.13), except that we replace ¢ by its transpose. For the quadratic
case in particular, the requirements derived from (4.4) are equivalent to the statement
that the «; give a pairing on the complex V, with respect to which the adjoint of ¢ is
just the transpose of q. Then the descent relations (4.10) simply follow from the Bianchi
identities (2.13).
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Finally, for the cubic case, we read off

CujA = alAst[g]F[‘z] + OZZABMF[?] A F{?ﬁf + OésAIJFé] A F[“Qf],
CEr = Oé4IZMF£]F[]g‘,]4 + 065IAJF[’% N Ffép
CRIM = OZGMZIF[g]F[IQ] + oz7MABF[’f} A F[ﬁ, (4.12)
s = assZAF[g]Ff],
cox = agxzzF[g]F[gf.
4.3 Examples from dimensional reduction
4.3.1 Dimensional reduction from 5 to 4

Consider a theory in five dimensions with a vector A. Tt is easy to generalize this story
to multiple five-dimensional vectors. This theory can have a Chern-Simons coupling of
the form

S5D7CS:7/AV/\ﬁ/\ﬁ, (4.13)

where v is a constant. Upon reduction on a circle (with coordinate y and radius R),
the five-dimensional vector gives rise to an infinite set (the KK tower) of axionic scalars
a¥(z) = Zy(x, y) and an infinite set of four-dimensional vectors AY (z) = Ag(z,y). We
also have a “matrix”

() 0
© =4 4.14
(49),,, = 3,00 ) (4.14)
and gauge transformation and field strengths
O AW, W) _ 9 )

In terms of four-dimensional couplings, the five-dimensional Chern-Simons action
would now be written as

_ @) A pW") ") (")
SSD,CS = / [ag(y)(y/)(yu)a(y)F[;}/ 5[221 + a5(y)(y/)(y//)A( v) VAN F[IZT A F[Q] :| , (416)
where

s =10 =)0y —y") and  asyynen =290y —y)o(y —y").  (417)

To compare with more traditional presentations of Katuza-Klein theory, let us do a
Fourier expansion,

Aiwy) = Y a@em®, Ay = 3 AV (@)e VR, (4.18)
neL NEeZ

with reality conditions (a”)* = a™", (AN)* = A;N. We used different labels n and N to
emphasize that these label bases for the space Vy and Vj respectively. Similarly, for the
gauge parameter we have an expression

= > ANeN/R, (4.19)
NeZ
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In this basis,

o™ = %&MN, §AN = dAY, (4.20)
Ffy = da™ - E(SNAN Fiy = dA", (4.21)

and
aznMp = YROn M1 POS asNmp = 2YRON1mPo- (4.22)

Then one can verify that the action
SE)D,CS :/ Z A3n M Pa F[2] /\F[2 Z Oé5NmPA /\F[l] /\Fm (423)
n,M,P N,m,P
is invariant.

4.3.2 Dimensional reduction from 11 to 4

Eleven-dimensional supergravity has a three-form potential Cy;np. Upon reduction to four
dimensions, this gives us potentials

aijkiy) (€) = Ciji(, y),
(i), (@) = Caij(@,y),
Bliy)) oy () = Capi(,y), (4.24)
(C(;y))abc (z) = Cape(z,9)-

Note that there is no four-form DX.

The matrices ¢ are given by (2.25) with n = 3. The corresponding field strengths are

Flijrey) (@) = 40,;Cirg (2, y),
(Flijk)),, () = 8aCij(,y) — 30Clajjn (2, y),
(Figi) g (@) = 20Clyij (2, y) + 20,Capps) (2, 9), (4.25)
(Flisg)) oo (@) = 301Chqi(2,y) — 0iCape(,y),
(F(;y))abcd (z) = 40 Cbcd] (z,y).

These satisfy Bianchi identities (2.13) in the form,

0 = =50} Flo)(jrem]sy)»
dFo)jkey) = 40 F)(jkasy)»
AdFGjksy) = —30iF12)(k)s)»

AdF) i) = 206 F3)(j1:)» (4.26)
dF3)(isy) = —0iF)(y),
dFjg)(y) = 0.
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The eleven-dimensional theory has a Chern-Simons term
/{/C ANdC AN dC, (4.27)

where £ is a constant. Reducing to four dimensions we can write it in the form (4.9), with

ijjk;y) - ﬁeijkgmnp (QF[O](fmnp;y)F[4}(;y) = 8501 (emnsy) N Fi3)(py) + 6F(2)(bmiy) N F[Q](np;y)) ;
il = SEi€ ™™ (L0Fioikemni) Fla) + 20F i nemy A Pl
e = gﬁlj RETP (30 Fig) (jkemey) Fia np) — 20F 101Gtz A Fit)(mnpy)) » (4.28)
Cﬁ?]J) = 7%ﬁEiﬂmmpF[O](ijké;y)F[l}(mnp;y)'

We can verify that these satisfy (4.10).
We can also read off the « coefficients by comparing (4.28) with (4.12). The result is

agijk;y)(ﬂmnp;y’)(;y”) _ %eijkémnpé(y )y — o),

aéijk;y)(fmn;y’)(p;y”) _ _%eijkzmnp(;(y ey — "),
a:()’ijk;y)(fm;y’)(np;y”) _ %Gijkémnpé(y Ny — "),

aiij;y)(kfmn;y’)(p;y”) _ %eijkgmnp(s(y ey — "),

Oééij;y)(an/)(np;y”) _ %Eijkﬁmnpé(y Ny — "), (4.29)
aéi;y)(jkfm;y’)(np;y”) _ ieijkémnpé(y ey — "),

agi;y)(jkf;y’)(mnp;y”) _ _%Eijkfmnpé(y )8y — "),
aé;y)(ijké;y’)(mnp;y”) _ %eijkémnpa(y — oy — ).

There is no ag because there is no four-form potential.

5 Superfield Chern-Simons actions

Now we make use of the superfields we defined in section 3 and write down supersym-
metrizations of these Chern-Simons actions.

5.1 Actions
5.1.1 Linear Chern-Simons terms

In the case of the linear Chern-Simons term (cf. section 4.1.1), it turns out that, surprisingly,
the bosonic action is already supersymmetric, since we have

So,scs = Re [i/d4xd29aXFX] = /axDX = 50,cs- (5.1)
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As before it is gauge invariant,
1.
6S0scs = Re [z / d*zd*9ax <—4D2EX>] = Re [z / d4zd46aXEX] =0, (5.2)

where in the last step we used that d*6, ax, and Z¥X are real, so the quantity in square
brackets is purely imaginary. Note that this Fayet-Iliopulos type term is proportional to
the F-term of the chiral multiplet I'* and may play an interesting role in the breaking of
supersymmetry.

5.1.2 Quadratic Chern-Simons terms

In this case, the supersymmetrization of the Chern-Simons action has the form

Sl,SCS —/d4$d49 (CMQIMVIHM — a4SAXSFA)
+ Re [z’/d4xd29 (a145P4G® + agn ZM WL + a5 x , T E?) | . (5.3)

When expanded into components, the resulting action contains (4.2), but will have
many other pieces involving the superpartners as well as additional bosons required
by supersymmetry.

Under the supersymmetric gauge transformations (3.42), the action changes by

1 _
dS1.8c8 Z/d4xd49 <a21M (21 (AI — AI) +(q- U)I> M

L (oS 7 mSc S\ A
_O“W‘(m (D TS — Dy )+(q u)>F>

1 _
+ Re [z / dAzd?0 <oqu (q- M) G5 +asyr (—4D2D“UM+(q : T”‘)M> wa

1._
L)

= / d*zd*0 ((carnahy — asnrral) UMHY — (qusaqy — asxzq4) EXFA)

+ Re [i/d4$429 ((arasaf +azmeas’) A G+ (asarrgs’ +asaqr) TS&Wc{)} :
(5.4)

Here we have used eq. (A.3) relating the measures d*f and d20, the superspace analog of
integrations by parts, and the Bianchi identities (3.45). We can immediately see that the

conditions for gauge invariance are precisely those found for the invariance of the bosonic
action (cf. eq. (4.4)).

5.1.3 Cubic Chern-Simons terms

Similarly we can supersymmetrize the cubic Chern-Simons action (4.5). First we have to
make a couple of definitions. Let

—=A -—=Z
~, 44D ~, FE?’+E ~
o4 = + E? = % = 4o (5.5)
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We also define an operator
— o —a 1 = =
U, W) = D*UTq + DUT" + U (Do‘\Ifa + Dy ) , (5.6)

which takes as arguments a real superfield U and a chiral spinor superfield ¥, and returns
a real superfield. This operator has some nice properties. In particular,

1 1. 1 I
— D) = (—4D2D“U) o — D [U (Da\pa — DT )} , (5.7)
Lo _ 1 os ¢ . 12 ay _ D.TY
—DX(U,v) = < 1D DQU> ¥+ 2D [U (D U, — DT )] (5.8)
Also, .
ULQ(Us, W) + UpQUy, ¥) = D (Uy U Wa) + Dg (Uﬂﬁ“) , (5.9)

and if we define ¥U$ = —iDQDan, then

Q(UL, Ty) — Q(Us, Ty) = —éDaDZ (U1 DoUs — UgDaUl)—éDdDz (U1 DU, —U, DY)
(5.10)

and
UlQ(UQ, \113) + UQQ(U?,, \111) + UgQ(Ul, \Ifg) = D¢ ( . ) + Da ( . ) , (5.11)

where we won’t need the explicit form of the omitted terms (- - -) but only the fact that the
right hand side is a total superspace derivative and, therefore, vanishes when integrated
over fd4:vd49.

With these definitions, one can write the supersymmetrized Chern-Simons action as

SQSCS = / d4$d40 [OKQABMEI\)AFBHM + 044]ZMVIE\ZHM + 045]AJVIQ<FA, WJ)
+aryapFAQFB, 2M) - asSZAXSEZFA} + Re [z / d*zd?0 (a14zs®*E? G
+azar @AWW + agrzr EZSMew! + agXZZ,rXEZEZN (5.12)

After some manipulations, its variation has the form
082508 = / d*zd"0 [(OézBAMq[B + aurzndi — as14503;)

+ (curznair — asmzigy) UM EZHY

+ (assa1qis — aenzrds + 20muzpar) UMQFA, W)

+ (rmraay —asszaqh) FAQ(FP, 1) - (assmqsq( —209x 2204 ) =XpZpA

+ Re [Z / d*zd?6 ((alAzsq}4 + a4[Zng4) ANEZGS

+ (azaskal + asasai) MW7 WE + (agrzigd! + asszagi') BZY*WY) } :

(5.13)
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We see that the conditions for gauge invariance are again precisely (4.7) and (4.8), as in
the bosonic case.

We now have all the details needed to write down the four-dimensional N = 1 off-
shell supersymmetrization of the eleven-dimensional Chern-Simons term. It will be given
by (5.12), with the coefficients « given by (4.29).

5.2 Descent formalism

We would now like to imitate the bosonic descent formalism and unify the cases above.
Thus we write the action in general as

Sscs = /d4md49 (Vlesr — X%c1g) + Re [z / d*zd?0 (D4can + ZM eopr o + rXCOX)] .
(5.14)
Here c3; and ¢ g are real superfields, c44 and cgx are chiral superfields, and ¢y is a chiral
spinor superfield. All of these are built out of the field strengths EZ, FA, W, HM and GS.
Explicitly for the cases above, we have for the linear Chern-Simons action,
Cox = Qx, (5.15)
with the other ¢’s vanishing. For the quadratic Chern-Simons action we have
can = arasG®,
csr = aor HY,
CoMa = ospiWa, (5.16)

A
c1s = ousa ',

7z
cox = asxzE”.

And for the cubic action,
cia = a1azsBZG + azap WHowy! + %.OZ2ABMD2 (FPHM),
car = curzm EZHM + a5 a QFA, W),
COMa = aGMZIEZW; + %a7MABD2 (FADQFB) , (5.17)
cis = agszaBZFA,
cox = agxzz BZEZ.

For the general action (5.14), invariance under variation requires

1_
0= —ZDZC?J — qileaa,
D%c — D%

0= QM“2, QM 4 gl s,

2 (5.18)
0= —ZDzDan — g eontan

Ccox — Cox
0= ——— +das
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Again we see the appearance of the same operators. We can also verify that for the linear,
quadratic, and cubic cases above, imposing (5.18) is equivalent to the conditions on the
a’s and ¢’s that were already deduced.

6 Prospects

The aim of our current program is to describe the actions appearing in a supersymmetric
Kaluza-Klein compactification of ten-dimensional type II theory or M-theory involving
massless fields and an infinite tower of massive fields in a closed form. In recent times it has
become evident that particularly the massive states include a host of physical information,
such as the appearance of a new superpotential describing their interactions [11].

In this paper, we have taken a step in the direction of constructing these actions by em-
bedding the Abelian tensor hierarchy appearing in such reductions into four-dimensional,
N = 1 superspace and explicitly presenting standard kinetic actions as integrals of gauge
invariant chiral quantities over half of superspace or real quantities over all of superspace.
We also constructed Chern-Simons-type actions which are supersymmetric in the usual
way but which are only gauge invariant after combining many terms and integrating over
superspace. As we have stated, these models are inspired by but not identical to the em-
bedding of a higher dimensional antisymmetric tensor field into d-dimensional superspace
(d = 4 is the example we focused on) because it has additional bosonic components needed
to complete the supersymmetry multiplet.

Embedding this Abelian tensor hierarchy into superfield supergravity is non-trivial and
we propose to proceed in two steps. The first step is to gauge the hierarchy with respect to
the vector-like components of the dimensionally reduced metric. In a forthcoming paper [19]
we do this by coupling this Abelian model to non-abelian gauge fields. The second step is to
reconcile the component field mismatch alluded to above. A comparison of the components
of 11D supergravity to those of the hierarchy shows that there are (at least) the 35+ 7
superfluous scalars coming from the scalar and two-form multiplets, respectively as the
bosonic partners required to complete the multiplet. On the other hand, the remaining
supergravity components have not yet been accounted for and it is known from previous
work [25, 26] that including these superspin—% and -1 multiplets has the potential to resolve
this mismatch. Including the coupling to these fields is work currently in progress [20]. The
goal ultimately is to the embed the action eq. (4.1) of ref. [12] in four-dimensional, N =1
superspace in order to learn about quantum corrections of M-theory in terms of powerful
non-renormalization theorems in four dimensional superspace.

A natural toy model for eleven-dimensional supergravity is 5D, N = 1 supergravity.
It contains a “graviphoton” analogous to the M-theory three-form for which one can write
a Chern-Simons action. A natural thing to do, therefore, is to extend the program to
include 5D, N = 1 superspace [27] and relate it to the supergravity theory of ref. [28, 29].
Alternatively, one can attempt to increase the amount of manifest supersymmetry to 6D,
N = (1,0) leaving only five additional directions and six non-linear supersymmetries. The
curved superspace for such an extension was constructed in [30] and an action was proposed
based on that of ref. [31]. The action was recently reduced to 4D, N = 1 superspace notation
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in ref. [32, 33]. This 4D, N = 1 description of 6D, N = (1,0) supergravity and related
results may prove useful in the construction of the eleven-dimensional action.
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A Conventions

In this appendix, we collect some oft-used identities satisfied by the four-dimensional,
N = 1 superspace covariant derivatives. Our conventions are those of [21] (which are
closely related to those of [22]).

The basic identities satisfied by the superspace covariant derivatives are

{Da, Dy} = —2i0%40,,  {DayDp} =0= {Dd,DB} , (A1)
with 0% the usual Pauli matrices. The (flat) spacetime indices will be denoted by lowercase
Latin letters a, b,--- = 0, 1,2, 3. Chiral and anti-chiral spinor indices are denoted by Greek
letters taking two values «, 3, - = 1,2 and &, B, =1,2.

Manipulating these fundamental D-algebra rules results in the following list of useful
relations:
DgD? =0 D,D? =0 (A.2a)
[D? D4] = — 4i0%,0,D% (D%, D,] = 4ic% 0, D% (A.2b)
D°D*D, = DyD*D% | [D?, D% = — 4i0%,0,[D", D% (A.2c)
1 _ 1 _ 1 -
O=--D*D?D, + —D*D*+ —D*D? A.2d
8 “* 16 " 16 (4.2d)
D?*D,D*=0 |, D?DgD? = 0. (A.2¢)

These identities are crucial to our analysis and will be used repeatedly throughout
the paper.

The measures on superspace are given in terms of super-covariant derivatives by

1 1 1 -
2 2 2 2 4 2172
=—-D =--D = —D*D?. A.
d<0 , d°f , d*f 16 (A.3)

When appearing integrated, it is implied that the result is projected onto the § = 0 = 6
subspace. For example, the chiral integral [ d?oW = —%DZW’ where as is standard in the

superspace literature, we use the notation (... )‘ to indicate that (...) is to be evaluated

on the § = 0 =  subspace.
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We use the Spin(3,1) = SL(2; C) invariant € and its conjugate to define

(%)% = eaﬂedﬂagﬁ.. (A.4)

Together with the original Pauli matrices, these satisfy 0,64+0,0p = 214 and G,0p+,0p =
2nqp- The opposite signs define the spin matrices which we normalize by

1
(0a)e” = § (0aTs — 0470),” (A.5)

and )
(Eab)aﬁ' = Z (5(1017 - Ebaa)aﬁ' . (AG)

These matrices are symmetric when the upper spinor index is lowered (or vice versa).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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