
J
H
E
P
0
3
(
2
0
1
5
)
0
5
7

Published for SISSA by Springer

Received: December 19, 2014

Revised: February 12, 2015

Accepted: February 17, 2015

Published: March 11, 2015

Exceptional thermodynamics: the equation of state of

G2 gauge theory

Mattia Bruno,a Michele Caselle,b Marco Panerob,c and Roberto Pellegrinid

aNIC, DESY,

Platanenallee 6, D-15738 Zeuthen, Germany
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Abstract: We present a lattice study of the equation of state in Yang-Mills theory based

on the exceptional G2 gauge group. As is well-known, at zero temperature this theory

shares many qualitative features with real-world QCD, including the absence of colored

states in the spectrum and dynamical string breaking at large distances. In agreement

with previous works, we show that at finite temperature this theory features a first-order

deconfining phase transition, whose nature can be studied by a semi-classical computation.

We also show that the equilibrium thermodynamic observables in the deconfined phase bear

striking quantitative similarities with those found in SU(N) gauge theories: in particular,

these quantities exhibit nearly perfect proportionality to the number of gluon degrees of

freedom, and the trace anomaly reveals a characteristic quadratic dependence on the tem-

perature, also observed in SU(N) Yang-Mills theories (both in four and in three spacetime

dimensions). We compare our lattice data with analytical predictions from effective mod-

els, and discuss their implications for the deconfinement mechanism and high-temperature

properties of strongly interacting, non-supersymmetric gauge theories. Our results give

strong evidence for the conjecture that the thermal deconfining transition is governed by

a universal mechanism, common to all simple gauge groups.
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1 Introduction

Due to its highly non-linear, strongly coupled dynamics, analytical understanding of the

strong nuclear interaction remains incomplete [1]. Essentially, the fact that the spectrum

of physical states is determined by non-perturbative phenomena (confinement and chiral-

symmetry breaking) restricts the theoretical toolbox for first-principle investigation of QCD

at low energies to numerical simulations on the lattice — while the applicability of weak-

coupling expansions is limited to high-energy processes.

At present, one of the major research directions in the study of QCD (both theoreti-

cally and experimentally) concerns the behavior of the strong interaction under conditions

of finite temperature and/or density. Asymptotic freedom of non-Abelian gauge theories

suggests that, at sufficiently high temperatures, ordinary hadrons should turn into a qual-

itatively different state of matter, characterized by restoration of chiral symmetry and

liberation of colored degrees of freedom, which interact with each other through a screened

long-range force [2]: the quark-gluon plasma (QGP). After nearly twenty years of dedi-

cated experimental searches through relativistic heavy-nuclei collisions, at the turn of the

millennium the QGP was eventually discovered at the SPS [3] and RHIC [4–7] facilities.

The measurements performed at RHIC [4–7] and, more recently, at LHC [8–10] re-

veal a consistent picture: at temperatures T of a few hundreds MeV, QCD is indeed in

a deconfined phase, but the QGP behaves as a quite strongly coupled fluid [11]. These

findings are derived from the observation of elliptic flow [12–16], electromagnetic spec-

tra [17, 18], quarkonium melting [19–26], enhanced strangeness production [27–32] and jet

quenching [33–44]; for a very recent review, see ref. [45].

These results indicate that the theoretical investigation of the QGP requires non-

perturbative tools, such as computations based on the gauge/string correspondence (whose

applications in QCD-like theories at finite temperature are reviewed in refs. [46, 47]) or lat-

tice simulations [48]. The lattice determination of the deconfinement crossover and chiral
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transition temperature, as well as of the QGP bulk thermodynamic properties (at vanishing

quark chemical potential µ) is settled [49–51] and accurate results are being obtained also

for various parameters describing fluctuations, for the QGP response to strong magnetic

fields, et c. [52]. Due to the Euclidean nature of the lattice formulation, the investigation of

phenomena involving Minkowski-time dynamics in the QGP is more challenging, but the

past few years have nevertheless witnessed a lot of conceptual and algorithmic advances,

both for transport properties [53] and for phenomena like the momentum broadening ex-

perienced by hard partons in the QGP [54–63]: it is not unrealistic to think that in the

near future the results of these non-perturbative calculations could be fully integrated in

model computations that provide a phenomenological description of experimentally ob-

served quantities (for a very recent, state-of-the-art example, see ref. [64]).

Notwithstanding this significant progress towards more and more accurate numerical

predictions, a full theoretical understanding of QCD dynamics at finite temperature is still

missing. From a purely conceptual point of view, the problem of strong interactions in

a thermal environment can be somewhat simplified, by looking at pure-glue non-Abelian

gauge theories. This allows one to disentangle the dynamics related to chiral-symmetry

breaking from the problem of confinement and dynamical generation of a mass gap, retain-

ing — at least at a qualitative or semi-quantitative level — most of the interesting features

relevant for real-world QCD. As the system is heated up, these theories will interpolate

between two distinct limits: one that can be modeled as a gas of massive, non-interacting

hadrons (glueballs) at low temperature, and one that is described by a gas of free massless

gluons at (infinitely) high temperature. These limits are separated by a finite-temperature

region, in which deconfinement takes place.

In SU(N) gauge theories, the phenomenon of deconfinement at finite temperature can

be interpreted in terms of spontaneous breaking of the well-defined global ZN center sym-

metry [65] (see also ref. [66] for a very recent work on the subject), and is an actual phase

transition: a second-order one for N = 2 colors, and a discontinuous one for all N ≥ 3

(see also refs. [67–69]). While this is consistent with the interpretation of confinement in

non-supersymmetric gauge theories as a phenomenon due to condensation of center vor-

tices [70, 71] (see also ref. [72] for a discussion), it begs the question, what happens in a

theory based on a non-Abelian gauge group with trivial center? In this respect, it is particu-

larly interesting to consider the G2 gauge theory: since this exceptional group is the smallest

simply connected group with a trivial center, it is an ideal toy model to be studied on the

lattice. For the G2 Yang-Mills theory, even though there is no center symmetry distinguish-

ing the physics at low and at high temperature, one still expects that the physical degrees

of freedom at high temperatures be colored ones. Like for SU(N) theories, this expectation

is borne out of asymptotic freedom of the theory, which suggests that the description in

terms of a gas of weakly interacting gluons should become accurate when the typical mo-

menta exchanged are large, and this is expected to be the case for a thermal system at high

temperature, for which the characteristic energy scale of hard thermal excitations is O(T ).

Thus, one can still expect that the G2 Yang-Mills theory features a high-temperature regime

in which colored states do exist, and define it as the “deconfined phase” of the theory.
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Note that, although smaller continuous non-Abelian groups with a trivial center do

exist, strictly speaking what actually counts is the fundamental group of the compact

adjoint Lie group associated with the Lie algebra of the gauge group. For example, the

SO(3) group has a trivial center, but (contrary to some inaccurate, if widespread, claims)

this property, by itself, does not make the SO(3) lattice gauge theory a suitable model for

studying confinement without a center,1 nor one to be contrasted with the SU(2) gauge

group (which has the same Lie algebra). Indeed, the first homotopy group of SO(3), which is

the compact adjoint Lie group associated with the B1 Lie algebra, is Z2, i.e. the same as the

first homotopy group of the projective special unitary group of degree 2 (whose associated

Lie algebra is A1 = B1). This leaves only G2, F4 and E8 as compact simply-connected

Lie groups with a trivial center; of these, G2, with rank two and dimension 14, is the

smallest and hence the most suitable for a lattice Monte Carlo study. In fact, numerical

simulations of this Yang-Mills theory have already been going on for some years [74–

85]. Besides numerical studies, these peculiar features of G2 Yang-Mills theory have also

triggered analytical interest [86–97].

Note that the question, whether G2 Yang-Mills theory is a “confining” theory or not,

depends on the definition of confinement. If one defines confinement as the absence of

non-color-singlet states in the physical spectrum, then G2 Yang-Mills theory is, indeed,

a confining theory. On the other hand, if one defines confinement as the existence of an

asymptotically linear potential between static color sources, then the infrared dynamics

of G2 Yang-Mills theory could rather be described as “screening”. Indeed, previous lat-

tice studies indicate that, at zero and low temperatures, the G2 Yang-Mills theory has

a confining phase, in which static color sources in the smallest fundamental irreducible

representation 7 are confined by string-like objects, up to intermediate distances. At very

large distances, however, the potential associated with a pair of fundamental sources gets

screened. This is a straightforward consequence of representation theory (and, ultimately,

of the lack of a non-trivial N -ality for this group): as eq. (A.15) in the appendix A shows,

the representation 7 appears in the decomposition of the product of three adjoint repre-

sentations 14, thus a fundamental G2 quark can be screened by three gluons.

One further reason of interest for a QCD-like lattice theory based on the G2 group

is that it is free from the so-called sign problem [98]: with dynamical fermion fields in

the fundamental representation of the gauge group, the introduction of a finite chemical

potential µ does not make the determinant of the Dirac matrix complex, thus the theory

can be simulated at finite densities [99, 100].2 As compared to another well-known QCD-

1Nevertheless, it is worth remarking that the lattice investigation of SO(3) gauge theory has its own

reasons of theoretical interest [73].
2The chiral-symmetry pattern of G2 QCD described in ref. [100] is the following: for nf massless Dirac

flavors at µ = 0, the axial anomaly implies that the theory has an SU(2nf )⊗Z2 symmetry. In the presence

of a quark condensate (or of a finite quark mass m), this symmetry gets spontaneously (respectively,

explicitly) broken down to SO(2nf ) ⊗ Z2. Finally, introducing a finite µ reduces the symmetry down

to SU(nf ) ⊗ U(1)/Znf , with the “baryon” number associated to the U(1) factor. Note that, since G2

contains an SU(3) subgroup, one may wonder if this could open the path to simulating real-world QCD at

finite densities without a sign problem, for example by making the six additional G2 gluons not present in

the SU(3) theory arbitrarily heavy, coupling them to a scalar field according to the Brout-Englert-Higgs
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like theory which shares this property, namely two-color QCD [104–108], one advantage is

that “baryons” in G2 QCD are still fermionic states, like in the real world.

Finally, the possibility that gauge theories based on exceptional gauge groups may be

relevant in walking technicolor scenarios for spontaneous electro-weak symmetry breaking

was studied (via a perturbative analysis) in ref. [109].

In this work, we extend previous lattice studies of G2 Yang-Mills theory at finite tem-

perature [82–85] by computing the equation of state in the temperature range T . 3Tc,

where Tc denotes the critical deconfinement temperature.3 After introducing some basic

definitions and the setup of our simulations in section 2, we present our numerical results in

section 3; then in section 4 we compare them with the predictions of some analytical calcu-

lations, pointing out qualitative and quantitative analogies with SU(N) gauge theories. Fi-

nally, in section 5 we summarize our findings and list possible extensions of the present work.

Some general properties of the G2 group and of its algebra are reported in the appendix A.

2 Setup

Our non-perturbative computation of the equation of state in G2 Yang-Mills theory is

based on the standard Wilson regularization of the theory on a four-dimensional, Euclidean,

hypercubic lattice Λ of spacing a [111]. Throughout this article, we denote the Euclidean

time direction by the index 0 (or by a subscript t), and the spatial directions by 1, 2 and 3

(or by a subscript s). Periodic boundary conditions are imposed along the four directions.

Using natural units c = ~ = kB = 1, the physical temperature is given by the inverse

of the length of the shortest side of the system (which we take to be in the direction 0),

T = 1/(aNt), while the other three sides of the hypertorus have equal lengths, denoted by

Ls = aNs. In order to avoid systematic uncertainties caused by finite-volume effects, we

always take LsT � 1; in practice, previous studies of SU(N) Yang-Mills thermodynamics

have shown that, at the temperatures of interest for this work, finite-volume effects are

negligible for LsT & 4 [112–114].

To extract vacuum expectation values at low temperature (in the confining phase), we

carry out simulations on lattices of sizes L4
s: for the parameters of our simulations, this

choice corresponds to temperatures which are sufficiently “deep” in the confining phase —

meaning temperatures, at which the values of the bulk thermodynamic quantities, that we

are interested in, are well below the statistical precision of our data.

The partition function of the lattice system is defined by the multiple group integral

Z =

∫ ∏
x∈Λ

3∏
α=0

dUα(x) e−SW , (2.1)

mechanism [101, 102]. This turns out not to be the case: the fundamental representation 7 of G2 decomposes

into the sum of the trivial (1), the fundamental (3) and the antifundamental (3̄) irreducible representations

of SU(3) [74]. As a consequence, when viewed in terms of the SU(3) field content, the chemical potential

associated with the U(1) group described above should be interpreted as an isospin, rather than a baryonic,

chemical potential, for which the sign problem is absent [103].
3Note that this is the temperature range probed experimentally at the LHC [110], although in real-world

QCD deconfinement is a crossover, rather than a sharp, first-order transition.
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where dUα(x) denotes the Haar measure for the generic Uα(x) matrix, which represents

the parallel transporter on the oriented bond from x to x+ aα̂. The Uα(x) matrices take

values in the representation of the G2 group in terms of real 7× 7 matrices,4 while

SW = − 1

g2

∑
x∈Λ

∑
0≤µ<ν≤3

TrUµ,ν(x) (2.2)

is the gauge-invariant Wilson lattice action [111]. Here, g is the bare lattice coupling and

Uµ,ν(x) = Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν (x) (2.3)

denotes the plaquette stemming from site x and lying in the oriented (µ, ν) plane. In the

following, we also introduce the Wilson action parameter β, which for this theory can be

defined as β = 7/g2.

As usual, expectation values of gauge-invariant quantities O are then defined as

〈O〉 =
1

Z

∫ ∏
x∈Λ

3∏
α=0

dUα(x)O e−SW (2.4)

and can be computed numerically, via Monte Carlo integration. To this purpose, we gener-

ated ensembles of matrix configurations using an algorithm that performs first a heat-bath

update, followed by five to ten overrelaxation steps, on an SU(3) subgroup of G2 (in turn,

both the heat-bath and overrelaxation steps are based on three updates of SU(2) sub-

groups [116]). Finally, a G2 transformation is applied, in order to ensure ergodicity. The

parametrization of G2 that we used is described in refs. [117, 118]. After a thermalization

transient, we generate the ensemble to be analyzed by discarding a certain number (which

depends on the physical parameters of the simulation — in particular, on the proximity to

the deconfinement temperature, which affects the autocorrelation time of the system) of

intermediate configurations between those to be used for our analysis. Typically, the num-

ber of configurations for each combination of parameters (β, Ns and Nt) is O(104). This

leads to an ensemble of (approximately) statistically independent configurations, allowing

4Actually, for part of our simulations we also used a different algorithm, using complex matrices and

based on the decomposition of the G2 group discussed in ref. [115] — see ref. [82] for details. Although,

intuitively, one would expect the implementation based on the representation in terms of real matrices to

be faster to simulate than the one involving complex matrices, this is not necessarily the case. What really

determines the efficiency of the simulation algorithm is not simply the CPU time necessary to multiply

gauge link variables with each other, but rather the time necessary to sufficiently decorrelate the degrees

of freedom in a sequence of configurations produced in a Markov chain during the Monte Carlo process. In

this respect, the implementation in terms of complex matrices seems to be more efficient than the one based

on real ones, offsetting the drawback of a larger number of elementary multiplications required for products

of complex factors. However, clearly this efficiency gain depends (strongly) on the dynamics: for example,

in the strong-coupling limit, in which the weight of the configurations contributing to eq. (2.1) reduces to

the product of the Haar measures for the link variables, it is trivial to obtain a sequence of decorrelated

configurations, simply by choosing the new G2 elements randomly in the group. While we stress that

we did not carry out a systematic performance study to compare the efficiency of our two algorithms in

different regimes, we remark that we simply observed that, at least in the regime that we investigated, the

implementation based on complex matrices is not less efficient than the one based on real matrices.
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us to bypass the problem of coping with difficult-to-quantify systematic uncertainties due

to autocorrelations. Throughout this work, all statistical errorbars are computed using

the gamma method [119]; a comparison on a data subset shows that the jackknife proce-

dure [120] gives roughly equivalent results.

We computed expectation values of hypervolume-averaged, traced Wilson loops at zero

temperature

W (r, L) =
1

6N4
s

∑
x∈Λ

∑
0≤µ<ν≤3

1

7
Tr
{
Lrµ(x)LLν (x+ rµ̂)

[
Lrµ(x+ Lν̂)

]† [LLν (x)
]†}

, (2.5)

with

Lrµ(x) =

r/a−1∏
n=0

Uµ (x+ naµ̂) , (2.6)

as well as of volume-averaged, traced Polyakov loops at finite temperature

P =
1

N3
s

∑
x∈Vt=0

1

7
TrL1/T

0 (x) (2.7)

(where Vt=0 denotes the spatial time-slice of Λ at t = 0) and of hypervolume-averaged

plaquettes (both at zero and at finite temperature).

From the expectation values of Wilson loops, which we computed with the multilevel

algorithm [121, 122], the heavy-quark potential V (r) can be extracted via

V (r) = − 1

L
ln〈W (r, L)〉. (2.8)

In practice, since we are bound to use loops of finite sizes, in order to avoid possible

contamination from an excited state, we perform both a single- (k1 = 0) and a two-state

(k1 free) fit

〈W (r, L)〉 = e−LV (r) + k1e
−LV1(r), (2.9)

extracting our results for V from fits in the L range where the results including or ne-

glecting the second addend on the right-hand side of eq. (2.9) are consistent, within their

uncertainties.

We determined the values of the lattice spacing a in our lattice simulations (as a

function of β) non-perturbatively, comparing different methods. A common strategy to

set the scale in lattice simulations of SU(N) Yang-Mills theories is based on the extraction

of the value of the string tension in lattice units, σa2, which can be obtained from a

two-parameter fit of the static quark-antiquark potential V (r) to the Cornell form

V (r) = σr + V0 −
π

12r
. (2.10)

Strictly speaking, eq. (2.10) is not an appropriate functional form to model the potential

in G2 Yang-Mills theory at large r, because this theory is screening in the infrared limit.

However, one can nevertheless use it as an approximate description of the potential at the

distances probed in this work, because gluon screening sets in at much longer distances
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(see also ref. [81]). This enables one to extract the values of the string tension in lattice

units σa2, at each value of β. Note that the coefficient of the 1/r term in eq. (2.10) is

uniquely fixed by the central charge of the underlying low-energy effective theory describing

transverse fluctuations of the confining string in four spacetime dimensions [123], while we

neglect possible higher-order (in 1/r) terms [124].

An alternative method to set the scale, which is more appropriate for intermediate

distances (and conceptually better-suited for an asymptotically screening theory), was in-

troduced in ref. [125] (see also ref. [126] for a high-precision application in SU(3) Yang-Mills

theory) and is based on the computation of the quark-antiquark force F (r). Using the force,

one can introduce the length scales r0 and r1, respectively defined by

r2
0F (r0) = 1.65 (2.11)

and

r2
1F (r1) = 1. (2.12)

The physical values of these scales (in QCD with dynamical quarks) are r0 = 0.472(5) fm

[127–130] and r1 = 0.312(3) fm [128–132]. Note that, as compared to the method based on

the string tension, setting the scale using r0 or r1 also has the practical advantage that it

is not necessary to go to the large-distance limit, and an improved definition of the force

allows one to reduce discretization effects. For these reasons, we used r1 to set the scale in

our lattice simulations.

Other methods to set the scale are discussed in refs. [133, 134] and in the works

mentioned therein.

The phase structure of the lattice theory is revealed by the expectation value of the pla-

quette — averaged over the lattice hypervolume and over the six independent (µ, ν) planes

— at T = 0, that we denote as 〈Up〉0: similarly to what happens in SU(N) gauge theories,

as β is increased from zero to large values, 〈Up〉0 interpolates between a strong-coupling

regime, dominated by discretization effects, and a weak-coupling regime, analytically con-

nected to the continuum limit. The two regions are separated by a rapid crossover (or,

possibly, a first-order transition) taking place at βc ' 9.45 [82, 83]. This bulk transition is

unphysical, and, in order to extract physical results for the thermodynamics of the theory,

all of our simulations are performed in the region of “weak” couplings, β > βc, which is

connected to the regime of continuum physics.

In the β > βc region, the finite-temperature deconfinement transition is probed by

studying the distribution of values and the Monte Carlo history of the bare Polyakov loop

(after thermalization): in the confining phase, the distribution of P is peaked near zero,

whereas a well-defined peak at a finite value of P develops, when the system is above the

critical deconfinement temperature Tc. In the vicinity of Tc, both the distribution of P

values ρ(P ) (with two local maxima, separated by a region in which ρ(P ) gets suppressed

when the physical volume of the lattice is increased) and the typical Monte Carlo histories

of P (featuring tunneling events, which become more and more infrequent when the lattice

– 7 –
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volume is increased, between the most typical values of P ) give strong indication that the

deconfining transition is of first order, in agreement with previous studies [82, 83].5

The equilibrium thermodynamics quantities of interest in the present work are the

pressure p, the energy density per unit volume ε, the trace of the energy-momentum tensor

∆ (which has the meaning of a trace anomaly, being related to the breaking of conformal

invariance of the classical theory by quantum effects), and the entropy density per unit

volume s: they can be obtained from the finite-temperature partition function Z via

p = T
∂ lnZ

∂V

∣∣∣∣
T

, (2.13)

ε =
T 2

V

∂ lnZ

∂T

∣∣∣∣
V

, (2.14)

∆ = ε− 3p, (2.15)

s =
1

V
lnZ +

ε

T
. (2.16)

Introducing also the free-energy density

f = −T
V

lnZ, (2.17)

the pressure can be readily computed using the p = −f identity, which holds in the thermo-

dynamic limit. Using the standard “integral method” of ref. [135], p (or, more precisely, the

difference between the pressure at finite and at zero temperature) can thus be obtained as

p =
T

V

∫ β

β0

dβ′
∂ lnZ

∂β′
= 6T 4

∫ β

β0

dβ′ (〈Up〉T − 〈Up〉0) , (2.18)

where 〈Up〉T denotes the plaquette expectation value at the temperature T , and β0 corre-

sponds to a point sufficiently deep in the confining phase, i.e. to a temperature at which

the difference between p and its zero-temperature value is negligible. The integral in the

rightmost term of eq. (2.18) is computed numerically, by carrying out simulations at a

set of (finely spaced) β values within the desired integration range, and performing the

numerical integration according to the trapezoid rule. Although more sophisticated meth-

ods, like those described in ref. [136, appendix A], could allow us to reduce the systematic

uncertainties related to the numerical integration, it turns out that this would have hardly

any impact on the total error budget of our results.

The lattice determination of the trace of the energy-momentum tensor ∆ (in units of

T 4) is even more straightforward, as

∆

T 4
= 6N4

t (〈Up〉0 − 〈Up〉T ) · a∂β
∂a
, (2.19)

5Note that, since G2 Yang-Mills theory lacks an underlying exact center symmetry, it is possible that this

deconfinement transition could be turned into a crossover by suitably deforming the theory (for example

through the inclusion of additional fields in the Lagrangian).
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but it requires an accurate determination of the relation between β and a. We carried out

the latter non-perturbatively, using the r1 scale extracted from F (r), as discussed above.6

Finally, ε and s can be readily computed as linear combinations of p and ∆, using

eq. (2.15) and the thermodynamic identity

sT = ∆ + 4p. (2.20)

It is worth noting that alternative methods to determine the equation of state have

been recently proposed in ref. [137] and in refs. [138–141].

3 Numerical results

The first set of numerical results that we present in this section are those aimed at the non-

perturbative determination of the scale, i.e. of the relation between the parameter β and

the corresponding lattice spacing a. As explained in section 2, we compared two different

methods to extract this relation: first by evaluating the string tension in lattice units from

the area-law decay of large Wilson loops at zero temperature, and then by computing the

force and evaluating the r1 scale defined in eq. (2.12) in lattice units.

To achieve high precision, the numerical computation of Wilson loops at zero temper-

ature was carried out using the multilevel algorithm [121, 122], which yields exponential

enhancement of the signal-to-noise ratio for long loops. Figure 1 shows results for the op-

posite of the logarithm of Wilson loops of different widths r/a (symbols of different colors)

as a function of the loop length in lattice units L/a. The plot displays the results from our

simulations at β = 10.4. The comparison of results obtained from a näıve, brute-force com-

putation (empty circles) and with our implementation of the multilevel algorithm (filled

squares) clearly shows that the latter are in complete agreement with the former for short

loops, and that the multilevel algorithm outperforms the brute-force approach for large

values of L, where the numerical values obtained with the latter are affected by dramatic

loss of relative precision.

Our results for the string tension in lattice units, as a function of β, are reported in

table 1, which also shows the sizes of the lattices on which the corresponding simulations

were carried out (all these zero-temperature simulations were performed on hypercubic

lattices of size L4
s), the range of r/a values used in the fit (including both extrema), as

well as the results for the constant term in the Cornell potential in lattice units and the

reduced χ2. Note that these are two-parameter fits to eq. (2.10), while, as mentioned in

section 2, the 1/r term is fixed to be the Lüscher term [123]. In principle, for data at

small r/a one could use an improved definition of the lattice distance [126, 142], however

6Note that eq. (2.19) reveals one technical challenge in this computation: on the one hand, as we

mentioned above, the simulations have to be carried out at values of the coupling in the region analytically

connected to the continuum limit, i.e. β > βc. In practice, this corresponds to relatively fine lattice spacings,

or Nt & 5. On the other hand, the N4
t factor appearing on the right-hand side of eq. (2.19) shows that

the physical signal is encoded in a difference of average plaquette values 〈Up〉0 and 〈Up〉T (both of which

remain finite), that becomes increasingly small when the continuum limit is approached. In practice, the

computational costs due to this technical aspect severely restrict the range of Nt values which can be used,

and, as a consequence, the lever arm to control the continuum limit.
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Figure 1. Comparison of Wilson loop expectation values (in logarithmic scale), as a function of

the loop sizes, computed with and without the multilevel algorithm. The plot displays a sample of

our results at a fixed lattice spacing, from simulations at β = 10.4.

this type of correction becomes rapidly negligible at large distances, and hence should not

change significantly our estimates of σa2, which are dominated by infrared physics.

The values of σa2 thus computed non-perturbatively can be interpolated by a fit

to a suitable functional form, in order to get an expression for a as a function of β in

the region of interest. In principle, this can be done in various ways (see, for example,

refs. [126, 143, 144]), which, in particular, can include slightly different parametrizations

of the discretization effects. One of the simplest possibilities is to fit our data for the

logarithm of σa2 to a polynomial of degree npar − 1 in (β − β0), where β0 is a value within

the range of simulated data. Choosing β0 = 10.2, a parabolic fit with three parameters,

however, yields a large χ2
red ' 6.4. Different choices of β0 and/or of npar ≥ 3 give inter-

polating functions that are only marginally different (within the uncertainties of the fitted

parameters) and do not bring χ2
red down to values close to 1. For example, using a cubic,

rather than quadratic, polynomial, the fitted curve changes slightly, and the χ2
red (using

all points) changes from 6.4 to 5.2. These unsatisfactory results hint at discretization ef-

fects — an indication confirmed by that fact that, excluding the data corresponding to the
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β Ls/a r/a range σa2 aV0 χ2
red

9.6 32 [4 : 7] 0.1335(77) 0.740(35) 0.4

9.8 32 [4 : 8] 0.0715(17) 0.7469(78) 1.7

10.0 32 [4 : 8] 0.0471(11) 0.7191(46) 0.12

10.2 32 [4 : 7] 0.03189(77) 0.6697(35) 1.04

10.4 32 [4 : 8] 0.02369(66) 0.6729(30) 0.87

10.8 32 [4 : 9] 0.01682(58) 0.6546(25) 1.82

Table 1. Summary of the fits of our Monte Carlo results for the static quark-antiquark potential,

as a function of r, to the Cornell form eq. (2.10), for the string tension σ and the constant term V0,

both in lattice units. The numerical results for V are obtained from the expectation values of large

Wilson loops computed at zero temperature on lattices of size L4
s using the multilevel algorithm,

according to the procedure discussed in section 2. The interval of distances r included in the fits

and the corresponding reduced-χ2 values are also shown.

coarsest lattice spacing, at β = 9.6, from the fit, the χ2
red goes down to 2.2 —and call for a

modeling of our lattice results via a functional form that could (at least partially) account

for lattice-cutoff systematics. Therefore, following ref. [143], we chose to interpolate the

values for the string tension in lattice units computed non-perturbatively by a fit to

√
σa =

c1f(β)

1 + c3f2(β)
, f(β) = e−c2(β−β0), (3.1)

with β0 = 9.9. This yields c1 = 0.139(25), c2 = 0.450(99) and c3 = −0.42(10), with χ2
red =

0.73. Among the systematic uncertainties affecting this scale setting are, for example,

those related to the possibility of adding a c4f
4(β) term in the denominator, or modifying

the functional form for f (e.g. multiplying it by a polynomial in β): while not necessarily

better-motivated from a theoretical point of view,7 these alternative parametrizations do

not lead to significant changes in the determination of the scale. The curve obtained from

the fit to eq. (3.1) is shown in figure 2, together with the data; in addition to our results, we

also show those obtained in ref. [81], which are essentially compatible with our interpolation

(within its uncertainty).

From the results of our three-parameter fit to eq. (3.1), the lattice spacing a could

be determined at any β value within the range of interpolation — provided one defines a

physical value for the string tension σ: to make contact with real-world QCD, one can, for

example, set σ = (440 MeV)2. In addition, the derivative of ln (
√
σa) with respect to β is

also obtained as

− c2
1− c3f

2(β)

1 + c3f2(β)
(3.2)

and the inverse of this quantity could be used in the computation of the trace of the

energy-momentum tensor ∆, according to eq. (2.19).

7In particular, the knowledge of terms predicted by one- or two-loop weak-coupling expansions is of little

guidance in this range of couplings, far from the perturbative regime.
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Figure 2. Results for the square root of the string tension in lattice units, as a function of the

Wilson-action parameter β. The plot shows our simulation results (red circles) in comparison with

those from ref. [81] (blue squares), as well as the interpolating function described by eq. (3.1) for

the values of the parameters listed in the text (solid black curve), with the associated uncertainty

(dashed black curves).

However, as we mentioned in section 2, a determination of the scale based on the

extraction of r0 or r1 is better-suited for this theory. Thus we proceeded to evaluate the

lattice spacing in units of r1, using the techniques described in ref. [126] (including, in

particular, the tree-level improved definition of the lattice force introduced in ref. [142]).

The results are shown in figure 3, together with their fit to

ln

(
a

r1

)
=

2∑
j=0

dj(β − β1)j , (3.3)

with β1 = 10.1. The fitted parameters are d0 = −1.4807(71), d1 = −0.916(10), d2 =

0.230(30) and the reduced χ2 equals 1.37. Our results for r1/a are reported in table 2.

Note that the scale setting in terms of the r1 parameter also appears to be “cleaner”

than the one based on the string tension, that we discussed above, and insensitive to

discretization effects, within the precision of our data. For these reasons, we decided to

use r1 to set the scale in our simulations.

Next, we proceeded to simulations at finite temperature, which we carried out on

lattices of sizes N3
s × Nt (in units of the lattice spacing), where the shortest size Nt de-

fines the temperature via T = 1/(aNt), while Ns & 4Nt. As we already pointed out, by

virtue of thermal screening, an aspect ratio of the order of 4 (or larger) for the “temporal”
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Figure 3. Results for the ratio of the lattice spacing over the r1 scale, defined by eq. (2.12) in

ref. [125], as a function of the Wilson action parameter β. The red symbols denote our numerical

results, while the solid black curve and the dashed black lines indicate their fit to eq. (3.3) and the

corresponding uncertainty.

β r1/a

9.6 2.618(15)

9.8 3.299(28)

10.0 4.037(46)

10.2 4.752(68)

10.4 5.609(81)

10.6 6.32(17)

10.78 7.45(10)

Table 2. Results for r1/a obtained from our lattice computations at different values of β.

cross-section of the system is known to provide a sufficient suppression of finite-volume

effects in SU(N) gauge theories at the temperatures under consideration [113], while siz-

able corrections to the thermodynamic quantities are expected to appear at much higher

temperatures [112]. Some tests on lattices of different spatial volume confirm that this

is the case for G2 Yang-Mills theory, too, and did not give us any evidence of significant

finite-volume corrections.
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Ns Nt nβ β-range

16 5 35 [9.62, 10.64]

32 6 60 [9.6, 10.78]

32 8 30 [9.8, 10.7]

Table 3. Parameters of the finite-temperature lattice calculations carried out in this work: Ns
and Nt denote the lattice sizes along the space-like and time-like directions (in units of the lattice

spacing), nβ denotes the number of β values simulated, for βmin ≤ β ≤ βmax. All simulations

at finite temperature are carried out on lattices of sizes (aNs)
3 × (aNt), while those deep in the

confined phase (i.e., approximately at T = 0) are performed on lattices of sizes (aNs)
4.

The parameters of our simulations are summarized in table 3. In order to compute the

pressure with respect to its value at a temperature close to zero, according to the method

described in section 2, for each set of finite-temperature simulations we also carried out

Monte Carlo simulations on lattices of sizes (aNs)
4, at the same values of the lattice spacing.

The first task consists in identifying, for each value of Nt, the critical coupling cor-

responding to the transition from the confining to the deconfined phase: by varying β,

the lattice spacing a can be tuned to 1/(NtTc). As mentioned in section 2, the transition

from one phase to the other can be identified by monitoring how the distribution ρ(P ) of

values of the spatially averaged, bare Polyakov loop P varies with β. The confining phase

is characterized by a distribution with a peak near zero,8 while in the deconfined phase

ρ(P ) has a maximum at a finite value of P , and the transition (or crossover) region can

be identified as the one in which ρ(P ) takes a double-peak structure, with approximately

equal maxima. An example of such behavior is shown in figure 4, where we plotted the

distribution of values of Polyakov loops from lattices with Nt = 6 and Ns = 32, at three

different β values, namely 9.76, 9.765 and 9.77 (corresponding to three different values of

the lattice spacing, and, hence, of the temperature).

More precisely, in any finite-volume lattice this identifies a pseudo-critical coupling: as

usual, the existence of a phase transition is only possible for an infinite number of degrees

of freedom, namely in the thermodynamic, infinite-volume, limit. Thus, the actual critical

point corresponding to the thermodynamic phase transition is obtained by extrapolation

of the pseudo-critical couplings to the infinite-volume limit.

A more accurate method to determine the location and nature of the transition is

based on the study of the Binder cumulant [145–147]

B = 1− 〈P 4〉
3〈P 2〉2

, (3.4)

which is especially useful in computationally demanding problems (see ref. [148, appendix]

for an example). For a system in the thermodynamic limit, B takes the value zero if

the expectation value of P vanishes, while it tends to 2/3 for a pure phase in which the

8The fact that, even in the low-temperature regime, the peak is not exactly at zero is related to the

absence of an exact center symmetry in this theory, and to the fact that, as a consequence, the trace of the

Polyakov loop is not an actual order parameter.
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Figure 4. The distribution of values for the spatially-averaged Polyakov loop P at three different

temperatures, as obtained from simulations on lattices with Nt = 6 and Ns = 32 at β = 9.76

(blue histograms), at β = 9.765 (red histograms) and at β = 9.77 (green histograms), reveals the

transition from a confining phase at low temperature, in which ρ(P ) has a peak close to zero, to a

deconfining one at high temperature, in which ρ has a global maximum for a finite value of P .

expectation value of P is finite. Thus, for a second-order phase transition, the values of the

Binder cumulant interpolate between these two different limits at “small” and “large” β

(i.e. at low and at high temperature, respectively). As the system volume is increased, the

Binder cumulant tends to become a function with a sharper and sharper increase in the

region corresponding to the critical β. The critical coupling in the thermodynamic limit

can thus be estimated from the crossing of these curves. On the other hand, in the presence

of a first-order phase transition, in the thermodynamic limit the Binder cumulant tends to

2/3 in both phases, whereas it develops a deep minimum near the transition point [149]

(see also ref. [150] for a discussion).

For our present problem, however, this type of analysis is complicated by the fact that

in the thermodynamic limit the expectation value of P in the confining phase is finite, but

very small. As a consequence, the behavior that can be observed in numerical simulations

for manageable lattice sizes is somewhat different from what one would expect for a first-

order phase transition. We studied B for different values of the simulation parameters:

one example is shown in figure 5, which refers to simulations on lattices with Nt = 8 sites

in the Euclidean-time direction, at different values of β and for different spatial volumes.

Note that, despite the technical challenge that we just mentioned, the values of B vary

rapidly within a narrow β-interval, allowing one to locate the (pseudo-)critical point with

quite good precision.
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Figure 5. The values of the Binder cumulant B defined in eq. (3.4), obtained from lattices of

different spatial volume (denoted by symbols of different colors) at fixed Nt (here, Nt = 8), reveal

the location of the (pseudo-)critical β at which the deconfinement transition takes place (in this

case 10.04± 0.03).

For our present purposes, however, the main qualitative features of the thermal de-

confinement transition in G2 Yang-Mills theory are already revealed by how the Monte

Carlo history of the spatially averaged Polyakov loop and the ρ(P ) distribution vary with

β and the lattice volume. For β values equal to (or larger than) the critical one, the former

exhibits tunneling events between different vacua, which become increasingly rare when

the lattice volume grows. This suggest that the passage from the confining to the decon-

fined phase is a transition of first order. Accordingly, the peaks in the ρ distribution at

criticality tend to become separated by an interval of P values, whose probability density

is exponentially suppressed when the lattice volume increases.

As an example, in figure 6 we show the distribution of P values obtained from simu-

lations at the critical point for fixed Nt = 8 and fixed lattice spacing, for spatial volumes

(12a)3 and (16a)3.

Our observation of a first-order deconfining transition confirms the results of earlier

lattice studies of this model [82, 83].

Having set the scale and determined the critical coupling for different values of Nt, we

proceed to the computation of equilibrium thermodynamic quantities at different lattice

spacings, and to the discussion of their extrapolation to the continuum limit. As pointed

out in section 2, the static observables of interest in this work are related to each other by

elementary thermodynamic identities. Since our numerical determination of the equation
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Figure 6. Distribution of values of the spatially-averaged Polyakov loop P close to the decon-

finement transition, from simulations on lattices of fixed spacing (and Euclidean time extent) and

different spatial volumes, corresponding toNs = 12 (blue histograms) andNs = 16 (red histograms).

of state is based on the integral method introduced in ref. [135], the quantity which is

computed most directly is the trace of the energy-momentum tensor ∆: as shown by

eq. (2.19), it is just given by the difference between the expectation values of the plaquette

at zero and at finite temperature, up to a β-dependent factor. The results from our

simulations (at different values ofNt) for the dimensionless ∆/T 4 ratio are shown in figure 7,

as a function of the temperature (in units of the critical temperature). Note that the

data from simulation ensembles at different Nt are close to each other, indicating that

discretization effects are under good control.

To get results in the continuum limit, we first interpolated our results from eachNt data

set with splines, and then tried to carry out an extrapolation to the a→ 0 limit, by fitting

the values interpolated with the splines (at a sufficiently large number of temperatures) as

a function of 1/N2
t , including a constant and a linear term.

The first of these two steps is done as follows: we split the data sets in nint intervals

defined by nint−1 internal knots, and compute nint +3 (or nint +2) basis splines (B-splines):

they define a function basis, such that every spline can be written as a linear combination

of those. The systematic uncertainties involved in the procedure are related to the choice

of the number of knots, and to the spline degree (quadratic or cubic); these uncertainties

can be estimated by comparing the χ2 values obtained for different choices, and turn out

not to be large.
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Figure 7. Trace of the energy-momentum tensor, in units of T 4, as a function of the temperature

T (in units of Tc). Results obtained from simulations on lattices with different Nt are denoted by

different symbols: black circles for Nt = 5, red diamonds for Nt = 6, orange triangles for Nt = 8.

The errorbars shown in the plot account for the statistical uncertainties in the computation of the

average plaquettes in eq. (2.19), as well as for statistical and systematic uncertainties related to

the non-perturbative determination of the scale and of the critical coupling for each β. The brown

band denotes the interpolation of our results from the ensembles corresponding to Nt = 6. As

discussed in the text, such curve turns out to be essentially compatible with the results obtained

from an attempt to carry out the continuum extrapolation (up to small deviations in the latter,

which are likely due to statistical effects). Thus, we present the brown curve as an approximate

estimate of the continuum limit.

As for the second step (the pointwise extrapolation to the continuum limit), however,

we observed that it leads to results which are mostly compatible with the curve obtained

from the interpolation of the Nt = 6 data set, except for a few (limited) regions, in which

the extrapolation is affected by somewhat larger errorbars — an effect likely due to sta-

tistical fluctuations in the ensemble obtained from the finest lattice, which tend to drive

the continuum extrapolation. Since the latter effects are obviously unphysical, for the sake

of clarity of presentation we decided to consider the curve obtained from interpolation of

our Nt = 6 data (with the associated uncertainties) as an estimate of the continuum limit.

This curve corresponds to the brown band plotted in figure 7.

Our results for the trace anomaly reveal two very interesting features:

1. When expressed per gluon degree of freedom, i.e. dividing by 2 × da (where 2 is the

number of transverse polarizations for a massless spin-1 particle in 3 + 1 spacetime

dimensions, and da is dimension of the gluon representation, i.e. da = 14 for G2, and

da = N2−1 for SU(N) gauge group), the results for ∆/T 4 agree with those obtained

in SU(N) Yang-Mills theories.
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Figure 8. When normalized per gluon d.o.f., the values of ∆/T 4 obtained in G2 Yang-Mills theory

(indaco symbols) are compatible with those obtained in theories with a generic SU(N) gauge group

(in particular, here we show the results for N = 3, denoted by black symbols, and for N = 4,

displayed by green symbols, obtained in ref. [151] at Nt = 5). All G2 results displayed here were

obtained from simulations at Nt = 6. Note that in this figure the data are plotted against (Tc/T )2,

in order to reveal the approximately perfect proportionality between ∆ and T 2 in the deconfined

phase (at least in the temperature range investigated in this work, up to a few times Tc): with this

choice of axes, this feature manifests itself in the linear behavior observed in the plot.

2. In the deconfined phase (at temperatures up to a few times the deconfinement tem-

perature), ∆ is nearly perfectly proportional to T 2.

This is clearly exhibited in figure 8, where our lattice results for ∆/(2daT
4) at Nt = 6

are plotted against (Tc/T )2, together with analogous results for the SU(3) and SU(4)

theories (at Nt = 5) from ref. [151].9 The collapse of data obtained in theories with

different gauge groups is manifest, as is the linear dependence on 1/T 2 in the temperature

range shown (implying that ∆ is approximately proportional to T 2).

These features were already observed in SU(N) gauge theories, both in four [151–155]

and in three [156, 157] spacetime dimensions (the latter provide an interesting theoretical

laboratory: see, e.g., ref. [158] and references therein).

Integrating the plaquette differences used to evaluate ∆/T 4, the pressure (in units of

T 4) is then computed according to eq. (2.18) for each Nt. In principle, one could then

extrapolate the corresponding results to the continuum limit; however, like for the trace

anomaly, it turns out that, at the level of precision of our lattice data, this leads to results

9Note that cutoff effects at Nt ≥ 5 are already rather small, so it is meaningful to compare Nt = 5 data

with those obtained from simulations at Nt = 6, at least within the precision of our results.
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which are essentially compatible with those from our Nt = 6 ensemble (within uncertain-

ties, including those related to the extrapolation systematics). Therefore, in figure 9 we

show the results for p/T 4 obtained by numerical integration of the curve interpolating the

Nt = 6 data (solid red curve): this curve can be taken as an approximate estimate of the

continuum limit (up to an uncertainty defined by the band within the dashed red curves).

As one can see, at the highest temperatures probed in this work the pressure is growing

very slowly (due to the logarithmic running of the coupling with the typical energy scale

of the thermal ensemble, which is of the order of T ) and tending towards its value in the

Stefan-Boltzmann limit10 ( p

T 4

)
SB

=
14

45
π2, (3.5)

so that at temperatures T . 3Tc the system is still relatively far from a gas of free gluons.

Figure 9 also shows our results for the energy density in units of the fourth power of the

temperature (ε/T 4, solid blue curve) and for the entropy density in units of the cube of

the temperature (s/T 3, solid green curve), respectively determined according to eq. (2.15)

and to eq. (2.20). Like for the pressure, the uncertainties affecting these two quantities are

denoted by the bands enclosed by the dashed curves. In the same figure, we also show the

values of these quantities in the free limit of the G2 lattice Yang-Mills theory (with the

Wilson discretization) for a lattice with Nt = 6 [157, 159, 160]: these values are denoted

by the dotted lines on the right-hand side of the plot.

4 Discussion

The features of this exceptional group (in particular: the fact that it has a trivial center)

make the G2 Yang-Mills model very interesting for a comparison with gauge theories based

on classical simple Lie groups. As we discussed, previous works already showed that at

zero temperature this model bears several qualitative similarities with QCD: the physical

spectrum does not contain colored states, and the potential associated with a pair of static

color sources is linearly rising at intermediate distances — before flattening out at very

large distances, due to dynamical string-breaking. However, a difference with respect to

QCD (in which the color charge is screened by creation of dynamical quark-antiquark pairs,

which are absent in pure Yang-Mills theory) is that in G2 Yang-Mills theory screening is

due to gluons. At finite temperature, there is numerical evidence that this theory has a

first-order deconfinement phase transition (at which the average Polyakov loop modulus

jumps from small to finite values), even though this transition is not associated with the

breaking of center symmetry [82].

Our lattice results confirm the first-order nature of the deconfinement transition in G2

Yang-Mills theory at finite temperature. This is in agreement with analytical studies avail-

able in the literature. In particular, a semiclassical study of the confinement/deconfinement

10Strictly speaking, the Stefan-Boltzmann value of p/T 4 in the lattice theory at finite Nt is different from

(in particular: larger than) the continuum one: for Nt = 6 and for the Wilson gauge action used in this

work, the correction is approximately 13%. For a detailed derivation, see ref. [157, eqs. (A.5) and (A.6)] and

refs. [159, 160]. The horizontal dotted lines on the right-hand side of figure 9, showing the Stefan-Boltzmann

limits for the three observables plotted, take this correction into account.
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Figure 9. Our estimate for the pressure p in units of T 4 (solid red curve), for the energy density

ε in units of T 4 (solid blue curve) and for the entropy density s in units of T 3 (solid green curve),

as obtained by numerical integration of our results for ∆/T 4 from the Nt = 6 ensemble, and

according to eq. (2.15) and to eq. (2.20), as discussed in the text. The dashed curves indicate

the uncertainties affecting each of these observables. These quantities are shown as a function of

the temperature T , in units of deconfinement temperature Tc. The dotted horizontal lines on the

right-hand side of the picture represent the values of these observables in the free limit, for the

Wilson discretization on a lattice with Nt = 6.

mechanism in different Yang-Mills theories was presented in ref. [86] (a related study, dis-

cussing the inclusion of fundamental fermionic matter, is reported in ref. [93], while a gen-

eralization to all simple Lie groups has been recently presented in ref. [96]). Generalizing a

previous study for the SU(2) case [161], the authors of ref. [86] showed how the properties

of the high-temperature phase of a generic Yang-Mills theory can be understood, by study-

ing its N = 1 supersymmetric counterpart on R3×S1, and by continuously connecting the

supersymmetric model to the pure Yang-Mills theory, via soft supersymmetry-breaking

induced by a finite gluino mass. This analytical study is possible, by virtue of the fact

that, when the S1 compactification length L becomes small, the theory can be reliably

investigated by means of semi-classical methods.11 In particular, analyzing the effective

potential describing the eigenvalues of the Polyakov line, it turns out that:

• The phase transition is driven by the competition between terms of perturbative ori-

gin [162–165], Bogomol’nyi-Prasad-Sommerfield monopole-instantons, and Kaluza-

11Note that, since periodic boundary conditions are imposed along the compactified direction for all

fields (including fermionic ones), the transition in the supersymmetric theory is a quantum — rather than

a thermal — one.
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Klein monopole-instantons (which tend to make the Polyakov-line eigenvalues col-

lapse, namely to break center symmetry) and neutral bions (that stabilize the cen-

ter).12

• This confining/deconfining mechanism is common to all non-Abelian theories, irre-

spective of the underlying gauge group. The order of the deconfining transition,

however, does depend on the gauge group: for the SU(2) case, the mechanism pre-

dicts the existence of a second-order transition, whereas for SU(N ≥ 3) and for G2

the transition is a discontinuous one.

Regarding the latter point, it is worth mentioning that in ref. [169] it was conjectured

that the order of the deconfinement phase transition should be determined by the number

of gluon degrees of freedom: for larger Lie groups, the passage from the confining phase (in

which the number of hadronic states is independent of the size of the gauge group) to the

deconfined phase (in which the number of colored states does depend on the group size)

corresponds to a more abrupt change in the number of relevant degrees of freedom, that can

make the transition of first order. The problem has also been studied in lattice simulations

in 2 + 1 spacetime dimensions (in which each of the gluon color components has one —

rather than two — transverse degree of freedom): there, the deconfinement transition is of

second order for SU(2) [170, 171] and SU(3) [172, 173] Yang-Mills theories (and the critical

indices agree with the Svetitsky-Yaffe conjecture [174]). For the SU(4) theory in 2 + 1

dimensions, the order of the deconfinement transition is particularly difficult to identify: it

has been studied in refs. [175–177], and the most recent results indicate that the transition

is probably a weakly first-order one [176, 177]. For SU(5) gauge group, the transition is

a stronger first-order one [177, 178], like for SU(N > 5) [177]. These results confirm that,

like in 3 + 1 dimensions, also in 2 + 1 dimensions the order of the transition depends on the

number of gluon degrees of freedom, with a passage from a continuous to a discontinuous

transition when the number of gluon degrees of freedom in the deconfined phase exceeds

a number around 15 (see also ref. [89] for further comments about this issue); since the

number of gluon degrees of freedom in G2 Yang-Mills theory in 2 + 1 dimensions is 14, it

would be interesting to investigate whether the transition is of first or of second order.

In addition, the results of our lattice simulations also show that the equilibrium ther-

modynamic observables in this theory are quantitatively very similar to those determined

in previous studies of the SU(N) equation of state [151, 153, 154]. In fact, rescaling the var-

ious thermodynamic quantities by the number of gluon degrees of freedom, we found that

the observables per gluon component in the deconfined phase of G2 Yang-Mills theory are

essentially the same as in SU(N) theories. This is consistent with the observation (based on

an analysis of the gluon propagator in Landau gauge) that confinement and deconfinement

should not be qualitatively dependent on the gauge group [88]. The same independence

from the gauge group has also been observed in the numerical study of Polyakov loops in

different representations in SU(N) gauge theories [114]: the quantitative similarities with

results in the SU(3) theory [179–181] are suggestive of common dynamical features.

12For further details about these topological objects, see also refs. [166–168] and references therein.
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In particular, our data show that, in the deconfined phase of G2 Yang-Mills theory, the

trace of the stress-energy tensor ∆ is nearly exactly proportional to T 2 for temperatures

up to a few times the critical deconfinement temperature Tc. This peculiar behavior was

first observed in SU(3) Yang-Mills theory [152] (see also ref. [155] for a more recent, high-

precision study) and discussed in refs. [182–186]. Later, it was also observed in numerical

simulations of gauge theories with SU(N > 3) [151, 153, 154]. A dependence on the square

of the temperature is hard to explain in perturbative terms (unless it accidentally results

from cancellations between terms related to different powers of the coupling). Actually, at

those, relatively low, temperatures, most likely the gluon plasma is not weakly coupled and

non-perturbative effects probably play a non-negligible rôle [187, 188]. While one could

argue that this numerical evidence in a relatively limited temperature range may not be too

compelling, it is interesting to note that lattice results reveal the same T 2-dependence also

in 2 + 1 spacetime dimensions [156, 157] (for a discussion, see also ref. [189] and references

therein). Note that, in the latter case, due to the dimensionful nature of the gauge coupling

g, the relation between g2 and the temperature is linear, rather than logarithmic.

Another interesting recent analytical work addressing the thermal properties of G2

Yang-Mills theory was reported in ref. [94] (see also ref. [97]): following an idea discussed

in refs. [91, 182, 190, 191], in this article the thermal behavior of the theory near Tc is

assumed to depend on a condensate for the Polyakov-line eigenvalues, and the effective

action due to quantum fluctuations in the presence of this condensate is computed at two

loops. The somewhat surprising result is that the two-loop contribution to the effective

action is proportional to the one at one loop: this holds both for SU(N) and for G2

gauge groups. In order to derive quantitative predictions for the pressure and for the

Polyakov loop as a function of the temperature, however, non-perturbative contributions

should be included, as discussed in ref. [91]. More precisely, the effective description of the

deconfined phase of Yang-Mills theories presented in ref. [91] is based on the assumption

that, at a given temperature, the system can be modeled by configurations characterized

by a constant (i.e. uniform in space) Polyakov line, and that the partition function can

be written in terms of an effective potential for the Polyakov-line eigenvalues. By gauge

invariance, the Polyakov line can be taken to be a diagonal matrix without loss of generality.

For SU(N) gauge groups, the N eigenvalues of this matrix are complex numbers of modulus

1. Since the determinant of the matrix equals 1, the eigenvalues’ phases are constrained

to sum up to 0 mod 2π. It is convenient to define rescaled phases (to be denoted as q),

that take values in the real interval between −1 and 1; one can then write an effective

potential V(q, T ), which includes different types of contributions (of perturbative and non-

perturbative nature). For the G2 gauge group, the construction exploits the fact that G2

is a subgroup of SO(7), which, in turn, is a subgroup of SU(7). Starting from SU(7), these

conditions reduce the number of independent components of q down to 2, the rank of G2.

Thus, the effective potential can take the form

V(q, T )

T 4
= −14

45
π2 +

4

3
π2V2(q)− 4π2T 2

c

3T 2

[
c1V1(q) + c2V2(q) + c3 + d2V

(7)
2 (q)

]
, (4.1)

where the first term on the right-hand side simply gives the free-energy density for the free-

gluon gas (according to eq. (3.5) and to the p = −f identity), the next term is the leading
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perturbative contribution, which can be expressed in terms of Bernoulli polynomials, while

the terms within the square brackets are expected to mimic effects relevant close to the

deconfinement transition (note the presence of the coefficient proportional to T 2
c , related

to non-perturbative physics, in front of the square brackets): see ref. [91] for the precise

definitions and for a thorough discussion.

The effective potential in eq. (4.1) depends on the unknown coefficients c1, c2, c3 and

d2, which, in principle, could be fixed using our data. We carried out a preliminary study

in this direction, finding that (with certain, mild assumptions) it is indeed possible to fix

values for c1, c2, c3 and d2 yielding ∆/T 4 values compatible with our lattice data. However,

the quality of such determination is not very good, because the parameters appear to be

cross-correlated and/or poorly constrained. Without imposing additional restrictions, an

accurate determination of these parameters would require data of extremely high precision

(and a genuine, very accurate continuum extrapolation).

After fixing the parameters of the effective potential defined in eq. (4.1), it would be

interesting to test, whether the model correctly predicts the behavior of other observables

computed on the lattice near the deconfining transition: this is a task that we leave for the

future.

5 Conclusions

The present lattice study of the G2 Yang-Mills model at finite temperature confirms that

this gauge theory has a finite-temperature deconfining phase transition. In agreement

with earlier lattice studies [82, 83], we found that the latter is of first order, as predicted

using semi-classical methods applicable to all simple gauge groups [86]. In particular, the

nature of the deconfinement transition, determined by the form of the effective potential

experienced by the Polyakov-loop eigenvalues, results from the competition of different

topological objects (and perturbative effects [162]): neutral bions (which generate repulsion

among the eigenvalues) and magnetic bions, as well as monopole-instantons (which generate

attraction among eigenvalues, like the perturbative terms).

The study of the equation of state that we carried out also shows that the equilibrium

thermal properties of G2 gauge theory are qualitatively and quantitatively very similar to

those of all SU(N) theories (up to a trivial proportionality to the number of gluon degrees of

freedom), and are compatible with the predictions from recent analytical studies, like those

reported in refs. [91, 92, 94]. Recently, analogous conclusions have also been reached for

supersymmetric theories [192, 193], using an approach inspired by ref. [194]. These results

corroborate the idea of universality in the thermal behavior of confining gauge theories.

To summarize with a pun, one could say that the exceptional thermodynamics in the title

of the present paper “is not so exceptional, after all”.

Our findings are also interesting to understand the rôle that different topological ex-

citations play in confinement, and give indications about the non-perturbative dynamics

relevant at temperatures close to deconfinement, where truncated weak-coupling expan-

sions are no longer quantitatively accurate.
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This work could be generalized along various directions. The temperature range that

we investigated could be extended, possibly in combination with the technical refinement

of using an improved version of the gauge action, as was done for SU(3) Yang-Mills theory

in ref. [155]. It is worth remarking that the multilevel algorithm used to set the scale in

the present work has been recently generalized to improved actions [195]. With sufficient

computational power, it would be interesting to compare the behavior of the thermody-

namic quantities in the confining phase with a gas of free glueballs, possibly modeling the

spectrum of excited states in terms of a vibrating bosonic string. This type of comparison

was successfully carried out in ref. [196] for SU(3) Yang-Mills theory in 3 + 1 dimensions

and in ref. [197] for SU(N) theories in 2 + 1 dimensions. In fact, the investigation of

finite-temperature G2 Yang-Mills theory in 2 + 1 dimensions could be another possible

generalization of this work: as we already remarked in section 4, the identification of the

order of the deconfinement transition in that theory would be particularly interesting.

One could also extend the investigation of the theory, by looking at other observables

in the deconfined phase, in particular going beyond those characterizing the equilibrium

properties of the QCD plasma. While the present study addresses a model which is inter-

esting as a theoretical test bed, but which is not physically realized in nature, ultimately

our aim is to achieve a deeper understanding of phenomenologically relevant aspects of

strong interactions at finite temperature. In particular, transport properties describing the

real-time evolution of conserved charge densities in the QGP are of the utmost relevance

for experimentalists and theorists alike. The lattice investigation of these quantities, how-

ever, is particularly challenging (see ref. [53] for a detailed discussion), and until recently

has been mostly limited to the SU(3) theory. Given the aspects of universality that seem

to emerge from the present study and from previous works, it would be interesting to in-

vestigate, whether also the spectral functions related to different transport coefficients in

G2 Yang-Mills are qualitatively and quantitatively similar to those extracted in the SU(3)

theory — albeit this may prove computationally very challenging.

Another possible generalization would be to investigate the equation of state in a

Yang-Mills theory based on another exceptional gauge group. The “most natural” candi-

date would be the one based on F4: this group has rank 4 and dimension 52 and, like G2,

its center is trivial. The smallest non-trivial irreducible representation of this group, how-

ever, is 26-dimensional, making lattice simulations of this Yang-Mills theory much more

demanding from a computational point of view. We are not aware of any previous lattice

studies of F4 gauge theory.
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A General properties of the G2 group and of its algebra

In this appendix we summarize some basic facts about the G2 group and its algebra. Our

discussion mostly follows ref. [74], although (where appropriate) we also provide some

additional technical details — in particular as it concerns the representation theory.

G2 is the smallest of the five exceptional simple Lie groups, with dim G2 = 14. It

is a subgroup of SO(7) and coincides with the automorphism group of the octonions.

Equivalently, it can be defined as the subgroup of GL(7) preserving the canonical differential

3-form (given by the canonical bilinear form taking the cross product of two vectors as its

second argument). G2 has an SU(3) subgroup, and G2/SU(3) is isomorphic to the six-

dimensional sphere S6 [115]. This allows one to decompose a generic G2 element as the

product of a matrix associated with an element of S6, times an SU(3) matrix: for an

explicit realization, see ref. [82, appendix A]. Another subgroup of G2 is SO(4) [198].

The Lie algebra of the G2 generators has dimension 14 and rank 2: its Cartan matrix is[
2 −3

−1 2

]
, (A.1)

so that the Π-system includes a long and a short root, at a relative angle 5π/6 (a unique

property among all simple Lie algebras). There exist two fundamental representations,

which are seven- and fourteen-dimensional, respectively. The weight diagram of the 7-

dimensional fundamental representation is given by the vertices of a regular hexagon, plus

its center. The representation of dimension 14 is the adjoint representation: its weight

diagram is given by the vertices of a hexagram, with the addition of two points at its center.

The irreducible representations can be unambiguously labeled by two non-negative

integers, (λ1, λ2); all of the irreducible representations can be cast in real form. The

dimension (d) of a generic irreducible representation of label (λ1, λ2) is given by the Weyl

dimension formula

d =
(2λ1 + 3λ2 + 5) · (λ2 + 1) · (λ1 + 3λ2 + 4) · (λ1 + λ2 + 2) · (λ1 + 1) · (λ1 + 2λ2 + 3)

120
.

(A.2)

The trivial representation corresponds to (0, 0), whereas the fundamental representation

of dimension 7 is associated with labels (1, 0), while the adjoint corresponds to (0, 1). As

a curiosity, note that the dimension of the representation (9, 9) is exactly one million. All

irreducible representations of dimension not larger than 105 are listed in table 4.

Tensor products of irreducible representations are not, in general, irreducible. How-

ever, they can be decomposed into sums of irreducible representations. For G2, the most

straightforward algorithm to compute the decomposition of tensor products of irreducible

representations is the one based on girdles (see ref. [200] and references therein), which can

be briefly summarized as follows.

In the real vector space of dimension equal to the rank n of the group (R2 in this

case) with coordinates x1, . . . , xn, consider t distinct points P (i) =
(
P

(i)
1 , . . . , P

(i)
n

)
, with

i = 1, . . . , t, and define the corresponding set of points S by assigning integer multiplicities
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(λ1, λ2) d (λ1, λ2) d (λ1, λ2) d (λ1, λ2) d

(0, 0) 1 (6, 1) 3003 (3, 5) 18304 (4, 6) 53599

(1, 0) 7 (9, 0) 3289 (6, 3) 19019 (7, 4) 55614

(0, 1) 14 (0, 6) 3542 (0, 9) 19096 (2, 8) 56133

(2, 0) 27 (3, 3) 4096 (2, 6) 19278 (11, 2) 56133′

(1, 1) 64 (2, 4) 4914 (8, 2) 19683 (3, 7) 57344

(0, 2) 77 (1, 5) 4928 (14, 0) 20196 (9, 3) 59136

(3, 0) 77′ (7, 1) 4928′ (11, 1) 24192 (18, 0) 59983

(4, 0) 182 (10, 0) 5005 (5, 4) 24948 (14, 1) 61047

(2, 1) 189 (5, 2) 5103 (15, 0) 27132 (0, 12) 67158

(0, 3) 273 (0, 7) 6630 (9, 2) 28652 (6, 5) 69160

(1, 2) 286 (4, 3) 7293 (7, 3) 28672 (1, 10) 74074

(5, 0) 378 (11, 0) 7371 (1, 8) 29667 (12, 2) 76076

(3, 1) 448 (8, 1) 7722 (0, 10) 30107 (19, 0) 76153

(6, 0) 714 (6, 2) 8372 (4, 5) 30107′ (8, 4) 79002

(2, 2) 729 (3, 4) 9177 (3, 6) 33495 (15, 1) 80256

(0, 4) 748 (1, 6) 9660 (12, 1) 33592 (5, 6) 81081

(1, 3) 896 (2, 5) 10206 (2, 7) 33858 (10, 3) 81719

(4, 1) 924 (12, 0) 10556 (16, 0) 35853 (2, 9) 88803

(7, 0) 1254 (0, 8) 11571 (6, 4) 37961 (4, 7) 89726

(3, 2) 1547 (9, 1) 11648 (10, 2) 40579 (3, 8) 93093

(5, 1) 1728 (5, 3) 12096 (8, 3) 41769 (20, 0) 95634

(0, 5) 1729 (7, 2) 13090 (0, 11) 45695 (0, 13) 96019

(2, 3) 2079 (13, 0) 14756 (13, 1) 45696 (7, 5) 99008

(8, 0) 2079′ (4, 4) 15625 (5, 5) 46656

(1, 4) 2261 (10, 1) 17017 (17, 0) 46683

(4, 2) 2926 (1, 7) 17472 (1, 9) 47872

Table 4. The smallest irreducible representations of the G2 group, sorted by increasing dimension

d, up to 105. 1 denotes the trivial representation, while 7 and 14 denote the two fundamental

representations (14 being the adjoint representation). Non-equivalent irreducible representations

of the same dimension are distinguished by a prime sign (we conventionally choose to use the prime

sign for the representation with the largest value of λ1). Note that, in contrast to the claim of

ref. [199], there exists only one irreducible representation of dimension 28652.
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i P
(i)
1 P

(i)
2 k(i)

1 (2λ1 + 3λ2 + 5)/
√

48 (λ2 + 1)/4 1

2 (λ1 + 3λ2 + 4)/
√

48 (λ1 + λ2 + 2)/4 −1

3 (λ1 + 1)/
√

48 (λ1 + 2λ2 + 3)/4 1

Table 5. Coordinates and multiplicity coefficients of the points belonging to the girdle associated

with the G2 representation of label (λ1, λ2), within the first quadrant of the R2 plane. Note that,

in each coordinate, the constant term equals the sum of the coefficients of λ1 and λ2.

k(i) to each P (i):

S =
{(
P (1); k(1)

)
, . . . ,

(
P (t); k(t)

)}
. (A.3)

A generic set of points S can then be uniquely associated with a Laurent polynomial in n

variables

σ(x1, . . . xn) =
t∑
i=1

k(i)

 n∏
j=1

x
P

(i)
j

j

 , (A.4)

and the operations of addition, subtraction, multiplication and division of sets of points

are then defined by the result of the same operations on the associated polynomials.

The girdle ξ(λ1, . . . λn) of a representation of a group is then a particular set of points,

with certain well-defined multiplicities: for G2, the girdles are irregular dodecagons, that

are symmetric with respect to both the x1 and x2 axes, and whose vertices in the first

quadrant are listed in table 5. The multiplicities associated with the vertices in the other

quadrants are also ±1, and are alternating around the dodecagon.13

The character of a given representation with label (λ1, λ2) is given by the ratio of

polynomials of two girdles:

χ(λ1, λ2) =
ξ(λ1, λ2)

ξ(0, 0)
. (A.5)

This allows one to decompose arbitrary tensor products of irreducible representations using

the fact that, since

χ(λ1, λ2)χ(µ1, µ2) =
∑

(ν1,ν2)

q(ν1,ν2)χ(ν1, ν2), (A.6)

one also has
ξ(λ1, λ2)ξ(µ1, µ2)

ξ(0, 0)
=
∑

(ν1,ν2)

q(ν1,ν2)ξ(ν1, ν2), (A.7)

which immediately allows one to identify the q(ν1,ν2) coefficients, since only girdles appear

on the right-hand side of eq. (A.7).

A numerical implementation of the algorithm described above immediately shows that,

in particular, the following decomposition laws for tensor products of G2 representations

hold:

7⊗ 7 = 1⊕ 7⊕ 14⊕ 27, (A.8)

13Thus, for example, for the trivial representation the point of coordinates x1 = −1/
(
4
√

3
)
, x2 = 3/4

has multiplicity −1, while the one of coordinates x1 = −1/
√

3, x2 = 1/2 has multiplicity 1, and so on.
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n πn(G2) n πn(G2) n πn(G2)

0 Z1 6 Z3 12 Z1

1 Z1 7 Z1 13 Z1

2 Z1 8 Z2 14 Z168 ⊕ Z2

3 Z 9 Z6 15 Z6 ⊕ Z2 ⊕ Z2

4 Z1 10 Z1 16 Z8 ⊕ Z2

5 Z1 11 Z⊕ Z2 17 Z240

Table 6. Lowest homotopy groups of the G2 group, from ref. [203].

14⊗ 7 = 7⊕ 27⊕ 64, (A.9)

27⊗ 7 = 7⊕ 14⊕ 27⊕ 64⊕ 77, (A.10)

14⊗ 14 = 1⊕ 14⊕ 27⊕ 77⊕ 77′, (A.11)

27⊗ 14 = 7⊕ 14⊕ 27⊕ 64⊕ 77⊕ 189, (A.12)

77⊗ 14 = 14⊕ 27⊕ 64⊕ 77⊕ 77′ ⊕ 182⊕ 189⊕ 448, (A.13)

77′ ⊗ 14 = 14⊕ 77⊕ 77′ ⊕ 189⊕ 273⊕ 448. (A.14)

Note that, since both the trivial (1) and the smallest fundamental (7) representation appear

on the r.h.s. of eq. (A.8), it is elementary to prove by induction that (at least in principle)

G2 QCD admits color-singlet “hadrons” made of any number nval ≥ 2 of valence quarks:

“diquarks”, “baryons”, “tetraquarks”, “pentaquarks”, “hexaquarks”, “heptaquarks”, et c.

Using the formulas above, the tensor product of three adjoint representations 14 can

be decomposed as

14⊗ 14⊗ 14 = 1⊕ 7⊕ 14⊕ 14⊕ 14⊕ 14⊕ 14⊕ 27⊕ 27⊕ 27⊕ 64⊕ 64

⊕77⊕ 77⊕ 77⊕ 77⊕ 77′ ⊕ 77′ ⊕ 77′ ⊕ 182⊕ 189⊕ 189⊕ 189

⊕273⊕ 448⊕ 448. (A.15)

The presence of the representation 7 on the right-hand side of eq. (A.15) implies that in

G2 Yang-Mills theory a fundamental color source can be screened by three gluons.

The G2 Casimir operators are discussed in ref. [201]; in particular, the functionally

independent ones are those of degree 2 and 6. Their eigenvalues can be found in ref. [202,

section 5].

The non-perturbative aspects of a non-Abelian gauge theory are related to the topo-

logical objects that gauge field configurations can sustain. For the G2 group, the homotopy

groups are listed in table 6 — see ref. [203], — where Z1 denotes the trivial group. G2

is connected, with a trivial fundamental group; its second homotopy group is trivial, too,

while the third is the group of integers, hence G2 gauge theory admits “instantons”.

Finally, using the properties of exact sequences (and the additivity of homotopy groups

of direct products of groups), it is also trivial to show that π2 (G2/[U(1)×U(1)]) is Z⊕Z:

this implies that, like for SU(3) gauge theory, when the global G2 group gets broken to its

Cartan subgroup, two types of ’t Hooft-Polyakov monopoles appear.
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