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1 Introduction

The Holographic Principle [1, 2] provides us with a unique route of understanding quan-

tum gravity by looking at a theory without gravity. Its best understood avatar, viz. the

AdS/CFT correspondence [3], has been one of the most successful tools of modern theoret-

ical physics. One of the celebrated successes of AdS/CFT is the explanation of the entropy

of black holes in terms of the dual field theory [4].

Gravity in three dimensions has long been an attractive testing ground for attempts

at a quantum theory of gravity. The lack of propagating degrees of freedom makes life

simple in three dimensions and gravity can be formulated equivalently as a Chern-Simons

theory [5, 6]. One of the main pre-cursers of AdS/CFT was the analysis of asymptotic

symmetries of AdS3 by Brown and Henneaux [7] who found that the Asymptotic Symmetry

Algebra (ASA) enlarges from the isometry algebra of SO(2, 2) to two copies of the Virasoro
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algebra. The power of these symmetries of a 2d Conformal Field Theory allows one to

compute many quantities without having knowledge of the specific details of the dual

theory like a specific Lagrangian.

One of the great surprises of gravity in AdS3 was the discovery of the BTZ black hole

solutions [8, 9] despite the absence of any propagating degrees of freedom. In this decade

of holographic studies, the BTZ black holes have been extensively used to understand

many aspects of AdS/CFT. One of the very early tests was the matching of the entropy

of the BTZ black hole to a counting of states in 2d CFT [10]. The power of the infinite

symmetries was brought to use here and by resorting to Cardy’s famous analysis [11] which

invokes general properties of 2d CFT like modular invariance, the bulk Bekenstein-Hawking

entropy was matched to the boundary analysis.

The expectation from the gravitational side is that the leading correction to the

Bekenstein-Hawking entropy would go like the logarithm of the area of the event hori-

zon and the next order would be proportional to the inverse of the area and so on. For the

BTZ black hole, this has been shown from a CFT calculation in [12]. The leading quantum

correction to the black hole entropy can be calculated by extending Cardy’s trick to the

next order.

The holographic principle is a general statement about the equivalence of the gravi-

tational theory to a lower dimensional field theory without gravity and thus should hold

beyond the known and much-explored example of AdS/CFT. Attempts at understanding

a de Sitter analogue of this correspondence has been made by analytic continuations from

AdS [14]. For more recent developments, the reader is referred to the review [15] and the

references therein. Flat spacetimes have been far less explored from a holographic view

point. Interestingly, asymptotic symmetry structures were known in 4d flat spacetimes

much before the seminal analysis of Brown and Henneaux and it was known that an infi-

nite dimensional algebra, called the Bondi-Metzner-Sachs (BMS) algebra, appears at the

null-boundary of flat 4d spacetimes [16, 17]. In 3d as well, infinite dimensional ASA’s were

discovered [18] and this is called the BMS3 algebra. Surprisingly, this algebra had also

been studied as the symmetries of a 2d non-relativistic conformal field theory or a Galilean

Conformal Field Theory [21, 22] and this connection was dubbed the BMS/Galilean Con-

formal Algebra correspondence [19, 20]. Given that flat spacetimes arise in the large radius

limit of AdS, it is natural to try and formulate flat holography as a limit of AdS/CFT. It

was shown that the flat space symmetry structure could be derived as a limit of the AdS3
symmetry structure [24, 25]. There have been several follow-up works to this [26] – [37]

building on aspects of holography in 3D flat spacetimes.

A natural question that arises in this context is what happens if one looks to take the

flat limit on a BTZ black hole [27]. It is well known that 3d flat spacetimes don’t allow any

black hole solutions, so what happens is quite exotic. If one starts off with a non-extremal

BTZ black hole which has an outer and an inner horizon, the outer horizon moves out

to infinity in this limit and one is left with the inside of the original black hole. Here

temporal and radial directions flip and what used to be a black hole solution turns into a

time dependent cosmology. The inner horizon, interestingly, survives this limit and turns

into a cosmological horizon. We call this peculiar object a Flat Space Cosmology (FSC).
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This has previously been studied in literature as the shifted-boost orbifold of Minkowski

spacetimes [38, 39].

We have stated that the dual to 3d flat space would be given by a 2d field theory

which enjoys the symmetries of a 2d GCFT. Hence, it is of interest to check whether

the proposed dual theory can reproduce the properties of the bulk solutions. Given a

cosmological horizon, one can, in analogy with black hole horizons, associate a temperature

and a Bekenstein-Hawking entropy to it. Using GCFT techniques, one can reproduce the

entropy by a Cardy-like trick and also the temperature [27]. Interestingly, these FSCs

also undergo exotic phase transitions [30]. If one heats up 3D flat space, beyond a critical

temperature it goes into a FSC and becomes a time-evolving solution from a static one.

Given the initial success of the dual field theory, it is important that one pushes this

programme and subjects the proposed duality to further tests. In the spirit of AdS3/CFT2,

it is thus an important step to check the corrections to the comological horizon entropy

from the field theory analysis. This is the principal goal of our present paper. Along the

way, we also derive some additional aspects of the field theory dual to 3d flat spacetimes.

The outline of the paper is as follows. In Sec 2 and Sec 3, we revisit some relevant

details of our proposal of flat space holography stressing on the aspects of the Flat Space

Cosmology. It is important to mention that while some of the material here forms a review

of earlier works, a lot of this material is new. The development of the “flat” modular

transformation is of particular relevance. In Sec 4, we provide details of the counting of

states from the dual GCFT perspective and then apply this to the case of FSC first in

Einstein gravity. We show how the result emerges as a limit from the extrapolation of

2d CFT results to the inner horizon of the BTZ. We comment on the limit of vanishing

horizon size of the FSC. We reproduce our result by looking at a general thermodynamic

analysis and then generalise our saddle-point analysis to Topologically Massive Gravity

in flat space. We conclude with a summary of our results and a list of possible future

directions.

2 Holography of 3D flatspace: dual field theory

2.1 Asymptotic symmetries and flat limits

As stated in the introduction, in many ways, the birth of the AdS/CFT correspondence can

be attributed to the asymptotic symmetry analysis of Brown and Henneaux for AdS3 [7].

The ASA of AdS3 is given by two commuting copies of the Virasoro algebra Ln and L̄n:

[Ln,Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0

[L̄n, L̄m] = (n−m)L̄n+m +
c̄

12
(n3 − n)δn+m,0

[Ln, L̄m] = 0. (2.1)

where c = c̄ = 3ℓ
2G with ℓ as the radius of AdS3. The analogous calculation for 3D flat-

spacetimes was done in [18]. The resulting asymptotic BMS3 symmetry algebra is given
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by:

[Ln, Lm] = (n−m)Ln+m + cL(n
3 − n)δn+m,0

[Ln,Mm] = (n−m)Mn+m + cM (n3 − n)δn+m,0

[Mn,Mm] = 0. (2.2)

Flat spacetime is obtained by taking the radius of AdS3 to infinity. This limit is perceived

as a group theoretic contraction on the symmetry structure. This can be explicitly seen

by doing the following:

Ln = lim
ǫ→0

(Ln − L̄−n), Mn = lim
ǫ→0

ǫ(Ln + L̄−n) where ǫ =
G

ℓ
(2.3)

We also see that

cL =
1

12
(c− c̄) = 0 and cM =

ǫ

12
(c+ c̄) =

1

4
. (2.4)

This is confirmed by an independent asymptotic symmetry analysis [18].

From the point of view of the 2d dual field theory, the limit is a contraction of the time

direction t → ǫt, x → x in the conformal structure [24]. This is an ultra-relativistic limit of

the parent CFT. Interestingly, field theories with (2.2) as their symmetry algebra had been

earlier studied in the context of non-relativistic AdS/CFT [21, 22]. There the contraction

was a non-relativistic one (t → t, x → ǫx). The magic of two dimensions means that

these two apparently different theories are one and the same. This has been termed the

BMS/GCA correspondence. The usefulness of the correspondence is that the techniques

developed for non-relativistic conformal field theories can now be applied to understand

the dual of flat spacetimes.

2.2 Aspects of the dual field theory

In this section we discuss various aspects of the two dimensional dual field theory including

the representations, correlation functions, construct the partition function of the theory

and go on to describe aspects of the inherited modular transformation. First we start

off with an account of the same set of things in the well known case of two dimensional

conformal field theories, so that we can make a direct comparison between the two different

classes of field theory.

2.2.1 Useful facts about 2d CFTs

We know that the Virasoro representations are labelled by the conformal weights

L0|h, h̄〉 = h|h, h̄〉, L̄0|h, h̄〉 = h̄|h, h̄〉 (2.5)

Primary states are ones which are annihilated by the action of Ln, L̄n for n > 0.

Ln|h, h̄〉p = L̄n|h, h̄〉p = 0 (2.6)

The Virasoro modules are built on these primary states by acting with creation operators

L−n, L̄−n. The representations of the Virasoro algebra on the plane are:

Ln = zn+1∂z, L̄n = z̄n+1∂z̄ (2.7)
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The map from the plane to the cylinder is

z = eiω, z̄ = eiω̄ (2.8)

The generators on the cylinder are given by

Ln = einω∂ω, L̄n = einω̄∂ω̄ (2.9)

One constructs the two point function on the plane by demanding that the correlation

function be invariant under the symmetries of the theory. The two point function of two

primary operators Φ1,Φ2 is given by:

G
(2)
CFT-plane(z1, z̄1, z2, z̄2) = C(z1 − z2)

−2h(z̄1 − z̄2)
−2h̄ (2.10)

The transformation law for a primary field Φ under a co-ordinate transformation (z, z̄) →
(ω, ω̄) is given by

Φ′(ω, ω̄) =

(

dω

dz

)−h(dω̄

dz̄

)−h̄

Φ(z, z̄) (2.11)

For the specific case of the mapping from the plane to the cylinder, this is given by

Φ′(ω, ω̄) = A(e−iω)−h
(

e−iω̄
)−h̄

Φ(z, z̄) (2.12)

where A is a phase factor. Using this, one finds the correlation functions on the cylinder

from the ones computed on the plane. For example, the two point function on the cylinder

for two primary operators is given by

G
(2)
CFT-cyl(ω1, ω̄1, ω2, ω̄2) = C

[

ei(ω1+ω2)

(eiω1 − eiω2)2

]h [

ei(ω̄1+ω̄2)

(eiω̄1 − eiω̄2)2

]h̄

⇒ G
(2)
CFT-cyl(ω1, ω̄1, ω2, ω̄2) = C{2 sin(ω1 − ω2)}−2h{2 sin(ω̄1 − ω̄2)}−2h̄ (2.13)

This explicitly depends only on the difference of the co-ordinates on the cylinder.

2.2.2 Representation and 2pt-functions of 2d GCFTs

The 2d GCFT representations are labelled by the weights [40]:

L0|hL, hM 〉 = hL|hL, hM 〉, M0|hL, hM 〉 = hM |hL, hM 〉 (2.14)

We will build on the notion of primary states in direct analogy with 2d CFTs. These are

ones which are annihilated by the action of Ln,Mn for n > 0.

Ln|hL, hM 〉p = Mn|hL, hM 〉p = 0 (2.15)

The GCA modules are built on these primary states by acting with creation operators

L−n,M−n. There is a representation which we would find particularly useful and we will

call this the representation on the “plane”

Ln = xn+1∂x + (n+ 1)xnt∂t, Mn = xn+1∂t (2.16)
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The other set of generators, the ones on the cylinder, are our usual ones. These are

the generators of field theory which can be read off from the asymptotic analysis on the

gravitational side.

Ln = ieinφ(∂φ + inτ∂τ ), Mn = ieinφ∂τ (2.17)

The map between these two sets of generators or the map between the “plane” and the

“cylinder” is given by

x = eiφ, t = iτeiφ (2.18)

For the plane, we can follow the analysis in [40] to derive the two-point correlation function

of the 2d GCFT. This is given by

G
(2)
GCFT-plane(x1, t1, x2, t2) = C(x1 − x2)

−2hL exp

[

−2hM

(

t1 − t2
x1 − x2

)]

(2.19)

Now we postulate the transformation law for the primary fields for the specific case of the

mapping from the “plane” to the “cylinder”.

Φ′(φ, τ) = A(e−iφ)−hL
(

e−iτ
)−hM Φ(x, t) (2.20)

Using this, we can deduce the correlation functions on the “cylinder”.

G
(2)
GCFT-cyl(φ1, τ1, φ2, τ2) = C

[

ei(φ1+φ2)

(eiφ1 − eiφ2)2

]hL

exp

[

−2hM (τ1 − τ2)

(

eiφ1 + eiφ2

eiφ1 − eiφ2

)]

(2.21)

which can be simplified to

G
(2)
GCFT-cyl(φ1, τ1, φ2, τ2) = C1

(

2 sin

(

φ12

2

))−2hL

e−hM τ12 cot(φ12/2) (2.22)

Interestingly, this is the same answer as one would have got by scaling the 2d CFT 2pt-

function in the ultra-relativistic limit [24] (without having to do the extra rescalings to

render the answer finite as we needed to do in [24]).

2.2.3 Partition function and modular invariance

In the flat-space limit described above, (hL, hM ) are mapped to the original eigenvalues of

L0, L̄0, (h, h̄) by

hL = h− h̄, hM = ǫ(h+ h̄). (2.23)

In the analysis of the Cardy-like formula, we start with the CFT partition function and

re-write it in the “GCFT-basis”.

ZCFT = Tr e2πζL0e−2πζ̄L̄0 =
∑

dCFT(h, h̄)e
2πi(ζh−ζ̄h̄) =

∑

d(hL, hM)e
2πi(ηhL+

ρ

ǫ
hM) (2.24)

ζ, ζ̄ are the modular parameters of the original 2d CFT. dCFT is the density of states in

the CFT in the {L0, L̄0} basis and d(hL, hM) is the density of states in the “GCFT-basis”.

Above we have relabelled

2η = ζ + ζ̄ . 2ρ = ζ − ζ̄ (2.25)
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We demand that the partition function of the parent CFT reduce to the GCFT partition

function smoothly. This implies that ρ has to scale for (2.24) to stay finite in the limit.

ZCFT

ǫ→0−−→ ZGCFT ⇒ ρ → ǫρ (2.26)

We note here that ρ is the variable associated with M0 (2.17). M0 is the generator of

spacetime time translations and hence the Hamiltonian. This is scaled in the limit and it

necessitates the scaling of ρ which behaves like the temperature.

Now, modular transformation in original CFT read:

ζ → aζ + b

cζ + d
with ad− bc = 1 (2.27)

In the GCFT basis this translates to:

η + ρ → a(η + ρ) + b

c(η + ρ) + d
=

aη + b

cη + d
+

(ad− bc)ρ

(cη + d)2
+

(ad− bc)cρ2

(cη + d)3
+ . . . (2.28)

In the limit, with the scaling of ρ, the contracted version of the modular transforma-

tion reads

η → aη + b

cη + d
ρ → ρ

(cη + d)2
(2.29)

The S-transformation in the original CFT is ζ → −1
ζ and ζ̄ → −1

ζ̄
. This corresponds to

a = d = 0 and b = −c = 1. So this means that the S-transformation in 2d GCFT reads

(η, ρ) →
(

−1

η
,
ρ

η2

)

(2.30)

This form of the S-transformation has been previously derived in [27]. The interesting

feature of the full contracted modular transformation is that the second modular parameter

ρ is a SL(2,Z) modular form of weight -2. This is reminiscent of the transformations of the

variables of a Jacobi form, the features of which we remind the readers of below.1

A Jacobi form J is a function of two complex variables J (τ, z) on which two kinds of

transformations act. Under an SL(2,Z) transformation

τ → aτ + b

cτ + d
, z → z

cτ + d
(2.31)

The second transformation is translations by 1 and τ under which

τ → τ and z → z + λτ + µ (2.32)

with λ and µ taking integral values. We can now compare (2.31) with (2.29), choosing τ

to be real and z to be real (or pure imaginary). This suggests the identifications:

τ ↔ η and Re(z) ↔ √
ρ (or Im(z) ↔ √

ρ). (2.33)

1We would like to thank Suresh Govindrajan for this observation and for help with trying to understand

the implications.
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It is this that suggests that ZGCFT is like a Jacobi form with real arguments. We are yet to

understand the details of this possible relation. A first step would be to try and understand

what the analogue of (2.32) is in our case and to see how ZGCFT transforms under these

transformations. We believe it would be of great interest to pursue this line of work to

understand the workings of 2d GCFTs from a stronger analytical point of view. Apart from

the applications of 2d GCFTs to 3d flat holography, this would be invaluable to diverse areas

like non-relativistic conformal theories that were mentioned in the introduction [21, 22] and

also in the case of tensionless string theory where the 2d GCFT finds use as the residual

symmetries on the world sheet after fixing the equivalent of the conformal gauge [41].

3 Holography of 3D flatspace: aspects of the bulk-side

As mentioned in the introduction, one of the most surprising features of 3D gravity is the

presence of BTZ black holes in AdS3, despite the lack of propagating degrees of freedom.

We begin by considering 3-D Einstein-Hilbert gravity with a cosmological constant

I =
1

16πG

∫

d3x
√−g

(

R+
2

ℓ2

)

+ IBoundary. (3.1)

Here IBoundary is the boundary term which needs to be added to the action to make the

variation principle well defined.2 The vacuum solution is AdS3 space-time

ds2 = −
(

1 +
r2

ℓ2

)

dt2 +

(

1 +
r2

ℓ2

)−1

dr2 + r2dφ2 (3.2)

and the excited states are BTZ black holes

ds2 = −(r2 − r2+)(r
2 − r2−)

r2ℓ2
dt2 +

r2ℓ2

(r2 − r2+)(r
2 − r2−)

dr2 + r2
(

dφ− r+r−
ℓr2

dt

)2

. (3.3)

where

r± =
√

2Gℓ(ℓM + J)±
√

2Gℓ(ℓM − J), (3.4)

M and J are related to the mass and angular momentum of the black hole. The Bekenstein-

Hawking entropy is given by

SBH =
πr+
2G

. (3.5)

3.1 Flat space cosmology: thermodynamics

Now we want to study the flat space limit of BTZ black hole (3.3) by scaling ℓ → ∞. It is

clear from (3.4) that in the limit, the outer horizon r+ is pushed to infinity

r+ → ℓr̂+ where r̂+ =
√
8GM (3.6)

2Interestingly, this is actually one-half of the usual Gibbons-Hawking-York term that one would have

naively written down [27]. The existence of a well-defined variational principle dictates the form of this

boundary term. More details can be found in upcoming work [45].
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and hence the radial coordinate r becomes time-like and the time coordinate t becomes

spatial. The inner horizon, interestingly, survives the limit

r− → r0 =

√

2G

M
J. (3.7)

and becomes a cosmological horizon. The resultant geometry is a cosmological solution

with a metric

ds2 = r̂2+dt
2 − r2dr2

r̂2+(r
2 − r20)

+ r2dφ2 − 2r̂+r0dtdφ (3.8)

We shall call these co-ordinates (3.8) “Schwarzschild” co-ordinates. Defining new coordi-

nate v, θ as dv = dt+ r2dr
r̂2+(r2−r20)

, dθ = dφ+ r0dr
r̂+(r2−r20)

results in the following metric

ds2 =
r̂2+(r

2 − r20)

r2
dv2 − 2dvdr + r2

(

dθ − r̂+r0
r2

dv

)2

(3.9)

It is clear that surface r = r0 is a null hypersurface and the Killing vector χ = ∂v +
r̂+
r0
∂θ

is normal to it. So r = r0 is a Killing horizon and the surface gravity associated to it is

κ2 = −1

2
∇µχν∇µχν =

r̂4+
r20

(3.10)

Hence we can find the Hawking temperature of the FSC

TH =
κ

2π
=

r̂2+
2πr0

(3.11)

The entropy of the FSC is found by applying the Bekenstein-Hawking area law to the

cosmological horizon:

SFSC =
2πr0
4G

=
πJ√
2GM

(3.12)

It is interesting to observe that the charges associated with the FSC obey a first law of

thermodyanmics.

dM = −THdSFSC +ΩFSCdJ (3.13)

where Ω = r̂+
r0

is the angular velocity of the horizon. The curious sign in front of the

TdS term is an indication of the first law arising as a limit from the BTZ inner horizon

thermodynamics, a point which we come back to later.

In AdS3, there is the well-known Hawking-Page phase transition between hot AdS and

the BTZ black hole [42]. It is of interest to understand if there exists a flat-space analogue

of this [30]. To this end, we study the free energy of these FSC solutions and we approach

the problem from the first law of thermodynamics that we have derived above. Using

definitions

S = −∂F

∂T

∣

∣

∣

Ω=const.

, J =
∂F

∂Ω

∣

∣

∣

T=const.

(3.14)

we arrive at a different form of the first law of thermodynamics

dF = −SdT + JdΩ ⇒ F = U − TS + JΩ. (3.15)
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where the first equation has been integrated to get the second. For the FSC, U = −M is

the (non-positive) internal energy and hence the free energy takes the form:

FFSC = −MFSC = − r̂2+
8G

. (3.16)

All of this can be obtained from the canonical partition function by continuing to Euclidean

signature. If we take Euclidean hot flat space (HFS)

ds2HFS = dτ2E + dr2 + r2dφ2. (3.17)

at the same temperature and angular potential (periodicities (τE , φ) ∼ (τE + β, φ+ βΩ)),

the Euclidean on-shell action yields the free-energy

FHFS = − 1

8G
(3.18)

Thus, we can conclude that there is competition between these two solutions in parameter

space and a phase transition occurs from HFS to FSC as r̂ increases beyond 1 i.e. the

temperature increases beyond Tc =
1

2πr0
or the angular velocity increases beyond Ωc =

1
r0
.

This is a unique phase transition where a time-independent solution (HFS) evolves into a

time-dependent cosmological solution [30].

3.2 FSC as Minkowski orbifold

The family of BTZ black holes correspond to discrete quotients of AdS3. As we have seen

above, the FSC corresponds to a flat limit of the non-extremal BTZ solutions. So these

should correspond to discrete quotients of 3d flat space [38]. Let us examine this in a bit

more detail. AdS3 is described by the surface

− u2 − v2 + x2 + y2 = ℓ2 (3.19)

in embedding coordinates in R2,2 with metric ds2 = −du2−dv2+dx2+dy2. Equation (3.19)

can be solved by setting

v = ℓ cosh ρ cos τ, u = ℓ cosh ρ sin τ, xi = ℓ sinh ρΩi (3.20)

which gives the global AdS3 metric ds2 = ℓ2
(

− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2
)

. Non-

extremal BTZ black holes are quotients of AdS3 generated by the Killing vector field

ξ =
r+
ℓ
Jux −

r−
ℓ
Jvy where Jux = x∂u + u∂x, Jvy = y∂v + v∂y (3.21)

The flat limit corresponds to

ℓ → ∞ τ → T

ℓ
, ρ → r

ℓ
(3.22)

In this limit, this vector field becomes a linear combination of a boost and a transverse

translation

ξflat = r̂+(x∂T + T∂x) + r0∂y, (3.23)
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where r̂+ =
√
8GM . One needs to take care of an extra minus sign coming from the fact

that the patch that is relevant for the flat limit is the the region r− < r < r+ region of

the original non-extremal BTZ. This coordinate patch has an extra sign when embedding

it into R2,2. This is called the shifted-boost orbifold of Minkowski spacetime.

To understand that this orbifold is indeed the FSC, we can make the following coor-

dinate transformations:

x2 =
r2 − r20
r̂2+

sinh2(r̂+φ), T 2 =
r2 − r20
r̂2+

cosh2(r̂+φ), y = r0φ− r̂+t (3.24)

It is clear from this that the orbifold (3.23) under the change of co-ordinates goes to

ξflat = r̂+(x∂T + T∂x) + r0∂y = ∂φ (3.25)

In the “Schwarzschild” co-ordinates (3.8), the orbifold direction was φ. We have shown

here that this indeed is the shifted-boost orbifold and also established how we obtain it as

a limit of the AdS orbifold.

3.3 Modular transformations in the bulk

We have seen the form of the contracted modular transformation in the 2d GCFT (2.30).

In the case of AdS3/CFT2, the S-transformations in the dual CFT also have interesting

implications for the bulk physics. These transformations map the AdS3 solutions to BTZ

black holes. We would like to see if there is a similar mapping of the bulk solutions in 3D

flat space [30]. For this we must first continue to Euclidean signature. As stated earlier,

the Euclidean version of hot flat space is given by the metric (3.17). We need also the

Euclidean continuation of FSC (3.8). A natural choice is

t = iτE r̂+ = −ir+ (3.26)

which leads to Euclidean FSC metric

ds2E = r2+
(

1− r20
r2

)

dτ2E +
dr2

r2+(1−
r20
r2
)
+ r2

(

dϕ− r+r0
r2

dτE
)2

. (3.27)

Requiring the absence of conical singularities on the FSC horizon fixes the periodicities of

the angular coordinate ϕ and Euclidean time τE:

τE ∼ τE +
2πr0
r2+

= τE + β ϕ ∼ ϕ+
2π

r+
= ϕ+ βΩ , (3.28)

The periodicity of ϕ follows from the requirement that ϕ − τE
r+
r0

remains fixed as we go

around the τE circle and therefore that ϕ varies simultaneously with τE along the circle.

The above expressions for Hawking-temperature T = β−1 = r2+/(2πr0) and angular velocity

Ω = r+/r0 agree with their Minkowski counterparts which we discussed earlier.3

3An interesting feature of the Euclidean FSC is that although there are no conical singularities at r = r0,

there exists an asymptotic conical defect. For more details on this and its relation to the BTZ, the reader

is pointed to [30].
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The Euclidean periodicities β,Ω are related to the flat space modular parameters

η, ρ by:

β = 2πρ, Φ = βΩ = 2πη. (3.29)

We are now in a position to connect FSC and HFS by the flat S-transformation (2.30).

The S-transformation, in terms of the euclidean periodicities reads

S :
(

β, Φ
)

→
(

β′, Φ′
)

=

(

4π2β

Φ2
, −4π2

Φ

)

. (3.30)

Starting with the FSC metric (3.27), we change coordinates:

r2 = r20 + r2+r
′2, τE =

τ ′E
r+

− ϕ′r0
r2+

, ϕ =
ϕ′

r+
(3.31)

This yields flat space:

ds2 = dτ ′2E + dr′2 + r′2 dϕ′2.

In terms of these new coordinates, the periodicities read

(τ ′E, ϕ
′) ∼ (τ ′E −β′, ϕ′+Φ′) ∼ (τ ′E, ϕ

′+2π) with β′ = 2πr0 =
4π2β

Φ2
, Φ′ = 2πr+ = −4π2

Φ
.

(3.32)

We recognise these as precisely the values obtained from the S-transformation (3.30).

Therefore, we can conclude that FSC with periodicities (β, Φ) is equivalent to HFS with

flat S-dual periodicities (β′, Φ′) [30]. This is the flat space analogue of the statement in the

AdS3/CFT2 correspondence that thermal AdS3 with modular parameter ζ is equivalent to

a BTZ black hole with S-dual modular parameter −1/ζ [43].

4 Entropy and log corrections

In this section, we focus on the entropy of the bulk solution that we describe so far, the

FSC. We will work in terms of counting of states in the dual field theory. For this we would

take recourse to methods adopted in [12, 13] and modify the CFT techniques to suit our

needs. We first compute the analogue of the Cardy formula and its leading corrections in

the dual 2d GCFT and then focus on obtaining the entropy of the FSC.

4.1 State counting in 2d GCFT

We have derived the partition function for the 2d GCFT in section (2.2.3) and also learnt

about the contracted modular invariance. Now, we put the two together to arrive a for-

mula for counting states in the 2d GCFT. The basic result would hinge on the invariance

of quantity

Z0
GCFT(η, ρ) = Tr e2πiη(L0−

cL
2
)e2πiρ(M0−

cM
2

) = eπi(ηcL+ρcM )ZGCFT(η, ρ) (4.1)

under the inherited S-transformation of the GCFT (2.30). Here

ZGCFT(η, ρ) = Tr e2πiηL0e2πiρM0 =
∑

d(hL, hM )e2πiηhLe2πiρhM (4.2)
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Invariance of Z0
GCFT under the contracted S-transformation reads

Z0
GCFT(η, ρ) = Z0

GCFT

(

− 1

η
,
ρ

η2

)

(4.3)

The main observation is now that we can translate this into statements for the parti-

tion function.

ZGCFT(η, ρ) = e2πiη
cL
2 e2πiρ

cM
2 e

−2πi(− 1
η
)
cL
2 e

−2πi( ρ

η2
)
cM
2 ZGCFT

(

− 1

η
,
ρ

η2

)

(4.4)

By doing an inverse Laplace transformation, one can find the density of states which was

defined previously above in (4.2).

d(hL, hM ) =

∫

dηdρ e2πif̃(η,ρ)Z

(

− 1

η
,
ρ

η2

)

. (4.5)

where

f̃(η, ρ) =
cLη

2
+

cMρ

2
+

cL
2η

− cMρ

2η2
− hLη − hMρ. (4.6)

In the limit of large charges, the above integration (4.5) can be performed by the method of

steepest descents and the value of the integral is approximated by the value of the integrand

when the exponential piece is an extremum. The saddle-point approximation used here

is valid when one has an integrand with a rapidly varying phase and a slowly varying

prefactor. So, one assumes that the partition function is slowly varying at the extremum.

This can be checked. In the limit of large charges, the function f̃(η, ρ) is approximated by:

f(η, ρ) =
cL
2η

− cMρ

2η2
− hLη − hMρ. (4.7)

The extremum of this is evaluated and the value at the extremum is given by

fmax(η, ρ) = −i

(

cL

√

hM
2cM

+ hL

√

cM
2hM

)

. (4.8)

The Cardy-like formula for the GCA in this limit is given by

S(0) = ln d(hL, hM ) = 2π

(

cL

√

hM
2cM

+ hL

√

cM
2hM

)

. (4.9)

4.2 Logarithmic corrections

We now want to compute the leading corrections to (4.9). In order to evaluate it by saddle

point approximation, let’s expand f around its saddle given by:

η0 = i

√

cM
2hM

ρ0 =
hLη

3
0

cM
+

cLη0
2cM

.

The expansion takes the form (upto quadratic order):

f(η, ρ) = f(η0, ρ0) +
1

2

[

fηη(η0, ρ0) (η − η0)
2 + 2fηρ(η0, ρ0) (η − η0) (ρ− ρ0)

+fρρ(η0, ρ0) (ρ− ρ0)
2
]

, (4.10)
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where subscripts denote partial derivative. f(η0, ρ0) is given by (4.8). It is also straight-

forward to see that

fηη(η0, ρ0) = i

√

2hM
cM

(

3hL − cLhM
cM

)

, fηρ(η0, ρ0) = 2ihM

√

2hM
cM

, fρρ(η0, ρ0) = 0 (4.11)

Accordingly the term in the square bracket of (4.10) takes the form: iz2 − iw2, where

z =

(

2hM
cM

)1/4(

(η − η0)H +
2hM
H

(ρ− ρ0)

)

, w =

(

2hM
cM

)1/4 2hM
H

(ρ− ρ0)

where H =
√

3hL − cLhM

cM
. On the other hand the measure in (4.5) changes as:

dηdρ → dzdw = cM

(

2hM
cM

)3/2

dηdρ. (4.12)

(4.5) is thus approximately (upto quadratic correction)

d(hL, hM ) = e2πif(η0,ρ0)
1

cM

(

2hM
cM

)−3/2

K where K =

∫

dzdw e2π(−z2+w2)Z (4.13)

Here we have assumed the constancy of Z near the saddle. K can be evaluated choosing

a proper contour passing through the saddle, however that would give a pure number,

independent of the charges. Taking the logarithm, we find the logarithmically corrected

entropy

S = 2π

(

cL

√

hM
2cM

+ hL

√

cM
2hM

)

− 3

2
log(

2hM

c
1/3
M

) + constant = S(0) + S(1) (4.14)

4.3 Specializing to FSC in 3D Einstein gravity

In the AdS3/CFT2 correspondence, the mass M and angular momentum J of the BTZ

black holes are mapped to the conformal weights (hh̄) of the dual 2d CFT by the relations

h =
1

2
(ℓM + J) +

c

24
, h̄ =

1

2
(ℓM + J) +

c̄

24
(4.15)

where c = c̄ = 3ℓ
2G . This implies that for the FSC, the mass and angular momentum are

mapped to

hM = GM +
cM
2

= GM +
1

8
, hL = J (4.16)

In the limit of large charges, we have hL = J, hM ≈ GM and cL = 0, cM = 1/4. The log

corrected horizon entropy takes the form:

SFSC =
π|J |√
2GM

− 3

2
log(2GM) + constant. (4.17)

Notice here that the logarithmic correction is independent of angular momentum. We will

have more to say about this later. The surface gravity for FSC is given by κ = r̂2

r0
= 8GM

r0
.

Hence the entropy of the FSC can be written in the more familiar form:

SFSC =
2πr0
4G

− 3

2
log

(

2πr0
4G

)

− 3

2
log κ+ constant (4.18)
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(4.18) is the main result of this paper. We see that a very familiar factor of −3
2 emerges in

front of the logarithmic correction.4 In the next subsection, we would see how is linked to

the inner horizon of the parent BTZ black hole.

4.4 Connections to BTZ inner horizon

There has been recent interest in associating thermodynamics with the inner horizon of

black holes [46–48]. This is due to some intriguing features viz. for asymptotically flat

black hole admitting a smooth extremal limit, the product of the inner and outer horizon-

areas seems to depend only on the quantized charges and is independent of the mass. The

inner horizon also seems to enjoy a first law of thermodynamics of the form

− dM = T−dS− − Ω−dJ + . . . (4.19)

where all the intensive quantities are computed on the inner horizon. Let us concentrate

on the non-extremal BTZ black holes. For the outer horizon, we have the usual thermo-

dynamic quantities:

MBTZ =
r2+ + r2−
8Gℓ2

, J =
r+r−
4G

, κ+ =
r2+ − r2−
r+ℓ2

, Ω+ =
r−
r+ℓ

, S
(0)
+ =

2πr+
4G

(4.20)

In the above, κ+ is the surface gravity on the outer horizon and is related to the temperature

T+ = κ
2π . These quantities satisfy a first law of thermodynamics:

dMBTZ = T+dS
(0)
+ − Ω+dJ (4.21)

On the inner horizon, we have

κ− =
r2+ − r2−
r−ℓ2

, Ω− =
r+
r−ℓ

, S
(0)
− =

2πr−
4G

(4.22)

and this leads to an inner horizon first law:

− dMBTZ = T−dS
(0)
− − Ω−dJ (4.23)

The corrections to the Bekenstein-Hawking area law is found by extending Cardy’s

analysis in the dual 2d CFT. For the outer horizon, this is the celebrated work of Carlip

which we have followed in our GCFT analysis above. Here we quote the result.

S+ = S
(0)
+ + S

(1)
+ =

2πr+
4G

− 3

2
log

(

2πr+
4G

)

− 3

2
log κ+ + const (4.24)

If we extrapolate this result to the inner horizon, the expected form for the log-corrected

entropy for the inner horizon would be

S− = S
(0)
− + S

(1)
− =

2πr−
4G

− 3

2
log

(

2πr−
4G

)

− 3

2
log κ− + const (4.25)

where κ− is defined above.

4We should mention here that we are performing the calculation in the analogue of the ensemble used

by Carlip [12] where the mass is held fixed and the momentum is summed over. This [12] differs from the

analysis of Sen in [44] by a factor of 2. We expect the same to occur if the analysis of [44] is adopted for

the FSC.
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For the FSC, the various thermodynamic quantities are given by

MFSC =
r̂2+
8G

, ΩFSC =
r̂+
r0

, κ =
r̂2+
r0

, S
(0)
FSC =

2πr0
4G

(4.26)

These follow a first law of thermodynamics:

− dMFSC = TFSCdS
(0)
FSC − ΩFSCdJ (4.27)

It is easy to see that all of this descends in the limit of ℓ → ∞ from the thermodynamic

quantities of the inner horizon. It is thus also very plausible that the logarithmic corrections

to the FSC entropy would also descend in a similar fashion. It is clear from (4.25) and (4.18)

that indeed this expectation is met.

SFSC = S
(0)
FSC + S

(1)
FSC. S

(0)
−

ℓ→∞−−−→ S
(0)
FSC, S

(1)
−

ℓ→∞−−−→ S
(1)
FSC (4.28)

4.5 The curious r0 → 0 limit

The r0 → 0 limit of the FSC is the boost orbifold of Minkowski spacetime. This is the limit

where the angular momentum is switched off and there is no cosmological horizon to hide

the singularity of the causal structure. This can be viewed as a toy Big-Bang model in 3d

gravity. As there is no horizon here to hide the singularity, we expect that there would be

some funny features in the r0 → 0 limit.

First, let us focus on the integrated form of the first law which gives the free en-

ergy (3.15). We observe a peculiar feature of the FSC

TS − JΩ = 0 (4.29)

and this holds for all values of r0 and also is true for r0 → 0. The free energy of the boost

orbifold obtained as a r0 → 0 limit of the FSC thus is the same as the FSC.

Fboost-orb = − r̂2+
8G

(4.30)

This would mean that in the r0 → 0 limit, the phase transition between hot flat space (now

without a rotation parameter) and the boost orbifold still exists. So now, this is a phase

transition between hot non-rotating flat space and a big-bang like cosmological solution.

There are some obvious peculiarities one observes right away. The temperature previ-

ously defined for the FSC (3.11) does not have a well-defined r0 → 0 limit which is obvious

because this was defined in terms of the surface gravity at the horizon which does not exist

anymore. Same is true for the angular velocity. This indicates that the phase transition

should be characterised not in terms of a critical temperature or a critical angular velocity,

but in terms of their ratio which stays finite and non-zero in the limit. In terms of the

Euclidean periodicities (3.28), this ratio is precisely the periodicity of the ϕ direction. We

also observe from (3.28) that τE is now trivially identified. So from a thermodynamic

perspective, it perhaps makes more sense to think of the angular direction ϕ as the new

time direction and the inverse of its periodicity Φ as the temperature.
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We should also point out a possible caveat in the expression of the free energy. We

see that the boost orbifold has a singularity in the causal structure which is not hidden

by a horizon. In the Euclidean solution one cannot demand smoothness to close off the

manifold as one did with the FSC. One can take into account the r = 0 conical singularity

in the value of the free energy. This is something that we would not be able to obtain from

a r0 → 0 limit of the FSC calculations. So it is possible that the limit of vanishing horizon

size of the FSC does not capture the entirety of the physics of the boost orbifold.

Another very curious observation is about the logarithmic corrections to the entropy

in the r0 → 0 limit. It is clear from (4.17) that the log correction to the FSC entropy is

actually independent of r0. So this is going to remain the same in the r0 → 0 limit. This is

very peculiar, since the leading Bekenstein-Hawking entropy in this limit vanishes with the

vanishing horizon size. So we are in a domain where the first non-zero piece of the entropy

of a gravitational solution is the logarithmic correction. We also have a solution without

a horizon, so it is far from clear what this non-zero entropy means. The most plausible

solution to this is that our entropy analysis does not hold in the limit that we are presently

considering. Indeed, the whole Cardy-like analysis of the 2d GCFT, which is dual to 3D

flat space, would be valid in the limit of large charges and we are venturing into a region

of parameter space where one of the charges (the angular momentum) is zero.

Having made some preliminary and speculative remarks about the boost orbifold, we

postpone a detailed study of this to another piece of work. The utility of the exercise we

have carried out in this sub-section is to convey to the reader that the r0 → 0 limit is a

rather subtle limit to take and there can be many pitfalls along the way.

4.6 Entropy and log corrections from general thermal fluctuations

It was shown in [49] that logarithmic corrections arise in thermodynamic systems when

small fluctuations around equilibrium are taken into account. In the microcanonical ensem-

ble, when the leading thermodynamic entropy is given by S(0), the total entropy has a form

S = S(0) − 1

2
ln(C T 2) + . . . (4.31)

where C is the specific heat of the thermodynamic system. This was successfully applied

to the BTZ black hole to reproduce the correct coefficient in front of the logarithmic

corrections [49]. We wish to check if this goes through for our FSC solution.5 For the FSC

in Einstein gravity, we have [30]

S
(0)
FSC =

2πr0
4G

=
π2

G

TFSC

Ω2
, CFSC = T

(

∂S

∂T

)

∣

∣

∣

Ω=const.

= S
(0)
FSC. (4.32)

Putting this into (4.31), we see that

SFSC = S
(0)
FSC − 1

2
ln

[

S
(0)
FSC

G2Ω4(S
(0)
FSC)

2

π4

]

+ . . . = S
(0)
FSC − 3

2
lnS

(0)
FSC + . . . (4.33)

5We would like to thank Daniel Grumiller for suggesting this exercise.
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We see that we have been able to reproduce the previous −3
2 fraction in front of the logarith-

mic term. This provides an independent cross-check of the correctness of the answer (4.18)

obtained by the saddle-point analysis. We can neglect the terms depicted in the “. . .” when

Ω ∼ 1, that is when r̂+, r0 are both of the same order of magnitude.

4.7 FSC in topologically massive gravity

We have so far restricted our attention to Einstein’s theory in the 3D bulk. As in the AdS3
example [50], in flat space the asymptotic symmetries remain the same when one adds

a gravitational Chern-Simons term and considers Topologically Massive Gravity (TMG)

instead of Einstein gravity [26]:

ITMG =
1

16πG

∫

d3x
√−g

(

R+
1

µ
CS(Γ)

)

. (4.34)

Here G is the Newton constant, R the Ricci scalar, µ is the Chern-Simons coupling and

CS(Γ) = ελµνΓρ
λσ

(

∂µΓ
σ
ρν +

2
3Γ

σ
µτΓ

τ
νρ

)

is the gravitational Chern-Simons term.

The only change occurs in the value of the central term. So, the asymptotic symmetry

algebra of TMG in flat space at null infinity is again given by the BMS3 algebra (2.2), now

with two non-zero central terms, viz.

cL =
1

4µG
, cM =

1

4G
. (4.35)

This can again be motivated by a limit from the AdS-TMG example, where the central

terms are c± = 3ℓ
2G(1± 1

µℓ). Here we have used ǫ = 1
ℓ while scaling the AdS results.

The equations of motion of TMG amount to the vanishing of the Cotton tensor and

this automatically includes all solutions to the Einstein equations. Specifically, the FSC

solutions that we have talked about in Einstein gravity also are solutions in TMG. On

the gravity side, one can use techniques in [51, 52] to calculate the entropy of these FSC

solutions in TMG. The answer that one gets is [30]

S
FSC(0)
TMG =

2πr0
4G

+
2πr̂+
4µG

(4.36)

The charges M,J in TMG change from their values in Einstein gravity. In the AdS3 case,

the changes are [53, 54]

M → M +
µ

ℓ2
J, J → J +

1

µ
M (4.37)

For the flat case, the change in the charges are as follows:

M → M, J → J +
1

µ
M (4.38)

So, for the dual theory to TMG in flatspace, states are labelled by the GCFT weights are

given by

hM = M +
1

8G
, hL = J +

1

µ
M (4.39)
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We can now plug the values (4.35) and (4.39) into the 2d GCFT entropy formula (4.9)

and we can check that in the limit of large charges the entropy formula correctly repro-

duces (4.36)

S
(0)
GCFT = 2π

(

cL

√

hM
2cM

+ hL

√

cM
2hM

)

=
2πr0
4G

+
2πr̂+
4µG

= S
FSC(0)
TMG (4.40)

We can also compute the log corrections to the TMG FSC entropy by looking at (4.14).

S
FSC(1)
TMG = −3

2
log(2GM). (4.41)

The intriguing feature is that the log term in the entropy does not depend on the parameter

µ and hence is the same as in Einstein theory.

5 Conclusions and future directions

In this paper, we have taken further steps to understanding holography in flat spacetimes in

three dimensions. Our primary focus in this work was the evaluation of the leading quantum

correction to the Bekenstein-Hawking entropy of the Flat Space Cosmological solution of 3D

flat space. This logarithmic correction, calculated by looking at the saddle-point analysis

to evaluate the density of states in the dual field theory, turned out to be of the form

expected from general grounds. By the extrapolation of results from the outer to the inner

horizon of the BTZ black hole in AdS3 and taking the flat limit, we showed that the answers

obtained matched with those from the dual 2d Galilean Conformal Field Theory. We have

also employed techniques for entropy corrections to general thermodynamic systems to

cross check our analysis.

We commented on the curious fact that the result of this analysis did not seem to

depend on the radius of the cosmological horizon of the FSC. In particular, in the extreme

case where the FSC is non-rotating and hence does not have a horizon, there seems to be

a non-zero entropy arising from the solution. Although this is a particularly peculiar and

interesting answer, we believe we should not trust it because of the domain of validity of

our analysis.

We have finally looked at extending our analysis to Topologically Massive Gravity in

3D flat space. The putative dual field theory is again a 2D GCFT, now with two non-zero

central charges. We showed that the Cardy-like formula for the 2D GCFT reproduces the

bulk entropy of the FSC solutions in TMG. We also calculated the log-corrections to the

entropy and found that it remained unchanged from its value in Einstein gravity.

There are numerous unexplored and exciting directions in trying to understand aspects

of holography in flat space. Here we list a few which we have directly commented on in

this work. First, we would like to devote our attention in the near future to the aspects of

the boost orbifold, which is the r0 → 0 limit of the FSC. One needs to do an independent

analysis like in [30] by looking at the Euclidean path integral to compute the on-shell action

and the free energy to understand whether the phase transitions to hot flat space exist as

we indicated in the r0 → 0 limit of the final FSC answers in this paper. This is also of

importance if one tries to generalise the exotic phase transitions of [30] to higher dimensions.

– 19 –
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Another potentially interesting question is to try and extend the saddle-point analysis

beyond the logarithmic correction, following similar the methods to [55]. One crucial

question in this programme is to see if again one can address the r0 → 0 limit and if there

is actually value to the statement that even without a horizon, there exists an entropy which

can be associated to the boost orbifold. This would open very interesting questions of the

origin of this entropy and whether this can be attributed to the initial time singularity in

the causal structure.

Lastly, we would like to comment on what we believe is an avenue of immense potential.

The observation that the modular transformation properties of the partition function of a

2D GCFT are reminiscent of a Jacobi form may help us understand the microscopic details

of the dual field theory and thereby provide the basis for an understanding of the counting

of states in the field theory at a much more fundamental level. This is an avenue which we

would like to make progress on in the near future.
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