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dIFPA, département AGO, Université de Liège,
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1 Introduction

The concept of generalized parton distributions (GPDs) introduced two decades ago [1–5]

proved to be successful for addressing the issue of hadronic structure in terms of the fun-

damental degrees of freedom of QCD. Considerable amount of experimental information

acquired during the last years inspired further efforts for better understanding of both

theoretical and experimental aspects of the GPD framework (see reviews in refs. [6–10]).

Nowadays, dedicated experiments aiming on the detailed studies of hard exclusive reac-

tions (such as the Deeply Virtual Compton Scattering (DVCS) and the Deeply Virtual
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Meson Production (DVMP)) admitting description within the GPD formalism constitute

a significant part of the research programs of several existing (JLab, COMPASS) and fu-

ture (EIC, P̄ANDA @ GSI-FAIR, J-PARC) experimental facilities. This makes hope that

precise experimental data will be available for scrutinizing GPDs in the future. However,

the direct extraction of GPDs from the observable quantities represents a formidable task.

Indeed, GPDs are intricate functions of the longitudinal momentum fraction of partons (x),

skewness parameter (η), the momentum transfer squared (t), and the factorization scale

(µ). Moreover, GPDs enter observable quantities as integral convolutions over x with hard

scattering kernels given by the appropriate partonic propagators. The direct deconvolu-

tion for recovering GPDs from observables turns to be impracticable. Indeed, the leading

order (LO) DVCS and DVMP observables probe GPDs only on the so-called cross-over

line x = η. Outside the cross-over line GPDs can be constrained only implicitly via the

evolution effects. A small lever arm in the experimentally available virtuality of the hard

probes Q2 causes further embarrassment for this straightforward approach.

Therefore, a more realistic strategy for extracting GPDs from the data relies on em-

ploying of phenomenologically motivated GPD representations and consistent GPD fitting

procedures for the whole set of observable quantities. The clue for building up a valid phe-

nomenological representation for GPDs is provided by implementation of the non-trivial

requirements (forward limit, polynomiality and support properties, hermiticity, positivity

constraints, evolution properties, etc.) following from the fundamental properties of the

underlying quantum field theory.

It is worth emphasizing that, as long as the basic theoretical requirements are satisfied,

all GPD representations present the same field theoretical object. Therefore, in principle, it

should be possible to map a GPD within one representation to that in a different represen-

tation, although explicitly working out such relations may sometimes be mathematically

cumbersome. This generally makes the popular question “Which GPD representation is

better?” meaningless. Instead, one may hope to get an additional insight of GPDs and

their physical interpretation by comparing the manifestation of GPD properties within

different representations.

Historically, one of the first parametrizations for GPDs suitable for phenomenological

applications was based on the double distribution (DD) representation of GPDs, introduced

in [1, 11]. The DD representation of GPDs arises directly from diagrammatical considera-

tions and inherits most of the basic field theoretic requirements for GPDs. It provides an

elegant way to implement both polynomiality and support properties as well as the forward

limit constraint. Particular GPD models designed within this framework are based on the

Radyushkin Double Distribution Ansatz (RDDA) [12–14]. The popular Vanderhaeghen-

Guichon-Guidal (VGG) code [15] for the DVCS and DVMP observables implements the

RDDA model specified in [6, 16]. The VGG code predictions and also those of the related

Goloskokov-Kroll model [17, 18] have shown some success in the description of the avail-

able data. In our days, the RDDA still remains extremely popular and is also employed

within more advanced GPD models [19, 20], which exploit the ambiguity [21, 22] of the

DD representation.
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Nevertheless, it is important to emphasize that the RDDA was originally designed as a

toy model [14], and thus it comes as no surprise that it possesses some serious drawbacks.

• In particular, the functional form of the RDDA is not stable under the QCD evolution

making the proper implementation of the evolution effects arduous.

• Also, already for one decade, it was recognized that the RDDA lacks flexibility, and,

as a consequence, most probably fails to describe the available H1 and ZEUS data

for the DVCS cross section at small values of xB in the leading order of perturbation

theory [23].

Therefore, on no account the RDDA should be taken as the only opportunity for phe-

nomenological applications.

The alternative strategy for building up of a GPD representation resides on the expan-

sion of GPDs over a suitable orthogonal polynomial basis in order to achieve the separation

of certain variable dependence. The appealing possibility is to perform the expansion of

GPDs over the conformal partial wave basis, which ensures the diagonalization of the lead-

ing order (LO) evolution operator.1 This inspired several authors to set up various versions

of the conformal partial wave expansion for GPDs. Nowadays two main versions of such

GPD representations are utilized:

• The approach [26–28] based on the Mellin-Barnes integral techniques. It deals with

the analytic continuation of conformal moments and of conformal partial waves to the

complex values of conformal spin. The closed expression for GPDs is then worked out

by trading the conformal partial wave expansion for the Mellin-Barnes type integral

by means of the Sommerfeld-Watson transformation.

• The approach [29–31] based on the Shuvaev-Noritzsch transform. In this approach

one is dealing with the so-called forward-like functions of an auxiliary momentum-

fraction-type variable. The Mellin moments of these forward-like functions gener-

ate the conformal moments of GPDs. GPDs are then given by convolutions of the

forward-like functions with certain integral kernels.

To proceed with the conformal partial wave expansion of GPDs it turns out extremely

instructive to further expand the conformal moments over the basis of the t-channel SO(3)

rotation group partial waves. In the context of the Shuvaev-Noritzsch transform techniques

the resulting GPD representation is known as the dual parametrization of GPDs [32, 33].

Within the Mellin-Barnes integral approach, this kind of double partial wave expansion

is referred in the literature as the SO(3) partial wave expansion [34]. Each version of

the formalism employs a rather intricate mathematical apparatus. Therefore, some care

is needed for the correct mathematical treatment, and surely some early results/claims

required refinement in our days.

1Also the possible fundamental importance of the GPD parameterization in terms of conformal partial

waves, was recently emphasized in the context of gravity dual description for the DVCS (see [24, 25] and

references therein).

– 3 –



J
H
E
P
0
3
(
2
0
1
5
)
0
5
2

The Mellin-Barnes integral approach was successfully employed in a global GPD fit-

ting framework. Using a simple phenomenological Ansatz for the corresponding partial

wave amplitudes allows to construct a flexible Kumerički-Müller (KM) GPD model [34–36]

that provides a good description of the world sets of unpolarized DVCS data [37], includ-

ing small-xB DVMP data [38]. This model provides also a reasonable description of the

polarized DVCS data [39, 40].

The early attempts [41–43] to apply the dual parametrization approach for data analy-

sis were based on the so-called ‘minimalist’ model which was later found to be based on too

strong theoretical assumptions. The corresponding data analysis was much less consecutive

and only partially consistent [44, 45]. This is, however, not related to any fundamental

drawback of the dual parametrization formalism. In fact, both the dual parametrization

and the SO(3) partial wave expansion within the Mellin-Barnes integral approach allow to

set up very flexible GPD models in a trivial way and are expected to be capable to describe

the DVCS and DVMP data in a global analysis at next-to-leading order. Therefore, we

think that it is instructive to show in details that these two versions of the conformal partial

wave expansion formalism are fully equivalent. This is the main goal of the present paper.

The paper is organized as follows. In section 2 we introduce our notations and present

the details of the conformal partial wave expansion for quark GPDs. In section 3 we briefly

review the dual parametrization approach and present a new derivation of the explicit

form of the dual parametrization convolution kernels based on the Schläfli contour integral

representation for the conformal partial waves. In section 4, on general mathematical

ground, we show the complete equivalence of the dual parametrization and of the Mellin-

Barnes SO(3) partial wave expansion approaches. This equivalence is further illustrated by

treating several important special cases in section 5. In section 6 we consider the elementary

LO amplitude and discuss the manifestation of the J = 0 fixed pole in DVCS. In section 7 we

provide concrete model examples and recast the phenomenological KMmodel for GPDs into

the dual parametrization framework. In section 8 we evaluate conformal GPD moments,

expanded in terms of SO(3) partial waves, from double distributions. Finally, we give a

summary and report on the status of the formalism.

2 Conformal partial wave expansions of GPDs

2.1 Notations and conventions

The conformal partial wave expansion (PWE) of GPDs deals with partial waves (PWs) that

are labeled by the complex conformal spin, which characterizes the irreducible multiplets

of appropriate conformal operators. We refer the reader e.g. to ref. [46] for a review of

group theoretical aspects of the conformal PWE. In the present section we specify our

set of conventions and notations for the conformal basis and summarize the details of the

conformal PWE for quark GPDs.

For a particular quark flavor q a generic quark GPD F (x, η, t) = {H, E, H̃, Ẽ}(x, η, t)
with the support x ∈ [−1, 1] can be decomposed into a quark GPD F q

F q(x, η, t) = F (x ≥ −|η|, η, t) (2.1)
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with the support x ∈ [−|η|, 1] and an antiquark GPD F q̄

F q̄(x, η, t) = −F (−x ≤ |η|, η, t) (2.2)

with the support x ∈ [−1, |η|]. Both quark and antiquark GPDs are even in skewness η

and satisfy the polynomiality constraints. Moreover, in order to ensure the validity of the

factorized description for the relevant hard processes, GPDs F q and F q̄ vanish at x = −η

and x = η respectively.

It is convenient to introduce the combinations F (±) of GPDs F q and F q̄ with definite

charge parity C = ±1, i.e., also with definite symmetry with respect to x:

F (+)(x, η, t) = F (x, η, t)− σF (−x, η, t) = sign(x)
[
F q(|x|, η, t) + σF q̄(|x|, η, t)

]
;

F (−)(x, η, t) = F (x, η, t) + σF (−x, η, t) = F q(|x|, η, t)− σF q̄(|x|, η, t) , (2.3)

where the signature factor for H and E (H̃ and Ẽ) GPDs is σ = 1 (σ = −1). We

choose skewness η to be positive and, similarly to how it is usually done for quark parton

distribution functions (PDFs), consider the symmetric and the antisymmetric combinations

F (±)(x, η, t) only for x ≥ 0.

For the case of unpolarized quark GPD H the combinations (2.3) appear in the charge

even sum of quark and antiquark (antisymmetric) and the charge odd valence (symmetric)

unpolarized GPDs H(±). Since the H GPDs will be taken as the main example in the

subsequent consideration, it is worth specifying explicitly our normalization conventions.

• In the limit η → 0 the charge even (odd) quark GPD H(±) (2.3) reduces to the sum

(difference) of quark and anti-quark combination of t-dependent PDFs:

H(±)(x, η = 0, t) = q(x, t)± q(x, t) with x ≥ 0 . (2.4)

• Charge even GPD H(+) satisfies the polynomiality condition for odd Mellin moments.

Its first Mellin moment is normalized to the form factors of the quark part of the

QCD energy-momentum tensor:

∫ 1

0
dxxH(+)(x, η, t) = M q

2 (t) +
4

5
η2dq1(t),

where M q
2 (t = 0) corresponds to the momentum fraction carried by quarks and

antiquarks of flavor q and dq1(t) is the first coefficient of the Gegenbauer expansion of

the D-term of flavor q, introduced in ref. [47].

• Charge odd GPD H(−) satisfies the polynomiality condition for even Mellin moments.

Its zeroth Mellin moment is normalized to

∫ 1

0
dxH(−)(x, η, t) = F q

1 (t), (2.5)

where F q
1 (t) stands for the electromagnetic form factor of a particular flavor q.
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For the conformal PW expansion of GPDs we adopt the notations employed in [26].

The conformal moments of a generic quark GPD F are formed with respect to the Gegen-

bauer polynomials with the index 3
2 : cn(x, η) ∼ ηnC

3
2
n

(
x
η

)
, where n + 2 refers to the

conformal spin, labeling the irreducible conformal multiplets of the relevant operators.

Due to the polynomiality property of GPDs and the T -invariance, the conformal moments

Fn(η, t) =

∫ 1

−1
dx cn(x, η)F (x, η, t), (2.6)

are even polynomials in η of order n or n+ 1.

The normalization of the conformal basis

cn(x, η) = ηn
Γ
(
3
2

)
Γ(1 + n)

2nΓ
(
3
2 + n

) C
3
2
n

(
x

η

)
(2.7)

is chosen in such a way that in the forward limit it gives rise to the usual Mellin moments:

lim
η→0

cn(x, η) = xn. (2.8)

It is convenient to introduce the conformal PWs pn(x, η) including both the integration

weight and the support restrictions, expressed by the θ-function,

pn(x, η) = η−n−1pn(x/η) , pn(x) = θ(1− |x|) 2nΓ
(
5
2 + n

)

Γ
(
3
2

)
Γ(3 + n)

(1− x2)C
3
2
n (−x) . (2.9)

The conformal PWs (2.9) are normalized in a way that the following orthogonality relation

is valid:
∫ 1

−1
dx pn(x, η)cm(x, η) = (−1)nδnm. (2.10)

Thus, for integer values of the conformal spin the conformal PWE of a generic quark GPD

F q is formally given by

F (x ≥ −η, η, t) =

∞∑

n=0

(−1)npn(x, η)Fn(η, t) . (2.11)

Due to the orthogonality relation (2.10), the series (2.11) obviously reproduces the confor-

mal moments of the GPD F q(x, η, t). Since the integral conformal PWs have only |x| ≤ η

support, this ill-defined series can not converge in a common sense. Loosely spoken one

might view the integral conformal PWE (2.11) as a GPD representation in the space of

singular generalized functions. This series requires rigorous definition in the mathemati-

cal sense.

To overcome this issue we convert the integral conformal PWE (2.11) the Mellin-

Barnes-type integral. Therefore, we need a convenient representation for the conformal

PWs for complex valued conformal spin j + 2. According the Carlson theorem, this repre-

sentation uniquely exists if certain assumptions about the large j asymptotic behavior are

satisfied [48]. The desired representation is given by the Schläfli integral [49]

pj(x, η) = − Γ(5/2 + j)

Γ(1/2)Γ(2 + j)

1

2iπ

∮ 1

−1
du

(u2 − 1)j+1

(x+ uη)j+1
, (2.12)
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where the integration contour encircles the line segment u ∈ [−1; 1]. For integer j = n the

Cauchy theorem together with the Rodrigues formula for the Gegenbauer polynomials

(1− x2)C3/2
n (−x) =

2 + n

2n+1 n!

dn

dxn
(1− x2)n+1 (2.13)

allows one immediately to recover the expression for conformal PWs. Indeed,

pn(x, η) =
Γ(5/2 + n)

n!Γ(1/2)Γ(2 + n)

∫ 1

−1
du (1− u2)n+1δ(n)(x− uη) (2.14)

yields eq. (2.9).

2.2 Summing up conformal partial waves with the Mellin-Barnes techniques

In order to illustrate the nature of mathematical subtleties arising in (2.11) it is extremely

instructive to consider the limiting case η = 0. One may immediately check that the

series (2.11) provides the formal solution of the inverse Mellin problem for the relevant

t-dependent parton densities. Note, that our normalization is chosen in such a manner

that for η = 0 the conformal PWs are simply given by

pn(x, η = 0) =
1

n!
δ(n)(x). (2.15)

Hence, their Mellin moments
∫ 1
−1 dxx

mpn(x, η = 0) give (−1)nδnm. In particular, for the

case of unpolarized quark GPD Hq one recovers the Mellin moments of t-dependent PDFs

q(x, t) ≡ Hq(x, η = 0, t).

Obviously, the problem of assigning rigorous meaning to the conformal PW expan-

sion (2.11) is nothing but a special form of the classical moment problem (see e.g. [50]).

Therefore, the techniques similar to the standard inverse Mellin transform formula, giving

rise to the Mellin-Barnes type integrals along the imaginary axis, turns to be the natural

strategy for this issue. Below we shortly review the approach from ref. [26] in the form as

it is used in global fitting GPD procedures [34, 36, 37].

For definiteness, we consider the case of a quark GPD F q with the support −η ≤
x ≤ 1 satisfying the polynomiality condition and vanishing at x = −η. The latter non-

perturbative assumption, which ensures the validity of the relevant factorization theorems,

makes the summation of the series (2.11) unique. Starting from the unphysical case η > 1

and employing the Sommerfeld-Watson transform one may establish the following Mellin-

Barnes integral representation for GPD F q:

F (x ≥ −η, η, t) =
1

2i

∫ c+i∞

c−i∞
dj

pj(x, η)

sin(π[j + 1])
Fj(η, t) . (2.16)

This representation implies the analytic continuation of both the conformal moments

Fj(η, t) and the conformal PWs pj(x, η) to the complex values of conformal spin. Special

attention should be given to the large-j asymptotic behavior and the analytic properties of

the conformal moments. It is crucial for the validity and uniqueness of the whole procedure

ensured by the Carlson theorem (see discussion in ref. [26]).
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One also needs to specify the position and nature of the rightmost lying singularities (in

j) of Fj . This is usually done by taking the pragmatic Regge phenomenology assumptions.

We suppose that the rightmost lying singularities in Fj are at j = α(t) − 1, where α(t)

stands for the corresponding effective Regge trajectory. We assume α(t = 0) < 2 for the

C = +1 and α(t = 0) < 1 for the C = −1 combination of GPDs.

Therefore, the intercept with the real axis c of the integration path in (2.16) has to be

chosen as c > max(α − 1,−5
2), where j = −5

2 is the position of the rightmost pole of the

conformal partial waves (cf. eqs. (2.17) and (2.18)).2 The upper limit for the intercept is

c < 0. However, for the antisymmetrized quark GPD combination, e.g., H(+), it can be

relaxed to be c < 1. In particular, in the presence of the effective ‘pomeron’ pole in H(+)

the intercept c is restricted to be max(α(0)− 1, 0) < c < 1 with α(0) < 2.

As already stated above, the analytic continuation of the conformal PWs pj(x, η) is

provided by the Schläfli integral (2.12).

• For |x| ≤ η the conformal PWs can be equated with the associated Legendre functions

of the first kind, and expressed e.g. in terms of hypergeometric functions 2F1:

pj(|x| ≤ η, η) =
2j+1Γ(5/2 + j) η−j−1

Γ(1/2)Γ(1 + j)
(1 + x/η)2F1

(
−1− j, j + 2, 2

∣∣∣∣
η + x

2η

)
. (2.17)

• For x > η the associated Legendre functions of the first kind have a branch cut. Their

discontinuity on this cut can be expressed in terms of the Legendre functions of the

second kind. In terms of hypergeometric functions it then reads

pj(x > η, η) =
sin(π[j + 1])

π
x−j−1

2F1

(
(j + 1)/2, (j + 2)/2

5/2 + j

∣∣∣∣
η2

x2

)
, (2.18)

where we employed a quadratic transformation for the arguments of the hypergeo-

metric function.

• Finally, for the region x ≤ −η the conformal PWs are set to zero,

pj(x ≤ −η, η) = 0 . (2.19)

It also may be checked that pj(x, η) satisfy the following boundary conditions for the

specific values of η:

pj(x, η = 0) = x−j−1 sin(π[j + 1])

π
; (2.20)

pj(x, η = x) = x−j−1 2
j+1Γ(5/2 + j)

Γ(3/2)Γ(3 + j)

sin(π[j + 1])

π
. (2.21)

Note, that pj(x, η) is continuous in the vicinity of the cross-over line x = η. However, the

imaginary part of its first derivative (in x) possesses a discontinuity (while the real part of

the first derivative is still continuous).

2Note that the inclusion of the evolution operator (or radiative corrections) restricts the lower bound to

c > max(α(0)− 1,−1). Also in the case of H(+) the appearance of a perturbative ‘pomeron’ pole requires

c > max(α(0)− 1, 0).
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3 Dual parametrization

Another possibility of summing up the conformal PW expansion (2.11) is to employ a

map of a GPD to the forward-like function F(y, η, t),3 by requiring that the conformal

moments (2.6) of the GPD are obtained from the Mellin transform in the auxiliary vari-

able y [30],

Fn(η, t) =

∫ (

1+
√

1−η2
)

/2

−
(

1+
√

1−η2
)

/2
dy yn F(y, η, t). (3.1)

The integral transformation, relating the forward-like function F(y, η, t) to the initial GPD

F (x, η, t), bears the name of the Shuvaev-Noritzsch transform. For the quark part (2.1) of

the GPD F it reads

F (x ≥ −η, η, t) =

∫ (

1+
√

1−η2
)

/2

0
dyK(x, η|y) F(y, η, t) , (3.2)

The support properties of the forward-like function have been pointed out in [31], but still

require to be worked out carefully.4

The integral kernel K(x, η|y) contains further support restrictions and its explicit ex-

pression was found by means of the dispersive approach [30, 31]. In loose words, it consists

in presenting the conformal PW expansion (2.11) as a discontinuity of a certain formal

series of generalized functions. This series is then resummed in the convergency region and

afterwards the discontinuity is taken. Finally, this allows to work out a closed expression

for the convolution kernel K(x, η|y) in terms of the elliptic integrals [31].

GPD modeling within the Shuvaev-Noritzsch transform approach can be performed

by building up a model for the forward-like function F(y, η, t) [31]. In particular, a simple

η-independent Ansatz with the forward-like function given by the corresponding forward

PDF (times a t-dependent factor) was employed in [29] for approximating GPDs at small

values of η. This model is, strictly spoken, inconsistent [31] and it does not incorporate

general GPD properties at small-η [51], as claimed in the literature [29]. Nevertheless, its

“predictive power” is widely used in the phenomenology of diffractive processes.

In the rest of this section we introduce the dual parametrization of GPDs [32]. It

represents a particular receipt for handling the conformal PWE of GPDs (2.11) based on

a techniques similar to the Shuvaev-Noritzsch transform in which the conformal moments

are further expanded over a suitable basis of orthogonal polynomials. As this latter basis

3The notion “forward-like function” is employed to emphasize the simple evolution properties of F(y, η, t)

which are thought to be described by the usual Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-

lution equation.
4By modeling the conformal moments in terms of the Chebyshev polynomials and employing the inverse

Mellin transform, Noritzsch exemplified that in order to ensure polynomiality of the resulting GPDs the

forward-like function should possess two branches with the support |y| ≤ 1+
√

1−η2

2
expressed by the same

function. However, for a specific GPD model, with the conformal GPD moments defined by a generalization

of the Legendre polynomials, we found out a forward-like function that possesses the support
1−

√
1−η2

2
≤

y ≤ 1+
√

1−η2

2
rather than 0 ≤ y ≤ 1+

√
1−η2

2
, as one would naively expect.
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one employs the PWs of the cross-channel SO(3) rotation group. The dual parametriza-

tion techniques explicitly takes care of the polynomiality condition and, as the result,

the support properties of the corresponding forward-like functions are not plagued by the

mentioned above problems and turns to be the same as for PDFs.

3.1 Basics of the dual parametrization

Originally, a series with the structure of a double PWE in the conformal PWs and the SO(3)

rotation group PWs of the produced two-hadron system arose for the two-pion generalized

distribution amplitude (2π GDA) [52]. This object is related to the quark GPD of a pion

by the crossing transformation.

For definiteness, let us consider the DVCS process with a scalar hadron target h

γ∗(q) + h(p) → γ(q′) + h(p′) (3.3)

and its t-channel counterpart

γ∗(q) + γ(−q′) → h(p′) + h̄(−p). (3.4)

For the definition of the t-channel scattering angle see figure 1. Note, that after crossing

back to the direct channel, within the DVCS kinematics (Q2 = −q2 and s ≡ (q+ p)2-large;

xB ≡ Q2

2p·q -fixed; t ≡ (p′ − p)2 ∼ 0) the cosine cos θt of the t-channel scattering angle θt
becomes up to power suppressed corrections

cos θt → − 1

ηβ
+O(1/Q2), (3.5)

where β =
√
1− 4m2

t stands for the hadron velocity in the t-channel center-of-mass frame.

In what follows we switch to massless (m = 0) hadrons, so that we could consider hadron

helicities as true quantum numbers and exclude mixing between the corresponding PW am-

plitudes. This implies setting β = 1 (which means systematically neglecting the threshold

corrections ∼
√
1− 4m2

t ).

By exploiting the crossing symmetry, the double PWE, given as a series in the t-

channel, is analytically continued to the direct channel and resummed by means of the

techniques based on the Shuvaev-Noritzsch transform. This allows to work out a rigorous

expression for the corresponding GPD. The detailed description of different aspects of the

dual parametrization approach can be found in refs. [33, 53–58].

It is worth now outlining the physical picture constituting the foundation for the

dual parametrization of GPDs. The double PWE for two-hadron GDAs arise naturally

within the representation of the corresponding matrix elements as infinite series of the

t-channel resonance exchanges of arbitrary high spin and mass. The selection rules [7, 59]

for the quantum numbers of the t-channel resonances make the resulting object satisfy the

requirements following from the discrete symmetries (C, P and T ). The t-channel resonance

exchange mechanism can be seen as a development of a purely phenomenological model

for the matrix elements at a low scale, in the spirit of the vector dominance picture for

the pion and nucleon electromagnetic form factors [60]. On the other hand, at large Nc
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~̄p = −~p

~p′

~q′ ~̄q = −~qθt

Figure 1. The definition of the t-channel scattering angle in the t-channel center-of-mass reference

frame for the reaction (3.3).

QCD is believed to become equivalent to a theory of resonances. This justifies the eventual

description of the hadronic matrix elements of the relevant QCD operators in terms of

resonance exchanges.

The double PW expansion representations for two-hadron GDAs are then summed

up and analytically continued to provide the description for the cross-conjugated objects

(hadronic GPDs). Therefore, the term “dual” in the appellation of the method alludes to

the natural association with the old idea of duality in hadron-hadron low-energy scatter-

ing [61]. For a binary scattering amplitude it can roughly be summarized as the assumption

that the infinite sum over only just the cross-channel Regge exchanges, after appropriate

resummation, brings the complete description of the process within certain kinematical do-

main [62]. The hope is that a similar mechanism can provide a description of the operator

matrix elements occurring in the GPD/GDA definitions.

The dual parametrization approach was initially formulated for the case of a GPD of a

spinless hadron. The generalization for the spin-12 target is straightforward. It consists in

pointing out the combinations of spin-12 hadron GPDs suitable for the cross-channel SO(3)

PW expansion in terms of the (reduced) Wigner rotation d-matrices (see e.g. discussion in

section 4.2 of ref. [7]). For example, for the case of unpolarized nucleon GPDs the t-channel

helicity conserving (so-called electric) combination

H(E)(x, η, t) ≡ H(x, η, t) +
t

4m2
E(x, η, t) (3.6)

is to be expanded in dl00(1/η) ∼ Pl(1/η), where Pl(χ) stand for the Legendre polynomials.

The t-channel helicity flip (magnetic) combination

H(M)(x, η, t) ≡ H(x, η, t) + E(x, η, t) (3.7)

is to be expanded in dl01(1/η) ∼ P ′
l (1/η). More details on this subject are presented in

section 4. Here for simplicity we consider the case of a scalar target GPD,5 for which the

cross-channel SO(3)-PWE is performed over the usual Legendre polynomials.

5This consideration obviously also applies for the case of the electric combination H(E)(x, η, t) of unpo-

larized nucleon GPDs.
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Throughout this section we adopt the notations of refs. [32, 33]. Our starting point is

the double PWE for the charge even (C = +1) and charge odd (C = −1) combinations (2.3)

of the unpolarized quark GPD H:

H(+)(x, η, t) = 2
∞∑

n=1
odd

n+1∑

l=0
even

Bnl(t) θ(|η| − |x|)
(
1− x2

η2

)
C3/2
n

(
x

η

)
Pl

(
1

η

)
;

H(−)(x, η, t) = 2
∞∑

n=0
even

n+1∑

l=1
odd

Bnl(t) θ(|η| − |x|)
(
1− x2

η2

)
C3/2
n

(
x

η

)
Pl

(
1

η

)
. (3.8)

Here, as usual, n + 2 corresponds to the conformal spin and l refers to the t-channel

angular momentum and the generalized form factors Bnl(t) stand for the corresponding

double partial wave amplitudes (dPWAs).

Employing the orthogonality of the Gegenbauer polynomials and of the Legendre poly-

nomials, the dPWAs Bnl(t) can formally be obtained from the “crossed” GPD by forming

the moments

Bnl(t) =
1

2

∫ 1

−1
dω

2l + 1

2
Pl(ω)

∫ 1

−1
dx

2n+ 3

2(n+ 1)(n+ 2)
C3/2
n (x)H(+)

(
x

ω
, η =

1

ω
, t

)
. (3.9)

These dPWAs are considered as well defined for any non-negative integer values of n and l.

In the spirit of the Shuvaev-Noritzsch transform techniques, we introduce the set of

forward-like functions Q2ν(y, t) of an auxiliary variable y whose Mellin transform generates

the dPWAs:

Bn,n+1−2ν(t) =

∫ 1

0
dy ynQ2ν(y, t) or Bnl(t) =

∫ 1

0
dy ynQn+1−l(y, t). (3.10)

The difference of the conformal spin and the t-channel angular momentum 2ν+1 = n+2−l

with ν ∈ {0, 1, 2, · · · } is always odd. A GPD can now be represented as a series of integral

transformations, e.g., for the charge even (odd) combination (3.8):

H(±)(x, η, t)=

∞∑

ν=0

∫ 1

0
dy [K2ν(x, η|y)±K2ν(−x, η|y)] y2νQ2ν(y, t) . (3.11)

The integral kernels K2ν(x, η|y) and K2ν(−x, η|y) defined non-vanishing for −η ≤ x ≤ 1

and −1 ≤ x ≤ η are formally given as the series

K2ν(x, η|y)=
∞∑

n=−1

θ(|η| − |x|)
(
1− x2

η2

)
C

3/2
n+2ν

(
x

η

)
ynPn+1

(
1

η

)
(3.12)

with C
3/2
−1 (z) = 0. The closed analytic expressions for these kernels were originally calcu-

lated by means of Shuvaev’s dispersion technique [29, 32] and can be expressed in terms of

the elliptic integrals.

Note that the convolution over y in (3.11) requires some caution. Therefore, it is worth

specifying the small-y behavior of the forward-like functions. The forward-like functions
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can be formally reconstructed from GPD moments by the inverse Mellin transform with

respect to the complex valued n, denoted as j, where ν is kept a non-negative integer. It

is natural to assume that for small values of the momentum-type variable y the forward-

like functions inherit the Regge-like behavior of the Compton form factors at large energy

(small η). There are two distinct opportunities for this issue.

• One may assume that the generalized form factor BjJ(t) contain the Regge poles

in the complex t-channel angular momentum J-plane, e.g., at J ≡ j + 1 = α(t).

Consequently, for all ν the forward like functions y2νQ2ν(y, t) have at small y a

y−α(t) behavior. In this case the convolution integrals in (3.11) for ν ≥ 1 may require

suitable regularization.

• Contrarily, if one assumes such poles in the complex conformal spin plane at j+2ν+

1 = α(t), one finds that y2νQ2ν(y, t) ∼ y−α(t)+2ν and the leading Regge behavior is

only present in Q0(y, t). This latter opportunity (that was, in particular, adopted

within the ‘minimalist’ dual parametrization model) seems, in fact, to be too much

restrictive. It results in the skewness ratio rq = H(x,η=x,t=0)
H(x,η=0,t=0) fixed to the so-called

conformal value rqcon = 2α(0)Γ(3/2+α(0))
Γ(3/2)Γ(2+α(0)) However, this extremely strong model inde-

pendent prediction [29] contradicts the available experimental data (see e.g. ref. [37]

for the discussion).

3.2 Convolution kernels K2ν(x, η|y) from the Schläfli integral

In this subsection we present the alternative derivation of the explicit expressions for the

dual parametrization convolution kernels K2ν(x, η|y) employing the Schläfli integral repre-

sentation for the integral conformal PWs (2.9).

It is straightforward to check that

θ(|η|−|x|)
(
1−x2

η2

)
C

3/2
n+2ν

(
x

η

)
=(2+2ν+n)

(−1)n+1

2iπ

∮ 1

−1
du

(u2 − 1)n+1+2ν

(x+uη)n+1+2ν
yn
(η
2

)n+1+2ν
.

(3.13)

Plugging this representation into the formal series (3.12) and deliberately interchanging

summation and integration orders yields

K2ν(x, η|y)=
1

2iπ

∮ 1

−1
ds

∞∑

n=−1

(2+2ν + n)(−1)n+1 (s
2 − 1)n+1+2ν

(x− sη)n+1+2ν
yn
(η
2

)n+1+2ν
Pn+1

(
1

η

)
.

(3.14)

In order to match with the notations of [32], we rename the integration variable u = −s

in (3.14) and introduce the convenient shorthand notation

xs =
2(x− sη)

(1− s2)y
. (3.15)

Employing the generating function for the Legendre polynomials,

∞∑

n=−1

(
η

xs

)n+1

Pn+1

(
1

η

)
=

1√
x2
s+η2−2xs

x2
s
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we express the convolution kernels (3.14) as the following contour integral in the complex

s-plane:

K2ν(x, η|y) =

(
2 + 2ν + y

d

dy

)
1

2iπ

∮ 1

−1
ds

η2ν
(
s2 − 1

)2ν

22ν(x− sη)2νy
(3.16)

× 1√
y2η2

4(x−sη)2
(s− s1)(s− s2)(s− s3)(s− s4)

.

Here si, i = 1, 2, 3, 4 denote the four roots of x2s + η2 − 2xs = 0:

si =
1

yη

[
1−

√
1− η2 ∓

√
2(1− xy)

(
1−

√
1− η2

)
− (1− y2) η2

]
for i =

{
1

2
,

si =
1

yη

[
1 +

√
1− η2 ∓

√
2(1− xy)

(
1 +

√
1− η2

)
− (1− y2) η2

]
for i =

{
3

4
. (3.17)

To perform the contour integral (3.16) we need to specify the position of cuts and poles

of the integrand on the real axis in the complex s-plane. For this issue the position and

ordering of the roots of the polynomial x2s + η2 − 2xs are of major importance.

• For x ≤ −η, assuming 0 ≤ y ≤ 1, no cuts or poles fall inside the unit circle in the

complex s-plane.

• In the central region |x| < η with 0 ≤ y ≤ 1 we get inside the unit circle in the

complex s-plane the cut [s1, s3]. In addition, for ν > 0 we have in this region poles

at s = x/η, which are of the order 2ν − 1. Note that in this region s3 < x/η.

• At the cross-over line x = η we recover the following ordering of the roots si:

s1 =
2− 2

√
1− η2 − ηy

ηy
≤ s2 = s3 = 1 ≤ s4 =

2 + 2
√
1− η2 − ηy

ηy

and, hence, the cut is now in the segment [s1, 1].

• Finally, in the outer region η ≤ x ≤ 1 we have inside the unit circle in the complex

s-plane the cut [s1, s2], where the 0 ≤ y ≤ 1 variable is now subject to a lower bound

y0 ≤ y with y0 =
x+

√
x2 − η2

1 +
√
1− η2

≤ x for η ≤ x ≤ 1 .

With the help of this information, we can rewrite the contour integral (3.16) as the one

over the real axes.

For ν = 0 it reads as follows

K0(|x| ≤ η, η|y) = 1

y

d

dy
y

∫ s3

s1

ds

π

xs√
2xs − x2s − η2

; (3.18a)

K0(x ≥ η, η|y) = 1

y

d

dy
y

∫ s2

s1

ds

π

θ(y − y0)xs√
2xs − x2s − η2

, (3.18b)
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where xs is defined in (3.15) and si are listed in (3.17). We note that the integration limits

are obtained from the condition 2xs−x2s−η2 ≥ 0. Therefore, we can write for both regions

the same integral

K0(x ≥ −η, η|y) = 1

y

d

dy
y

∫ 1

−1

ds

π

θ(2xs − x2s − η2)xs√
2xs − x2s − η2

,

thus recovering the original result of [32].

For ν > 0 the additional pole contribution appear in the central region at s = x/η. It

can be easily calculated and can be understood as the piece that regularizes the endpoint

singularities of the kernels. We recover the dual parametrization convolution kernels which

we write for positive integer ν in a compact form as

K2ν(x, η|y) = (3.19)

η2ν

y1+2ν

d

dy
y

∫ 1

−1
ds

{
θ(2xs − x2s − η2)x1−2ν

s

π
√
2xs − x2s − η2

+
y2νδ(x/η − s)

η2ν 22νΓ(2ν)

d2ν−1

ds2ν−1

xs(1− s2)2ν√
x2s + η2 − 2xs

}
.

Employing the generating function for the Legendre polynomials and the Rodrigues formula

for the Gegenbauer polynomials one can show that the subtraction term can be presented

as a finite sum

y2ν

22νΓ(2ν)

d2ν−1

ds2ν−1

xs(1− s2)2ν√
x2s + η2 − 2xs

∣∣∣∣
s=x

η

=

−θ(|η| − |x|)
2ν−2∑

l=0

y1+l

2 + l

(
1− x2

η2

)
C

3/2
l

(
x

η

)
P2ν−2−l

(
1

η

)
. (3.20)

After antisymmetrization/symmetrization in x it coincides with the known result [33] for

the charge even (respectively charge odd) combination of GPDs.

A convenient representation for the convolution kernels K2ν(x, η|y) can be obtained by

separating explicitly the J = 0 cross-channel exchange contribution in the |x| < η region

K2ν(x, η|y) =KJ 6=0
2ν (x, η|y) + θ(|η| − |x|)

(
1− x2

η2

)
C

3
2
2ν−1

(
x

η

)
1

y
, C

3
2
−1(x) = 0 (3.21)

and change of the integration variable s → xs ≡ z in (3.19).

• In the central region |x| < η we get

KJ 6=0
2ν (|x| < η, η|y) = η2ν

[y2ν ]+

∫ z2+

z2−

dz

π

η2 − x2

[(yz − x)2 + η2 − x2]
3
2

z1−2ν

√
2z − z2 − η2

, (3.22)

where

z2± = 1±
√
1− η2

are the two roots of 2z − z2 − η2 = 0 and we introduce the “+”-regularization

prescription [63] for 1
y2ν

convolution with a particular test function φ(y) by means of

a truncated Taylor expansion

1

[y2ν ]+
φ(y) =

1

y2ν

[
φ(y)−

2ν−1∑

l=0

yl

l!

dlφ(y)

dyl

∣∣∣
y=0

]
. (3.23)
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• In the outer region x > η we get

KJ 6=0
2ν (x ≥ η, η|y) =

[
η

x+
√

x2 − η2

]2ν (
x2 − η2

) 1
4

√
1 +

√
1− η2

(1− η2)
1
4

√
x+

√
x2 − η2

δ(y − y0)

+
η2ν

y2ν

∫ z2+

z1+

dz

π

2θ(y − y0)
(
η2 − x2

)

[(yz − x)2 + η2 − x2]
3
2
√
z2+ − z

[
z1−2ν

√
z − z2−

−
z1−2ν
1+√

z1+ − z2−

]

+
η2ν

y2ν
3
√
2 θ(y − y0)

8
√
y (x2 − η2)

1
4

z1−2ν
1+√

z1+ − z2−
2F1

(1
2 ,

5
2

2

∣∣∣
z1+ − z2+
z1+ − z1−

)
, (3.24)

where

z1± =
x±

√
x2 − η2

y

are the two roots of (yz − x)2 + η2 − x2 = 0.

Note that in the central region z1± become complex-valued and, hence, we get only

integrable singularities in (3.22). In the outer region we performed the regularization of

the endpoint singularity at z = z1+ in such a manner that the integral in the second line

of (3.24) converges and can be numerically evaluated in a straightforward way.

The pole contribution, arising in the kernels (3.19) for ν > 0, provides a regularization

of the convolution integral (3.11) for the central region in the limit y → 0. However, once

we assume that the small-y asymptotic behavior of forward-like functions is determined by

the leading Regge singularity in the complex-J plane y2νQ2ν(y, t) ∼ y−α(t) (see discussion

in section 3.1), a 1/y divergence still occurs in the convolution integral (3.11) for the case of

the charge even quark GPD combination H(+). Indeed, one may check that this divergence

is manifest from the very beginning for J = 0 dPWAs

B2ν−1 0(t) =

∫ 1

0

dy

y
y2νQ2ν(y, t), (3.25)

and require pointing out a suitable regularization. This ambiguity is closely related to the

problem of the J = 0 cross-channel exchange contribution into the D-term part of GPDs.

Depending on the representation, this problem can be formulated in various languages,

and, therefore, it is important to distinguish between the mathematical aspects and the

physical contents.

From the mathematical point of view, the problem of providing a regularization

to (3.25) corresponds to assigning meaning for a convolution of a generalized function with

a power-like singularity at y = 0 with a test functions belonging to a suitable class (see

e.g. discussion in [63]). There exist an infinite number of such regularizations, which differ

at most by a constant value. Choosing some particular regularization from this infinite set

requires attracting some external physical principle.

In fact, a similar problem of assigning meaning to the inverse Mellin moments of

the scattering amplitude was encountered in the S-matrix theory [64]. Following that

experience, a tempting possibility to deal with (3.25) is to adopt a suitable analyticity
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assumption (so-called “analyticity of the second kind”, see e.g. Chapter I of [65]) allowing to

fix the values of the divergent dPWAs by the analytic continuation of dPWAs BnJ(t) in the

angular momentum J to J = 0. This corresponds to the use of the analytic regularization

prescription [63] in (3.25):

B2ν−1 0(t) =

∫ 1

(0)

dy

y
y2νQ2ν(y, t), (3.26)

where (0) denotes the regularization procedure. To give a concrete example, let us assume

that in the y → 0 limit y2νQ2ν(y, t) behaves as y
−α(t)Qres

2ν (t) and y2νQ2ν(y, t)−y−α(t)Qres
2ν (t)

vanishes in this limit. Hence, the integral can be rewritten as

B2ν−1 0(t) =

∫ 1

(0)

dy

y
y−α(t)Qres

2ν (t) +

∫ 1

0

dy

y

[
y2νQ2ν(y, t)− y−α(t)Qres

2ν (t)
]

= −Qres
2ν (t)

α(t)
+

∫ 1

0

dy

y

[
y2νQ2ν(y, t)− y−α(t)Qres

2ν (t)
]
, (3.27)

where the last integral can now be evaluated straightforwardly.

Despite looking appealing from the theory point of view, the suggested analyticity

assumption is not necessarily fulfilled. In particular, it can be violated by admitting the

so-called J = 0 fixed pole (f.p.) contribution manifest as the Kronecker-delta singularities

for dPWAs

BnJ(t) → BnJ(t) + δ0JB
f.p.
n0 (t) , (3.28)

which can not be revealed by the analytical continuation in J . The inverse moment of

y2νQ2ν(y, t) in (3.25) is then defined as

B2ν−1 0(t) = Reg

∫ 1

0

dy

y
y2νQ2ν(y, t) =

∫ 1

(0)

dy

y
y2νQ2ν(y, t) +Bf.p.

2ν−1,0(t). (3.29)

Note that equivalently the fixed pole contribution (3.28) can be formally included as an

“invisible term” in the forward-like functions6

y2νQν(y) → y2νQν(y) + 2yδ(y)Bf.p.
2ν−1 0(t).

A particular example of a GPD model with a non-zero J = 0 fixed pole contribution

is provided by the calculation [56] of pion GPDs in the non-local chiral quark model [66].

In this model the analyticity assumption (3.26) is not valid due to a J = 0 fixed pole

contribution, which has to be added to make GPD satisfy the soft pion theorem [67] fixing

pion GPDs in the limit η → 1.

Thus, the problem of appropriate choice of regularization for (3.25) can also be formu-

lated on a somewhat old-fashioned S-matrix theory language as “Is there a J = 0 fixed pole

contribution into dPWAs?”. The use of the analytic regularization implies the absence of

a J = 0 fixed pole contribution into dPWAs, whereas employing of an alternative regular-

ization (differing by a constant) corresponds to a non-zero J = 0 fixed pole contribution.

This issue is discussed in more details in section 6.3 in the related context of J = 0 fixed

pole contribution into the D-form factor.

6We define
∫ 1

0
dxδ(x) = 1

2

∫ 1

−1
dxδ(x) = 1

2
.
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4 SO(3) partial wave expansion with Mellin-Barnes integral

The cross-channel SO(3)-PW expansion of the conformal PWs, discussed in section 3.1

in the dual parametrization framework, has been also implemented within the approach

based on the Mellin-Barnes integral representation (2.16), see [26, 37]. Thereby, the au-

thors expanded GPD conformal moments in terms of the reduced Wigner d-functions. In

this section we establish the link between the two approaches and show that the Mellin-

Barnes integral representation with the cross-channel SO(3)-PW expansion and the dual

parametrization of GPDs are nothing but the two dialects of the same language.

For simplicity, we again consider the case of a quark GPD H of a spin-0 hadron.7 The

cross-channel SO(3)-PW expansion of the corresponding conformal moments (2.6) reads

Hn(η, t) =

(n+1)/2∑

ν=0

η2νHn,n+1−2ν(t)d̂
n+1−2ν(η), for odd n;

Hn(η, t) =

n/2∑

ν=0

η2νHn,n+1−2ν(t)d̂
n+1−2ν(η), for even n, (4.1)

where the SO(3)-PWs d̂l00 are expressed by the reduced Wigner dl00-functions that for a

scalar hadron are the Legendre polynomials

d̂l00(η) =
Γ
(
1
2

)
Γ(1 + J)

2JΓ
(
1
2 + J

) ηlPl

(
1

η

)
. (4.2)

The normalization of the SO(3)-PWs in (4.2) is chosen in a way that d̂J00(η = 0) = 1.

Plugging the expansion (4.1) into the Mellin-Barnes integral representation provides

us the conformal and cross-channel SO(3) partial wave expansion of the quark part (2.1)

of the GPD H

H(x ≥ −η, η, t) =
∞∑

ν=0

1

2i

∫ c+2ν+i∞

c+2ν−i∞
dj

pj(x, η)

sin(π[j + 1])
Hj,j+1−2ν(t) η

2ν d̂j+1−2ν
00 (η) (4.3)

−
∞∑

ν=1

η2ν p2ν−1(x, η)H2ν−1,0(t) .

Here the intercept c of the Mellin Barnes integral contour is to be taken as specified in

section 2.2 and the integration path is shifted to the right by 2ν units for partial waves with

ν > 0 in order to ensure the polynomiality condition. Note that the second term in the

r.h.s. of (4.3), corresponding to the eventual J = 0 exchange contribution, was omitted in

the small-xB consideration of ref. [37].8 Now renaming the integration variable j → j +2ν

7This consideration also literally applies for the electric combination (3.6) of unpolarized nucleon GPDs

and can be trivially extended for the case of the magnetic combination (3.7).
8The J = 0 exchange contribution that plays a minor role at small-xB was implicitly taken into account

in the KM hybrid model trough a subtraction constant, see fixed pole discussion in section 3.2 and below

in section 6.3.
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yields the following double PWE for the quark part of GPD H:

H(x ≥ −η, η, t) =

∞∑

ν=0

1

2i

∫ c+i∞

c−i∞
dj

η2νpj+2ν(x, η)

sin(π[j + 1])
Hj+2ν,j+1(t) d̂

j+1
00 (η)

−
∞∑

ν=1

η2ν p2ν−1(x, η)H2ν−1,0(t) . (4.4)

Therefore, assuming x ≥ 0, we obtain the following representation for the charge even GPD

combination (3.8):

H(+)(x, η, t) =
∞∑

ν=0

1

2i

∫ c+i∞

c−i∞
dj

η2ν [pj+2ν(x, η)− pj+2ν(−x, η)]

sin(π[j + 1])
Hj+2ν,j+1(t) d̂

j+1
00 (η)

−
∞∑

ν=1

η2ν 2p2ν−1(x, η)H2ν−1,0(t) . (4.5)

It is now straightforward to establish the formal link between the dPWA Hnl(t), occur-

ring in (4.1), and the set of the forward-like functions Q2ν(y, t), introduced in the context

of the dual parametrization. Indeed, the dPWA Hnl(t) can be put in correspondence with

the generalized form factors Bnl(t) given by the Mellin moments (3.10) of the forward-like

functions:

Hn,n+1−2ν(t) =
Γ(3 + n)Γ

(
3
2 + n− 2ν

)

22νΓ
(
5
2 + n

)
Γ(2 + n− 2ν)

Bn,n+1−2ν(t). (4.6)

The inversion of the corresponding Mellin transform allows to reconstruct the forward-like

functions from the dPWAs,

y2νQ2ν(y, t) =
1

2πi

∫ c+i∞

c−i∞
dj y−j−1 2

2νΓ(5/2 + j + 2ν)Γ(2 + j)

Γ(3 + j + 2ν)Γ(3/2 + j)
Hj+2ν,j+1(t) . (4.7)

The next step is to plug the expression (4.6) for the partial wave amplitudes Hnl(t)

through the Mellin moments (4.6) into the corresponding Mellin-Barnes integral represen-

tation. By comparing the result with eqs. (3.11), (3.21), one can read off the following

Mellin-Barnes representation for the dual parametrization convolution kernels K2ν(x, η|y):

K2ν(x, η|y) =KJ 6=0
2ν (x, η|y)− η2ν p2ν−1(x, η)

Γ
(
1
2

)
Γ(2 + 2ν)

22νΓ
(
3
2 + 2ν

) 1

y
; (4.8a)

KJ 6=0
2ν (x, η|y) = 1

2i

∫ c+i∞

c−i∞
dj η2ν

pj+2ν(x, η)

sin(π[1 + j])

Γ(3 + j + 2ν)Γ
(
3
2 + j

)

22νΓ
(
5
2 + j + 2ν

)
Γ(2 + j)

yj d̂j+1
00 (η) . (4.8b)

Here again the contour intercept c is chosen as explained in section 2.2.

Let us show that the Mellin-Barnes representation (4.8) of the dual parametrization

convolution kernels K2ν(x, η|y) in fact coincides with the integral representations (3.19).
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The conformal partial waves can be expressed through the Schläfli integral (2.12). In terms

of the s = −u variable they read as

(η/2)2νΓ(3 + j + 2ν)

Γ
(
5
2 + j + 2ν

) pj+2ν(x, η)

sin(π[j + 1])
=

(η/2)2ν(2 + 2ν + j)

πΓ
(
1
2

)
∫ (sη)

−1
du

(
1− s2

)j+1+2ν

(x− sη)j+1+2ν
, (4.9)

where

sη =

{
1, for x ≥ η

x/η, for |x| < η
. (4.10)

The use of the analytic regularization prescription, denoted in the upper integration limit

as (sη), is implied for the pole singularity at s = x
η . In the outer region these integrals

are convergent and the upper integration limit is given by 1. Furthermore, the SO(3)-PWs

d̂j+1
00 (η), defined in eq. (4.2), might be presented as the integral

Γ
(
3
2+j

)

Γ(2 + j)
d̂j+1
00 (η) =

Γ
(
1
2

)
ηj+1

2j+1
Pj+1

(
1

η

)
=

Γ
(
1
2

)

π

∫ 1

−1

dv√
1−v2

(
1+v

√
1−η2

2

)j+1

. (4.11)

Plugging the two integral representations (4.9), (4.11) into the Mellin-Barnes repre-

sentation (3.19) finally allows us to perform the inverse Mellin transform, which yields9

KJ 6=0
2ν (x, η|y) = η2ν

y2ν+1

d

dy
y
1

π

∫ (sη)

−1
ds x1−2v

s

∫ 1

−1

dv√
1− v2

δ(xs − 1− v
√
1− η2) , (4.12)

where xs was defined in eq. (3.15). Interchanging the integration order and performing the

v-integration first,
∫ 1

−1

dv√
1− v2

δ(xs − 1− v
√
1− η2) =

θ
(
1− η2 − (1− xs)

2
)

√
1− η2

√
1− (1−xs)2

1−η2

=
θ
(
2xs − x2s − η2

)
√
2xs − x2s − η2

,

we recover the familiar dual parametrization result for the convolution kernels (3.19), in-

cluding the subtraction term (3.20). Consequently, we also have established that the Mellin

moments of the convolution kernels provide the conformal partial waves
∫ ∞

(0)
dy y−j−1KJ 6=0

2ν (x, η|y) = πpj+2ν(x, η)

sin(π[1 + j])

Γ(3 + j + 2ν)Γ
(
3
2 + j

)

22νΓ
(
5
2 + j + 2ν

)
Γ(2 + j)

d̂j+1
00 (η) , (4.13)

where (0) stands for the analytic regularization prescription (see eq. (3.27)).

5 Special limiting cases

For illustrative purposes it is extremely instructive to consider some special limiting cases,

in which the dual parametrization convolution kernels K2ν(x, η|y) can be straightfor-

wardly derived from the Mellin-Barnes representation (4.8) and compared to the known

result (3.19) in the dual parametrization framework. For definiteness, throughout this sec-

tion we consider the case of charge even spin-0 target quark GPD H(+). The generalization

for spin-12 target case is straightforward.

9We also could set the upper limit of the s-integral to 1 (certainly, implying the analytical regularization

prescription for the pole in the central region), since the integration region is actually properly taken into

account by the support of the function that arises from the v-integration.
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5.1 t-dependent parton densities (η = 0)

As a first example, we consider the limit η = 0, in which GPD H(+) is reduced to the

corresponding t-dependent PDF (2.4). For η = 0 only the ν = 0 kernel (3.18) in the outer

region

K0(x, η = 0|y) =
[
δ(y − x) + θ(y − x)

x1/2

2y3/2

]
, (5.1)

is relevant. The GPD is therefore expressed as

H(+)(x, 0, t) =Q0(x, t) +

√
x

2

∫ 1

x

dy

y

Q0(y, t)√
y

. (5.2)

In the Mellin-Barnes integral representation the conformal PWs reduce to the inverse

Mellin transform integral kernel. Therefore, the t-dependent parton density is given by

H(+)(x, 0, t) =
1

2π i

∫ c+i∞

c−i∞
dj x−j−1Hj,j+1(t) .

Employing (4.6) we express the corresponding dPWA as

H
(+)
j,j+1(t) =

2(2 + j)

3 + 2j

∫ 1

0
dy yjQ0(y, t) (5.3)

and immediately recover the familiar dual parametrization result for the kernel (5.1) since

1

2πi

∫ c+i∞

c−i∞
dj (x/y)−j−1 2(2 + j)

(3 + 2j)y
= δ(x− y) +

θ(1− x/y)

y

x1/2

2y1/2
. (5.4)

5.2 GPD on the cross-over line (x = η)

The GPD behavior on the cross-over line x = η is of special importance since it corresponds

to the imaginary part of the leading order elementary amplitude of hard exclusive reactions.

Therefore, GPDs on the cross-over line have direct relation to the observable quantities

(e.g. the Compton form factors).

The convolution kernels for the GPD on the cross-over line can be straightforwardly

obtained from the general expression within the dual parametrization framework (3.19).

They turn to be independent of the index ν and read as following:

K2ν(x, η = x|y) = θ

(
y − x

1 +
√
1− x2

)
1

y

2

π
√

2y
x − 1− y2

. (5.5)

This yields the familiar integral transform for the GPD at the cross-over line

H(+)(x, x, t) =
1

π

∫ 1

x

1+
√

1−x2

dy

y

2√
2y
x − 1− y2

N(y, t) , (5.6)
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where N(y, t) stands for the so-called GPD quintessence function [54]

N(y, t) =
∞∑

ν=0

y2νQ2ν(y, t) . (5.7)

Now, by considering the Mellin-Barnes integral representation (4.4) for η = x, we get

H(+)(x, x, t) =
1

2πi

∫ c+i∞

c−i∞
dj x−j−1 d̂j+1

00 (x)
∞∑

ν=0

2j+1+2νΓ
(
5
2 + j + 2ν

)

Γ
(
3
2

)
Γ(3 + j + 2ν)

Hj+2ν,j+1(t) . (5.8)

Expressing the relevant dPWAs through the Mellin moments of the forward-like functions

with the help of eq. (4.6) and employing the explicit expression for the SO(3)-PWs (4.2)

we find out the Mellin representation of the integral kernel

K2ν(x, η = x|y) = 1

2πi

∫ c+i∞

c−i∞
dj yj 2Pj+1(1/x) (5.9)

and recover eq. (5.5). We also conclude that the Mellin transform of the dual parametriza-

tion convolution kernels on the cross-over line gives the Legendre polynomials

∫ 1

0
dy y−jK2ν(x, η = x|y) = 2Pj(1/x) . (5.10)

5.3 Meson-like GPD (η = 1)

Another limiting case, in which the convolution kernels (3.21) greatly simplify, is the limit

η → 1. The properties of GPDs in this limit are similar to those of meson distribution

amplitudes. With the help of a straightforward calculation one can check that the dual

parametrization convolution kernels reduce to

K2ν(x, η = 1|y) = y−2ν

[
1− x2

(1− 2xy + y2)3/2
−

2ν−2∑

l=0

yl
(
1− x2

)
C

3/2
l (x)

]
. (5.11)

In fact, this is nothing but the subtracted generating function for the Gegenbauer polyno-

mials.

The same expression can be derived from the Mellin-Barnes integral representa-

tion (4.8). By setting η = 1 with d̂j+1
00 (1) = Γ(1/2)Γ(2 + j)/2j+1Γ (3/2 + j), we obtain

the Mellin-Barnes integral for the meson-like GPD,

K2ν(x, η = 1|y) = 1

2i

∫ c+i∞

c−i∞
dj

pj+2ν(x)

sin(π[1 + j])

Γ
(
1
2

)
Γ(3 + j + 2ν)

2j+1+2νΓ
(
5
2 + j + 2ν

) yj (5.12)

where pj(x) = pj(x, η = 1). Since for large j

pj+2ν(x± iǫ)

2j+1+2ν sin(π[j + 1])
∼ e(j+2ν)arccosh(−x±iǫ) ± ie−(j+3+2ν)arccosh(−x±iǫ))

sin(π[j + 1])
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we may change the integration path so that the r.h.s. of the real axis is encircled. Picking

up the residues for non-negative integer j provides the convergent series (4.3) for η = 1.

The kernel then reads

K2ν(x, η = 1|y) =
∞∑

n=0

(
1− x2

)
C

3/2
n+2ν(x) y

n with C
3/2
−1 (x) = 0 , (5.13)

which corresponds to the Gegenbauer polynomial generating function (5.11).

5.4 D-term extraction (η → ∞)

Finally, we would like to discuss GPDs in the in the unphysical region by taking the ‘low

energy’ limit η → ∞ which allows us to extract the D-term. Rescaling of x with η, i.e.,

x → ηx, and taking the η → ∞ limit yields

D(x, η, t) = θ(|x| ≤ |η|)d(x/|η|, t) , d(x, t) = lim
η→∞

H(xη, η, t) . (5.14)

This procedure implies that the poles in the complex s-plane in the integrand of eq. (3.19)

are getting imaginary and that the corresponding Mellin-Barnes integral is only defined

for negative x-values. Formally, we can perform this procedure in the kernel (3.22) or its

Mellin-Barnes integral representation (4.8b),

KJ 6=0
2ν (−x|y) = 1

[y2ν ]+

∫ 1

−1

dz

π

i1−2ν
(
1− x2

)

2 [(iyz + x)2 + 1− x2]
3
2

z1−2ν

√
1− z2

+ c.c. (5.15)

=
1

2i

∫ c+i∞

c−i∞
dj

22ν−1 pj+2ν(−x)

2 sin([j + 1]π/2)

Γ(3 + j + 2ν)Γ
(
2+j
2

)

Γ
(
5
2 + j + 2ν

)
Γ
(
3+j
2

) yj ,

where KJ 6=0
2ν (x|y) = limη→∞KJ 6=0

2ν (xη, η|y). Adding the J = 0 term, we find

d(x, t) =

∞∑

ν=0

∫ 1

0
dy

[
KJ 6=0

2ν (x|y)−KJ 6=0
2ν (−x|y) + 2

(
1−x2

)
C

3
2
2ν−1(x)

1

y

]
y2νQ2ν(y, t) (5.16a)

=
∞∑

ν=0

[
1

2i

∫ c+i∞

c−i∞
dj

sign(−x) pj+2ν(−|x|)
2j+1 sin

(
[j + 1]π2

)
Γ(2 + j)Γ

(
2+j
2

)

Γ
(
3
2 + j

)
Γ
(
3+j
2

) Hj+2ν,j+1(t) (5.16b)

− 2p2ν−1(x)H2ν−1,0(t)

]
.

Here we used antisymmetry to rewrite the Mellin-Barnes integral in such a manner that

it converges fast (at j → ∞ for |arg(j)| ≤ π/2). Thus, we can conclude that the D-

term extracted within the dual parametrization framework coincides with that from the

Mellin-Barnes integral approach.
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6 Elementary amplitude and SO(3)-PW decomposition

6.1 Elementary amplitude

The DVCS and DVMP amplitudes within the collinear factorization approach are obtained

by the convolution of GPDs with the hard-scattering parts given by the appropriate par-

tonic propagators. At the LO, the convolution formula for the charge even Compton form

factor (CFF) in the flavor singlet sector involves the following elementary amplitude

H(+)(ξ, t) =

∫ 1

0
dx

[
1

ξ − x− iǫ
− 1

ξ + x− iǫ

]
H(+)(x, η = ξ, t), (6.1)

where, in analogy to our GPD nomenclature, H(+) stands for the charge even (C = +1)

amplitude arising from the unpolarized quark GPD combination (2.3) of a particular quark

flavor. Note that the fractional quark charge squared factors are not included in our

elementary amplitude definition (6.1).

• The imaginary part of the elementary amplitude (6.1) is given by the charge even

GPD combination on the cross-over line

ImH(+)(ξ, t) = πH(+)(ξ, ξ, t). (6.2)

• The real part of the amplitude (6.1) can be reconstructed from the known imaginary

part with the help of once subtracted (signature odd) dispersion relation,

ReH(+)(ξ, t) = P
∫ 1

0
dx

2xH(+)(x, x, t)

ξ2 − x2
+ 4D(t) , (6.3)

where P stands for the principle value regularization prescription. Note that the

equivalence of this dispersion relation with the convolution formula (6.1) has been

shown in [68, 69] and that the dispersion relation has been utilized to find the convo-

lution formula from the operator product expansion in the unphysical region [35, 70].

• The subtraction constant in the dispersion relation, the so-called D-form factor, re-

sults from the convolution of the D-term (5.14),

4D(t) =

∫ 1

0
dx

2x d(x, t)

1− x2
, (6.4)

which can be extracted from a particular GPD representation by means of the ‘low-

energy’ limit η → ∞.

Our present goal is to compare the leading order expressions for the CFF in the dual

parametrization approach to that within the Mellin-Barnes-integral representation frame-

work. Instead of directly using the convolution formula (6.1) we employ the dispersive

approach making use of the dispersion relation (6.3). Indeed, we already checked that the

dual parametrization and the Mellin-Barnes-integral framework provide the same expres-

sions for the GPD on the cross-over line and, hence, the identical absorptive parts of the
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amplitude. Therefore, it only remains to check that both approaches produce the same

value of the D-form factor. The real part of the amplitude must then coincide in both

representations, which we will exemplify, too. Moreover, it turns out that the expressions

for the real part have a similar mathematical structure.

Within the dual parametrization approach, employing the expression (5.6) for the

GPD on the cross-over line, the dispersion relation (6.3) can be expressed in terms of the

convolution kernels as

∫ 1

0

dx

π

2xK2ν(x, x|y)
ξ2 − x2 − iǫ

= iK2ν(ξ, ξ|y) +
2θ(1− 2y

ξ + y2)

y
√
1− 2y

ξ + y2
+

2

y
√

1 + 2y
ξ + y2

− 4

y
√

1 + y2
.

(6.5)

The D-form factor can be computed by plugging the kernel (5.16a) into the convolution

formula (6.4). This provides the familiar formal expression [33, 54]

4D(t) = 4

∫ 1

0

dy

y

[
1√

1 + y2
− 1

]
N(y, t) + 4

∫ 1

0

dy

y
[N(y, t)−Q0(y, t)] , (6.6)

where N(y, t) stands for the GPD quintessence function (5.7).

Combining (6.5) and (6.6) provides the well known result for the CFF in the LO

approximation within the dual parametrization approach

H(+)(ξ, t) =

∫ 1

0

dy

y


 2√

1− 2y
ξ + y2 − iǫ

+
2√

1 + 2y
ξ + y2

− 4


N(y, t)

+4

∫ 1

0

dy

y
[N(y, t)−Q0(y, t)] . (6.7)

Note that the second integral in the r.h.s. of eq. (6.6) corresponds to the J = 0 cross

channel exchange contribution into the amplitude and, as we have discussed in section 3.2,

requires a suitable regularization.

To work out the expression for the elementary amplitude (6.1) within the Mellin-Barnes

integral we make use of the dispersion relation for the Legendre functions10

∫ 1

0

dx

π

2xx−j−1d̂j+1
00 (x)

ξ2 − x2 − iǫ
= ξ−j−1

[
i+ tan

(
πj

2

)]
d̂j+1
00 (ξ) +

2−j−1

sin
(
[j + 1]π2

)
Γ(2 + j)Γ

(
2+j
2

)

Γ
(
3
2 + j

)
Γ
(
3+j
2

)

+
2−2j−2Γ(2 + j)2 ξ2+j

Γ
(
3
2 + j

)
Γ
(
5
2 + j

) 2F1

(
(2 + j)/2, (3 + j)/2

(5 + 2j)/2

∣∣∣ξ2
)
. (6.8)

10The last term on the r.h.s. of (6.8) can be dropped, since after the integration over j in (6.11) it produces

zero.
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The integral representation of the subtraction constant, obtained from the D-term

expression (5.16b), reads

4D(t) =
1

2i

∫ c+i∞

c−i∞
dj

(−1)

sin
(
[j + 1]π2

)
∞∑

ν=0

22νΓ
(
5
2 + j + 2ν

)

Γ
(
3
2

)
Γ(3 + j + 2ν)

Γ(2 + j)Γ
(
2+j
2

)

Γ
(
3
2 + j

)
Γ
(
3+j
2

) Hj+2ν,j+1(t)

+2
∞∑

ν=1

22νΓ
(
3
2 + 2ν

)

Γ
(
3
2

)
Γ(2 + 2ν)

H2ν−1,0(t). (6.9)

Using (4.6) one might convert the Mellin-Barnes integral expression for the D-form fac-

tor (6.9) into the series

4D(t) = 4

∞∑

J=2
even

(−1)
J
2 Γ
(
1+J
2

)

Γ
(
1
2

)
Γ
(
2+J
2

)
∞∑

ν=0

BJ+2ν−1,J(t) + 4

∞∑

ν=1

B2ν−1,0(t) . (6.10)

It is straightforward to check that (6.9) coincides with the dual parametrization result (6.6).

Employing the expression for the GPD on the cross-over line (5.8) and combining (6.8)

and (6.9), we establish the Mellin-Barnes integral representation for the CFF

H(+)(ξ, t) =
1

2i

∫ c+i∞

c−i∞
dj

(
2

ξ

)j+1[
i+ tan

(
πj

2

)]
d̂j+1
00 (ξ)

∞∑

ν=0

22νΓ
(
5
2 + j + 2ν

)

Γ
(
3
2

)
Γ(3 + j + 2ν)

Hj+2ν,j+1(t)

+4
∞∑

ν=1

22νΓ
(
3
2 + 2ν

)

Γ
(
1
2

)
Γ(2 + 2ν)

H2ν−1,0(t) . (6.11)

Obviously, the structure of the two expressions (6.7) and (6.11) for the LO elemen-

tary amplitude matches. Therefore, given that within the two approaches the elementary

amplitude satisfies the same once subtracted dispersion relation (6.3) with identical absorp-

tive parts, and the values of the corresponding subtraction constants coincide, we conclude

that the Mellin-Barnes integral and the dual parametrization approaches result in identical

expressions for the elementary amplitude (6.1).

Note that this expression for the elementary amplitude within the Mellin-Barnes inte-

gral approach (6.11) now explicitly includes the J = 0 cross-channel exchange contribution

4

∞∑

ν=1

22νΓ
(
3
2 + 2ν

)

Γ
(
1
2

)
Γ(2 + 2ν)

H2ν−1,0(t) = 4

∞∑

ν=1

B2ν−1,0(t) = 4

∫ 1

0

dy

y
[N(y, t)−Q0(y, t)] (6.12)

omitted in the phenomenological application of ref. [37], see footnote 8.

6.2 Calculation of the D-form factor

In this subsection we address the problem of assigning meaning to the so-far formally

written integral representation for the D-form factor (6.6) in the framework of the dual

parametrization and discuss the possible J = 0 fixed pole contribution into this quantity.

Once we adopt our usual assumptions on the small-y asymptotic behavior of the

forward-like functions (y2νQ2ν(y, t) ∼ y−α(t), where α(t) is the leading Regge trajectory),
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the inverse momentum integrals in (6.6), (6.7) require suitable regularization. This returns

us to the discussion of section 3.2 on the analytic properties of dPWAs and possible J = 0

fixed pole contributions. Following the reasoning of section 3.2, we assume that the func-

tions y2νQ2ν(y, t) and the GPD quintessence function N(y, t) belong to a sufficiently good

class of functions (see discussion in ref. [33]) so that the resulting dPWAs BnJ(t) turn to

be analytic functions of J up to a possible J = 0 fixed pole contribution manifest as the

Kronecker-delta singularity ∼ δJ0. This allows to assign meaning to the formal expression

for the D-form factor (6.6):

4D(t) = 4

∫ 1

0

dy

y

[
1√

1 + y2
− 1

]
N(y, t) + 4

∫ 1

(0)

dy

y
[N(y, t)−Q0(y, t)] + 4Df.p.(t) , (6.13)

where (0) stands for the analytic regularization prescription and

Df.p.(t) =
∞∑

ν=1

22νΓ
(
1
2 + 2ν

)

Γ
(
3
2

)
Γ(2 + 2ν)

H f.p.
2ν−1,0(t) =

∞∑

ν=1

Bf.p.
2ν−1,0(t) (6.14)

corresponds to the possible J = 0 fixed pole contribution into the D-form factor.

As pointed out in ref. [33], the expression for the D-form factor (6.13) is a particular

realization of the so-called GPD sum rule, derived from dispersion and operator product

expansion techniques, that to the LO accuracy reads [71]:11

2D(t) = lim
j→−1

∫ 1

(0)
dxxj

[
H(+)(x, x, t)−H(+)(x, 0, t)

]
+ 2Df.p.(t) . (6.15)

In (6.15) it is assumed that the j-th Mellin moment of H(+)(x, x, t) − H(+)(x, 0, t) is an

analytic functions of j up to a possible j = −1 fixed pole contribution. This analyticity

assumption is in fact equivalent to our J-analyticity assumption for dPWAs BJn(t) (see

discussion in [64]).

Thus, the sum rule (6.15) expresses (6.3) through the high energy asymptotic behavior

of a GPD on the cross-over line and the high energy asymptotic behavior of the correspond-

ing t-dependent PDF up to an eventual j = −1 fixed pole contribution Df.p.(t). Note that

the possible existence of this latter contribution in (6.15) was originally pointed out only

verbally. Unfortunately, the presence of an arbitrary fixed pole contributions obviously

deprives the GPD sum rule (6.15) (or its particular realization in the dual parametrization

framework (6.13)) of any practical predictive power for fixing the D-form factor.

It is interesting to note that the fixed pole contribution into the sum rule (6.15) turns

to be defined by the forward-like functions Q2ν(y, t) with ν ≥ 1. Indeed, one can check that

the j = −1 fixed pole contribution in (6.15) is given as sum of the J = 0 fixed poles (6.14),

while the contribution of the inverse GPD momentum

B−1,0(t) = Reg

∫ 1

0

dy

y
Q0(y, t) =

1

2
H−1,0(t) =

1

2
Reg

∫ 1

0

dx

x
H(+)(x, 0, t)

≡ 1

2

∫ 1

(0)

dx

x
H(+)(x, 0, t) +Bf.p.

−1,0(t)

11A similar looking inverse momentum sum rule was also formally derived in [69] by employing the

polynomiality constraints of GPDs and taking the ξ → 0 limit.
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does not contribute into the sum rule (6.15). Obviously, the inverse momentum of Q0(y, t)

is exactly canceled in the second term on the r.h.s. of eq. (6.13). In this sense, the fixed

pole contribution into the sum rules (6.15), (6.13) turns to be the essentially non-forward

effect defined by Q2ν functions with ν > 0, which are not constrained in the η → 0 limit.

In its ultimate formulation (so-called “analyticity of the second kind” assumption [65])

the analyticity in J for DPWAs implies the absence of J = 0 fixed pole (or the same

j = −1 fixed pole in the sum rule (6.15)) contribution into the generalized form fac-

tors B2ν−1 J(t) (3.25). This assumption might be considered as the additional “external

principle” that can be deliberately employed when building GPD models. Unfortunately,

examples of consistent pion GPD models, for which the “analyticity of the second kind”

assumption is not respected, are well known from effective theories [56].

Let us also point out that the use of analyticity for the evaluation of the D-form factor

brings some complications for model builders. For instance, introducing the t-dependence

of the forward-like functions through the leading Regge trajectory α(t) implies that the

expression for the D-form factor turns to be divergent in the specific cases when the Regge

trajectory passes the integer values zero and one [57]. This probably should be seen as an

artifact of the common way for introducing the t dependence of GPDs through the Regge

trajectories that may turn to be an oversimplification. Therefore, for practical purpose

of data description it seems to be more appropriate to abandon the proposal to fix the

subtraction constant in the dispersion relation from the high energy asymptotic behavior

thought the inverse momentum GPD sum rule (6.15) implying the use of the analytic

regularization. Instead, e.g., as done within the global GPD fitting procedure [37], the D-

form factor can from the very beginning be treated as an independent subtraction constant

that has to be determined form the data analysis.

6.3 SO(3)-PW decomposition, Froissart-Gribov projection and J = 0 fixed

pole

Employing the once subtracted dispersion relation for the LO elementary amplitude one can

derive the extremely useful integral representation for the corresponding SO(3) PWAs [71],

known as the Froissart-Gribov projection [72, 73].

For this issue we consider the dispersion relation for the elementary amplitude H(+)

analytically continued to the t-channel:

H(+)(cos θt, t) =

∫ 1

0
dz

2z

1−z2
Φ(+)(z, cos θt, t) =

∫ 1

0
dx

2x cos2 θt
1−x2 cos2 θt

H(+)(x, x, t) + 4D(t) ,

(6.16)

where Φ(+)(z, ω, t) = H(+)
(
z
ω , η = 1

ω , t
)
stands for the charge even generalized distribution

amplitude. To deal with the cross channel SO(3)-PWAs

aJ(t) ≡
1

2

∫ 1

−1
d(cos θt)PJ(cos θt)H(+)(cos θt, t) (6.17)

we introduce the generalized distribution amplitudes with a definite angular momentum J

Φ
(+)
J (z, t) =

1

2

∫ 1

−1
d(cos θt)PJ(cos θt) Φ

(+)(z, cos θt, t). (6.18)
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Employing the dispersion relation (6.16) together with Neumann’s integral representation

for the Legendre functions of the second kind QJ with integer J ≥ 0 [82]

1

2

∫ 1

−1
dzPJ(z)

1

z′ − z
= QJ(z

′) (6.19)

we establish the Froissart-Gribov projection formula for the cross channel SO(3)-PWAs

aJ(t). For even positive J it reads [35]:

aJ>0(t) =

∫ 1

0
dz

2z

1− z2
Φ
(+)
J (z, t) = 2

∫ 1

0
dx

QJ(1/x)

x2
H(+)(x, x, t) . (6.20)

For J = 0 we obtain

aJ=0(t) = 2

∫ 1

0
dx

[Q0(1/x)

x2
− 1

x

]
H(+)(x, x, t) + 4D(t) . (6.21)

Note that, under our usual assumptions on the small-x asymptotic behavior of the charge

even GPD/GDA on the cross over line (H(+)(x, x, t) ∼ x−α(t) with α(0) > −2), both

the (6.20) and (6.21) provide rigorous and finite results since QJ (1/x)
x2 ∼ xJ−1 for small x

and the 1
x -term in the square brackets in eq. (6.21) cancels the 1/x-singularity in Q0(1/x)

x2 ,

leaving a term of order O(x).

The SO(3)-PWAs (6.17) have also been evaluated in the dual parametrization frame-

work by mapping the imaginary part of the amplitude to the GPD quintessence function

and calculating its Mellin moments [54]. In fact, to the leading order accuracy the GPD

quintessence function (5.7) contains exactly the same information as the GPD on the cross

over line but casted in terms of the dual parametrization auxiliary variable y. As pointed

out in [54], GPD quintessence can be recovered from the GPD on the cross over line by

the inverse Abel tomography procedure yielding

N(y, t) =
y(1− y2)

(1 + y2)
3
2

∫ 1

2y

1+y2

dx

x
3
2

1√
x− 2y

1+y2

{
1

2
H(+)(x, x, t)− x

d

dx
H(+)(x, x, t)

}
. (6.22)

Now the (J−1)-th Mellin moments of the GPD quintessence function can be computed

employing the inverse Abel transform formula (6.22) as

∫ 1

0
dy yJ−1N(y, t) =

∫ 1

0
dx

[
1√
x

d

dx
RJ(x)

]
H(+)(x, x, t) , (6.23)

where the auxiliary functions RJ(x) can be expressed12 through the Legendre functions of

the second kind

1√
x

d

dx
RJ(x) =

1√
x

d

dx

∫ x

0

dw√
2
√
w

(
1−

√
1−w2

w

)J+ 1
2 1√

x− w
=

1
2+J

2

2QJ(1/x)

x2
. (6.24)

12Note that the original expression for RJ(x) eq. (28) of ref. [54] (or eq. (26) for the ArXive version of

ref. [54]) misses a factor 1√
2
.
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Finally, this allows to work out the expressions for SO(3)-PWAs (6.17) in the dual

parametrization framework. For even J > 0 we get

aJ>0(t) =
4

2J + 1

∞∑

n=J−1
odd

BnJ(t) =
4

2J + 1

∫ 1

0
dyyJ−1N(y, t). (6.25)

For J = 0 it reads

aJ=0(t) = 4
∞∑

n=1
odd

Bn0(t) = 4Reg

∫ 1

0

dy

y
(N(y, t)−Q0(y, t))

= 4

∫ 1

(0)

dy

y
(N(y, t)−Q0(y, t)) + 4Df.p.(t), (6.26)

where the eventual J = 0 fixed pole contribution into the D-form factor is defined in

eq. (6.14). As pointed out in [54], these results enlighten the physical meaning of the

GPD quintessence function N(y, t). Its Mellin moments carry valuable information about

the hadron structure encoding how the target hadron responses to the well-defined quark-

antiquark probe of the particular spin J . One can check that the dual parametrization

expressions for the SO(3)-PWAs (6.25), (6.26) are fully equivalent to the general Froissart-

Gribov projection formulas (6.20), (6.21).

The Froissart-Gribov projection allows for a clear formulation of the J = 0 fixed pole

issue that goes along with the text book view [83]. Employing the analytic regularization,

we separate two finite integrals in the rigorously defined expression for J = 0 PW (6.21):

aJ=0(t)=2 lim
J→0

∫ 1

(0)
dx

QJ(1/x)

x2
H(+)(x, x, t)−2 lim

j→−1

∫ 1

(0)
dxxjH(+)(x, x, t) + 4D(t) . (6.27)

We emphasize that this equality should be considered as valid in the presence of j = −1

or J = 0 fixed poles for DPWAs. Similarly to our analysis of the inverse momentum sum

rule (6.15), we consider the J = 0 fixed pole contribution to the J = 0 PW aJ=0 as an

unknown addendum to the analytic continuation of aJ(t) to J = 0. Therefore, we write

the J = 0 PWA as

aJ=0(t) = lim
J→0

2

∫ 1

(0)
dx

QJ(1/x)

x2
H(+)(x, x, t) + af.p.J=0(t) . (6.28)

Inserting the inverse momentum sum rule (6.15) and (6.28) into the equality (6.27), we find

that the J = 0 and j = −1 fixed pole contributions differ by the analytically regularized

inverse moment of the t-dependent PDF

af.p.J=0(t) = −2

∫ 1

(0)

dx

x
H(+)(x, 0, t) + 4Df.p.(t). (6.29)

In the first term in the r.h.s. of (6.29) we immediately recognize the universal local two-

photon-to-quark-coupling J = 0 pole contribution (corresponding to the “seagull” dia-

gram”) fiercely advocated in [80, 81]. However, we would like to emphasize that this term
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provides the complete J = 0 fixed pole contribution into the DVCS amplitude only once

the “analyticity of the second kind assumption” requiring Df.p.(t) = 0 is valid. This was in

fact assumed in ref. [80]. Moreover, as explained in section 6.2, the analytically regularized

inverse t-dependent PDF momentum contribution cancels in the DVCS amplitude.

It is worth reminding that the problem of the J = 0 fixed pole contribution was broadly

discussed in the late sixties and in the seventies for the forward Compton scattering (see

e.g. refs. [74–79]). However, it was finally recognized [79] that unfortunately “there exists

no general theoretical argument, independent of specific models, for such a singularity”,

making it an optional model-dependent contribution. We also can not point out the general

theoretical justification for the analyticity principle allowing to fixDf.p.(t). As we explained

in section 6.2, the use of the “analyticity of the second kind assumption” for GPD modeling

is not mandatory.

7 GPD model examples

The important aspect in GPD fits to experimental data is the control over the normalization

of the resulting amplitudes. In particular, the normalization of the imaginary part plays

the crucial role. As explained in section 5.2, the normalization of the imaginary part in the

leading order approximation, i.e., the GPD on the cross-over line, is determined by the sum

over all SO(3)-PWs (see the expression (5.6) through the GPD quintessence function (5.7)

or the Mellin-Barnes integrand of eq. (5.8). In the smaller-xB region, the amplitude turns

to be proportional to the sum of residues Rα
ν of the leading Regge trajectory α(t),

H(xB, t, Q
2) ∝

∞∑

ν=0

R
α
ν (t, Q

2) .

Therefore, to control the normalization it actually suffices to employ just two non-vanishing

ν = 0 and ν = 1 contributions, where the ν = 1 one might be considered as an ‘effective’

one. Clearly, without further model assumptions and neglecting perturbatively predicted

Q2-evolution one can build an infinite number of GPDs that allow to describe experimental

data for small-xB. However, in the small-xB region HERA collider data have a large Q2-

lever arm, 1GeV2 . Q2 . 100GeV2. Therefore, the Q2-evolution should be beyond doubts

implemented in the data analysis. Since for increasing ν the partial residues Rν(t, Q
2)

to the GPD are getting more and more suppressed with growing Q2, one can use three

contributions with ν ∈ {0, 1, 2} to control the normalization of the amplitude and its change

with Q2, for a more detailed discussion see refs. [88, 89].

In this section we have a closer look to a generic GPD model, set up in the dual

parametrization approach, that includes ν ≤ 2 contributions. We also present the

Kumerički-Müller model, which arose from the description of experimental DVCS data,

and convert it into the dual parametrization framework.
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7.1 A generic model for the dual parametrization

To get some insight into the dual parametrization, we adopt the following generic

parametrization for all forward-like functions at t = 0,13

y2νQ2ν(y, t = 0) = n2ν
5Γ(3− α+ β)

6Γ(2− α)Γ(1 + β)
y−α(1− y)β , (7.1)

where only the normalization depends on ν. It is chosen in such a manner that n0 ≡ M2 is

the momentum fraction average of the corresponding PDF. The (conformal) GPD moments

of this model are easily calculated from (4.6),

H
(+)
jJ =

2JΓ(3 + j)Γ
(
1
2 + J

)

2j+1Γ
(
5
2 + j

)
Γ(1 + J)

BjJ , BjJ = nj+1−J
5Γ(3− α+ β)Γ(J − α)

6Γ(2− α)Γ(1 + J − α+ β)
. (7.2)

Apart from the normalization factor nj+1−J , the dPWAs BjJ depend only on J , which

implies that the j- and J-dependencies in H
(+)
jJ factorize.

Below we consider the important limiting cases for a GPD within the dual parametriza-

tion toy model (7.1).

• η → 0 limit

The corresponding PDF calculated from (5.2)

H(+)(x, 0, t = 0) =
M25Γ(3− α+ β)

6Γ(2− α)Γ(1 + β)

{
x−α(1− x)β +

Γ
(
−1

2 − α
)
Γ(1 + β)

2Γ
(
1
2 − α+ β

) x1/2

+
x−α

1 + 2α
2F1

(−1/2− α,−β

1/2− α

∣∣∣∣x
)}

, (7.3)

has a rather intricate functional form. It possesses the same small-x asymptotic

behavior as the input forward-like function, however, has a different normalization,

which reads for α > −1/2 as following:

lim
x→0

H(+)(x, 0, t = 0) =
2(1 + α)

1 + 2α
lim
x→0

Q0(x, t = 0) ,

lim
x→0

Q0(x, t) =
5M2Γ(3− α+ β)

6Γ(2− α)Γ(1 + β)
x−α .

Employing the behavior of 2F1-function in the vicinity of its branch point x = 1, we

find that the two functions coincide in the limit x → 1,

lim
x→1

H(+)(x, 0, t = 0) = lim
x→1

Q0(x, t = 0) ,

lim
x→1

Q0(x, t = 0) = M2
5Γ(3− α+ β)

6Γ(2− α)Γ(1 + β)
(1− x)β .

13This is a bit restrictive class of functions, but considering it as a building block one can easily generalize

the discussion e.g. to the class of functions y−α(1− y)β(1 +
∑

i ciy
γi) familiar from PDF fits.
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• GPD on the cross-over line

While for η = 0 the contribution of forward-like functions with ν ≥ 1 vanishes, all

forward-like functions contribute on the same footing into GPD on the cross-over

line x = η. Employing the integral transform (5.5) with the GPD quintessence func-

tion (5.7) of the model (7.1) we conclude that the overall normalization of the corre-

sponding GPD on the cross-over line is determined by the sum of the normalization

factors

H(+)(x, x, t = 0) (7.4)

=

[ ∞∑

ν=0

nν

]
5Γ(3− α+ β)

6Γ(2− α)Γ(1 + β)

1

π

∫ 1

x

1+
√

1−x2

dy

y

√
x

y

√
2√

1− 1+y2

2y x
y−α(1− y)β .

Comparing the small-x asymptotics of (7.4) to that of the PDF, for each partial

contribution we recover the familiar enhancement factor (skewness ratio) [29], given

by the Clebsch-Gordon coefficient rq =
2αΓ( 3

2
+α)

Γ( 3
2)Γ(2+α)

of the conformal partial wave

expansion at j = α − 1. For the ‘reggeon’ (α = 1/2) and the ‘pomeron’ (α = 1)

Ansätzen the enhancement factor reads

rq
∣∣
α=1/2

=
8
√
2

3π
≈ 1.2 ; rq

∣∣
α=1

=
3

2
. (7.5)

Consequently, the complete skewness ratio in the toy model (7.1) is adjustable and

is given by

lim
x→0

H(+)(x, η = x, t = 0)

H(+)(x, 0, t = 0)
=

[
1 +

∑∞
ν=1 nν

n0

]
2αΓ

(
3
2 + α

)

Γ
(
3
2

)
Γ(2 + α)

. (7.6)

The large x-behavior of the GPD on the cross-over line is inherited from both the

β-parameter and the chosen set of SO(3)-PWs. For the Legendre polynomials we

have a (1− x)
β
2 behavior, i.e., the skewness ratio14

lim
x→1

H(+)(x, η = x, t = 0)

H(+)(x, 0, t = 0)
∼
[
1 +

∑∞
ν=1 nν

n0

]
(1− x)

−β
2 (7.7)

diverges in the x → 1 limit.

• D-term

Within the dual parametrization the D-term can be extracted by means of the pro-

jection (5.16). The J > 0 contributions into the D-term can be evaluated straight-

forwardly, while the J = 0 part

dJ=0(x, t = 0) =

∞∑

ν=1

2
(
1− x2

)
C

3
2
2ν−1(x)B2ν−1,0 (7.8a)

14Clearly, employing a wider class of functions Q2ν the small-x and large-x skewness ratios can be made

independent.
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involves the inverse moments of the forward-like functions (3.25) that require suitable

regularization. Assuming the absence of the J = 0 fixed pole contributions, we employ

the analytic regularization for the corresponding integrals:

B2ν−1,0 = n2ν
5Γ(3− α+ β)

6Γ(2− α)Γ(1 + β)

∫ 1

(0)
dy y−α−1(1− y)β (7.8b)

= n2ν
5Γ(3− α+ β)Γ(−α)

6Γ(2− α)Γ(1− α+ β)
.

Note that in this case dPWAs B2ν−1,0 possess poles for non-negative integer values

of α. This implies that, once the Regge intercept is replaced by the Regge trajectory

α(t) = α + α′t, it is unavoidable that poles appear in B2ν−1,0(t) also for negative t

values (see discussion in section 6.3). It might be cured, as suggested in ref. [57], by

modifying the residual t-dependence, or, alternatively, by adding proper J = 0 fixed

pole contributions. In the x ∈ [0, 1] region the J = 0 part of the D-term possesses ν

nodes, which are inherited from the Gegenbauer polynomials C
3/2
2ν−1.

In the upper panels of figure 2 we show the forward-like function xQ0(x, t = 0) of the

toy model (7.1) as dashed curves with a ‘reggeon’ (right panel) and ‘pomeron’ (left panel)

Ansatz, where we took generically the parameters

n0 = Mval
2 = 0.3, α = 1/2, β = 3 and n0 = M sea

2 = 0.15, α = 1, β = 7 ,

respectively. The ν = 0 part of the GPD on the cross-over line H
(+)
0 (x, x, t = 0) is shown

as solid curves. It is enhanced with respect to PDF H(+)(x, 0, t = 0) by the skewness

ratios at small-x and large-x, see (7.5) and (7.7), respectively. We emphasize again that the

complete GPD, which includes several forward-like functions (7.1) with their normalization

controlled by n2ν , is fully adjustable at small-x. By taking higher forward-like functions

with different values of the β-parameter, the resulting GPD can be also set up flexible at

large-x.

The charge even GPD H(+)(x, η, t), can be numerically evaluated from the dual

parametrization (3.11) with the integral convolution kernels given in (3.21)–(3.24), and

the forward-like functions (7.1) or, alternatively, from the Mellin-Barnes integral (4.5) and

the dPWAs (7.2). In the following we omit the J = 0 contribution, which requires to

specify the fixed pole contributions into the inverse moments (3.29).

In the lower left panel of figure 2 we present the x-shape of the ‘pomeron’-like GPD at

η = 0.05 with the three choices ν ∈ {0 (solid), 1 (dash-dotted), 2 (dashed)}. For clearness

we took the same normalization for all conformal PWs n0 = n2 = n4 = M sea
2 . One may

notice, that the number of nodes of H
(+)
2ν (x, η, t = 0) in the central region is given by ν

and the suppression in the outer region increases with growing ν. Note that the GPD

maximum is not located at the cross-over point η = x = 0.05 but is rather slightly shifted

to the left. In the lower right panel we display the corresponding D-term in the region

x ∈ [0, 1] without the J = 0 contribution (7.8). Also here we observe that as in the central

region and for the J = 0 contribution, see (7.8), ν nodes appear. The ‘reggeon’-like GPDs

possesses the same qualitative features (not shown).
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Figure 2. The upper panels show the generic model (7.1) set up in the dual parametrization:

forward-like functions Q0(x, t = 0) (dashed), PDFsH(+)(x, 0, t = 0) (dash-doted), and GPDs on the

cross-over line H(+)(x, x, t = 0) (solid) for n2 = −n1 for a ‘reggeon’-like (M2 = 0.3, α = 1/2, β = 3)

and ‘pomeron’-like (M2 = 0.15, α = 1, β = 7) GPD model in the left and right panel, respectively.

All functions are scaled with x and are plotted versus the momentum fraction-type variable x. In the

lower panel on the l.h.s. we show the momentum fraction shape of the ‘pomeron’-like GPD, scaled

with x at η = 0.05. We take the same normalization for all partial waves (n0 = n2 = n4 = 0.15)

and show the result for ν = 0 (solid), ν = 1 (dash-dotted), and ν = 2 (dashed). On the r.h.s. we

show the corresponding D-term as the function of x for ν ∈ {0, 1, 2} within the same normalization.

These more generic features of the dual parametrization can be qualitatively under-

stood from the properties of the dual parametrization convolution kernels, or directly from

the Mellin-Barnes integral. Let us first note that we can present the ν > 0 pieces of

the GPD by applying 2ν total derivatives in x on some auxiliary function, in which the

conformal PWs have index 3/2 + 2ν,

η2ν pj+2ν(x, η) ∝
d2ν

dx2ν

∮ (+1+ǫ)

(−1−ǫ)
du

(u2 − 1)j+1+2ν

(x+ ηu)j+1
.

The increase of the suppression in the outer region with growing ν can be traced back to the

increasing number of total derivatives that act on a monotonously decreasing function. This

can be also seen on the factor (η/x)2ν that appears in the conformal partial waves (2.18),

η2νpj+2ν(x ≫ η, η)

sin(π[j + 1])
≈ x−j−1

π

(η
x

)2ν
,
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of the Mellin-Barnes integral (4.5). In the central region the GPD piece with ν = 0 is a

concave function, and consequently acting with total derivatives on it will generate nodes.

In the same way one can understand the functional form of theD-term contributions, shown

in the lower right panel of figure 2, which also possesses ν nodes. Also note that, since the

ν > 0 parts of the GPD contain 2ν total derivatives, their first 2ν Mellin moments vanish

(we have numerically verified the polynomiality property of our toy GPD by evaluating the

first few Mellin moments), while the non-vanishing ones (with odd N) are given by

∫ 1

0
dxx2ν+1+NH

(+)
2ν (x, η, t = 0) = η2ν+1+N

2ν+1+N∑

n=2ν−1
odd

Bn, n−2ν+1(0)Pn−2ν+1

(
1

η

)
.

7.2 KM10 model

As explained above, in order to describe the present day experimental DVCS data it suf-

fices to consider the contribution of three first SO(3)-PWs (or, equivalently, within the

dual parametrization framework, the contribution of three forward-like functions with

ν = 0, 1, 2). For instance, in global DVCS fits the following model, build up of three

SO(3)-PWs, was employed for sea quarks at a input scale µ2 = 4GeV2:

Hsea
j+2ν,j+1(t) =M2s2ν

B(1− α+ j, β + 1)

B(2− α, β + 1)

1− α+ j

1− α(t) + j
β(t) for ν = 0, 1, 2 ; (7.9)

Hsea
j+2ν,j+1(t) = 0 for ν > 2

with s0 = 1 and α(t) = α + α′t. This Ansatz is a part of the hybrid Kumerički-Müller

(KM) model [37] that was pinned down by the global fit to the DVCS world data set for

unpolarized proton target [90] (for a detailed discussion see refs. [91, 92]). Thereby, the

flexible Ansatz for sea quarks (and a similar one for gluons) enables one to describe the

collider kinematics data from the H1 and ZEUS collaborations to the leading order (or up to

the next-to-next-leading) accuracy of perturbation theory, with the residual t-dependence

expressed by the dipole Ansatz β(t) = 1/(1− t/M2)2.

The resulting KM10 parameter set,

M2= 0.152, α(t) = 1.158 + 0.15t, β = 8, M2= 0.513GeV2, s2= 0.278, s4=−0.130,

(7.10)

is obtained from a χ2/d.o.f. ≈ 1 fit to the deep inelastic scattering (DIS) and DVCS data.

Here the normalization M2 and the effective “pomeron” intercept are fixed from the DIS

data, the “pomeron” slope parameter α′, the β value and the cut-off mass, as well as the

positive s2 and the negative s4 values arise from the DVCS data. Note that the fitting

procedure fixes only the small-η part of the model.

For simplicity, we do not employ the decomposition into the electric and magnetic

combinations of GPDs (3.6), (3.7) and just perform the expansion in the ordinary Legendre

polynomials and make use of the Mellin-Barnes integral representation (4.5), where the

J = 0 pole contributions are neglected.
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Figure 3. The KM10 GPD model, specified with the Ansatz (7.9) and the parameter set (7.10)

for t = 0. In the upper left panel the GPD as function of momentum fraction x and skewness η is

shown without J = 0 contribution, while in the upper right panel the skewness ratio as function of

ϑ for x = 10−4 (solid), x = 0.1 (dash-doted) and x = 0.2 (dashed) is displayed. In the lower right

panel the forward-like functions of the dual parametrization are shown while on the lower left panel

the induced D-term without J = 0 fixed pole is displayed, the solid line is the net contribution

consisting of the ν ∈ {0 (dash-dotted), 1 (dashed), 2 (dotted)} contributions.

The latter step is entirely legitimate and it corresponds to taking into account the

suitably chosen J = 0 fixed poles contributions that exactly cancel the dPWAs (7.9) at

J = 0,

Hsea
2ν−1,0(t) = M2s2ν

(1− α+ β)(2− α+ β)

(α− 1)α(t)
β(t) for ν = 1, 2 .

This procedure also removes the unphysical pole at α(t) = 0 that appears in Hsea
2ν−1,0(t) at

rather large −t = α/α′ ∼ 8GeV2. Note that in the KM10 hybrid model fits the D-form

factor is taken into account as an extra contribution.

Under the Q2-evolution the “pomeron” intercept α will effectively increase for the

ν = 0 PW as it does for the t-dependent PDF. Both ν = 1 and ν = 2 PWs will evolve

weaker than the ν = 0 one. However, since of their alternating sign this evolution effect

will partially cancel each other.

The resulting GPD Hsea(x, η, t = 0), multiplied by x, is depicted at the input scale

Q2 = 4GeV2 in the left upper panel of figure 3 as a function of x and η for t = 0. The

resulting GPD has nodes in the central region and also possesses a rather complex shape

in the outer region. To illustrate this in more detail, we plot the skewness ratio r(x|ϑ) as
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a function of ϑ = η/x for a small x value, taken to be 10−4 (solid), x = 0.1 (dash-dotted)

and x = 0.2 (dashed). The nontrivial GPD shape in the outer region, for which 0 ≤ ϑ ≤ 1,

is now reflected by the concave shape of r(x|ϑ) as function of ϑ. In the small x-region the

skewness ratio at ϑ = 1 is a bit smaller than one and the concave shape ensures that it

changes only little with growing Q2 in the experimentally accessible region. This stability

is caused by a cancelation among the positive second and negative third PW contribution

while the first one evolves in the same manner as the t-dependent PDF. For ϑ ≫ 0 the

skewness ratio rapidly increases with growing x & 0.2. According to the discussion in the

preceding section this is caused by the more flat large-x behavior of the GPDs compared to

that of the PDF. Note that at larger values of x the valence quark part starts to dominate.

We add that the KM10 GPD model is qualitatively rather different from a GPD model

build from a ‘standard’ RDDA. In this latter type of models the GPD in the outer region

for fixed x turns to be a monotonically growing function of η, i.e., r(x|ϑ) monotonously

increases for ϑ ∈ [0, 1]. As a consequence of perturbative evolution, the skewness ratio

at ϑ = 1 will typically increase with growing Q2, for examples see ref. [84]. It is known

since more than one decade that to leading order accuracy in the collinear factorization

approach such a GPD model can not simultaneously describe the DVCS and DIS collider

data from the H1 and ZEUS collaborations [23].

According to our explanations in the preceding section, the non-trivial (x, η)-shape can

be also easily understood in terms of the dual parametrization. The inverse Mellin trans-

form (4.7) allows us to map models build from conformal GPD moments into the space of

forward-like functions. For the model (7.9) the inverse Mellin transform straightforwardly

performed by employing the Cauchy theorem, for the partial contributions with ν = 0, 1, 2

yields the following three forward-like functions:

y2νQ2ν(y, t) =M2
s2ν Γ(3− α+ β) y−α(t)

2−2ν+1Γ(2− α)Γ(β)
β(t)

[
2Γ(1 + α(t))Γ

(
3
2 + 2ν + α(t)

)
Γ(β)

Γ
(
1
2 + α(t)

)
Γ(2 + 2ν + α(t))Γ(1 + α′t+ β)

− 2Γ(α)Γ
(
1
2 + α+ 2ν

)
y1+α′t

Γ
(
α− 1

2

)
Γ(1 + α+ 2ν)(1 + α′t)

4F3

(
3
2 − α, 1− β,−α− 2ν, 1 + α′t

1− α, 12 − α− 2ν, 2 + α′t

∣∣∣∣y
)

+
Γ
(
1
2 + 2ν

)
Γ(−α)Γ(β) y1+α(t)

Γ
(
1
2

)
Γ(1 + 2ν)Γ(β − α) (1 + α(t))

4F3

(
−2ν, 32 , 1 + α− β, 1 + α(t)

1
2 − 2ν, 1 + α, 2 + α(t)

∣∣∣∣y
)]

.

(7.11)

The forward-like functions here look a bit more intricate compared to the generic dual

parametrization Ansatz (7.1). However, for given ν values these expressions reduce to

sums of the Γ-function ratios, which are further simplified at t = 0. The three first

forward-like functions (7.11) and the corresponding GPD quintessence function N(y, t) =∑2
ν=0 y

2νQ2ν(y, t) are presented in the lower right panel of figure 3 for t = 0 as functions of

y. As one realizes the ν = 0 (dash-dotted) and ν = 1 (dashed) forward-like functions turn

to be positive and are roughly of the same size while the ν = 2 one (dotted) is negative.

Therefore, the GPD quintessence N(y, t) is smaller than the ν = 0 contribution. This

ensures that the normalization of the DVCS cross section is correctly described and that

the skewness ratio rq remains almost unchanged under QCD evolution.
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The parton density (5.2) can be recovered from the convolution of Q0 with the ker-

nel (5.1). Alternatively, the inverse Mellin transform of the ν = 0 GPD moments (7.9)

yields the equivalent result, which turns out to be rather simple

H(x, η = 0, t) =M2
Γ(3−α+β)x−α(t)

Γ(2− α)Γ(β)
β(t)

[
Γ(1+α′t)Γ(β)

Γ(1+α′t+ β)
− x1+α′t

1 + α′t
2F1

(
1−β, 1+α′t

2 + α′t

∣∣∣∣x
)]

.

(7.12)

For t = 0 it reduces to the well known building block for PDFs

H(x, η = 0, t = 0) = M2
Γ(3− α+ β)

Γ(2− α)Γ(1 + β)
x−α(1− x)β ,

cf. (7.3) of the toy Ansatz (7.1). Although the analytic formulae for the forward-like func-

tions and the corresponding t-dependent PDFs look a bit different for the toy model (7.1)

and the Ansatz used for KM10 fit, we might state that the differences of the both Ansätze,

caused by the different normalization in (7.2), are marginal.

8 Partial wave amplitudes from double distributions

A reparametrization procedure, allowing to map any particular GPD to the forward-like

function as it appears in the dual parametrization, was proposed in ref. [56]. This procedure

is based on the Taylor expansion of GPDs in the vicinity of η = 0 and an example was given

in ref. [33], where several first forward-like functions reexpressing the RDDA within the

dual parametrization approach were computed. In this section we propose a complementary

method that is based on the evaluation of dPWAs (3.9), (4.6) from a DD. We provide the

desired map in terms of a convolution integral, where the integral kernel is given in a

closed form. The inverse Mellin transform (4.7) also allows the reconstruction of the set of

the forward-like function for recasting the DD representation in the dual parametrization

framework. This provides a useful and independent cross check of our method.

To be more general, we adopt the following DD representation of the charge even GPD

H(+)(x, η) =
1+a(1−2x)

1 + a2

∫ 1

0
dy

∫ 1+y

−1+y
dz δ(x−y−zη)f(y, z|a) + D(x/|η|; a)

2
− {x→−x}

(8.1)

in terms of the DD f(y, z, t|a) and the D-term D(x/|η|; a) = θ(|x| ≤ |η|)d(x/|η|; a). Spec-
ifying the parameter a allows us to switch between several popular choices of the DD-

representation:

• a = 0 corresponds to the ‘standard’ DD parametrization that requires a D-term to

complete polynomiality [47]. This DD-representation is commonly used by model

builders.

• a = +1 corresponds to the so-called one-component DD representation for a pion

GPD [21]. It has been also adopted to the nucleon GPD [20] and was also numerically

studied in [85].
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• Finally, the a = −1 produces a x factor as it appears for instance for a nucleon GPD

E in a diquark model [86], which is on more general ground suggested by positivity

constraints.

We emphasize that in the a 6= 0 cases polynomiality is completed without aD-term and that

all these representation are equivalent. They can be mapped to each other by an integral

transformation of the DD (see refs. [9, 21, 87] for examples), which can be understood on

a more general ground as a ‘gauge’ transformation [22]. Note that the D-term can be also

presented as an addenda to f(y, z, t) that is proportional to δ(y),

1 + a(1− 2x)

1 + a2
f(y, z|a) ⇒ 1 + a(1− 2x)

1 + a2
f(y, z|a) + xD(z|a)

2z
δ(y). (8.2)

By employing the definition of the PW-amplitudes (3.9), (or alternatively the SO(3)

partial wave decomposition (4.1)), we work out the following expressions for the GPD

moments for the integer values of the conformal spin and cross channel angular momentum:

H
(+)
n+2ν,n+1(a) =

Γ(3 + n+ 2ν)Γ
(
3
2 + n

)

22νΓ
(
5
2 + n+ 2ν

)
Γ(2 + n)

∫ 1

−1
dω

3 + 2n

2
Pn+1(ω) (8.3)

×
∫ 1

0
dy

∫ 1+y

−1+y
dz

(1+a)ω−2a(ωy+z)

1 + a2
f(y, z|a)

(3+2n+4ν)C
3/2
n+2ν(ωy+z)

2(1 + n+ 2ν)(2 + n+ 2ν)
+ δn+1,0D2ν,0(t).

Now we need to specify the analytic continuation of the GPD moments (8.4) to the

complex values of n = j. Using the Rodrigues formula for the Legendre polynomials

Pl(ω) =
(−1)l

2ll!

dl

dωl

(
1− ω2

)l

and the definition of the Gegenbauer polynomials in terms of hypergeometric functions,

C3/2
n (x) =

(n+ 1)(n+ 2)

2
2F1

(−n, 3 + n+ 2

2

∣∣∣∣
1− x

2

)
,

allows us to reshuffle the derivatives w.r.t. ω = 1/η by means of partial integration. Con-

sequently, the GPD moments can be written as

H
(+)
j+2ν,j+1(a) =

∫ 1

0
dy

∫ 1−y

−1+y
dz

yj(1 + a− 2ay)

1 + a2
f(y, z|a) (8.4)

×
[
1 + j +

y~∂

∂y
− 2ay

1 + a− 2ay

z~∂

∂z

]
K−1

j+2ν,j+1(y, z) + δj+1,0D2ν−1,0(t) ,

where the integral kernel turns to be a polynomial in y and z. This kernel is given by

acting with the differential operator on the Gegenbauer polynomials

K−1
j+2ν,j+1(y, z) =

(1 + 2ν)j(2 + j)ν

Γ(2 + j)
(
3
2 + j + ν

)
ν

(8.5)

×
∫ 1

−1
dω

(2 + j)2+j

(
1− ω2

)1+j

23+2j Γ(2 + j)
2F1

(−2ν, 3 + 2j + 2ν

2 + j

∣∣∣∣
1− ωy − z

2

)
.
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The transformation (8.4), (8.5) provides the analytic continuation of the GPD moments in

j for the regular part of the GPD. For the j = −1 Kronecker delta contribution induced

by the D-term part it can be calculated from a δ(y) addenda (8.2) to DD by convolution

with the kernel z ∂
∂zK

−1
2ν−1,0(y = 0, z), which explicitly reads as

D2ν−1,0(t) =
Γ
(
1
2

)
Γ(2 + 2ν)

22νΓ
(
1
2 + 2ν

)
∫ 1

−1
dz D(z, t) 2F1

(
1− 2ν, 2 + 2ν

2

∣∣∣∣
1− z

2

)
. (8.6)

A convenient double integral representation for the kernel (8.5) follows from the defi-

nition of the 2F1 hypergeometric function in terms of the analytical regularized integral,

K−1
j+2ν,j+1(y, z) =

(1 + 2ν)j(2 + j)ν

Γ(2 + j)
(
3
2 + j + ν

)
ν

sin(πj) (2 + j)2+j

π Γ(2 + j)(2 + j + 2ν)1+j

21+2bΓ(1 + 2ν)

Γ(2 + 2b+ 2ν)
(8.7)

× ∂2b+1

∂z2b+1

∫ 1

0
du

∫ (1)

0
dv (uu)1+j v

2(1+ν+j)−2b−1

v2(1+ν)+j

[
1− v

1−(u− u)y − z

2

]2ν
.

Note that we have introduced an arbitrary parameter b ≥ −1/2. In what follows it will

turn out convenient to equate it to the b parameter of the profile function h(b)(z, y) of the

factorized RDDA.

To specify the polynomials, we are dealing with, we expand the integrand in the

vicinity of z = 0 and employ a quadratic variable transformation. In this way we work

out the closed form of the kernel K−1
j+2ν,j+1(y, z) in terms of the rather cumbersome Appell

hypergeometric function F4, which finally provides us the finite double sum

K−1
j+2ν,j+1(y, z) =

(−1)ν2−2ν(2 + j)2ν−1

Γ(ν + 1)
(
3
2 + j + ν

)
ν

F4(−ν,
3

2
+ j + ν,

5

2
+ j,

1

2
, y2, z2)

=
(2 + j)2ν−1(
3
2 + j + ν

)
ν

ν∑

m=0

ν−m∑

n=0

(−1)ν−m−n y2mz2n

m!n!(ν −m− n)! 22ν

(
3
2 + j + ν

)
m+n(

5
2 + j

)
m

(
1
2

)
n

, (8.8)

where (k)l ≡ Γ(k+l)
Γ(l) is the Pochhammer symbol.

In order to illustrate the application of the above reparametrization procedure let us

map the RDDA into the space of GPD moments. Taking care on the forward limit the

factorizable RDDA reads in an arbitrary ‘gauge’ as

f(y, z|a) = h(b)(y, z|a)q(b) =
(
1 + a2

)

[1 + a(1− 2y)](1− y)

Γ
(
3
2 + b

)

Γ
(
1
2

)
Γ(1 + b)

(
1− z2

(1− y)2

)b

q(y).

We adopt the PDF parametrization

q(y, t) =
M2Γ(3− α+ β)

Γ(2− α)Γ(1 + β)
y−α(1− y)β

with the first Mellin moment normalized to the momentum fraction M2 carried by quarks.
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Applying the differential operator on the double sum (8.8) and changing to the inte-

gration variable w = z/(1− y), the transformation (8.4) can be written as

H
(+)
j+2ν,j+1 =

M2Γ(3− α+ β)

Γ(2− α)Γ(1 + β)

Γ
(
3
2 + b

)

Γ
(
1
2

)
Γ(1 + b)

∫ 1

0
dy

∫ 1

−1
dw yj−α(1− y)β

(
1− w2

)b

×
ν∑

m=0

ν−m∑

n=0

(−1)ν−m−n y2m(1− y)2nw2n

m!n!(ν −m− n)! 22ν

(1 + j)2ν
(
3
2 + j + ν

)
m+n(

5
2 + j

)
m

(
3
2 + j + ν

)
ν

(
1
2

)
n

× 1

1 + j

[
1 +

2m

1 + j
− 2n

1 + j

2ay

1 + a− 2ay

]
. (8.9)

For the three popular choices a ∈ {−1, 0, 1} the result can be straightforwardly evaluated

in terms of a double sum,

H
(+)
j+2ν,j+1 =

M2(2− α)j−1

(3− α+ β)j−1

ν∑

m=0

ν−m∑

n=0

(−1)ν−m−n 2−2ν

m!n!(ν −m− n)!

(1 + j)2ν
(
3
2 + j + ν

)
m+n(

5
2 + j

)
m

(
3
2 + j + ν

)
ν

(1 + β)2n(
3
2 + b

)
n

× (1− α+ j)2m
(2−α+β + j)2m+2n

[
1 + 2

m− an

1 + j
− a(a+1)

n(1+j−α+β + 2m− 2n)

(1 + j)(β + 2n)

]
.

(8.10)

For the lowest two ν values ν = 0, 1 the explicit results read, e.g., for the a = 1 ‘gauge’ as

follows

H
(+)
j,j+1 =

M2(2− α)j−1

(3− α+ β)j−1
(8.11)

H
(+)
j+2,j+1 =H

(+)
j,j+1

4 + 2j

5 + 2j

[
1+j

2
− (3 + j)(1 + j − α)2

2(2 + j − α+ β)2
− (5 + 2j)(1 + β)(2α+ β + jβ)

2(3 + 2b)(2 + j − α+ β)2

]
.

To make link to the dual parametrization framework we note that, by the use of the inverse

Mellin transform (4.7), we obtain the usual expression for the forward-like function Q0 and

recover the result of [33] for the forward-like function Q2.

Finally, let us comment on the functional form of the moments (8.10) as they arise

from the RDDA. Generally, we expect that for arbitrary α, β, and b parameters the GPD

moments can not be expressed by a single higher order hypergeometric function, however,

for specific parameter values a simplification occurs.

• b → ∞ limit

The limiting case b → ∞, corresponding to a δ(z) (or δ(w)) function in the DD-

representation, can be trivially treated in the representation (8.9). Since only the

n = 0 term in the double sum contributes, the summation and y-integration can be

straightforwardly performed and the ‘gauge’ independent result reads in terms of 4F3

functions as follows

H
(+)
j,j+1

b→∞
=

(2− α)j−1

(3− α+ β)j−1

(−1)ν2−2ν(1 + j)2ν

Γ(1 + ν)
(
3
2 + j + ν

)
ν

(8.12)

×
[
1 +

2

1 + j

~d

dy

]

4F3

(
−ν, 32 + j + ν, 12 + j

2 − α
2 , 1 +

j
2 − α

2
5
2 + j, 1 + j

2 − α
2 + β

2 ,
3
2 + j

2 − α
2 + β

2

∣∣∣∣y
)∣∣∣∣∣

y=1

.
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Here the derivative w.r.t. y provides, apart from a prefactor, the shift by one unit of

all parameters in the hypergeometric function,

dn

dxn
pFq

(
a1, · · · , ap
b1, · · · , bq

∣∣x
)

=
(a1)n · · · (ap)n
(b1)n · · · (bq)n pFq

(
a1 + n, · · · , ap + n

b1 + n, · · · , bq + n

∣∣x
)
.

• integer β or b values

For integer β values the 4F3 can be reduced to a sum of 2F1 functions, i.e., finally one

gets a finite sum of Γ-function ratios. Also for integer b values the GPD moments

of the RDDA can be reduced for arbitrary ν values to finite sums. This follows

most easily from the integral representation of the kernel (8.7), where the arbitrary

b-parameter is identified with the profile parameter of RDDA. Partial integration

yields only boundary terms at z = ±(1 − y), at which the auxiliary double integral

can be expressed in terms of 2F1 functions, whose Mellin moments w.r.t. y yield 3F2

functions.

• integer b− α value

Also it is worth mentioning that from (8.10) we notice that when choosing b =

α +M , M - integer the leading j = α − 1 singularity is present only in the dPWAs

H
(+)
j+2ν,j+1 with 2ν ≤ 2M . In particular, this means that it suffices to account just a

finite number of conformal PWs to reproduce the small-ξ asymptotic behavior of the

imaginary part of elementary amplitude

ImHS(η = ξ)
∣∣
RDDA a=0

∼ 22b+1−α

ξα
Γ(12)Γ(b+

3
2)Γ(1 + b− α)

Γ(2 + 2b− α)
(8.13)

within RDDA. Instead, for arbitrary real b ≥ −1
2 one has to take into account an

infinite number of conformal PWs to reproduce the RDDA small-ξ asymptotic be-

havior of ImHS(ξ). However, the contribution of the conformal PWs with 2ν > 2M ,

where M is the least integer b < α+M turn to be suppressed by (α+M − b) factor

and by the arithmetic combinatorial factors.

9 Conclusions

The problem of building up a phenomenological GPD parametrization capable of describing

the whole set of the present day experimental data can be in principle addressed within any

GPD representation: double distribution representation, dual parametrization, or Mellin-

Barnes integral representation. The main ingredients for this issue are flexible phenomeno-

logical GPD models and the development of the state-of-the-art-level formalism allowing

to systematically account for the next-to-leading order and kinematical twist-four correc-

tions [93–97]. The global fitting procedure [35–37] developed within the Mellin-Barnes

integral representation framework represents the up-to-present-date most consecutive ap-

proach to challenge the GPD data description.

The equivalence of the cross channel SO(3) partial wave expansion implementation

within the Mellin-Barnes integral GPD representation and the dual parametrization of
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GPDs was taken for granted by us already for some time, however, it was certainly not

widely realized. In this study we explicitly demonstrated the full mathematical equivalence

of these two GPD representations.

• We established the explicit mapping (4.7) between the forward-like functions of the

dual parametrization and the set of double partial wave amplitudes employed within

the Mellin-Barnes integral approach.

• The dual parametrization convolution kernels were reexpressed within the Mellin-

Barnes integral representation, cf. eq. (4.8).

• To illustrate the equivalence of the two representations we considered in details several

special limiting cases: η → 0 limit (section 5.1), GPD on the cross-over line x = η

(section 5.2), η → 1 limit (section 5.3) and the ‘low energy’ limit η → ∞ (section 5.4).

• We reexpress the successful KM10 model in the dual parametrization framework and

present explicit analytic expressions (7.11) for the set of the corresponding forward-

like functions Q2ν(y, t).

• We also address the reparametrization procedure allowing to recast the double dis-

tribution representation of GPDs in the Mellin-Barnes integral framework. We pre-

sented for the first time a closed formula (8.4) in terms of Appell‘s F4 function (8.8)

that allows to map the double distribution into the space of double partial wave am-

plitudes with complex conformal spin.15 Consequently, with help of (4.7) one can

also map a double distribution numerically into the space of forward-like functions

as they appear in the dual parametrization.

The equivalent Mellin-Barnes integral representation and the dual parametrization of

GPDs can be also seen as somewhat complementary. What looks most simple in one

representation turns out to be a bit more complicated in the other one and vice versa.

This allows to enlighten the physical content of GPDs form different perspectives.

In particular, we would like to stress several points with respect to the discussion of

the physical meaning of the GPD quintessence function. To the leading order accuracy, the

GPD quintessence function and the GPD on the cross-over line are the two pseudonyms

for the imaginary part of the DVCS amplitude. They are related by the Abel integral

transformation. The Mellin moments of the GPD quintessence function (6.25), (6.26)

express the partial wave amplitudes corresponding to the definite value of the t-channel

angular momentum. This property is equivalent to the so-called Froissart-Gribov projec-

tion (6.20), (6.21 that allows to compute the corresponding partial wave amplitudes by

convolutions of the imaginary part of the DVCS amplitude with the Legendre functions of

the second kind.

Another important quantity is the D-form factor, the subtraction constant in the

fixed-t dispersion relation for the elementary DVCS amplitude. The freedom in fixing this

15It is interesting to remark that double distributions can be obtained from GPDs by the inverse Radon

transform where, however, the GPD support has to be extended into the unphysical region. Therefore, the

mathematical aspects of invertibility of the transformation (8.4) represent an interesting problem.
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subtraction constant is related to the J = 0 fixed pole contribution to the charge even

GPD H(+). As in our previous studies, we conclude that the D-form factor may receive a

J = 0 fixed pole contribution (6.14) from the forward-like functions Q2ν(y, t) with ν ≥ 1.

Therefore, in principle, the J = 0 fixed pole contribution into the J = 0 partial wave (6.29)

may depend on the external kinematics. This is at variance with the claim of refs. [80, 81]

that the J = 0 fixed pole contribution into the DVCS amplitude represents the universal

quantity independent on the external kinematics and arises solely from the local two-

photon interaction contribution proportional to the analytically regularized inverse Mellin

momentum of the corresponding t-dependent PDF. This statement is in fact only valid

once the external “analyticity principle” requiring Df.p.(t) = 0 is attained and the D-

form factor is unambiguously fixed from the known GPD quintessence function N(y, t)

and forward-like function Q0(y, t) assuming the analytic regularization for the potentially

divergent integrals (see eq. (6.13)).16 Unfortunately, the required analyticity assumption

lacks solid theoretical ground and can be verified from experimental measurements only

in a model dependent manner. Therefore, it remains unclear to us how much biased such

studies will be at the very end. The present world data set of DVCS measurements allows

only to determine the D-form factor on a qualitative level and in present global DVCS fits

its order of magnitude and sign coincide with theoretical expectations [6, 98, 99].
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[85] C. Mezrag, H. Moutarde and F. Sabatié, Test of two new parametrizations of the generalized

parton distribution H, Phys. Rev. D 88 (2013) 014001 [arXiv:1304.7645] [INSPIRE].

[86] D.S. Hwang and D. Müller, Implication of the overlap representation for modelling

generalized parton distributions, Phys. Lett. B 660 (2008) 350 [arXiv:0710.1567] [INSPIRE].

[87] I.R. Gabdrakhmanov and O.V. Teryaev, Analyticity and sum rules for photon GPDs,

Phys. Lett. B 716 (2012) 417 [arXiv:1204.6471] [INSPIRE].
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