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1 Introduction

Six-dimensional (2, 0) theory, as the low energy effective theory on the M5-brane world-

volume, plays a crucial role in studying lower dimensional supersymmetric gauge theories.

In particular, a large class of four-dimensional N = 2 superconformal theories, which are

called class S theories, have been discovered in [1, 2] as a compactification of the (2, 0) the-

ory on a Riemann surface with a partial twist. Class S theories turn out to be related to

various objects in different dimensional theories [3, 4], bridged by the (2,0) theory picture.
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N = 2 class S theories are included in a larger class of theories with N = 1 supersym-

metry associated to compactifications of the (2, 0) theory [5]. This latter class, which we

will call N = 1 class S, has been investigated in [5–12] in field theory and in [5, 7, 13, 14]

in AdS/CFT (see [15, 16] for the mass deformed N = 2 class S theories). The theories

in this class flow to superconformal fixed points in the IR. See also [17–20] for theories in

Coulomb and confining phases.

The N = 1 theories of class S are specified through the following data

• The choice of ‘gauge group’ Γ = A,D,E.

• A Riemann surface Cg,n of genus g with n punctures called UV curve.

• Two integers p, q with a constraint p+ q = 2g − 2 + n.

From the M-theory point of view, this class of theories is obtained by wrapping M5-branes

on Cg,n inside the total space of two line bundles over Cg,n. Then, p and q are the degrees

of the two line bundles.1

In addition, we assign data to each puncture. A class of punctures, called the regular

colored N = 2 punctures, are specified by the following data:

• For each puncture, the choice of ρi which is an embedding of SU(2) into Γ.

• The choice of Z2-valued ‘color’ σi = ±.

When Γ = AN−1 which we will focus on, the choice of ρi is in one-to-one correspondence

with the choice of partition of N or a Young diagram of N boxes2 with N =
∑

k nkk. The

monicker ‘colored N = 2 puncture’ stems from the fact that locally these punctures are

the same as those of N = 2 theories except that we have the freedom to choose one of the

two normal directions to the M5-branes.3

A four-dimensional UV theory can be associated to every pair-of-pants decomposition

of Cg,n.4 These UV theories are in the same class, in the sense that the theories corre-

sponding to the different pants decompositions of the same Cg,n, flow to fixed points that

are connected by exactly marginal deformations. This provides a nice geometric picture

1In general, to preserve supersymmetry, the normal bundle over the Riemann surface needs to be a rank-

2 bundle whose determinant line bundle is the canonical bundle. Here we restrict ourselves to a particular

case where the normal bundle simply decomposes as a sum of two line bundles.
2Punctures can also be twisted by an outer-automorphism group of Γ. This will affect the choice of ρi.

We will not consider the twist in this paper.
3While we will not study in this paper, theN = 1 punctures should be given by the 1

4
-BPS codimension-2

defects of the 6d N = (2, 0) theory. Upon dimensional reduction these yield the 1
4
-BPS boundary conditions

of N = 4 super Yang-Mills theory. This problem has been studied recently by [21, 22] generalizing the work

of [23, 24] who studied the 1
2
-BPS boundary conditions.

4Here by UV theory or UV description we do not mean the underlying six-dimensional theory. By

partial topological twist and dimensional reduction, we are looking at the four-dimensional theory below

the Kaluza-Klein scale given by the size of the UV curve. Here we are interested in various different four-

dimensional gauge theories (which may also have non-Lagrangian building blocks) that flow to the SCFT

in the same conformal manifold. We refer to these gauge theories as UV descriptions or duality frames.
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of the duality of N = 1 class S theories [5, 8, 9, 12] generalizing the well-known Seiberg

duality [25].

Among these theories, linear quiver gauge theories form an important subset describing

characteristic features of class S. A linear quiver theory has two tails each of which is

composed of a product of gauge groups whose ranks are non-decreasing. In N = 2 theories,

the quiver tail has been fully understood to be related to a sphere with a maximal puncture

(N = 1 + 1 + · · · + 1), a number of minimal punctures (N = 1 + (N − 1)), and a generic

puncture [1]. The purpose of this paper is to identify the N = 1 version of quiver tails

associated with a similar sphere but with colors.

It turns out that the N = 1 quiver tails have an important ingredient, which we will

call the Fan. The Fan is composed of a collection of various chiral multiplets coupled by a

specific superpotential that preserve the global symmetry SU(N)× SU(N ′)×
∏
k U(nk)×

U(1). The quiver tail is constructed by gauging some of the global symmetries. When

N ′ is absent, the Fan is shown to be associated to a pair-of-pants whose three punctures

are: one maximal, one minimal, and a third generic puncture specified by a partition of

N =
∑

k knk. (The color of the former two punctures are the same as that of the pair-of-

pants, and are different from that of the generic puncture.)

We obtain the N = 1 quiver tail, and in particular the Fan, by the nilpotent Higgsing

which was first studied in [26] from the different point of view and in [9, 27] from the class

S point of view. We start from the linear quiver theory where all gauge groups are SU(N),

and give a nilpotent vev to the quark bilinear at the end of quiver. This produces a quiver

tail. In N = 2 linear quiver theories, the nilpotent Higgsing propagates to neighboring

gauge nodes of the quiver because of the F-term equations [27], which we also discuss in

detail in appendix B. On the other hand, if there is an N = 1 gauge group in the quiver,

the Higgsing stops at that node and does not propagate further. This indicates the main

characteristic difference of the Higgsing between N = 1 and N = 2 theories. We will

confirm this in different ways by using multiple Seiberg dualities.

The Fan can be used as a new building block to construct not only the quiver tail,

but more general N = 1 gauge theories in class S. Moreover, the Fan plays a crucial role

in the study of the dualities in class S theories. As a remarkable example, we find that

the Fan coupled to an N = 1 vector multiplet appears as a dual description of the N = 1

supersymmetric QCD with Nf = 2N flavors. The precise description is an N = 1 SU(N)

gauge theory coupled to the Fan, a TN theory [1] and an adjoint chiral multiplet, with

a particular superpotential. From the UV curve viewpoint, this duality can be seen as a

pair-of-pants decomposition that exchanges maximal and minimal punctures, and therefore

is an N = 1 analog of the Argyres-Seiberg duality [28], which was first discussed in [12] for

the case of SO/Sp/G2 gauge theories.

The organization of this paper is as follows. In section 2, we first review the N = 1

linear quiver gauge theories of class S [11], and the nilpotent Higgsing. In section 3, the

Fan is introduced. We will see that the N = 1 quiver tail in which the Fan plays a central

role can be obtained by the nilpotent Higgsing of the N = 1 linear quiver gauge theory. In

section 4, we consider the application of the Fan to dualities. We first show that the Fan

appears in an N = 1 quiver theory with an N = 2 quiver tail by successive application

– 3 –
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of Seiberg duality. We then consider the duality of N = 1 SQCD with Nf = 2N flavors.

In section 5, we study the ’t Hooft anomaly coefficients of the N = 1 class S theories, in

particular the Fan. We then present formulae of the anomalies in terms of the UV curve.

In section 6, we calculate the superconformal index of the class S theories involving the

Fan. This is the strongest check of the duality conjecture in section 4. In appendix A, we

derive the superpotential of the Fan from nilpotent Higgsing. We also discuss the nilpotent

Higgsing in the N = 2 linear quiver theories in appendix B.

2 N = 1 quiver theories of class S and nilpotent Higgsing

Our main object is the class of theories, in particular quiver tails, obtained by giving

nilpotent vevs to N = 1 linear quiver gauge theories of class S [11]. We first discuss our

criteria for constructing N = 1 class S theories in section 2.1 and then describe N = 1

linear quiver gauge theories of class S in section 2.2. We then study the generic features of

nilpotent Higgsing of the quiver theory in section 2.3, focusing on the differences between

N = 1 and N = 2 quiver theories.

2.1 Generic features of N = 1 class S

There is no complete classification of N = 1 class S field theories from compactifications

of the six-dimensional (2, 0) theory. But there are two prevalent features of the existing

constructions of class S theories. In our explorations, we impose these conditions as criteria

for class S. They are:

Criterion I: R-symmetry. N = 1 class S theories admit a U(1)+ × U(1)− global

symmetry, whose generators will be denoted by (J+, J−). This corresponds to the generic

subgroup of the SO(5) R-symmetry of the (2, 0) theory that can be preserved after a partial

topological twist on a UV curve. From the point of view of M5-branes, this symmetry

corresponds to the rotations of the two line bundles fibered over the UV curve. One

combination of this symmetry will become the superconformal R-symmetry and the other

will be a global symmetry of the four-dimensional N = 1 SCFT.

Another notation for the global symmetry U(1)×U(1) is (R0,F) defined as

R0 =
1

2
(J+ + J−) , F =

1

2
(J+ − J−) . (2.1)

This latter notation is more convenient when computing central charges and anomalous

dimensions. The superconformal R-symmetry is

RN=1 = R0 + εF , (2.2)

where ε is fixed by a-maximization [29].

In order to satisfy the R-symmetry criterion, we impose the condition: all additional

U(1) symmetries, FI , are baryonic; i.e., they cannot mix with the R-symmetry. In the class

S theories, there are flavor symmetries associated to the punctures on the UV curve. We
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assume these are all baryonic symmetries hence do not mix with the R-symmetry; this is

the case for all known theories.5

Criterion II: marginal coupling. For every gauge coupling, there is an associated

exactly marginal direction. In the construction of class S, the number of gauge groups

is given by the dimension of the complex structure moduli space of the UV curve. The

addition of gauge groups maps to the addition of punctures or handles on the UV curve

and therefore increases the dimension of the conformal manifold [1, 5, 15, 16].

This condition is not entirely correct if the UV curve has an irregular puncture. For

example, one can realize SU(N) gauge theory with Nf < 2N flavors by a three-punctured

sphere with irregular punctures. This theory flows to a conformal fixed point with no

marginal direction. There is no complex structure deformation associated to this UV

curve, nevertheless it has a gauge group. In this paper, we aim to find theories with

regular punctures only, where the number of gauge groups is the same as the dimension of

complex structure moduli space of the UV curve.

These criteria are surprisingly constraining and generic quiver gauge theories do not

satisfy them. They are satisfied in N = 1 class S linear quivers and all theories constructed

so far. As we will find, they are always preserved by nilpotent Higgsing.

2.2 Linear quiver theory

Let us consider a linear quiver theory given as follows. It has ` gauge groups labelled as

SU(N)i, which can be N = 2 or N = 1. The former is an N = 1 vector multiplet with a

chiral multiplet transforming in the adjoint representation of the gauge group. The gauge

nodes, SU(N)i+1 and SU(N)i, are linked by hypermultiplets, Hi = (Qi, Q̃i), transform-

ing in the bifundamental representation of SU(N)i+1 and SU(N)i. Our conventions are

such that (Qi, Q̃i) transforms in (N⊗ N̄, N̄⊗N) of SU(N)i+1 × SU(N)i. The right-most

and left-most hypermultiplets are denoted by H0, H` respectively and they transform in

the bifundamental representations of SU(N)1 × SU(N)0 and SU(N)`+1 × SU(N)` where

SU(N)0, SU(N)`+1 are flavor symmetries. See figure 1a for the ` = 5 case.

As mentioned above, the theory preserves distinguished anomaly-free U(1) symmetries,

U(1)+×U(1)−. We denote the charge of fields under this symmetry as (j+, j−); the charge

of any gaugino is (1, 1). We fix the charges of the matter fields and a theory by giving the

sequence (σ−1, σ0, σ1, · · · , σ`, σ`+1) with σ2
i = 1. Each hypermultiplet Hi also comes with

a baryonic U(1)i, whose generators we denote as Ji. The charges of the Hi are given as

J±(Qi) =
1± σi

2
, Jj(Qi) = δij . (2.3)

Note that the Jj charge of the anti-fundamental Q̃i has an opposite sign.

Each gauge group can come with an N = 2 or with an N = 1 vector multiplet. When

σi = σi−1 = ±1, the SU(N)i gauge group has a chiral field φ∓i transforming in the adjoint

5The flavor symmetry associated with a puncture for a Lagrangian theory comes from a pair of chiral

multiplets. The axial symmetries are usually anomalous, and we only see the baryonic part of the symmetry.

In fact, for a given puncture with global symmetry GF , we generally expect the theory has GF × GF

symmetry at some point in the conformal manifold, which is broken in a general point.

– 5 –
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(a) The quiver diagram for a generic class S linear quiver gauge theory. The black and white

node corresponds to N = 1 and N = 2 gauge nodes respectively. The blue/red arrows denote the

bifundamental matter fields with σ = 1/σ = −1 respectively.

+

(-)

+

(+)(+)

-

+

(-)

-

(-) (-)

- - -

(b) The UV curve and its colored pair-of-pants decomposition corresponding to the quiver 1a. The

symbols ⊕,	 denote the minimal punctures of each color, and the ones with extra circle denote the

maximal punctures. The (+), (−) below each pair-of-pants denote the coloring of the pair-of-pants

itself.

Figure 1. An example of a generic SU(N) quiver theory corresponding to the UV curve given by a

sphere with two maximal and a number of minimal punctures. Note that the colored pair-of-pants

mapped to the bifundamentals, and the tubes mapped to the gauge nodes.

representation and we add the superpotential terms

Wi = σiTr
[
φ∓i (Qi−1Q̃i−1 − Q̃iQi)

]
. (2.4)

For σi = −σi−1, there is no adjoint chiral field. However we can add the quartic superpo-

tential terms

Wi = Tr
(
Qi−1Q̃i−1Q̃iQi

)
− 1

N
Tr(Qi−1Q̃i−1)Tr(Q̃iQi). (2.5)

Let us note that these can be uniformly written as

Wi = Tr

[
Q̃iQi

(
1− σi

2
φ+
i −

1 + σi
2

φ−i

)
+Qi−1Q̃i−1

(
1 + σi−1

2
φ−i −

1− σi−1

2
φ+
i

)
+mi

(
1− σi

2
φ−i −

1 + σi
2

φ+
i

)(
1− σi−1

2
φ−i −

1 + σi−1

2
φ+
i

)]
, (2.6)

where the trace is over the gauge group SU(N)i. Below the energy scale mi, some of

adjoint fields are integrated out, giving (2.4) or (2.5) depending on σi and σi−1. The total

superpotential is given as W =
∑`

i=1Wi.

Since the fields H`+1 and H−1 do not exist, and SU(N)`+1 and SU(N)0 are flavor

groups, the choices σ−1 and σ`+1 attaches or turns off adjoint chiral multiplets to the end of

hypermultiplets. Namely, if σ−1 = σ0 = ±, we attach the adjoint φ∓0 withW0 = TrQ̃0Q0φ
∓
0 ;

if σ−1 = −σ0, we do not have any adjoints. The U(1)± charges of the fields are

J±(φ±i ) =
2 + σi + σi−1

2
, J±(φ∓i ) =

2− σi − σi−1

2
. (2.7)

– 6 –
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(a) The quiver diagram corresponding to the Seiberg dual of figure 1a.

+

(-)

+

(+)

(+)

+

(-)

-

(-) (-)

- -- -

(b) The UV curve and its colored pair-of-pants decomposition corresponding to the quiver 2a.

Figure 2. The Seiberg dual of the quiver given by figure 1a and its colored pair-of-pants decom-

position. Here we dualized the right-most gauge group SU(N)1. Note that the second gauge group

SU(N)2 became N = 1 because of the meson dual to Q1Q̃1 behaves as an extra adjoint chiral, which

generates a mass term for the adjoint chiral. From the UV curve viewpoint, this is represented by

that the colors of the second and third pairs-of-pants are different.

Let us now briefly describe the connection with the UV curve picture. The linear

quiver gauge theory is in class S and is associated to the sphere with ` + 1 minimal

punctures and two maximal punctures [11]. See figure 1b for illustration. The sphere is

decomposed into ` + 1 pairs-of-pants, each of which has a color. Note that the color of

pair-of-pants is the same as that of the minimal puncture it contains. Locally each unit

preserves N = 2 supersymmetry and corresponds to bifundamental hypermultiplet Hi.

The σi (i = 0, 1, . . . , `) is exactly the color of the i-th pair-of-pants. The N = 1 vector

multiplet appears when two pairs-of-pants with different colors are connected by a tube;

the N = 2 vector multiplet appears when two pairs-of-pants with the same colors are

connected. The σ−1 and σ`+1 are associated with the colors of the maximal punctures. If

the color of the maximal puncture is different form that of the pair-of-pants, an adjoint

chiral multiplet is attached. See figures 2a and 2b.

It is important to consider Seiberg duality in this class of theories. Given a quiver

where SU(N)i gauge group is N = 1 with σi = −σi−1, we can dualize at this node. This

will map a linear quiver to another linear quiver since each gauge node satisfies Nf = 2Nc.

Dualizing at SU(N)i will have the effect σi → −σi and σi−1 → −σi−1. From the perspective

of the UV curve, this is equivalent to exchanging neighboring two minimal punctures of

different colors and at the same time inverting the colors of pair-of-pants, as in figures 2a

and 2b. The Seiberg duality preserves the parameters p and q which correspond to the

number of pairs-of-pants or σi=0,1,··· ,`’s with + and −, respectively.

2.3 Nilpotent Higgsing

N = 2 Higgsing. Before discussing nilpotent Higgsing in N = 1 theories, we summarize

the effect in the case of N = 2 theories. We elaborate more in the appendix B. This was

also discussed in [27].

– 7 –



J
H
E
P
0
3
(
2
0
1
5
)
0
4
9

Figure 3. An N = 2 linear quiver theory.

Figure 4. An N = 2 quiver theory obtained after Higgsing specified by the par-

tition N =
∑5

k=1 nkk. The ranks of the gauge groups are fixed by conformality

condition 2Ni = Ni−1 +Ni+1 + ni.

Consider a linear quiver theory as in figure 3 with gauge group G =
∏`
i=1 SU(N)i.

This is the special case of the quiver introduced in the section 2.2 by setting all the colors

of punctures and pairs-of-pants to be the same. From the superpotential (2.4), we get the

F-term equation for the φi

Fφi = Qi−1Q̃i−1 − Q̃iQi = 0 . (2.8)

Now, let us consider a Higgsing of H0 by giving a nilpotent vev to µ0 = Q̃0Q0 −
1
NTrQ̃0Q0, which partially closes the maximal puncture. For a given partition of N =∑
k nkk, we give the vev 〈µ0〉 =

⊕
k J
⊕nk
k , where Jk is the Jordan cell of size k

Jk =


0 1

0 1
. . .

. . .

0 1

0

 . (2.9)

The matrix Jk is the k-dimensional representation of the raising operator σ+ = σ1 + iσ2 of

SU(2). A crucial observation here is that from the F-term for the adjoint chirals (2.8), the

vev of Q’s are propagated to the neighboring node. As it propagates, the operator Q̃iQi
will have smaller rank than that of Q̃i−1Qi−1 until it hits zero at some finite length. From

this way, we can explicitly derive the quiver tails corresponding to a given partition of N

labeling the puncture, as in figure 4.

Before going to N = 1 theories, let us make a comment on the Higgsing through a

diagonal vev such as Q0 = Q̃0 = diag(v1, v2, 0, · · · , 0). It is certainly possible to solve the

F-term equation (2.8) by such a diagonal vev for all the bifundamental hypermultiplets

Q0 = Q1 = · · ·Q`. Therefore all the gauge symmetries are broken by the same amount.

We will not discuss these cases.

– 8 –
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N = 1 Higgsing. Suppose every gauge node we described above is replaced by N = 1

gauge nodes. Let us Higgs the theory by giving the vev to µ0 as before. This time, from

the superpotential (2.5), the F-term equation for Qi, Q̃i

FQi = Qi−1Q̃i−1Q̃i + Q̃iQ̃i+1Qi+1 = 0 , (2.10)

does not give us a propagating effect to the neighboring node. The F-term can be simply

solved by taking all the other Qi, Q̃i to be zero. Therefore, the Higgsing happens completely

locally on the first node. There is no propagation of vev contrary to the case of N = 2.

Generally if we have a number of N = 2 nodes on the right, the propagation continues until

it hits the N = 1 node and then stop. In the next section, we will describe how Higgsing

creates an N = 1 version of the quiver tail.

In the case of a diagonal vev, the D-term equations for the quiver theories can be solved.

The effect of diagonal Higgsing has been thoroughly studied and has been used to test the

consistency of the Seiberg duality in N = 1 SU(Nc) SQCD with Nf flavors [25]: the gauge

symmetry and the flavor symmetry go down by a same amount, say k. Then the gauge

symmetry will be SU(Nc−k) and the flavor symmetry will be SU(Nf−k). On the dual side,

the gauge group remains the same, but only the dual quarks become massive and reduces

the number of flavors by the same amount k. From the magnetic theory perspective, mass

terms for the dual quarks are generated through the superpotential W = (〈M〉+ δM) qq̃,

where 〈M〉 is of rank k. Once we integrate out the massive (dual) quarks, we generate

M2qq̃ term in the superpotential which is irrelevant in the IR. The Higgsed theory will

have SU(Nf − k) flavor symmetry which is the same as the electric theory.

On the other hand, as we have seen in the N = 2 case, the nilpotent vevs can deform

the theory in an interestingly different way. The number of flavors will be reduced, but the

superpotential terms generated are quite different from the diagonal Higgsing. Depending

on the choice of nilpotent vevs, we can generate various types of flavor symmetry of the form

GF = S

(∏̀
i=1

U(nk)

)
. (2.11)

We will see how the nilpotent Higgsing works for N = 1 theories in detail in the next

section. There will be various seemingly irrelevant terms in the superpotential generated

through this procedure. But, we will argue that all of these terms become exactly marginal

in the IR SCFT. This kind of operators in the superpotential which looks irrelevant in the

UV but not in the IR are called dangerously irrelevant operators. See [30] for example.

3 Higgsing, Fan and quiver tails

In this section, we give an N = 1 version of the quiver tails. First, we define the Fan in

section 3.1. Then in section 3.2 we describe its Seiberg duality. Then in section 3.3, we will

summarize the N = 1 quiver tail obtained by the nilpotent Higgsing of the linear quiver,

where the Fan appears as an important ingredient. Finally in section 3.4 we show that the

Fan is indeed obtained by Higgsing the linear quiver with the adjoint fields attached to

the end.
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SU(N) SU(N ′) U(ni) U(nj) U(1)B J+ J−

(Q, Q̃) (�, �̄) (�̄,�) · · (1,−1) 0 1

(Zi, Z̃i) (�, �̄) · (�̄,�) · (1,−1) 1− i 1

(Yi, Ỹi) · (�, �̄) (�̄,�) · · i+ 1 0

M
(p)
ii · · adj · · 2(i− p) 0

(M
(p)
ij ,M

(p)
ji ) · · (�, �̄) (�̄,�) · i+ j − 2p 0

Table 1. The Fan contains many fields organized in representation of the flavor symmetry. The

indices i, j range in the interval [1, `] and are ordered as i < j. The index p labels a tower of fields

in the same representation of the flavor symmetry, its range is 0 ≤ p ≤ i− 1.

Figure 5. A generic form of the Fan given by (N,N ′) and the partition N −N ′ =
∑5

k=1 knk.

3.1 Description of the Fan

The Fan is a collection of free chiral multiplets with certain global symmetries and super-

potential. It is labelled by two integers N,N ′ with N > N ′ and an `-partition

N −N ′ =
∑̀
k=1

knk . (3.1)

We will refer to ` as its size. The matter content is displayed in table 1. We also have a

choice of a color, σ; that we pick to be σ = −1 for simplicity. The other choice, σ = 1,

corresponds to swapping J+ and J− in table 1. It has the global symmetry

SU(N)× SU(N ′)×U(1)B ×
∏̀
i=1

U(ni)×U(1)+ ×U(1)− . (3.2)

Figure 5 is a representation of the Fan with size ` = 5. Each line corresponds to a

bifundamental hypermultiplet and each loop corresponds to an adjoint chiral multiplet.

The Fan appears in quiver gauge theories with the SU(N)×SU(N ′) symmetries gauged.

When the fan is glued, chiral anomalies at the SU(N)× SU(N ′) gauge groups of J± must

be cancelled. This will restrict the matter content that can appear on either side. The
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(a) A quiver tail with the Fan. (b) Seiberg dual

Figure 6. Seiberg dualizing at SU(N ′) in 6a yields another quiver 6b with the new Fan. The

U(n′) group is absorbed into the new Fan, labelled by (N,M) and the partition N −M =
∑

k kn
′
k

with n′1 = n′, n′i+1 = ni.

contributions of the Fan to the anomaly coefficient are:

SU(N) : TrJ+T
aT b = −Nδab , TrJ−T

aT b = 0 , (3.3)

SU(N ′) : TrJ+T
′aT ′b = −N ′δab , TrJ−T

′aT ′b = −
∑̀
i=1

niδ
ab , (3.4)

where T a and T ′a are the generators of SU(N) and SU(N ′) respectively. The anomaly at

SU(N), when it is gauged with an N = 1 vector multiplet, can be cancelled by coupling

the Fan to N (1, 0)-fundamental hypermultiplets.6 When it is gauged with an N = 2

vector, the anomaly is cancelled by coupling N (0, 1)-fundamental hypermultiplets to the

Fan. This provides N = 1 and N = 2 gluing of the Fan at the SU(N) gauge group.

When the SU(N ′) is gauged with an N = 1 vector multiplet, the anomaly at the

SU(N ′) can be cancelled by adding (N ′ −
∑`

i=1 ni) (1, 0) fundamental hypermultiplets.

Unlike the SU(N) side, we cannot gauge SU(N ′) with an N = 2 vector multiplet because

the anomaly cannot be cancelled with either (1, 0) or (0, 1) hypermultiplets only. We can

glue the Fan to an N = 2 quiver tail labelled by a partition of N ′ by an N = 1 SU(N ′)

vector multiplet. In figure 6a we illustrate the Fan glued to general quivers with N = 1

gluing at the SU(N) gauge group.

Superpotential. When the Fan appears in a larger quiver, we can write a superpo-

tential by considering all possible gauge invariant (2, 2)-operators that preserve the flavor

symmetry. We decompose it into three contributions

WF = W0 +WR +WL (3.5)

where W0 is composed of fields in the Fan only, WR comes from gluing at SU(N ′) and WL

comes from gluing at SU(N). Now we describe them.

6When we say (m,n)-operators/fields, (m,n) are their (J+, J−) charges.
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SU(N) U(ni) U(nj) J+ J−

µ
(p)
α adj · · 2p 0

M(p),α
ii · adj · 2(i− p) 0(

M(p),α
ij ,M(p),α

ji

)
· (�, �̄) (�̄,�) i+ j − 2p 0

Table 2. Charges of the M and µ operators used in (3.8).

If we consider the matter content of the Fan, the only superpotential terms we can

write are

W0 =
∑̀
i=1

[
λ0
iTr

(
ZiQ̃Ỹi

)
+ λ̃0

iTr
(
Z̃iQYi

)]
(3.6)

where the λ’s are complex coupling constants.

The next class of operators comes from the coupling of the quiver tail to the Fan

through the SU(N ′). To write these terms we consider the set of (2, 0)-operators, µ′ and

µt, constructed from the U(n′) and SU(M) quarks in figure 6a. The superpotential is

WR = λ′Tr
(
QQ̃µ′

)
+ λtTr

(
QQ̃µt

)
. (3.7)

The last class of operators come from gluing the Fan at the SU(N). To write these

terms, we consider the tower operators, µ
(p)
α ,

(
M(p),α

ij ,M(p),α
ji

)
, and M(p),α

ii . The µ’s are

constructed from fields to the left of the Fan. TheM’s are constructed from the Mij fields

of the Fan. Their charges are written in the table 2. When we glue at the SU(N), we

obtain the superpotential

WL = λαTr
(
µ(1)
α Q̃Q

)
+
∑̀
i=1

i−1∑
p=0

λα,βi,p Tr
(
µ(p)
α Z̃iZiM(p),β

ii

)

+
∑̀
i=1

i−1∑
p=0

λα,βij,pTr
(
µ(p)
α Z̃iZjM(p),β

ji

)
+
∑̀
i=1

i−1∑
p=0

λα,βji,pTr
(
µ(p)
α Z̃jZiM(p),β

ij

)
. (3.8)

To illustrate the M operators, we consider the set M(p),α
ij . The simplest examples in this

class are M
(p1)
ik M

(p2)
kj with p1 + p2 − k = p where we trace over the U(nk) group.

In the case of N = 2 gluing at SU(N), the µ
(p)
α operators are entirely given by the

chiral adjoint φ in the N = 2 vector multiplet, as µ(p) = φp. The index α is trivial in

this case. On the other hand, if we consider N = 1 gluing, then the µ operators are more

complicated. To illustrate this, we consider gluing the N = 2 linear quiver in figure 3 with

the box N identified with the SU(N) in the Fan gauged with an N = 1 vector. In this case,

the set µ
(p)
α corresponds to the chain operators that can be constructed from the products

of the quarks. To give an explicit example, we label the bifundamentals as (Qa, Q̃a) with

a = 1 corresponding to the one attached to the Fan. The operators, µ
(2)
α are (Q̃1Q1)2

adj

and (Q̃1Q̃2Q2Q1)adj.
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3.2 Seiberg duality and Fans

Under the Seiberg duality, a quiver with the Fan maps to another quiver with the Fan. To

illustrate this, we consider the quiver in 6a and dualize at SU(N ′) to obtain 6b. Under the

duality, the U(n′) flavor group is absorbed into the new Fan and thereby increasing its size

to ` + 1. We denote the U(n′) and SU(M) hypermultiplets as (Q′, Q̃′) and (Qt, Q̃t). We

also denote the fields of the new Fan as (q, q̃), (z, z̃), (y, ỹ) and (m, m̃).

• Firstly we need to replace SU(N ′) with its magnetic dual, SU(Nf − N ′). The total

number of flavors coming into this gauge group is Nf = N + N ′; the contributions

are N Q’s,
∑`

i=1 ni Y ’s, and n′ +M (1, 0) fields where n′ +M = N ′ −
∑
ni.

• The superpotential terms in (3.6) and (3.7) become mass terms under the duality. In

the magnetic theory, we replace the meson operators QYi, Q̃Ỹi, QQ̃
′, Q′Q̃, QQ̃t, and

QtQ̃ with their dual chiral superfields. The cubic terms in (3.6) become mass terms

for the Z’s while the quartic terms in (3.7) become mass terms for the new chiral

fields. Integrating out the Z’s decouples the SU(N) gauge group from the Fan.

• The chiral superfield dual to Q̃Q is an adjoint of the first SU(N) group. If we have

N = 2 gluing, the first term in equation (3.8) will become a mass term for the chiral

adjoint in the vector multiplet. Integrating out the massive chirals yields an N = 1

vector multiplet. On the other hand if the gluing is N = 1, the vector multiplet will

become N = 2 with the addition of the chiral fields dual to Q̃Q.

• The cubic superpotential involving the chiral adjoint of SU(M) becomes a mass term

when we replace the meson Q̃tQt with its dual chiral superfield. Thus the SU(M)

gauge group becomes an N = 1.

• The fields of the Fan in figure 6b come from three different sectors, which are listed

as in the table 3. The first set of fields is inherited from the old Fan. And the second

set of fields consists of the dual quarks of the SU(N ′) gauge group. The last set of

fields consists of the ones dual to the mesons of the old quiver tail.

• The flavor group U(n′) is absorbed into the Fan as the first flavor group U(n′1), and

the labeling of the rest is shifted by 1 to n′i+1 = ni. This yields the Fan labelled by

(N,M) and the partition N −M =
∑

k kn
′
k.

The superpotential of the dual theory is constructed by considering all possible gauge

invariant (2, 2)-operators that preserve the global symmetry. The same superpotential is

reproduced under the Seiberg duality.

3.3 Fan as a quiver tail

In this section, we describe how the Fan and quiver tails appear in class S theories. A quiver

tail associated to the partition Y of N is given by a punctured sphere with one maximal,

a number of minimal punctures and a puncture labeled by Y . Here Y corresponds to the

partition N =
∑`

k=1 knk.
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New fields Electric dual

m
(p+1)
i+1,i+1 M

(p)
ii(

m
(p+1)
i+1,j+1,m

(p+1)
j+1,i+1

)
(M

(p)
ij ,M

(p)
ji )

(q, q̃) (Qt, Q̃t)

(z1, z̃1) (Q′, Q̃′)

(zi+1, z̃i+1) (Yi, Ỹi)

(y1, ỹ1)
(

Trg(qQ̃t),Trg(q̃Qt)
)

(yi+1, ỹi+1)
(

Trg(YiQ̃t),Trg(ỸiQt)
)

m
(0)
1,1 Trg(qq̃)

m
(0)
i+1,i+1 Trg(YiỸi)

(m
(0)
1,j+1,m

(0)
j+1,1)

(
Trg(qỸj),Trg(Yj q̃)

)
(m

(0)
i+1,j+1,m

(0)
j+1,i+1)

(
Trg(YiỸj),Trg(Yj Ỹi)

)
Table 3. The set of new fields appears upon dualizing the Fan.

Figure 7. A Nilpotent vev to the adjoint chiral gives a Fan attached to the end of the quiver with

N = 1n1 + 2n2 + · · · 5n5 and N ′ = 0.

Starting from the linear quiver given in section 2.2, we can get the quiver tail by

Higgsing one of the maximal punctures to Y . When the puncture has the same color

as that of the pair-of-pants, this is same as giving a nilpotent vev to the quark bilinear

µ0 = Q̃0Q0− 1
NTrQ̃0Q0. When the color of the puncture is different from that of the pair-

of-pants, we give a vev to the adjoint chiral multiplet. In both cases, the U(1)0 × SU(N)0

flavor symmetry of the quiver is broken down to
(∏`

i=1 U(ni)
)

.

Now, let us describe the quiver tail associated to the partition above. If the color of

the puncture we Higgs is different from that of the pair-of-pants, the theory we obtain is

given by attaching the Fan with (N,N ′ = 0) as in the figure 7.
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-

+

(-) (+)

+

(+)

++

(+)

(a) A colored pair-of-pants decomposition corresponding to the quiver tail.

(b) The quiver tail corresponding to the above colored pair-of-pants decomposition.

Figure 8. The quiver tail given by the partition N = 1n1 + 2n2 + · · · 5n5. N = 2 Higgsing

propagated until we hit k = 3. Then the gauge group of the next node becomes SU(N), and

we have the Fan between SU(N) and SU(N3). The Fan is given by (N,N3) and the partition

N −N3 = n4 + 2n5.

If the color of the puncture is the same as the pair-of-pants, we proceed as follows.

1. When the neighboring gauge node of Q0 is N = 2, the flavor node becomes n1 and

the gauge node becomes N1 =
∑`

i=1 ni. If it is N = 1, then go to step 3.

2. When the next neighboring gauge node is again N = 2, the gauge group becomes

N2 = N1 +
∑`

i=2 ni, and add n2 fundamental flavors to it. If it is N = 1, then go to

step 3.

3. Proceed until we hit an N = 1 gauge node. In this case, the neighboring gauge

node remains to be SU(N), since the Higgsing stops propagating. Suppose we hit

the N = 1 node at step k. In this case, the remaining flavor boxes ni with k < i < `

should be attached to the gauge node of Nk. Therefore we get the Fan labelled by

(N,Nk) with partition N −Nk =
∑`−k

m=1mnm+k.

See figure 8 for the case with ` = 5 and k = 3. We see that the Fan serves as a role of

gluing N = 1 nodes with different ranks in the quiver tail.

Let us remark on the flavor symmetry of the quiver tail with the Fan. Even though

the Fan itself has the flavor symmetry U(1)×
∏
k U(nk), the flavor symmetry of the whole

quiver tail does not include the overall U(1) piece of
∏
k U(nk). The global symmetry of the

quiver tail associated to the puncture Y does not contain the extra U(1). We can see this

directly in the case of figure 7. In this case, we see that the overall U(1) can be identified

with U(1)B symmetry of the Fan.
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3.4 Nilpotent Higgsing and Fan

In this section, we give a derivation of the Fan for the case when N ′ = 0. Let us now

consider the linear quiver theory as in figure 2. It has a chiral adjoint M0 attached at the

flavor SU(N) node. The superpotential is W = TrM0µ0, where µ0 is the quark bilinear

µ0 = q̃0q0 − 1
NTrq̃0q0 with (J+, J−) = (0, 2). Here we choose the color of the pair-of-

pants corresponding to q0 to be σ = −1. We Higgs the flavor SU(N) by a nilpotent vev

corresponding to the partition N =
∑

k knk to M0. In the following, we omit the subscript

of µ and M for simplicity.

Under the SU(2) embedding ρ labelled by the partition of N , the fundamental repre-

sentation of SU(N) decomposes as follows:

N→
⊕̀
i=1

V i−1
2
⊗ ni , (3.9)

where Vj is the spin j representation of SU(2) and ni is the fundamental representation

of SU(ni) ⊂ S[
∏`
i=1 U(ni)]. The residual flavor symmetry S[

∏`
i=1 U(ni)] is given by the

commutant of the embedding. The adjoint representation of SU(N) decomposes as

adj →
⊕̀
i,j=1

(
V i−1

2
⊗ ni

)
⊗
(
V j−1

2
⊗ n̄j

)
− V0

=
⊕
i<j

i⊕
k=1

V j−i+2k−2
2

⊗ (ni ⊗ n̄j ⊕ n̄i ⊗ nj)⊕
⊕̀
i=1

i⊕
k=1

Vk−1 ⊗ ni ⊗ n̄i − V0 . (3.10)

This decomposition gives us the quantum numbers of the various elements of the SU(N)-

adjoint M .

We now use the decoupling argument of [9]. Due to the vev of M the superpotential

is written as

W = µ1,−1,1 +
∑
J,m,f

MJ,−m,fµJ,m,f , (3.11)

whereMJ,m,f is the fluctuation from the vev, and J , m and f labels the spins, σ3-eigenvalues

and the representations of the flavor symmetry
∏
i SU(ni) appearing in the decomposi-

tion (3.10). By the presence of the first term the SU(N) current is not conserved anymore,

and becomes non-BPS by absorbing the components of µ except for the m = J . The

components of M which coupled to the absorbed µ will be decoupled and the remaining

components are MJ,−J,k. Namely the m = −J component of each term of (3.10). Also

we should note that due to the first term of the superpotential the U(1)± symmetries are

shifted as

J+ → J+ − 2ρ(σ3), J− → J− , (3.12)

(or R0 → R0−ρ(σ3) and F → F−ρ(σ3)) in order to keep the first term to be J+ = J− = 2

(R0 = 2, F = 0).
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This gives us the gauge neutral components of the Fan in the low energy theory. We

saw that there are i gauge neutral chiral multiplets (M
(p)
ij ,M

(p)
ji ), 0 ≤ p < i transforming

as bifundamentals of U(ni)×U(nj), i ≤ j. We identify these chirals with the component of

M (3.10) with m = −J (and k = i− p). As a consequence of (3.12), the (J+, J−) charges

of (M
(p)
ij ,M

(p)
ji ) become (i+ j − 2p, 0), which indeed match with table 1.

Some elements of the (anti-)quark multiplet transforming in the (anti-)fundamental

representation of the SU(N) flavor symmetry become massive due to the Higgsing and

will be integrated out. Since 〈M〉 = ρ(σ+) which is J = 1, m = 1 component, it implies

that the (anti-)quarks Zi (Z̃i) that remain massless are the components with m = i−1
2 in

V i−1
2
⊗ ni (V i−1

2
⊗ n̄i). Zi and Z̃i together form a hypermultiplet whose (J+, J−) charges

are (1− i, 1) by using (3.12).

In addition we have the superpotential (3.5). We give a derivation of it in appendix A.

The Goldstone multiplets. In any field theory we expect the spontaneous breaking of

global symmetries to be accompanied by the presence of massless Goldstone bosons whose

number is equal to the number of broken generators of the global symmetry. In supersym-

metric theories these Goldstone bosons will form the scalar components of massless chiral

multiplets which we will call Goldstone multiplets.

However, the number of Goldstone multiplets is not necessarily equal to the number

of broken generators of the global symmetry. For example, consider the linear quiver of

figure 2 with gauge group being SU(3). Upon nilpotent Higgsing (giving a nilpotent vev to

M0) of the SU(3) linear quiver by the partition 3 = 2 + 1, the SU(3) symmetry gets broken

down to U(1). The chiral fields that decouple from the low energy theory are expected to

be the Goldstone multiplets. But there are only 4 such chiral multiplets while the number

of broken generators is 7.

The reason behind the discrepancy in this counting is that the scalar in a Goldstone

multiplet is complex. Thus it might be that a Goldstone multiplet is either made up of two

Goldstone bosons or a single Goldstone boson that gets paired up with a non-Goldstone

scalar. In view of this we see that the number of Goldstone multiplets will always be less

than or equal to the number broken generators of the global symmetry. The correct number

of Goldstone multiplets is obtained by observing that the superpotential is holomorphic.

This implies we should count the number of broken generators of the complexified global

symmetry [31]. Using this we now show that the number of decoupled chirals indeed

matches with the number of expected Goldstone multiplets.

In the theories of interest here, we want to consider the breaking of G = SU(N) down

to H = S[
∏`
i=1 U(ni)]. The complexification of G is Ḡ = SL(N,C). Since the breaking of

global symmetries is achieved through 〈M〉 = ρ+, we therefore look for generators X of

SL(N,C) which satisfy

[ρ+, X] 6= 0 . (3.13)

Note that any generator of SL(N,C) can be thought of as a complex matrix transforming

in the adjoint representation of SU(N). We can therefore label each element of X by its

SU(2) ↪→ SU(N) quantum numbers. In fact we can also simultaneously label them by the
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Figure 9. An example of colored pair-of-pants decomposition for (p, q) = (2, 1). The shaded

cylinder corresponds to an N = 1 vector multiplet and unshaded one correspond to an N = 2

vector multiplet. We have 3 punctures of opposite color. There is an adjoint chiral attached to each

of them.

S
(∏`

i=1 U(ni)
)

symmetries that commute with the SU(2) embedding. The components of

X are therefore classified as in (3.10). In terms of XJ,m,k, we see that (3.13) is satisfied if

X has a non-zero component with m 6= J . The Goldstone multiplet corresponding to such

an X will be the quantum fluctuation proportional to [ρ+, X]. These fluctuations therefore

correspond to the components in (3.10) that have σ3-egenvalues, m 6= −J . This is same as

the quantum numbers of the decoupled chiral multiplets. We thus establish a one-to-one

correspondence between the expected Goldstone multiplets and the decoupled chirals.

4 N = 1 dualities

In this section, we discuss various duality frames for an SCFT associated to a UV curve.

In order to give a UV description of the theory, we need to specify a colored pair-of-pants

decomposition. Any Riemann surface with negative Euler number can be decomposed

in terms of pairs-of-pants. We assign Z2-valued colors to each pairs-of-pants so that the

number of (+,−)-colored pants are the degrees of the normal bundles (p, q). Different

colored pair-of-pants decompositions give rise to different UV descriptions of the same

SCFT in the IR. See figure 9 for an example.

Let us assume all the punctures to be maximal for the moment. For a given colored

pair-of-pants, we associate the TN theory found in [1] which we will review in 4.2. For each

puncture, we have an operator µi transforms as the adjoint of SU(N)i. When the puncture

has a different color from the pair-of-pants itself, we add chiral field Mi transforming

as the adjoint of SU(N)i and also a superpotential W = Tr(Miµi). When we glue two

pair-of-pants with the same color, we gauge the flavor symmetry with an N = 2 vector

multiplet. When gluing two different colored pair-of-pants, we gauge the flavor symmetry

by an N = 1 vector multiplet. See figure 10, which is the UV description corresponding to

the pair-of-pants decomposition of figure 9.

Non-maximal punctures can be obtained by Higgsing or partially closing the puncture.

Let us call ρi to be the SU(2) embedding into Γ that is used to label the punctures. For

a puncture having the same color as the pair-of-pants, Higgsing is implemented through
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Figure 10. The UV description corresponding to the colored pair-of-pants description of figure 9.

Here we assumed all punctures to be maximal.

Figure 11. A UV description obtained from partially closing SU(N)3,4 punctures to the minimal

punctures.

giving a nilpotent vev ρi(σ
+) to the operator µi, and for an opposite colored puncture, we

give a vev to Mi instead. For example, consider the UV description of figure 10. When

we Higgs SU(N)3 and SU(N)4 to minimal punctures, we get the theory as in figure 11.

Since we closed the punctures that have the same color as the pair-of-pants, we can simply

use N = 2 results of [1, 32–38] to identify the theory corresponding to the pair-of-pants.

This is really the same as choosing N = 2 building block and gluing through the N = 1 or

N = 2 vector multiplets.

Things are different when we close the punctures with opposite colors. When we close

SU(N)1 to minimal puncture, the theory (in this duality frame) is still non-Lagrangian,

but we can identify decoupled operators and global symmetry [9]. When we close SU(N)5,

we give a vev ρ5(σ+) to the chiral superfield M5, from which the quarks acquire nilpotent

masses. This theory has a Lagrangian description. As we have seen, this kind of Higgsing

yields the Fan labelled by (N,N ′ = 0) and the partition corresponding to ρ5.

We see that there are many different colored pair-of-pants decompositions for a given

UV curve. From the six-dimensional perspective, four-dimensional physics in the IR has

to be independent from the specific choice of colored pair-of-pants. Therefore we can give

equivalent descriptions for the same IR theory from the UV curve and its colored pair-of-

pants decompositions. This generalizes the usual Seiberg duality for the N = 1 theories

and also Argyres-Seiberg-Gaiotto duality of N = 2 class S theories.

In the rest of this section, we discuss two particular examples. In section 4.1, we study

successive application of Seiberg duality on the N = 2 quiver tail connected by an N = 1
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(a) A colored pair-of-pants decomposition corresponding to the quiver.

(b) The quiver tail corresponding to the above colored pair-of-pants decomposition.

Figure 12. The quiver tail obtained fromN = 2 Higgsing for the partitionN = 1n1+2n2+. . .+5n5.

The rank of gauge group is fixed by 2Ni = Ni+1 +Ni−1 + ni.

gauge node. This illustrates the appearance of the Fan in N = 1 quiver tail. In section 4.2,

we discuss duality of SU(N) SQCD with 2N fundamental flavors. We find a dual frame

involving the TN theory and the Fan, which is similar to the strong coupling dual of N = 2

SQCD discovered by Argyres and Seiberg [28].

4.1 N = 1 quiver tails

Let us consider a UV curve with 5 minimal punctures of + color, 1 minimal puncture of

− color, one + colored maximal puncture and one + colored generic puncture labelled by

a partition N =
∑

k knk. We also pick the degrees of normal bundles to be (p, q) = (5, 1).

This theory has many different dual frames. We start with a dual frame which resembles

the more familiar N = 2 quiver tail and then dualize multiple times to see the various dual

frames for the N = 1 quiver tail.

Consider the dual frame given by the colored pair-of-pants decomposition of figure 12a.

This is essentially the same as the N = 2 quiver tail, so that we get the 12b. Only the

very last node is gauged via an N = 1 vector multiplet.

Now, if we Seiberg dualize the N = 1 node, we get the quiver as shown in figure 13. We

see that there is a chiral multiplet dual to the meson formed from the quarks attached at

node n5. The dual quarks will have the opposite F charge which is depicted by red. Also,

there is an additional blue edge connecting N4 and n5 which is the dual to the quark bilinear

formed from the SU(N)×SU(N4) bifundamental and the fundamental attached at n5 node

in figure 12b. The rest of the dual mesons become massive from the superpotential. In this

frame, we see that there is the Fan labelled by (N,N4) and the partition N −N4 = 1 · n5,

connecting a shorter N = 2 quiver tail of length 4 and the left-hand segment of the quiver.

In terms of nilpotent Higgsing of the linear quiver, the propagation of vev is terminated at

the N = 1 node N4, giving us the Fan that glues to the SU(N) gauge node.

Now, we dualize the gauge group SU(N4) node to get the quiver depicted in figure 14.

The flavor node n4 becomes part of the new Fan, which is labelled by (N,N3) and the
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(a) A colored pair-of-pants decomposition corresponding to the quiver.

(b) The quiver tail corresponding to the above colored pair-of-pants decomposition.

Figure 13. The quiver tail consists of the N = 2 tail of length 4 and the Fan labelled by (N,N4)

and the partition N −N4 = 1n5.
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(-) (+)

+

(+)

++

(+)

(a) A colored pair-of-pants decomposition corresponding to the quiver.

(b) The quiver tail corresponding to the above colored pair-of-pants decomposition.

Figure 14. The quiver tail consists of the N = 2 tail of length 3 and the Fan labelled by (N,N3)

and the partition N −N3 = 1n4 + 2n5.

partition N −N3 = 1n4 + 2n5. We see that there is an extra dual meson attached to the

n5 node.

Further dualizing the SU(N3) node, we get the quiver of figure 15. The flavor node n3

now becomes the part of the Fan, and we get extra dual mesons for each of the preexisting

nodes in the Fan. Note that we also have additional chiral multiplets transforming as the

bifundamental of U(n4)×U(n5).

Dualizing once again, we get the quiver tail of figure 16. Once again, the flavor node

n2 becomes a part of the Fan, and chiral multiplets get added. This quiver tail can also be

obtained from starting with the linear quiver and Higgsing µ0 = (Q̃0Q0)adj directly by a
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(a) A colored pair-of-pants decomposition corresponding to the quiver.

(b) The quiver tail corresponding to the above colored pair-of-pants decomposition.

Figure 15. The quiver tail consists of the N = 2 tail of length 2 and the Fan labelled by (N,N2)

and the partition N −N2 = 1n3 + 2n4 + 3n5.
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(-)(+)

+

(+)

++

(+)

(a) A colored pair-of-pants decomposition corresponding to the quiver.

(b) The quiver tail corresponding to the above colored pair-of-pants decomposition.

Figure 16. The quiver tail consists of the N = 2 tail of length 1 and the Fan labelled by (N,N1)

and the partition N −N1 = 1n2 + 2n3 + 3n4 + 4n5.

nilpotent vev associated to the partition N =
∑

k knk. We see that the Higgsing does not

propagate beyond N1. All the flavor nodes are attached to N1 and its neighbor N .

Now finally, upon dualizing the SU(N1) gauge node, we get the theory as in the

figure 17. This gives us the Fan of size ` = 5 labelled by (N, 0) and the partition

N =
∑5

k=1 knk attached to the right end of the quiver.

We see that there are many different quiver tail descriptions for a given choice of

punctures in N = 1 class S theories. In the above example, we have only described UV
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(a) A colored pair-of-pants decomposition corresponding to the quiver.

(b) The quiver tail corresponding to the above colored pair-of-pants decomposition.

Figure 17. The quiver tail consists of the maximal Fan of size ` = 5, labelled by (N, 0) and the

partition N =
∑

k knk.

Figure 18. The quiver diagram of SU(N) SQCD with 2N flavors.

SU(N)g SU(N)1 SU(N)2 U(1)R0 U(1)F U(1)A U(1)B

(Q0, Q̃0) (�, �̄) (�̄,�) · 1/2 −1/2 (1,−1) ·
(Q1, Q̃1) (�̄,�) · (�, �̄) 1/2 1/2 · (1,−1)

Table 4. Charges of matter multiplets in SQCD.

frames that have Lagrangian descriptions. For these cases, all the pairs-of-pants have the

same color as the minimal puncture inside. In general, one can also consider a dual frame

which has a different colored puncture inside its pair-of-pants. Then the dual frame has a

sector with no Lagrangian description. We will discuss such a case in the next section.

4.2 N = 1 analog of Argyres-Seiberg duality

In this section we use the Fan to provide a new dual description of N = 1 SU(N) SQCD

with 2N flavors with the quartic coupling (2.5) with i = 1. This is the (σ−1, σ0, σ1, σ2) =

(−1, 1,−1, 1) linear quiver as described in section 2.2. The flavor symmetry of the theory

is SU(N)1 × SU(N)2 × U(1)A × U(1)B. We summarize the matter content in table 4 and

quiver in figure 18. In this section it is more convenient to use the symmetries R0 and F
defined in (2.1).
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(a) Electric SQCD.
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(b) Magnetic SQCD.

(+)

-

-

+

+

(-)

(c) Swapped SQCD.

(+)
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+

+

(-)

(d) Argyres-Seiberg dual.

Figure 19. Colored pair-of-pants decompositions of the UV curve corresponding to the SQCD

with SU(N) gauge group and 2N flavors and its dual descriptions.

It has been pointed out in [9] that there are two dual descriptions of the SQCD. Let

us shortly explain these here. One of them is N = 1 SU(N) SQCD with 2N flavors with

a chiral multiplet in the adjoint representation of SU(N)1 and a chiral multiplet in the

adjoint of SU(N)2 coupled by the cubic interaction with quarks. This is indeed the Seiberg

dual theory of the original SQCD with the quartic coupling. In terms of the Riemann

surface this is understood as the exchange of the maximal punctures as in figures 19b.

Other dual description whose Lagrangian is not known corresponds to the exchange of the

minimal punctures as in figure 19c. To obtain this theory, we first consider an N = 1

SU(N) gauge theory coupled to two TN theories [1] (which will be reviewed below) and

to two chiral multiplets, which are the adjoints of SU(N)A and SU(N)B flavor symmetries

of the two TN theories respectively. This is associated to the Riemann surface where all

the punctures are maximal, but the color assignment is same as in 19c. Then the dual

description is obtained by Higgsing of SU(N)A and SU(N)B symmetries down to U(1)A
and U(1)B.

In this section we will find a third dual description of the SQCD corresponding to

the figure 19d. Since the UV description involves the TN theory, we will review relevant

details first.

The TN theory is obtained by compactifying N coincident M5-branes, with N = 2

twist, on a sphere with three maximal punctures. Each puncture carries an SU(N) global

symmetry, thereby leading to an SU(N)3 flavor symmetry. It is an N = 2 SCFT and it

admits U(1)N=2 × SU(2)R R-symmetry. When we describe it as an N = 1 SCFT, we use

the N = 2 R-symmetry to write R0 and F as

R0 =
1

2
RN=2 + I3, F = −1

2
RN=2 + I3 (4.1)

where RN=2 and I3 are generators of U(1)N=2 and the diagonal U(1) of the SU(2)R re-

spectively. This theory has chiral operators µi (i labels the three SU(N) flavor symme-
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Figure 20. Analog of Argyres-Seiberg dual to the N = 1 SU(N) SQCD with 2N flavors.

SU(N)g SU(N)1 SU(N)2 U(1)R0 U(1)F U(1)1 U(1)N−1

(Z1, Z̃1) (�, �̄) · · 1/2 −1/2 (−1, 1) ·

(z, z̃) (�, �̄) · · 3−N
2

1−N
2 · (−1, 1)

M1 · · · 1 1 · ·

(M1,N−1,MN−1,1) · · · N/2 N/2 (1,−1) (−1, 1)

M
(k=1,··· ,N−1)
N−1 · · · k k · ·

X · adj · 1 −1 · ·

Table 5. Charges of matter multiplets in the dual theory, where M1 := M
(0)
1,1 and M

(k)
N−1 :=

M
(N−1−k)
N−1,N−1 and z = ZN−1.

tries) which are the moment maps of the SU(N) flavor symmetries. It also has operators

Q(k) transforming in the k-th antisymmetric representation of all three SU(N) symme-

tries [17, 39, 40]. Their R0 and F charges are

R0(µi) = F(µi) = 1, R0(Q(k)) = F(Q(k)) =
k(N − k)

2
. (4.2)

The results of section 3 tell us that figure 19d represents an SU(N) gauge theory

coupled to the Fan with σ = −1 labelled by (N, 0) and a partition N = 1 + (N − 1),

i.e., ` = N − 1, n1 = nN−1 = 1 and ni = 0 otherwise. It is coupled to the TN theory

by gauging an SU(N) flavor symmetry. Furthermore, a chiral field X transforming in the

adjoint representation of SU(N)1 flavor symmetry of the TN theory is added. SU(N)1,2

are the flavor symmetries of the TN theory which are not gauged.

The dual theory is described by the quiver in figure 20. The matter content is sum-

marized in table 5. For convenience of the discussion, we write fields from the Fan as

M1 := M
(0)
1,1 , M

(k)
N−1 := M

(N−1−k)
N−1,N−1 and z := ZN−1.

The important data needed in including the TN in these quivers is its contribution

to the anomalies. These are described in section 5. For the purpose of the quiver in 20,

the contribution of TN to the chiral anomalies (R0SU(N)2,FSU(N)2) is the same as N

fundamental (J+, J−) = (1, 0) hypermultiplets.
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Finally, one linear combination of M1 and M
(1)
N−1 must be projected out. We denote

the combination that survives as M̂1. We can then write the superpotential as

Wm = M̂1(TrzµN−2
g z̃ + TrZ1Z̃1) +

∑
α

N−1∑
k=2

M(k),α
N−1TrzµN−1−k

g z̃

+M1,N−1TrZ1z̃ +MN−1,1TrzZ̃1 + Trµ1X + TrZ1µgZ̃1 + TrzµN−1
g z̃, (4.3)

where µ1 and µg are the moment maps of SU(N)1 and SU(N)g symmetries respec-

tively. The set of operators, M(k),α
N−1 correspond to all possible composite operators with

charge (2k, 0).

Note that this is reminiscent of the Argyres-Seiberg duality [28] of N = 2 SU(3) SQCD

with six flavors. Indeed, if we consider the analogous UV curve in theN = 2 setting without

color assignments, this dual frame is exactly that of Argyres-Seiberg when N = 3. The

duality presented here is an N = 1 analog of that. It will be interesting to derive this

duality through the technique of inherited duality [41, 42].

We identify U(1)A and U(1)B of the SQCD as

U(1)A = U(1)1 + U(1)N−1, U(1)B = (N − 1)U(1)1 −U(1)N−1. (4.4)

It is a straightforward calculation to show that all the anomaly coefficients of the flavor

symmetries agree on both sides of the duality. We will see this in section 5. In section 6,

we will also see the agreement of the superconformal index of both theories. This will be

the strongest check of the duality.

5 Anomalies and central charges

In this section we compute the ’t Hooft anomaly coefficients of various objects. In sec-

tion 5.1, we start with computing those of the Fan introduced in section 3.1. We then

interpret the results in terms of a sphere with punctures and give a concise expression for

the anomaly coefficients of the class S theories in general, in section 5.2.

5.1 Anomalies of the Fan

The matter content of the Fan labelled by (N,N ′ = 0) and a partition N =
∑`

k=1 knk with

σ = −1 is given in the table 1. One can choose σ = +1 by swapping J+ and J− charges.

In evaluating the anomalies, it is useful to write them in terms of

Ni =

i∑
k=1

nkk + i
∑
k=i+1

nk, (5.1)

and to notice the following identity

N2 = 2
∑̀
i=1

Ni

∑̀
j=i

nj −
∑̀
i=1

Nini. (5.2)
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We find the ’t Hooft anomaly coefficients of SU(ni) and U(1)i for i ≥ 2 are

TrT 2
i R0 = σTrT 2

i F = −1

2
Ni,

TrU2
i R0 = −Ni − i(i− 1)ni, σTrU2

i F = −Ni + i(i+ 1)ni, (5.3)

where Ti and Ui are the generators of SU(ni) and U(1)i respectively. The other anomaly

coefficients are given by

TrR0 = −
∑̀
i=1

Ni

∑̀
j=i

nj , σTrF =
∑̀
i=1

Ni

∑̀
j=i+1

nj + 1, (5.4)

TrFaR3−a
0 = −(−σ)a

4

∑̀
i=1

ni

[
i∑

j=1

nj
(
i3j − fa(i, j)

)
+
∑̀
j=i+1

nj
(
i3j − fa(j, i)

) ]
, (5.5)

where

fa(i, j) =
1

2

j−1∑
p=0

(i+ j − 2p− 2)3−a (i+ j − 2p)a . (5.6)

Writing explicitly,

TrR0F2 =
1

4

∑̀
i=1

(
N2 −N2

i

)
− 1

4

∑̀
i=1

Ni

∑̀
j=i

nj , (5.7)

σTrR2
0F =

1

4

∑̀
i=1

(
N2 −N2

i

)
+

1

2
N2 − 1

4

∑̀
i=1

Ni

∑̀
j=i

nj . (5.8)

We found that the rest can be obtained from

TrF3 = TrF − 3TrFR2
0, TrR3

0 = TrR0 − 3TrF2R0. (5.9)

From Linear quiver. The above anomalies can also be obtained by a rather indirect

way. The idea is to use the duality: as we saw in section 4.1, the Fan was obtained by

taking various Seiberg dualities to the linear quiver theories with N = 1 SU(N) gauge

theory coupled to N = 2 quiver tail labelled by partitions of N : N =
∑`

k=1 nkk. Thus, let

us first focus on this original theory. This theory has gauge symmetry G =
∏`
k=1 SU(Nk)

with (5.1). Notice that N` = N . All the gauge groups except for the `-th one are N = 2. In

addition to the bifundamentals, there are ni fundamental hypermultiplets attached to the

SU(Ni) gauge group. The tail has a label σ = ±1 depending on the F-charge of the matter

fields F = σ/2. (The F-charge of the chiral adjoint multiplets of the gauge symmetry is

−σ.) We end the quiver by adding N fundamental hypers with R0 = 1/2 and F = −σ/2
to SU(N`) gauge group. We further attach a chiral multiplet (R0 = 1 and F = σ) in the

adjoint representation of the SU(N) flavor symmetry of N hypers.
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Then, the ’t Hooft anomaly coefficients of R0 and F of this theory are given as

TrR0 = −`−
∑̀
i=1

Ni

∑̀
j=i

nj , TrR3
0 =

1

4
TrR0 +

3

4

∑̀
i=1

(
N2
i − 1

)
, (5.10)

TrF = −σ(2 + TrR0), TrF3 =
1

4
TrF − 3σ

4

[∑̀
i=1

(
N2
i − 1

)
− 2

(
N2 − 1

) ]
,

(5.11)

TrR0F2 =
1

4
TrR0 −

1

4

∑̀
i=1

(N2
i − 1), TrR2

0F = −σ
(

TrR0F
2 +

1

2
N2

)
. (5.12)

Again we note that they satisfy (5.9).

After repeatedly applying the Seiberg dualities, we end up with an N = 2 linear

quiver attached to the Fan. The quiver has ` gauge nodes with SU(N) gauge groups linked

together by bifundamentals with R0 = 1/2 and F = σ/2. All gauge groups are N = 2

vector multiplets except for the one at k = 1. The Fan (with −σ) is attached to this

k = 1 N = 1 gauge node. By subtracting the contribution of this quiver except for the

Fan from (5.10), (5.11) and (5.12), we reproduce the anomaly coefficients (5.4) and (5.5).

Note that for TrF , TrF3 and TrR2
0F , there are overall sign differences from (5.4) and (5.5).

This is because the Fan appeared here is specified by −σ.

5.2 Anomalies of class S theories

So far we have computed the anomaly coefficients of the Fan. In the class S point of view,

the Fan with σ = +1 is associated to a sphere (p = 1, q = 0) with a maximal puncture with

σ = +1, a minimal puncture with σ = +1 and a puncture labeled by Y with σ = −1 or

the opposite choice. Here we will show that the anomaly coefficients can be given in terms

of the data of the Riemann sphere and the punctures. By generalizing this observation, we

will conjecture that the anomaly coefficients of the class-S theories can be written down

as a sum of contributions from the following:

• Background contribution from the curve: Cg,n with normal bundle L(p)⊕L(q) spec-

ified. Here p+ q = 2g − 2 + n is imposed.

• Local contributions from each puncture (ρ, σ)i=1,...n.

If we write the number of punctures with color σ to be nσ, n = n+ +n− is the total number

of punctures. We will first summarize the case of N = 2 theories, which have been worked

out in full generality by [38], and then give a generalization to the N = 1 theories.

In the N = 2 case, we always set q = 0 and n− = 0 so that the total space becomes the

cotangent bundle of the Riemann surface Cg,n. All the punctures have the same color, thus

they are specified entirely by the embedding of SU(2) into Γ labeling the class S theory.

For these N = 2 theories, the number of effective vector multiplets nv and hypermultiplets

nh can be used to determine the anomaly coefficients of the N = 2 R-symmetries:

TrRN=2 = TrR3
N=2 = 2(nv − nh), TrRN=2I

2
3 =

nv
4
. (5.13)
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The quantities nv, nh are well-defined in the case of Lagrangian theories, but it is useful

book-keeping device to use for non-Lagrangian theories as well.

For a given punctured Riemann surface, we can separate the contribution from the

background Riemann surface and the punctures. For Γ = AN−1, the background contribu-

tion for a genus g Riemann surface with n punctures is given by

nh(Cg,n) =
2

3
(2g − 2 + n)N(N2 − 1), (5.14)

nv(Cg,n) =
1

6
(2g − 2 + n)(4N3 −N − 3). (5.15)

Note that the definition of the background contribution is slightly different from the one

in the literature by the terms including n. The factor 2g− 2 +n is the number of the pairs

of pants, and this definition is more convenient to proceed to N = 1 class S theories.

For a puncture labeled by a Young diagram Y , (called regular punctures)

nh(Y ) =
1

2

∑
r

l2r +
N∑
k=2

(2k − 1)pk −
1

6
(4N3 −N), (5.16)

nv(Y ) =

N∑
k=2

(2k − 1)pk −
1

6
(4N3 −N − 3), (5.17)

where pk labels the structure of the poles at the puncture (which can be read off from

Y ) [1] and lr is the length of the r-th row of Y . For example, the maximal puncture

has the pole structure pmax = (0, 1, 2, · · · , N − 1) and the minimal puncture has pmin =

(0, 1, 1, · · · , 1). Note again that the last terms are absent in the definition in the literature.

These compensate the changes in the background contributions. In general, one can also

have irregular punctures as well, but we will not consider them here. For example, the

maximal puncture has

nh(Ymax) = 0, nv(Ymax) = −1

2
(N2 − 1), (5.18)

and the minimal puncture has

nh(Ymin) = −1

6
(4N3 − 6N2 − 4N), (5.19)

nv(Ymin) = −1

6
(4N3 − 6N2 −N + 3). (5.20)

By summing altogether, nh and nv are

nh = nh(Cg,n) +
∑
i

nh(Yi), nv = nv(Cg,n) +
∑
i

nv(Yi). (5.21)

Also, the flavor central charge of an N = 2 theory is defined by

kδab = −2TrRN=2T
aT b (5.22)

where T a is the generator of the flavor symmetry.
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We now define the N = 1 version of nh and nv. Let σi be the sign of the i-th puncture.

They are given by

n̂h = n̂h(Lp,q) +
∑
i

σinh(Yi) , n̂v = n̂v(Lp,q) +
∑
i

σinv(Yi) , (5.23)

where

n̂h(Lp,q) =
2

3
(p− q)N(N2 − 1) , (5.24)

n̂v(Lp,q) =
1

6
(p− q)(4N3 −N − 3) . (5.25)

Since we are considering N = 1 theories, n̂h and n̂v do not have the interpretation of the

effective numbers of hyper and vector multiplets. However, we continue to use these letters.

In terms of these, our proposal for the ’t Hooft anomaly coefficients are as follows:

TrR0 = nv − nh, TrR3
0 = nv −

nh
4
, (5.26)

TrF = −(n̂v − n̂h), TrF3 = −n̂v +
n̂h
4
, (5.27)

TrR0F2 = −nh
4
, TrR2

0F =
n̂h
4
, (5.28)

where nh and nv are (5.21) with 2g − 2 + n = p+ q.

In an N = 1 theory which can be obtained from the N = 2 one, we identify the

R-symmetries as [43]

R0 =
1

2
RN=2 + I3, F = −1

2
RN=2 + I3. (5.29)

With these, the above anomaly coefficients (without hats) can be obtained by using (5.13).

Then we changed nv and nh into n̂v and n̂h for the anomalies involving odd power of F .

We are proposing these formulae, however, for the theories which do not necessarily have

the N = 2 origin, like the Fan.

Let us check these formulae are indeed correct for a few theories.

Fan. The Fan with σ = +1 is associated with a sphere with p = 1 and q = 0 and three

punctures, maximal, minimal and the one specified by Y . Therefore, we get from (5.21)

and (5.23),

nv =

N∑
k=2

(2k − 1)pk −
1

6
(4N3 − 3N2 −N), nv − nh = −1

2

(
N2 +

∑
r

l2r

)
,

n̂v = −
N∑
k=2

(2k − 1)pk +
1

6
(4N3 + 3N2 −N − 6), n̂v − n̂h = −1

2

(
N2 + 2−

∑
r

l2r

)
.

It is straightforward to see that the anomaly coefficients obtained by substituting these

into (5.28) agree with the ones from the direct computation (5.4) and (5.5), by using the

identities
∑

r l
2
r =

∑`
i=1Nini,

∑N
k=2(2k − 1)pk = N

6 (4N2 − 3N − 1) −
∑

i(N
2 − N2

i ),

and (5.2).
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SU(N) SQCD with Nf = 2N . Now let us try to see how the formulae work in other

class S theories. A simple example is SQCD with Nf = 2N considered in section 4.2 which

is associated with a sphere with two maximal punctures with σ = +1 and σ = −1 and two

minimal punctures with σ = +1 and σ = −1 and also with p = q = 1. The anomalies are

given by

TrR0 = −N2 − 1, TrR3
0 =

N2

2
− 1, TrR0F2 = −N

2

2
, (5.30)

TrF = TrF3 = TrR2
0F = 0. (5.31)

These can also be computed directly from the matter content of the SQCD as in the table 4.

For completeness, let us compute the anomaly coefficients of non-Abelian symmetry.

For the gauge symmetry, we have TrR0T
2
g = TrFT 2

g = 0 indicating the vanishing exact beta

function and anomaly-free U(1)F . The anomalies which involves SU(N) flavor symmetries

are as follows:

TrR0T
2
1 = TrR0T

2
2 = TrFT 2

1 = −TrFT 2
2 = −N

2
, (5.32)

where T1,2 are the generators of SU(N)1,2. Since there is no non-baryonic U(1) symmetry,

the U(1)R0 is the true R-symmetry in the IR.

Linear quiver. We have computed in the previous section the ’t Hooft anomaly coeffi-

cients of the linear quiver with N = 2 tail (5.10), (5.11) and (5.12). Let us reproduce these

results from our formulae. The quiver (we fix σ = 1) is associated with a sphere with p = `

and q = 1 and `+ 1 minimal punctures with σ = +1, one maximal puncture with σ = +1

and a puncture specified by Y with σ = −1. It is easy to get

nv =
∑̀
i=1

(N2
i − 1), nv − nh = −`−

∑̀
i=1

Ni

∑̀
j=i

nj , (5.33)

n̂v =
∑̀
i=1

(N2
i − 1)− 2N2 + 2, n̂h = −`+ 2−

∑̀
i=1

Ni

∑̀
j=i

nj . (5.34)

These reproduce (5.10), (5.11) and (5.12).

N = 1 gauging. Let us consider a pair of class S theories, T1 and T2, each of which has

an SU(N) flavor symmetry. Let the colors of the maximal punctures be different and T1

and T2 be associated to a pair-of-pants decompositions where each color of the maximal

puncture is the same as that of the pair-of-pants to which the puncture attached. Then let

us think of gluing these punctures. This corresponds to the N = 1 gauging of the diagonal

SU(N) symmetry of two SU(N) flavor symmetries of T1 and T2. The resulting theory is

again in class S.

The ’t Hooft anomaly coefficients of the resulting theory are written as the sum of

those of T1 and T2, and of N = 1 vector multiplet. The anomalies of the latter can be

computed as

TrR0 = TrR3
0 = N2 − 1, TrF = TrF3 = TrR2

0F = TrR0F2 = 0. (5.35)
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These can be obtained from our formulae. Indeed from the Riemann surface point of view,

the N = 1 gauging corresponds to subtracting two maximal punctures with different signs.

Thus, we have δnv = N2 − 1, δn̂v = δnh = δn̂h = 0. These reproduce (5.35).

N = 2 gauging. Instead, let us consider the gauging by an N = 2 vector multiplet.

Namely, consider T1 and T2 with maximal punctures whose colors are the same. Ti is

associated to pants decomposition where the colors of the maximal puncture and of the

pair-of-pants to which the puncture is attached are the same. Let us suppose the color

is σ = +. In this case the ’t Hooft anomalies are the sum of those of T1, T2 and of

N = 2 vector multiplet where the gauge adjoint chiral field has R0 = −F = 1. The latter

contributes to the anomalies as

TrR0 = TrR3
0 = −TrF = −TrF3 = N2 − 1, TrR2

0F = TrR0F2 = 0. (5.36)

Again this can be obtained from the formulae with δnv = δn̂v = N2−1 and δnh = δn̂h = 0.

A theory coupled to an adjoint. Let us consider the Riemann surface with a maximal

puncture such that σYmax is different from the sign of the background. In [9], it was noticed

that this represents a theory (associated to the same Riemann surface where the maximal

puncture has the same sign as the bulk) coupled to a chiral multiplet M transforming in the

adjoint representation of the SU(N) flavor symmetry associated to the maximal puncture,

by the superpotential W = TrµM where µ is the moment map of the SU(N). The charges

of M are R0 = 1 and F = σYmax . (When the Riemann surface is a sphere with two maximal

and a minimal punctures, this boils down to the Fan with Y is maximal.) Let us see this

is consistent with our formula.

Suppose that the sign of the background is +1 and σYmax = −1. Compared to the case

where σYmax = +1, n̂v increases by δn̂v = N2 − 1, while nv, nh and n̂h are kept intact.

Therefore the contribution of changing σYmax from +1 to −1 to the anomaly coefficients is

δTrF = 1−N2, δTrF3 = 1−N2. (5.37)

while other coefficients remain to be the same. These are exactly the contribution of a

chiral multiplet in the adjoint representation of SU(N) with F = −1 and R0 = 1.

N = 1 Argyres-Seiberg dual theory. The dual theory is an N = 1 SU(N) gauge

theory coupled to the Fan specified by Ymin and to the TN theory where a adjoint chiral

multiplet is attached to a maximal puncture. By the class S interpretation of the anomaly

coefficients, it is almost trivial to see that the anomalies of this dual theory agree with

those of the SQCD, because they are represented by the same Riemann surface. Actually,

we already show above that the anomaly coefficients of the Fan satisfies the formulae, and

that attaching an adjoint field is interpreted as changing the sign of the puncture. Also,

the anomalies of the TN theory itself are written by using (5.21): nTNv = 2N3

3 −
3N2

2 −
N
6 +1,

nTNh = 2N3

3 −
2N
3 .

For the anomaly coefficients of non-Abelian symmetries, we use the result of the con-

tribution of the Fan and the TN theory (kTN = 2N) to the flavor central charge (5.22). It

is easy to show that these cancel for TrRT 2
g and TrFT 2

g . For the anomalies involving the

flavor SU(N), the Fan part does not contribute, thus reproducing (5.32) upon using (5.22).
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6 Superconformal index

In this section, we compute the superconformal indices of the N = 1 class S theories. The

two-dimensional generalized TQFT structure ensures the invariance of index under various

dualities we described. The generalized TQFT structure of the N = 1 class S theories has

been shown in [8], generalizing the N = 2 case studied in [4, 40, 44, 45]. In [9, 12], the

prescription of adding adjoint chiral field for oppositely colored punctures has been shown

to be consistent with the generalized TQFT structure of the N = 1 class S theories. In

this section, we show that the matter content and charges of the Fan can be obtained by

assuming the TQFT structure.

6.1 Review

The superconformal index for N = 1 theories is defined as

I(p, q, ξ; z) = Tr(−1)F pj1+j2+R0/2qj2−j1+R0/2ξF
∏
i

zFi
i , (6.1)

where j1, j2 are the Cartans of the Lorentz group SU(2)1 × SU(2)2 and Fi are generators

of flavor symmetries. Strictly speaking, R0 in the index has to be the exact R-charge in

the IR. However in our case, we can simply keep it as R0, as long as we keep the fugacity

ξ turned on. After determining the amount of mixing through a-maximization, we can

simply replace ξ → ξ(pq)ε/2 to get the correct R-charge R = R0 + εF .

A good thing about the superconformal index is that it can be computed purely in

terms of the matter content in the UV. The contribution for a chiral multiplet in a repre-

sentation Λ of certain flavor or gauge group is given by

Ichi(p, q, ξ; z) = PE

[
(pq)R0/2ξFχΛ(z)− (pq)1−R0/2ξ−FχΛ̄(z)

(1− p)(1− q)

]
, (6.2)

where χΛ(z) is the character of the representation Λ. The R0 is the R0-charge of the scalar

in the chiral multiplet.

The chiral multiplet index (6.2) can be written in terms of elliptic Gamma function as

Ichi(p, q, ξ; z) =
∏
v∈Λ

Γ((pq)R/2ξFzv; p, q) , (6.3)

where Λ is the weight lattice of the representation. We use the notation zv =
∏
i z
vi
i . Also,

Γ(z; p, q) =
∏

m,n≥0

1− z−1pm+1qn+1

1− zpmqn
, (6.4)

is the elliptic Gamma function. For a vector multiplet, it contributes

IN=1
vec (p, q; z) = ((p; p)(q; q))r

∏
α∈∆(G)

Γ(zα; p, q)−1 , (6.5)

where ∆(G) is the set of all roots for the gauge group G, r being the rank of G and

(z; q) ≡
∏∞
m=0(1− zqm) is the q-Pochammer symbol.7

7Here we also included the Haar measure factor to the IN=1
vec (p, q;z).
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Generalized TQFT structure of the index. The superconformal index of a class S
theory given by a UV curve can be written in terms of pair-of-pants (or three-punctured

sphere) and cylinders connecting them. For a pair-of-pants (or three-punctured sphere)

with maximal punctures with colors σi, we can write the index as

I(σ,σi)(a1,a2,a3) =
∑
λ

Cσλ(p, q, ξ)ψσ1λ (a1)ψσ2λ (a2)ψσ3λ (a3) , (6.6)

for the σ-colored pair-of-pants. Here the sum is over the representations λ of Γ ∈ ADE
labeling the class S theory. The functions Cσλ(p, q, ξ) and ψσiλ (ai) are called the ‘structure

constant’ and the wave function of the TQFT respectively. We omitted its dependence on

(p, q, ξ). One of the key relation we use for the wave function is

ψσλ(a) = Mσ(a)ψ−σλ (a) , (6.7)

where

Mσ(a) = PE

[
(ξσ − ξ−σ)

√
pq

(1− p)(1− q)
χadj(a)

]
= Γ(tσ; p, q)r

∏
i 6=j

Γ(tσaia
−1
j ; p, q) , (6.8)

where tσ = ξσ
√
pq and r is the rank of group Γ. It was shown in [8] that this wave function

is essentially determined by the N = 2 counterpart, which is given by an eigenfunction of

elliptic Ruijsenaars-Schneider model [45]. More precisely, the relation between N = 1 and

N = 2 version of the wave function is given as

ψσλ(a; p, q, ξ) = ψλ(a; p, q, t = tσ). (6.9)

Also, the structure constant can be simply fixed from that of the N = 2 couterpart as

Cσλ(p, q, ξ) = Cλ(p, q, t = ξσ
√
pq).

The wave function can be written as ψσλ(a) = Kσ(a)Ψλ(a) where Kσ(a) is a pref-

actor which does not depend on λ and Ψλ(a) is another function which depends on the

representations λ of the group Γ. The prefactor is given by

Kσ(a) = PE

[
ξσ
√
pq− pq

(1− p)(1− q)
χadj(a)

]
. (6.10)

Note that the function Ψλ does not depend on color σ. In terms of these functions, we can

write the index for a three-punctured sphere as

I(σ,σi)(a1,a2,a3) =
Kσ1(a1)Kσ2(a2)Kσ3(a3)

Kσ(tρσ)

∑
λ

Ψλ(a1)Ψλ(a2)Ψλ(a3)

Ψλ(tρσ)
, (6.11)

where tρσ = ((tσ)ρ1 , (tσ)ρ2 , · · · , (tσ)ρr) with ρ being the Weyl vector of the group Γ. When

we glue the pair-of-pants by a gauge group, we integrate over the gauge fugacities with

vector multiplet measure. Since we have∫
[da]Iσσ

′
vec (p, q; z)ψσλ(z)ψσ

′
λ′(z) = δλλ′ , (6.12)
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where Iσσ
′

vec (p, q; z) is N = 2 vector multiplet when σ = σ′ and N = 1 otherwise, we can

write the superconformal index for any UV curve with colored full punctures as

I(ai, bj ; p, q, ξ) =
∑
λ

∏n+

i=1 ψ
+
λ (ai)

∏n−
j=1 ψ

−
λ (bj)(

ψ+
λ (tρ+)

)p (
ψ−λ (tρ−)

)q , (6.13)

where (n+, n−) are the number of punctures of each color, and (p, q) are the degrees of the

normal bundles satisfying 2g − 2 + (n+ + n−) = p+ q and ai, bj are the flavor fugacities.

As we see clearly, the index only depends on the topological data.

Now, if we choose the punctures to be non-maximal, we replace the fugacities in the

wave function appropriately. The prescription is to replace

Ψσ
λ(a)→ Ψσ

λ(utΛσ ) , Kσ(a)→ Kσ
Λ(u) = PE

∑
j

t1+j
σ − pqtjσ

(1− p)(1− q)
χRj (u)

 , (6.14)

for a puncture labelled by the SU(2) ↪→ Γ embedding Λ which decomposes adj→
⊕

j Rj⊗Vj
where Rj is the representation of the commutant of Λ(SU(2)) in Γ and Vj is the spin-j rep-

resentation of SU(2). The notation utΛ means replacing the flavor fugacity appropriately

in accordance with the broken flavor symmetry. See [46] for a detailed discussion on this

notation and its physical meaning. We will give an example in the section 6.2, and then

the full expression in 6.3.

6.2 N = 1 Argyres-Seiberg duality

The agreement of the index for the Argyres-Seiberg duality can be checked using the TQFT

language as done in [9, 12]. In the SQCD frame as in figure 18 or figure 19a, the index can

be written as

I(x1,x2, a, b) =
K−? (a)K−(x1)K+

? (b)K+(x2)

K−∅K
+
∅

∑
λ

Ψλ(at?−)Ψλ(x1)Ψλ(bt?+)Ψλ(x2)

Ψλ(t∅−)Ψλ(t∅+)
, (6.15)

where ? denotes the embedding associated to the minimal puncture. Here, all the + colored

contributions are coming from the functions with + labels and vice versa since the color

of the pair-of-pants is the same as the punctures. Here we denote fugacities of the flavor

symmetry SU(3)1 × SU(3)2 ×U(1)A ×U(1)B to be x1,x2, a, b respectively.

Now, we need to show that this index is the same in the Argyres-Seiberg frame as in

the figure 19d. There, we have punctures with different color from the pair-of-pants. On

the left-side of the figure, we have maximal punctures with each color and thus an adjoint

chiral field N . On the right-hand side, we have two minimal punctures with each color,

corresponding to an adjoint field but with a nilpotent vev imposed, giving a number of

components that survive according to the SU(2) embedding labelled by the puncture. In

the case of generic ρ being adj→
⊕

j Rj ⊗ Vj , this contribution to the index is

Mσ
ρ (u) = PE

∑
j

t1+j
σ − pqt−1−j

σ

(1− p)(1− q)
χRj (u)

 . (6.16)
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(+)

-
-

+

(-)

+

(a)
(b)

Figure 21. Unhiggsed SQCD in the Argyres-Seiberg frame.

This is coming from the shift of R-charge R0 → R0 +2ρ(σ3) under the Higgsing. Thus M+
?

represents the components appearing in the dual frame.

The index in the Argyres-Seiberg dual frame can be written as

M−(x1)M+
? (b)

K−? (a)K−(bt?+)K+(x1)K+(x2)

K+
∅K

−
∅

∑
λ

Ψλ(at?−)Ψλ(bt?−)Ψλ(x1)Ψλ(x2)

Ψλ(t∅+)Ψλ(t∅−)
.

(6.17)

The first two terms are coming from the additional fields in the dual theory and the signs

of Kσs are determined by the color of the pair-of-pants. From the identity [9]

Mσ
Λ(u)K−σ(utΛσ ) = Kσ

Λ(u) , (6.18)

we see that the (6.15) and (6.17) are equal. This shows consistency of the TQFT description

of the superconformal index of class S theories.

This agreement from the TQFT was quite formal, and works for any kind of puncture.

We should be able to calculate this index in the Argyres-Seiberg dual frame using the

matter content we found in the previous section. This can be done by looking at the index

of the unhiggsed theory and Higgsing to get the Argyres-Seiberg frame. Let us consider

the Argyres-Seiberg frame before Higgsing the dual meson M , which is realized by two

maximal punctures on the left with each color, and one maximal puncture with + color

and one minimal puncture with − color as in the figure 21. This realizes TN theory with

one of SU(N) gauged by N = 1 vector multiplet, and N fundamentals attached to it. We

also have an adjoint field N associated to one of SU(N) flavor symmetries on the TN side,

and another adjoint field M attached to the fundamentals. The index of this theory can

be written as

I(x1,x2,y, b) =

∮ N−1∏
i=1

dzi
2πizi

∆(z)IN=1
vec (z)I+

TN
(x1,x2, z)

N∏
i,j=1

Γ
(
t
1
2
−(ziyjb)

±
)

(6.19)

×

(
Γ(t−)N−1

∏
i 6=j

Γ
(
t−x1,ix

−1
1,j

))(
Γ(t+)N−1

∏
i 6=j

Γ
(
t+yiy

−1
j

))
,

where we used the short-hand notation Γ(z) = Γ(z; p, q), and
∏N
i=1 zi = 1 is assumed. The

symbol ITN refers to the index of the TN block and IN=1
vec is the N = 1 vector multiplet

contribution to the index and ∆(z) is the Haar measure of the gauge group. The last term
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in the first line is the contribution from the fundamental quarks with R0 = 1
2 ,F = −1

2 .

The second line corresponds to the contributions from the fields N and M respectively.

Now, upon Higgsing, we specialize the fugacity y to the ones determined from the SU(2)

embedding N → (N − 1) + 1. In our case, we put y = (at
N
2
−1

+ , at
N
2
−2

+ , · · · , at1−
N
2

+ , a−N+1).

Then the last term in the first line of (6.19) becomes

N∏
i=1

[(
N−1∏
m=1

Γ
(

(pq)
1
4 ξ−

1
2 (zia(ξ

√
pq)

N
2
−mb)±

))
Γ
(

(pq)
1
4 ξ−

1
2 (zia

−N+1b)±
)]

, (6.20)

where the terms in the parenthesis can be written as

N−1∏
m=1

Γ
(

(pq)
1+N−2m

4 ξ
−1+N−2m

2 ziab
) N−1∏
m′=1

Γ
(

(pq)
1−N+2m′

4 ξ
−1−N+2m′

2 (ziab)
−1
)
. (6.21)

Due to the identity Γ(z; p, q)Γ(pqz ; p, q) = 1, all the terms with m = m′ − 1 are cancelled.

The only remaining terms are the ones with (m,m′) = (N − 1, 1). Therefore, (6.20) can

be written as

N∏
i=1

Γ
(

(pq)
3−N

4 ξ
1−N

2 (ziab)
±
)

Γ
(

(pq)
1
4 ξ−

1
2 (zia

−N+1b)±
)
, (6.22)

which is the contribution from the quarks of (J+, J−) = (2 − N, 1), (0, 1) or (R0,F) =

(3−N
2 , 1−N

2 ), (1,−1). We see that the index can be used to extract the matter content and

the charges of the Higgsed theory.

Contribution from M upon Higgsing is determined through the minimal SU(2) em-

bedding

adj →

(
N−1⊕
m=1

V 0
m−1

)
⊕ V −NN−2

2

⊕ V N
N−2

2

, (6.23)

where the supersubscript means the charge of the commuting U(1). From this, we get

M+
? (a) = PE

[
N−1∑
m=1

(pq)
m
2 ξm − (pq)1−m

2 ξ−m

(1− p)(1− q)
+

(pq)
N
4 ξ

N
2 − (pq)1−N

4 ξ−
N
2

(1− p)(1− q)
(aN + a−N )

]
.

(6.24)

From here, we see that we have mesons with (J+, J−) = (2m, 0) or (R0,F) = (m,m) with

m = 1, · · · , N − 1 and two mesons with (J+, J−) = (N, 0) or (R0,F) = (N/2, N/2) which

are exactly the same as that of our result in the section 4.2.

6.3 Index of the Fan

We can repeat the similar procedure for a generic Fan as in the section 6.2. Consider a

partition of N given by
∑`

k=1 knk labelled by a Young diagram Y . For this partition, the

flavor fugacity for the puncture is given as

utΛσ =
(
u1t

Λ1
σ ,u2t

Λ2
σ , · · · ,u`tΛ`

σ

)
,

ukt
Λk
σ =

(
ukt

k−1
2

σ ,ukt
k−3
2

σ , · · ·ukt
1−k
2

σ

)
, (6.25)

– 37 –



J
H
E
P
0
3
(
2
0
1
5
)
0
4
9

where uk = (uk,1, uk,2, · · · , uk,nk
) is an nk-dimensional vector for the U(nk) fugaci-

ties. We also impose the condition
∏`
k=1

∏nk
i=1 uk,i = 1 so that the flavor symmetry is

S
[∏`

k=1 U(nk)
]
.

Plugging (6.25) into the index formula for N fundamental quarks, we get

N∏
α,β=1

Γ(ξ−1/2(pq)1/4(zαyβb)
±)→

N∏
α=1

∏̀
k=1

nk∏
i=1

k∏
m=1

Γ
(
ξ−1/2(pq)1/4(zαuk,it

k−2m+1
2

+ b)±
)
,

(6.26)

where we assumed that the Fan is of the type σ = − as in the previous example for

simplicity. As in the section 6.2, we see cancellations among upon Higgsing. The above

equation can be written as

N∏
α=1

∏̀
k=1

nk∏
i=1

[
k∏

m=1

Γ
(
ξ

k−2m
2 (pq)

2+k−2m
4 zαuk,i

) k∏
m′=1

Γ
(
ξ
−2+2m′−k

2 (pq)
2m′−k

4 (zαuk,i)
−1
)]

.

(6.27)

We can see that the terms with m′ = m+ 1 are cancelled so that only terms with m = k,

m′ = 1 contribute. Therefore, we get

Iquarks(z,u) =
N∏
α=1

∏̀
k=1

nk∏
i=1

Γ(ξ−
k
2 (pq)

2−k
4 (zαuk,ib)

±) , (6.28)

which is the contribution from the quarks of desired charges (J+, J−) = (1 − k, 1) or

(R0,F) = (2−k
2 ,−k

2 ).

The contribution from the adjoint fields are given as (6.16). In the current case, the

adjoint representation will decompose in to the form written as (3.10). Therefore, the index

for the resulting components can be written as

Mσ
Y (u) =

∏
i<j

i∏
k=1

PE

 t 12 (j−i+2k)
σ − (pq)t

− 1
2

(j−i+2k)
σ

(1− p)(1− q)

(
χRi(ui)χR̄j

(uj) + χR̄i
(ui)χRj (uj)

)
×

(∏̀
i=1

i∏
k=1

PE

[
tkσ − (pq)t−kσ

(1− p)(1− q)
χ

U(ni)
adj (ui)

])
× PE

[
tσ − pqt−1

σ

(1− p)(1− q)

]−1

, (6.29)

where the first term is coming from the bifundamentals of U(ni) × U(nj) and the second

term is coming from the adjoints of U(ni) and the last piece takes care of the traceless

condition. One can rearrange the first term by taking i→ k − p so that the R-charges are

given by (R0,F) = 1
2(i + j − 2p, i + j − 2p) with p = 0, · · · ,min(i, j) − 1. Likewise, the

second term gives the adjoint fields of charge (R0,F) = (i− p, i− p) with p = 0, · · · , i− 1

which agrees with the charges of the table 1.

Therefore, we find all the matter fields and charges as given in the table 1 for N ′ = 0

case. Now, the index can be written in a contour integral form as

I(x1,x2,y,u) = M−(x1)

∫ N−1∏
i=1

dzi
2πizi

∆(z)Ivec(z)ITN (x1,x2, z)Iquarks(z,u)Mσ
Y (u),

(6.30)
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where Iquarks(z,u) and Mσ
Y (u) are given by (6.28) and (6.29) respectively, representing

the components of the Fan.

Contour of the index integral. Let us make a comment on the integration contour

of equation (6.17) and (6.30). Normally, for the purpose of evaluating the superconformal

index, it is assumed that |p|, |q| < 1 and all the flavor fugacities to be unimodular |a| = 1.

Typically, the poles are of the form z = a(pq)r/2pmqn with m,n ∈ Z and R-charge of the

chiral multiplet being r > 0. Therefore we pick all the poles with m,n ≥ 0. But if we use

this prescription in the current case, we may hit a pole along the contour of integration.

Therefore we need to find a good contour to get away with this situation, because the usual

contour of integration is not well-defined.

In order to understand the situation, let us go back to the procedure of evaluating the

index. When we evaluate the index, we first count all the (gauge non-invariant) operators

satisfying certain shortening condition formed out of elementary quarks and various matter

multiplets in the theory. Then, we impose the gauge invariance condition or the Gauss

law constraint by integrating over the gauge group with the Haar measure. From this

perspective, we have to include contributions from every elementary field regardless of

its R-charges. This Gauss law constraint should be imposed after rescaling a such that

|a(pq)r/2−1| = 1 for any chiral multiplet of R-charge r with global symmetry fugacity a.

Higgsing procedure is consistent with this prescription. Prior to Higgsing, all the flavor

fugacities were assumed to be unimodular. But when we Higgs, the flavor fugacities are

dressed with p, q and quite often it contributes negative powers in pq. Superficially, this

makes us think that some of the poles with m = n = 0 are outside of the unit circle. As

we have seen in the previous paragraph, due to the cancellation among the integrands,

some of the poles are gone and the remaining poles under the Higgsing are those coming

from the quarks in the Fan. But, note that all the Higgsed flavor fugacities utΛσ have to

be unimodular. Even though superficially the poles appear to be outside of the unit circle,

it is actually a(pq)
r−1
2 that has modulus 1 with a being the flavor fugacity. Therefore, we

have to include all the poles of the form z = a(pq)r/2 even for negative or zero r.

7 Conclusion

We studied nilpotent Higgsing in N = 1 linear quiver gauge theories of class S. In the case

of N = 2 theories such Higgsing yields regular punctures that can be associated to quiver

tails labelled by partitions of N . Surprisingly, in N = 1 linear quiver gauge theories, such

Higgsing yields a new type of quiver dubbed as the Fan. This object is labelled by two

integers N and N ′, and a partition of N −N ′. We provided further evidence of the Fan by

“Higgsing” the superconformal index.

Armed with the Fan, we constructed many new SCFTs. These provide various field the-

oretic descriptions of M5-branes wrapped on punctured Riemann surfaces. Under Seiberg

duality, quivers with Fans will transform to new quivers with different Fans. Geometri-

cally, this corresponds to different colored pair-of-pants decomposition of Riemann surface.

Using the Fan, we find a new dual frame of N = 1 SU(N) SQCD with 2N flavors which
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is analogous to the Argyres-Seiberg duality. This dual frame is described by a TN theory

coupled to the Fan and chiral multiplets.

In our discussion, we only considered the UV curve with locally N = 2 regular punc-

tures. In N = 1 class S theories, one could have much more general punctures. In terms

of generalized Hitchin system [10, 18], we only considered the case where only one of two

Hitchin fields become singular at a given puncture. It should be possible to consider the

case where two Hitchin fields have singularities at the same point. This will yield genuinely

N = 1 punctures that we expect to be associated with a variation of the Fans. This is a

work in progress.

We hope to find an intersecting brane realization of these new SCFTs in type IIA string

theory, which can be uplifted to M-theory. It will also be interesting to find a gravity dual

description of the Fan and its variations in M-theory by using the system of [13]. This is

also a work in progress.

In this paper, we have not studied the detailed phase structure of the theory. The

spectral curve approach from the generalied Hitchin system as done in [18, 19] should be

useful. It would be also interesting to identify the Fan for the D,E-type theories of class

S, also possibly with outer-automorphism twists.
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A The superpotential for the Fan

We now derive the superpotential that is obtained after integrating out the massive modes

in section 3.4. Before integrating these out, the superpotential is given by

W1 = Trq0ρ
+q̃0 + Trq0Mq̃0 + Trµ̃1q0q̃0 , (A.1)

where ρ± = ρ(σ±). Here we write only those terms in the superpotential that are relevant to

Higgsing. Recall that ρ+ here is also the raising operator for the SU(2) embedding specified

by the partition of N . Also, µ̃1 is the quark bilinear given by µ̃1 = q̃1q1 − 1
NTrq1q̃1.

Let P and P̃ be the projection matrices that project on to the massive modes of q0

and q̃0 respectively i.e.

χ = q0P ,

χ̃ = P̃ q̃0 ,
(A.2)

where χ and χ̃ represent the massives chiral fields. It is easy to check that

P̃ = ρ−ρ+ ,

P = ρ+ρ− .
(A.3)

These projection operators satisfy P̃ P̃ = P̃ and PP = P as is expected. The massless

modes are given by Z = q0(1− P ) and Z̃ = q0(1− P̃ ).

The superpotential in (A.1) can now be expanded in terms of the massive and massless

modes, such that the equation of motion for χ can be written as

ρ+χ̃+Mχ̃+ χ̃µ̃1 +MZ̃ + Z̃µ̃1 = 0 . (A.4)

Note that since µ̃1 in the above equation is contracted through the color indices, therefore

it can be treated as a scalar multiplier in the above equation. This equation of motion can

be simplified by multiplying it on the left with ρ− reducing it to the following form

χ̃+ ρ−Mχ̃+ ρ−χ̃µ̃1 + ρ−MZ̃ + ρ−Z̃µ̃1 = 0 . (A.5)

The solution for χ̃ is

χ̃ = (1−A)−1AZ̃ , (A.6)

where

A = −(ρ−M + µ̃1ρ
−) . (A.7)

Recall that here we are treating µ̃1 as a scalar multiplier and will appropriately contract

it using its color indices at a later stage. Notice that A is a nilpotent matrix such that

A` = 0. This follows from the fact that A` ∝ (ρ−)`(M + µ̃11)` and (ρ−)` = 0 since it is the

lowering operator of SU(2) ↪→ SU(N). Here we have also used the commutation relation
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[ρ−,M ] = 0 which is due to the elements of M being in the lowest weight state of their

respective SU(2) representations. Thus

χ̃ =
`−1∑
n=1

AnZ̃ . (A.8)

Substituting this back in (A.1) we find that the low energy superpotential is

Weff = TrZZ̃µ̃1 + TrZMZ̃ +

`−1∑
n=1

TrZMAnZ̃ +

`−1∑
n=1

TrZAnZ̃µ̃1 . (A.9)

An example for the SU(6) quiver. As an example of our previous derivation, let us

study the nilpotent Higgsing of the linear quiver with SU(6) symmetries. Consider the

partition 6→ 3 + 2 + 1. This implies

〈M0〉 = ρ+ =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0


. (A.10)

The components of the (anti-)quark matrices can be written as

q0 =
(
χ1 χ2 Z3 χ3 Z2 Z1

)
and q̃0 =



Z̃3

χ̃1

χ̃2

Z̃2

χ̃3

Z̃1


.

with χ̃1, χ̃2, χ̃3, Z̃1, Z̃2, and Z̃3 being row vectors, each of which corresponds to an anti-

fundamental of SU(6)1; similarly, χ1, χ2, χ3, Z1, Z2, and Z3 are column vectors, each of

which corresponds to a fundamental of SU(6)1. The vev for M gives mass to χ̃1, χ̃2, χ̃3,

χ1, χ2 and χ3. The fluctuations M (around the vev ρ+) that stay coupled to the theory

are found by using the argument in [9]. These are

M =



M2
33 0 0 0 0 0

M1
33 M2

33 0 M1
32 0 0

M0
33 M1

33 M2
33 M0

32 M1
32 M0

31

M1
23 0 0 M1

22 0 0

M0
23 M1

23 0 M0
22 M1

22 M0
21

M0
13 0 0 M0

12 0 −(3M2
33 + 2M1

22)


. (A.11)
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Upon integrating out the massive chiral fields and including the fluctuations (A.11), the

effective superpotential becomes

Weff = Trµ̃1Z1Z̃1 − 3TrZ1M
2
33Z̃1 − 2TrZ1M

1
22Z̃1 + TrZ2M

0
22Z̃2 + TrZ3M

0
33Z̃3

− TrZ2Z̃2(µ̃1)2 − 2TrZ2M
1
22Z̃2µ̃1 − TrZ2(M1

22)2Z̃2 + TrZ3(M2
33)3Z̃3

+ 3TrZ3(M2
33)2Z̃3µ̃1 + 3TrZ3M

2
33Z̃3(µ̃1)2 + TrZ3Z̃3(µ̃1)3 − 2TrZ3M

1
33Z̃3µ̃1

− 2TrZ3M
1
33M

2
33Z̃3 − TrZ3M

1
23M

1
32Z̃3 + TrZ1M

0
12Z̃2 + TrZ1M

0
13Z̃3

+ TrZ2M
0
21Z̃1 + TrZ2M

0
23Z̃3 − TrZ2M

1
22M

1
23Z̃3 − TrZ2M

2
33M

1
23Z̃3

− 2TrZ2M
1
23Z̃3µ̃1 + TrZ3M

0
31Z̃1 + TrZ3M

0
32Z̃2 − TrZ3M

1
22M

1
32Z̃2

− TrZ3M
2
33M

1
32Z̃2 − 2TrZ3M

1
32Z̃2µ̃1 + Trµ2φ+ Trµ̃2φ .

(A.12)

This matches exactly with what one would write for the Fan corresponding to the partition

6→ 3 + 2 + 1.

B Higgsing N = 2 quiver theories

Consider the linear quiver in N = 2 class S theories of type AN−1 with the gauge group

G =
N−1∏
i=1

SU(N)i . (B.1)

The matter content of the theory consist of hypermultiplets Hi = (Qi, Q̃i) of SU(N)i ×
SU(N)i+1. In addition to this we also have N hypermulitplets H0 = (Q0, Q̃0) trans-

forming in the fundamental representation of SU(N)1 and N hypermultiplets HN−1 =

(QN−1, Q̃N−1) transforming in the fundamental representation of SU(N)N−1. Thus at

each of the quiver there is an SU(N) flavor symmetry acting on the hypermultiplets H0

and HN−1 respectively. We denote the flavor symmetry of H0 by SU(N)0 and that of

HN−1 by SU(N)N .

In order to avoid introducing too many indices labeling the symmetries under which

Qi and Q̃i transform, we will treat them as N × N matrices such that QiQ̃i will be an

invariant of SU(N)i while Q̃iQi will be an invariant of SU(N)i+1. Thus the superpotential

of this quiver will be given by

W =
√

2
N−1∑
i=1

Tr
(
Q̃i−1ΦiQi−1 −QiΦiQ̃i

)
. (B.2)

We now wish to consider an SU(N) linear quiver and Higgsing its leftmost full puncture

down to a puncture given by the Young’s tableau corresponding to the following partition

of N

N = n1 + 2n2 + . . .+ `n` . (B.3)

This breaks SU(N)0 down to S[U(n1) × U(n2) × . . .U(n`)]. The corresponding vev for

µ0 = Q̃0Q0 − 1
NTrQ̃0Q0 that does the job for us is given by

〈µ0〉 = J⊕n1
1 ⊕ J⊕n2

2 ⊕ . . .⊕ J⊕n`
` , (B.4)

– 43 –



J
H
E
P
0
3
(
2
0
1
5
)
0
4
9

where Jk is the Jordan cell of size k. This can then be decomposed into the following vevs

for Q0 and Q̃0:

〈Q̃0〉 = J⊕n1
1 ⊕ J⊕n2

2 ⊕ . . .⊕ J⊕n`
` , (B.5)

and

〈Q0〉 = J⊕n1
1 ⊕ (J1 ⊕ I1)⊕

n2 ⊕ . . .⊕ (J1 ⊕ I`−1)⊕n` . (B.6)

Here Ik is the identity matrix of size k. It is straight forward to see that this breaks SU(N)1

down to SU(n1 + n2 + . . . + nk). The D-term constraints are trivially satisfied while the

F-term for Φ1 gives us

Q0Q̃0 −
1

N
TrQ0Q̃0 = Q̃1Q1 −

1

N
TrQ1Q̃1 . (B.7)

This chiral ring relation then forces us to have

〈Q̃1Q1〉 = J
⊕(n1+2n2)
1 ⊕ (J1 + J2)⊕n3 ⊕ . . .⊕ (J1 ⊕ J`−1)⊕n` , (B.8)

which decomposes into

〈Q̃1〉 = J
⊕(n1+2n2)
1 ⊕ (J1 + J2)⊕n3 ⊕ . . .⊕ (J1 ⊕ J`−1)⊕n` , (B.9)

and

〈Q1〉 = J
⊕(n1+2n2)
1 ⊕ (J1 ⊕ J1 ⊕ I1)⊕n3 ⊕ . . .⊕ (J1 ⊕ J1 ⊕ I`−2)⊕n` , (B.10)

thereby breaking SU(N)2 down to SU(n1 + 2n2 + 2n3 + . . . + 2nk). Application of chiral

ring relation at each node then gives us the general pattern of the vevs, which are found

to be

〈Q̃i−1Qi−1〉 =J
⊕(n1+2n2+...+ini)
1 ⊕ . . .⊕ (J

⊕(i−1)
1 ⊕ Jk−i+1)⊕nk

⊕ . . .⊕ (J
⊕(i−1)
1 ⊕ J`−i+1)⊕n` ,

(B.11)

such that

〈Q̃i−1〉 =J
⊕(n1+2n2+...+ini)
1 ⊕ . . .⊕ (J

⊕(i−1)
1 ⊕ Jk−i+1)⊕nk

⊕ . . .⊕ (J
⊕(i−1)
1 ⊕ J`−i+1)⊕n` ,

(B.12)

and

〈Qi−1〉 =J
⊕(n1+2n2+...+ini)
1 ⊕ . . .⊕ (J⊕i1 ⊕ Ik−i)

⊕nk

⊕ . . .⊕ (J⊕i1 ⊕ I`−i)
⊕n` .

(B.13)

To check that these vevs do satisfy (B.11) we use the rules that Jk · (J1 ⊕ Ik−1) = Jk and

(J1 ⊕ Ik−1) · Jk = J1 ⊕ Jk−1. The structure of these vevs imply that SU(N)i gets broken

down to SU(n1 + 2n2 + 3n3 + . . .+ ini + ini+1 . . .+ ink). Also SU(N)`−1 gets broken down
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⇒

Figure 22. Collapsing of a Young tableau.

to SU(N−nl) while all the gauge groups from SU(N)` onwards remain unbroken. Thus we

see that the gauge symmetry of the low energy theory obtained after Higgsing is given by

G′ =
`−1∏
i=1

SU(Ni)×
N−`∏
j=1

SU(N)j , (B.14)

where Ni = n1 + 2n2 + 3n3 + . . . + ini + ini+1 . . . + in`. Apart from hypermultiplets Hi

transforming as the bifundamental of SU(Ni−1) × SU(Ni), there will be mi fundamentals

at the gauge group SU(Ni). Superconformality requires that

mi +Ni−1 +Ni+1 = 2Ni , (B.15)

which then leads to mi = ni. This is coherent with the fact that the flavor symmetry

of the Higgsed puncture corresponds to the symmetry associated with the additional ni
fundamentals attached to SU(Ni).

Notice that the vev 〈µi〉 = 〈Q̃iQi〉 − 1
N 〈TrQ̃iQi〉 can be understood as the vev corre-

sponding to partitioning N as N = (Ni−1 +ni) + 2ni+1 + . . .+ (`− i+ 1)n`. The section of

the quiver tail from the i-th node onward can then be thought of as being obtained from

a linear SU(N)-quiver whose left puncture has been Higgsed according to this partition.

This implies that the propagation of vevs along the tail can also be neatly encoded into the

process of collapsing the Young’s tableau at each step. Thus if we start with the partition

N = n1 + 2n2 + . . . + `n`, then the Young’s tableau at the next step in the quiver tail is

obtained in the following manner: we remove the highest box from each column of boxes

in the tableau. The boxes that were removed are stacked against the residual tableau in a

single row. For example if we consider the partition 20 = 1 + 1 + 3 + 3 + 4 + 4 + 4, then

at the next step in the quiver tail, its tableau collapses into the partition as described in

figure 22.

The massive and massless matter fields. In order to obtain the number of funda-

mentals at the i-th node of the tail, we had invoked superconformality of the low energy

theory, however, we should be able to derive this without resorting to an a priori assump-

tion that the low energy theory is superconformal. To do this we now focus on the various

matter fields that get massive in the process of giving vevs. Once again we consider the

case of partial Higgsing (given by the partition of N , as in (B.3)) of a full-puncture of the
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SU(N) linear quiver. We will make use of the following rules of decomposition:

SU(N)i → SU(Ni)

N → Ni ⊕ 1⊕(N−Ni) ,

adj→ adj⊕Ni
⊕(N−Ni) ⊕ N̄⊕(N−Ni)

i ⊕ 1⊕(N−Ni)
2
.

(B.16)

Also note that Hi−1 transforms as a bifundamental of SU(N)i−1 × SU(N)i and can be

decomposed into irreducible representations of SU(Ni−1)× SU(Ni) as

SU(N)i−1 × SU(N)i → SU(Ni−1)× SU(Ni)

Qi−1 : (N̄ ,N)→ (N̄i−1, Ni)⊕ (N̄i−1, 1)⊕(N−Ni)

⊕ (1, Ni)
⊕(N−Ni−1) ⊕ (1, 1)⊕(N−Ni)(N−Ni−1) ,

Q̃i−1 : (N, N̄)→ (Ni−1, N̄i)⊕ (Ni−1, 1)⊕(N−Ni)

⊕ (1, N̄i)
⊕(N−Ni−1) ⊕ (1, 1)⊕(N−Ni)(N−Ni−1) .

From (B.16) we see that upon Higgsing SU(N)i → SU(Ni) via vevs for Hi−1 and Hi,

the vector multiplets of SU(N)i that end up getting a mass will need to eat 2(N − Ni)

chiral multiplets transforming as the Ni-dimensional representation of SU(Ni). There are

(N −Ni−1) such chirals in Hi−1 and (N −Ni) such chirals in Hi. Thus we are left behind

with 2(N − Ni) − (N − Ni−1) − (N − Ni) = ni chiral super fields that transform as

fundamentals of SU(Ni). We will similarly be left with ni chiral multiplets transforming

as the anti-fundamental of SU(Ni). These will together give us ni hypers transforming in

the fundamental of SU(Ni). We also end up eating some of the singlets. The number of

singlet hypers that are left behind (these are the hypers that decouple from the rest of the

quiver) is then given by

k∑
i=1

(N −Ni)(Ni −Ni−1) where N0 = 0 . (B.17)

These decoupled hypers are the Goldstone multiplets that we expect upon spontaneously

breaking the global symmetry. It can be easily checked that the number of the Goldstone

chiral superfields in these hypers is same as the number of generators of the complexified

SU(N) that are broken by 〈µ〉 i.e. the Goldstone chiral superfields are in one-to-one

correspondence with the generators X of SL(N,C) which obey

[X, 〈µ0〉] 6= 0 . (B.18)

Apart from these there will of course be massless hypers that transform as bifundamentals

of SU(Ni−1)× SU(Ni). We thus obtained the desired low energy quiver.

As an explicit example of the above pattern of massive and massless matter fields, we

consider an SU(4) linear quiver and Higgs its left full-puncture down to a simple puncture.

We give appropriate vevs to H0 and H1, Higgsing SU(4)1×SU(4)2 down to SU(2)×SU(3).

The decomposition of vector multiplets into irreps. of the low energy gauge symmetry is
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given by

SU(4)1 × SU(4)2 → SU(2)× SU(3)

V1 : (adj, 1)→ (adj, 1)⊕ (2, 1)⊕ (2, 1)⊕ (2̄, 1)⊕ (2̄, 1)⊕ (1, 1)⊕4 ,

V2 : (1, adj)→ (1, adj)⊕ (1, 3)⊕ (1, 3̄)⊕ (1, 1) ,

(B.19)

while the hypers H0 and H1 decompose as

SU(4)1 × SU(4)2 → SU(2)× SU(3)

(Q0)i : (4, 1)→ (2, 1)⊕ (1, 1)⊕2 ,

(Q̃0)i : (4̄, 1)→ (2̄, 1)⊕ (1, 1)⊕2 ,

Q1 : (4̄, 4)→ (2̄, 3)⊕ (1, 3)⊕2 ⊕ (2̄, 1)⊕ (1, 1)⊕2 ,

Q̃1 : (4, 4)→ (2, 3̄)⊕ (1, 3̄)⊕2 ⊕ (2, 1)⊕ (1, 1)⊕2 ,

(B.20)

The various chiral multiplets that get eaten via Higgsing are: 4 copies transforming as

(2, 1), 4 copies of (2̄, 1), 2 copies each of (1, 3) and (1, 3̄) and 10 copies of (1, 1). We are

thus left behind with a chiral multiplet for each of (2, 1), (2̄, 1), (2, 3̄) and (2̄, 3) along with

10 chirals which are singlets and hence decouple from the rest of the theory. These can

then be organized as a hyper transforming in the fundamental of SU(2), another hyper

transforming as the bifundamental of SU(2)× SU(3) and 5 decoupled hypers.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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