
J
H
E
P
0
3
(
2
0
1
1
)
0
9
9

Published for SISSA by Springer

Received: December 5, 2010

Accepted: February 16, 2011

Published: March 21, 2011

Ground states of S-duality twisted N = 4 super

Yang-Mills theory

Ori J. Ganor,a Yoon Pyo Hongb and Hai Siong Tana

aDepartment of Physics, University of California,

Berkeley, CA 94720, U.S.A.
bSchool of Physics, Korea Institute for Advanced Study,

Seoul 130-722, Korea

E-mail: origa@socrates.berkeley.edu, yph@kias.re.kr,

haisiong tan@berkeley.edu

Abstract: We study the low-energy limit of a compactification of N = 4 U(n) super Yang-

Mills theory on S1 with boundary conditions modified by an S-duality and R-symmetry

twist. This theory has N = 6 supersymmetry in 2+1D. We analyze the T 2 compactification

of this 2+1D theory by identifying a dual weakly coupled type-IIA background. The

Hilbert space of normalizable ground states is finite-dimensional and appears to exhibit a

rich structure of sectors. We identify most of them with Hilbert spaces of Chern-Simons

theory (with appropriate gauge groups and levels). We also discuss a realization of a related

twisted compactification in terms of the (2, 0)-theory, where the recent solution by Gaiotto

and Witten of the boundary conditions describing D3-branes ending on a (p, q) 5-brane

plays a crucial role.

Keywords: Duality in Gauge Field Theories, String Duality, Brane Dynamics in Gauge

Theories, Chern-Simons Theories

ArXiv ePrint: 1007.3749

Open Access doi:10.1007/JHEP03(2011)099

mailto:origa@socrates.berkeley.edu
mailto:yph@kias.re.kr
mailto:haisiong_tan@berkeley.edu
http://arxiv.org/abs/1007.3749
http://dx.doi.org/10.1007/JHEP03(2011)099


J
H
E
P
0
3
(
2
0
1
1
)
0
9
9

Contents

1 Introduction 1

2 The problem 3

2.1 N = 4 super Yang-Mills: notation 4

2.2 S-duality twist 5

2.3 R-symmetry twist 6

2.4 Low-energy limit 7

3 Type-IIA dual 9

3.1 The dual geometry 10

3.2 Ground states 11

3.3 Zk momentum 15

3.4 Zk winding number 17

3.5 Worldsheet symmetries 20

3.6 Dependence on complex structure 24

3.7 T-duality 25

4 Warm-up: C-twist 30

4.1 Group theory 30

4.2 U(1) gauge group 30

4.3 U(2) gauge group 33

5 Solution for U(1) gauge theory 37

5.1 The field theory side 38

5.2 Toroidal compactification 40

5.3 U(1) Chern-Simons theory on T 2 42

5.4 Wavefunctions 45

5.5 Connecting to the type-IIA picture 46

6 U(n) gauge group on T 2 48

6.1 The center U(1) ⊂ U(n) 48

6.2 U(n) Chern-Simons Hilbert space as a symmetric product 52

6.3 Example: U(2) 54

6.4 Chern-Simons theory and the [σ]-untwisted sector H[1](υ) 57

6.5 [σ]-twisted sectors 59

6.5.1 υ = π
2 (k = 2) 60

6.5.2 υ = π
3 (k = 1) and υ = 2π

3 (k = 3) 62

6.6 Wilson loop operators 63

– i –



J
H
E
P
0
3
(
2
0
1
1
)
0
9
9

7 Realization via the (2, 0)-theory 64

7.1 Reduction to 4+1D and 2+1D 66

7.2 Recovering the U(1) result 69

7.3 The U(2) theory 72

8 Discussion 73

A Explicit action of SL(2, Z) on ground states 76

A.1 Action of S on single-particle states for υ = π
2 (τ = i and r = 4) 77

A.2 Action of S on single-particle states for υ = π
3 (τ = eπi/3 and r = 6) 78

A.3 Action of S on single-particle states for υ = 2π
3 (τ = eπi/3 and r = 3) 80

B Action of SL(2, Z) on Chern-Simons Hilbert spaces 81

B.1 Action of T 82

B.2 Action of S 82

B.3 Action of Zn 82

B.4 Example: [U(1)2 × SU(2)−3]/Z2 83

C Decomposition of H(n1,...,np) into Chern-Simons Hilbert spaces 83

C.1 υ = π
3 (k = 1) 83

C.2 υ = 2π
3 (k = 3) 87

1 Introduction

In this paper we explore a new connection between S-duality and pure Chern-Simons the-

ory. In the context of S-duality, Chern-Simons theory has already appeared in the work

of Gaiotto and Witten [1] on the action of S-duality on boundary conditions. Gaiotto and

Witten studied four dimensional N = 4 U(n) Super Yang-Mills theory (SYM) formulated

on a manifold with a boundary. They allowed additional degrees of freedom to be localized

on the boundary and to couple to the bulk N = 4 SYM fields, thereby generating a rich

class of possibilities for boundary conditions, generalizing the standard Dirichlet and Neu-

mann ones [2]. Chern-Simons couplings (either involving the bulk gauge fields or boundary

gauge fields) are an optional additional ingredient that was included in their discussion,

and S-duality can generate such couplings.

In this paper we will also study N = 4 SYM with a novel type of boundary conditions,

but these will be periodic boundary conditions that involve S-duality at the outset. We

formulate N = 4 U(n) SYM on S1 × R
2,1 but include an S-duality and R-symmetry twist

along S1. The S-duality twist is the novel feature, which is allowed for the special value

τ = i of the coupling constant

τ ≡ 4πi

g2
YM

+
θ

2π
.
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(τ = i is the only value invariant under τ → −1/τ.) The S-duality twist is inspired by

similar exotic twists that have appeared in different contexts before [3–8]. (The authors

of [9] coined the term monodrofolds for such twists.)

We are interested in the low-energy limit of this setting, as the S1 shrinks to zero. In

this limit, roughly speaking, all that’s left is the S-duality and R-symmetry twists. For

example, in Euclidean signature (replacing R
2,1 → R

3) we can think of the S1 direction as

Euclidean time and define correlation functions of operators O1,O2, . . . , in the theory as

〈O1O2 · · ·〉 ≡ tr((−1)F ŜR̂e−2πRHO1O2 · · · ),

where Ŝ is the S-duality operator, R̂ is the R-twist operator, H is the Hamiltonian of

N = 4 SYM, 2πR is the circumference of S1, and F is the fermion number [and (−1)F

is a central element of the R-symmetry group SU(4)].1 In the limit R → 0 (with an ap-

propriate treatment of zero-modes as will be discussed later), tr((−1)F ŜR̂O1O2 · · · ) is all

that remains, and the theory probes the S-duality operator through (−1)F ŜR̂. This is the

main reason why we are interested in this problem.

Since abelian S-duality is completely understood (see, e.g., [10]), the solution of our

problem for U(1) gauge group is straightforward. As we explain in section 5, the resulting

low-energy description is a pure Chern-Simons theory with gauge group U(1) at level k = 2.

(We can get other levels, k = 1, 3, if we replace the S-duality twist that realizes τ → −1/τ

with other elements g of the duality group SL(2,Z) for which a self-dual coupling constant

exists.) The question that we would like to raise at this point is: how does this statement

generalize to nonabelian gauge groups?

Given the results for U(1) gauge group, a näıve conjecture would suggest that the low-

energy theory is the nonabelian Chern-Simons theory at the same level as in the abelian

case [11]. We find, however, that the nonabelian theories present a somewhat richer picture

than their abelian counterparts.

The main tool that we will use in this paper is a weakly coupled type-IIA dual of the

problem. To arrive at this dual, we start with type-IIB string theory, where N = 4 U(n)

SYM is naturally realized as the low-energy description of coincident D3-branes [12], and

S-duality of the gauge theory descends from S-duality of the full string theory. The latter

can be realized as a geometrical symmetry in a dual string theory [13, 14]. In order to

utilize this geometrical description of S-duality, we compactify the theory on T 2 (replacing

R2,1 → T 2 × R) and look for the ground states. Realizing the theory on n D3-branes in

type-IIB string theory, we can map the theory to a type-IIA setting where the question

of identifying the ground states reduces to an easily solvable geometrical problem. With

sufficient supersymmetry, the solution of the geometrical problem after duality also solves

our original problem. This allows us to calculate the Witten Index and analyze the space

of ground states and its symmetries in terms of the type-IIA dual background.

Based on this analysis, we argue that (for low enough rank of the gauge group) the

Hilbert space of ground states decomposes into a direct sum of Hilbert spaces of Chern-

Simons theories with appropriate gauge groups and levels. In particular, there exists a

1We are grateful to E. Witten for pointing out the missing (−1)F in a previous version.
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distinguished sector (which we call the [σ]-untwisted sector) that is equivalent to the Hilbert

space of nonabelian Chern-Simons theory with gauge group U(n) and level (2n, 2), where

2n refers to the U(1) center, and 2 refers to SU(n). By “equivalent Hilbert spaces” we

mean that their symmetry operators and their behavior under modular transformations of

T 2 match. Our results then suggest that in the decompactification limit T 2 × R → R
2,1

the Hilbert space of the low-energy theory decomposes into different superselection sectors,

each described by an appropriate Chern-Simons theory. We were also able to extend much

of this picture to the compactifications with twists by other elements g of the duality group

SL(2,Z), except for a certain problematic issue that arises for n ≥ 4 and remains unresolved.

The paper is organized as follows. In section 2 we explain the problem in detail.

We discuss the S-duality twist, the various other SL(2,Z) elements that can be used to

construct twists, the R-symmetry twist, the amount of supersymmetry that is preserved,

elimination of zero-modes, and restrictions on the rank n of the gauge group U(n).

In section 3 we compactify the theory on T 2 and find the weakly coupled type-IIA dual.

We describe in detail the U-duality element that maps the problem to a geometrical one,

and discuss various conserved quantum numbers that can be defined in the geometrical

setting.

In section 4, we study as a warm-up exercise a simpler problem of compactification

with charge-conjugation twist (C-twist). This serves as an illustration of ideas developed in

previous sections as well as methods that we will employ in later sections when we attack

our main problem, the S-duality twist.

In section 5 we solve the problem for U(1) gauge group explicitly, and calculate the

level k of the low-energy (pure) Chern-Simons theory. We then compactify on T 2 and

compare the Hilbert space of ground states of abelian Chern-Simons theory to the Hilbert

space of ground states of the type-IIA dual. We identify the type-IIA dual of Wilson loop

operators as well as other symmetries of the ground states.

In section 6 we study the ground states of the nonabelian problem [with U(n) gauge

group] on T 2, using the type-IIA dual theory. We show that the Hilbert space of ground

states decomposes into a direct sum of Hilbert spaces, which in most cases we are able

to identify as the Hilbert spaces of Chern-Simons theory with appropriate gauge groups

[subgroups of U(n)] and appropriate Chern-Simons levels.

In section 7 we take another look at our problem in terms of the (2, 0) theory. We

argue that the solution can be constructed from ingredients that recently appeared in the

work of Gaiotto and Witten [1] in connection with the low-energy description of D3-branes

that end on (p, q) 5-branes. We show how to recover the U(1) result from these ingredients.

We conclude with a discussion of the results and open problems in section 8.

2 The problem

We wish to learn new facts about the SL(2,Z) S-duality of N = 4 super Yang-Mills

theory by studying a circle compactification of the theory with unconventional boundary

conditions as follows. Realizing the circle as the segment [0, 2πR] with endpoints 0 and

2πR identified, we require the configuration at 2πR to be an S-dual of the configuration at

– 3 –
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0. We will refer to this kind of boundary conditions as an S-twist. To be specific, we need to

pick an element g ∈ SL(2,Z), and we need the coupling constant to be invariant under g.

There are only a small number of possibilities of this kind, which we will list in section 2.2.

The S-twist would be easy to describe if we knew a formulation of N = 4 super Yang-

Mills theory for which S-duality is manifest. Nevertheless, it is not hard to argue that the

S-twist is consistent. For example, in Euclidean signature we can take the direction of the

circle to be Euclidean time, and the S-twist then corresponds to an insertion of the operator

corresponding to g on the Hilbert space of states, thus obtaining tr((−1)F ge−2πRH · · · ),
where H is the Hamiltonian, (· · · ) represents additional insertions of local operators if

desired, and by a slight abuse of notation we used the same g to denote the action of g on

the Hilbert space at the self-dual coupling constant. In section 3 we bring more evidence for

the consistency of the S-twist: we present a string-theoretic construction with an S-twist,

and show that it is dual to a conventional type-IIA string compactification.

In order to preserve some amount of supersymmetry, we also need to pick an appropri-

ate nontrivial element γ of the R-symmetry group and identify the configuration at 2πR

with the γ-transformed g-dual of the configuration at 0. For a suitable choice of γ we can

preserve 12 supersymmetry generators, which corresponds to N = 6 in three dimensions.

Our problem is to find the effective three-dimensional low-energy description of the

theory in the limit R→ 0. We propose that for a sufficiently low rank n (how low depends

on g), the requisite three-dimensional field theory is topological, and in the next sections

we will study it in special cases.

The rest of this section provides more details on the construction above. In section 2.1

we introduce the notation for the rest of this paper; in section 2.2 we discuss the various

choices for g (there are only three) and the corresponding self-dual coupling constants. In

section 2.3 we discuss the associated R-symmetry twist γ; and in section 2.4 we introduce

restrictions on the rank n of the gauge group that are necessary to eliminate unwanted

low-energy moduli. These details are a condensed version of the discussion that can be

found in [11].

2.1 N = 4 super Yang-Mills: notation

Our starting point is four-dimensional N = 4 super Yang-Mills theory with gauge group

U(n).

We denote the complex coupling constant by

τ ≡ 4πi

g2
YM

+
θ

2π
.

It transforms under an element
(

a b

c d

)
∈ SL(2,Z) (2.1)

as

τ → aτ + b

cτ + d
.
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Our notation for the fields of U(n) N = 4 super Yang-Mills theory is summarized below:

Aµ gauge field µ = 0, . . . , 3,

ΦI adjoint-valued scalars I = 1, . . . , 6,

ψa
α adjoint-valued spinors a = 1, . . . , 4 and α = 1, 2,

ψaα̇ complex conjugate spinors a = 1, . . . , 4 and α̇ = 1̇, 2̇,

Qaα SUSY generators a = 1, . . . , 4 and α = 1, 2,

Q
a
α̇ complex conjugate generators a = 1, . . . , 4 and α̇ = 1̇, 2̇.

We also define the complex combinations of scalar fields

Zj ≡ Φj + iΦ3+j , j = 1, 2, 3. (2.2)

The S1 on which we compactify is in direction 3.

2.2 S-duality twist

To define the S-duality twist we need a pair (g, τ) comprising of an element g =

(
a b

c d

)
∈

SL(2,Z) and a self-dual coupling constant τ , satisfying

τ =
aτ + b

cτ + d
. (2.3)

Assuming c 6= 0, (2.3) is equivalent to the quadratic equation cτ2+(d−a)τ−b = 0, and if it

has solutions away from the real axis, they must satisfy |τ |2 = −b/c and τ+τ = (a−d)/c,

which implies that |cτ + d|2 = 1. We can therefore set

cτ + d = eiυ (2.4)

for some real phase υ. It follows that cos υ = d + c(τ + τ)/2 = (a + d)/2 can only take

the values 0 or ±1/2, and so υ is one of ±1
2π,±1

3π,±2
3π. Furthermore, it is easy to check

that the eigenvalues of g are e±iυ, and thus g has finite order, which can be of the three

possibilities r = 3, 4, 6. Thus,

|υ| =
2π

r
. (2.5)

Up to conjugation [g → g−1
0 gg0 for some g0 ∈ SL(2,Z)] and inversion (g → g−1), we

are left with the following three choices for (g, τ):

1. τ = i and g = g′ ≡
(

0 −1

1 0

)
of order r = 4 (υ = 1

2π);

2. τ = eπi/3 and g = g′′ ≡
(

1 −1

1 0

)
∈ SL(2,Z) of order r = 6 (υ = 1

3π);

3. τ = eπi/3 and g = −g′′−1 =

(
0 −1

1 −1

)
∈ SL(2,Z) of order r = 3 (υ = 2

3π).

– 5 –
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All other possible g’s are SL(2,Z)-conjugate to those in the list, or their inverses (which,

as we will see, give theories that are physically equivalent after a parity transformation).

We recall [15] that g acts nontrivially on the supercharges

g : Qaα →
(

cτ + d

|cτ + d|

)− 1
2

Qaα = e−
iυ
2 Qaα . (2.6)

In order to get a supersymmetric theory, we therefore need to supplement the S-twist with

an R-symmetry twist so that the phase in (2.6) is cancelled.

2.3 R-symmetry twist

An R-symmetry twist modifies the periodic boundary conditions by introducing additional

phases for R-charged fields. It is a useful tool to eliminate unwanted zero modes while

preserving some amount of supersymmetry (see for instance [16–18]). In our context it

also allows us to restore some of the supersymmetry that was lost by the S-twist.

We pick a basis of the R-symmetry group SU(4) so that a diagonal element

γ ≡




eiϕ1

eiϕ2

eiϕ3

eiϕ4


 ∈ SU(4)R ,

(
∑

a

ϕa = 0

)
, (2.7)

acts on the fermionic fields from section 2.1 as

γ(ψa
α) = eiϕaψa

α , γ(ψaα̇) = e−iϕaψaα̇ , a = 1, . . . , 4,

and on the bosonic fields as

γ(Aµ) = Aµ , γ(Zj) = ei(ϕj+ϕ4)Zj , j = 1, 2, 3.

A γ-twist, on its own, modifies the boundary conditions to

ψa
α(x0, x1, x2, x3 + 2πR) = eiϕaΛ−1ψa

α(x0, x1, x2, x3)Λ , (2.8)

Zj(x0, x1, x2, x3 + 2πR) = ei(ϕj+ϕ4)Λ−1Zj(x0, x1, x2, x3)Λ , (2.9)

Aµ(x0, x1, x2, x3 + 2πR) = Λ−1Aµ(x0, x1, x2, x3)Λ + Λ−1∂µΛ , (2.10)

where Λ is an arbitrary gauge transformation. We combine the R-symmetry twist by γ

with the S-twist from section 2.2 to get an S-R-twist. It can be formally defined by switch-

ing to Euclidean signature, considering the direction x3 as Euclidean time, and defining

correlation functions of operators, similarly to the discussion at the top of section 2, by

tr((−1)F γge−2πRH · · · ), where F is the fermion number, H is the Hamiltonian, (· · · ) repre-

sents insertions of local operators if desired, and γ is the R-symmetry operator (in a slight

abuse of notation we here denote the representation of γ on the Hilbert space by the same

letter).

Combining γ with (2.6), we find the action of γg on the supercharges:

γg(Qaα) = ei(ϕa−υ
2
)Qaα .

– 6 –
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Therefore, to preserve N = 2 supersymmetry in three-dimensions, for example, we need

to set one of the ϕa, say ϕ1, to 1
2υ. The maximal amount of supersymmetry that we can

preserve is N = 6 with

γ =




e
i
2
υ

e
i
2
υ

e
i
2
υ

e−
3i
2

υ




∈ SU(4)R . (2.11)

We will work with that choice of γ from now on.

2.4 Low-energy limit

Our goal is to study the low-energy description of the compactification of N = 4 U(n) SYM

on S1 with a combination of S-duality twisted boundary conditions as in section 2.2 and R-

symmetry twisted boundary conditions as in section 2.3. With the choice of γ as in (2.11),

the theory has N = 6 supersymmetry in 2+1D. In this paper we further wish to restrict

the parameters so as to get a topological QFT in 2+1D, for which the supersymmetry is

realized trivially — all generators are identically zero at low-energy (which is only possible

for a topological theory for which the momentum and Hamiltonian are also zero).

This restriction requires that no massless propagating fields shall survive at low en-

ergy. For a U(1) gauge group we will see in section 5 that the low-energy limit is U(1)

Chern-Simons theory, and indeed no low-energy propagating degrees of freedom survive;

the mass gap of our setting is of the order of the Kaluza-Klein scale 1/R. However, in the

nonabelian case, n > 1, the S-duality twist is poorly understood, and it is less clear whether

our setting has a mass gap or not. In fact, we will argue in section 6 that in general our

S1 compactification has several discrete choices leading to separate superselection sectors,

each defining a different low-energy limit. Some superselection sectors come with a mass

gap, while others do not.

In this section, however, we will introduce a necessary requirement — that no non-

compact moduli survive the compactification to 2+1D. This requirement seems sufficient

to ensure that the additional compactification on T 2 (to 0+1D), which we will study later

on, leads to a discrete spectrum. So, we must start by eliminating the potential zero modes

arising from the dimensional reduction of the scalar fields.

To see what that entails, let us attempt to construct a massless degree of freedom by

starting at a generic point on the Coulomb branch of N = 4 SYM in 3+1D, where the gauge

group is broken to U(1)n. The 3+1D low energy physics is described by n free N = 4 vector

multiplets, and the residual gauge symmetry is the permutation group Sn that permutes

the n vector multiplets. If the energy scale at which the U(n) gauge symmetry is broken

(which is determined by the differences between the VEVs of the scalar components of the

vector multiplets) is much larger than the compactification scale 1/R, we can approximate

the low-energy theory by simply compactifying the n free vector multiplets on S1 with the

R-symmetry and S-duality twists.

Compactification of a single vector multiplet with R-symmetry and S-duality twists

leaves no massless fields in 2+1D. To see this, consider the gauge field and the scalars and

– 7 –
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fermions separately. Only the S-twist affects the gauge field, and only the R-twist affects the

scalars and fermions. The gauge fields will, at best, give rise to compact moduli, but for a

single vector multiplet they do not produce any moduli at all. This is because for a massless

mode to exist in three dimensions, we need a solution2 where the electric and magnetic fields

Ei, Bi (both three-dimensional vectors with i = 1, 2, 3) are independent of x3 and satisfy

(
Ei

Bi

)
=

(
a b

c d

)(
Ei

Bi

)
, (2.12)

as required by the S-twist. But since g =

(
a b

c d

)
has nontrivial eigenvalues e±iυ, there is

no nonzero solution to (2.12), and no massless fields arise from the gauge fields. For scalar

zero modes we would look for solutions to [see (2.9) and (2.11)]:

Zj = ei(ϕj+ϕ4)Zj = e−iυZj , j = 1, 2, 3, (2.13)

which has no nonzero solutions. Similarly, there are no fermion zero modes, which of course

follows from supersymmetry. So, a single vector multiplet compactified with an S-R-twist

does not have any low-energy propagating degrees of freedom.

However, as we shall now see, for n ≥ r (where r was defined in (2.5) as 2π/υ) we do get

massless propagating degrees of freedom. To see this, note that the boundary conditions

in (2.8)–(2.10) have an optional U(n) gauge transformation Λ. Once the gauge group is

broken as U(n) → U(1)n, we are only allowed to take Λ in the normalizer of U(1)n in U(n),

which is the permutation group Sn. We thus identify Λ with some permutation σ ∈ Sn and

modify the conditions for zero modes (2.12)–(2.13) to

(
E

(σ(l))
i

B
(σ(l))
i

)
=

(
a b

c d

)(
E

(l)
i

B
(l)
i

)
, i = 1, . . . , 3, l = 1, . . . , n , (2.14)

and

Zj,σ(l) = e−iυZj,l , j = 1, . . . , 3, l = 1, . . . , n , (2.15)

where the superscript l corresponds to the lth U(1) factor in U(1)n and the permutation

σ maps {1, 2, . . . , n} to {σ(1), σ(2), . . . , σ(n)}. Equations (2.14)–(2.15) have nonzero solu-

tions if and only if σ has a cycle of length divisible by r, and such a σ ∈ Sn exists if and

only if n ≥ r.

At the end of section 2.2 we listed various possible values of g and r. The corresponding

restrictions on the rank n of the gauge group are therefore: n ≤ 2 for the case with r = 3;

n ≤ 3 for r = 4; and n ≤ 5 for r = 6. For these cases there are no obvious zero modes, and

we are going to assume that the low-energy theory has no noncompact moduli for n < r.

2We will study in greater detail the resulting low-energy limit later in section 5, but for the purposes of

the discussion in this section it suffices to look for classical solutions.
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Type Brane 1 2 3 4 5 6 7 8 9 10 Apply:

IIB D3 − − ÷ × T-duality on 1.

IIA D2 − ÷ × Lift to M-theory.

M M2 − ÷ Reduction to IIA on 2.

IIA F1 × ÷

Table 1. The sequence of dualities from n D3-branes in type-IIB to n fundamental strings in type-

IIA. A direction that the corresponding brane or string wraps with periodic boundary conditions is

represented by −, a direction that the object wraps with twisted boundary conditions is represented

by ÷, and a dimension that doesn’t exist in the particular string theory is represented by ×. All

the branes in the table are at the origin of directions 4, . . . , 9.

3 Type-IIA dual

The setting of section 2 has a string-theoretic realization in terms of D3-branes of type-IIB

string theory. We start with the background R
9,1 with Cartesian coordinates x0, . . . , x9,

and place n D3-branes at x4 = x5 = · · · = x9 = 0. The type-IIB coupling constant is de-

noted by τ = χ+ i
gIIB

, where gIIB is the string coupling constant, and χ is the R-R scalar.

The S-duality transformation g of section 2.2 then lifts to an S-duality transformation of

the full type-IIB string theory (that we also denote by g), and the R-symmetry rotation γ

of section 2.3 lifts to a geometrical rotation in the 6 directions transverse to the D3-branes.

We will now transform this background, using string dualities, to one where S-duality is

realized geometrically.

We first compactify the x3-direction on a circle of radius 2πR with boundary conditions

given by a simultaneous S-duality twist g and a γ ∈ Spin(6) geometrical twist in directions

x4, . . . , x9, where γ is given by (2.11) in terms of υ, and υ by (2.4). This means that

as we traverse the x3 circle once, we also apply a γ ∈ Spin(6) rotation in the transverse

directions before gluing x3 = 0 to x3 = 2πR, similarly to the discussion in section 2.3. We

then compactify directions x1, x2, so that 0 ≤ x1 < 2πL1 and 0 ≤ x2 < 2πL2 are periodic.

This puts the 2+1D field theory on T 2 with area 4π2L1L2 and complex structure iL2/L1.

Now we can study different limits of the parameters L1, L2, R. First, to reproduce the

field-theory problem of section 2 we need to take the limit

L1, L2, R≫ α′1/2
, (3.1)

where α′1/2 is the type-IIB string scale. In the limit (3.1), we can first reduce the descrip-

tion of the D3-branes to N = 4 U(n) SYM at low energy, and then compactify N = 4

SYM with an S-duality and R-symmetry twist.

We now consider the opposite limit L1, L2 → 0 with R → ∞ (in the order to be

specified below). In this limit, the type-IIB description is strongly-coupled, but we will

perform a U-duality transformation, in a series of steps described below and summarized

in table 1, to transform the setting to a weakly coupled type-IIA background. This will

also allow us to easily study the ground states of the field theory.
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Type-IIB Type-IIA

T 2 is in directions 1, 2 (Dual) T 2 is in directions 1, 10

n D3-branes (directions 1, 2, 3) n F1-strings (direction 3)

SL(2,Z) diffeomorphisms of T 2 SL(2,Z) T-duality group of (dual) T 2

Momentum P1 D2-brane (wrapping directions 1, 10) charge

Momentum P2 D0-brane charge

String winding in direction 1 Momentum P1

String winding in direction 2 String winding in direction 10

D1 winding in direction 1 Momentum P10

D1 winding in direction 2 String winding in direction 1

Table 2. Mapping between the quantum numbers and other notions on the type-IIB side to those

on the type-IIA side.

The U-duality transformation proceeds as follows. We first replace type-IIB on

a circle of radius L1 with M-theory on T 2 with complex structure τ and area A =

(2π)2α′2τ−1
2 L−2

1 = (2π)2M−3
p L−1

1 , where Mp is the 11-dimensional Planck scale. We now

reduce from M-theory to type-IIA on the circle of radius L2 to get a theory with string

coupling constant

gIIA = (MpL2)
3/2 = τ

1/2
2 L

1/2
1 L

3/2
2 α′−1

,

and new string scale

α′
IIA = M−3

p L−1
2 = α′2τ−1

2 L−1
1 L−1

2 .

After these dualities, the D3-branes become fundamental type-IIA strings with a total

winding number n in the x3 direction. The S-duality twist g is now a diffeomorphism of

the type-IIA T 2, which can be realized as a rotation by an angle υ. To make this type-IIA

background weakly coupled, we assume that the limits are taken in such a way that

A ≫ α′
IIA , gIIA ≪ 1 , R≫ α′1/2

IIA. (3.2)

This is a different limit than (3.1), but we can use the weakly coupled type-IIA background

to study the Hilbert space of (supersymmetric) ground states. Since the type-IIA setting

is described by n fundamental strings on a weakly coupled background, the question of

the Hilbert space of ground states reduces to a simple calculation in string theory. For

quick reference, we have summarized in table 2 the dual type-IIA description of various

charges of the original type-IIB setting.

3.1 The dual geometry

After the series of dualities summarized in table 1, we end-up with a type-IIA string theory

that we will now describe in detail. The 9+1D geometry is flat and free of singularities,

and the spatial part is a free orbifold of R
9. It is convenient to divide the 9 directions in
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three groups and describe the geometry as an orbifold of T 2 × R × C
3. We regard the T 2

as the complex plane modded out by a lattice, C/(Z + τZ), and take

z ∼ z + 1 ∼ z + τ

as its coordinate. On R, the coordinate takes

−∞ < x3 <∞ ,

and on C
3 ≃ R

6, we take the coordinates to be

(ζ1, ζ2, ζ3) , ζ1, ζ2, ζ3 ∈ C .

The orbifold is then represented by the identification

(z, x3, ζ1, ζ2, ζ3) ∼ (eiυz, x3 + 2πR, eiυζ1, e
iυζ2, e

iυζ3) . (3.3)

Note that, because of the shift x3 → x3 + 2πR, the orbifold has no fixed points, and the

geometry is smooth. From now until the rest of this section, (3.3) will be our background.

It is also convenient to give a separate name for the ζ1 = ζ2 = ζ3 = 0 subspace. We

will denote this smooth, flat, and compact 3-dimensional manifold by W. It is represented

by the coordinates (z, x3) with identifications

W : (z, x3) ∼ (z + τ, x3) ∼ (z + 1, x3) ∼ (eiυz, x3 + 2πR) . (3.4)

This manifold is a T 2-fibration over S1 with structure group Zr.

3.2 Ground states

The states that are relevant to our problem are those with a total string winding number n

along direction x3. A state with string winding number n is a p-particle (that is, p-string)

state comprising of 1-particle states of winding numbers n1 ≥ n2 ≥ · · · ≥ np > 0 with

n1+n2+ · · ·+np = n. Thus, the Hilbert space of ground states decomposes as a direct sum:

H(n, υ) =
⊕

n1≥n2≥···≥np>0
n1+n2+···+np=n

H(n1,...,np)(υ) . (3.5)

We can recast the partition n = n1 + · · ·+np as a conjugacy class [σ] of a permutation

σ ∈ Sn, so that when σ is decomposed into cycles the integers n1, . . . , np denote the lengths

of the cycles. So, for example n = 1 + 1 + · · · + 1 (i.e., p = n) corresponds to the identity

permutation σ = 1. We therefore set

H(n, υ) =
⊕

[σ]

H[σ](υ) , (σ ∈ Sn) . (3.6)

We will refer to H[1] as the [σ]-untwisted sector, and to H[σ] with σ 6= 1 as the [σ]-twisted

sectors.

Understanding the multi-particle Hilbert spaces H[σ](υ) requires analysis of the

single-particle states of which the multi-particle states are constructed, so let us first
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discuss the single-particle string states. The problem of superstring quantization in the

flat background (3.3) was studied in detail in [19].3 In the RNS formalism, in the sector

with winding number ñ in direction x3, the mode expansion of worldsheet fields contains

modes shifted from the standard integer or half-integer values by ±(ñ/r). This is fractional

if ñ is not divisible by r.

For the purposes of the present paper, we do not need the details of the worldsheet

quantization or the full string spectrum — we only need the ground states. It turns out

that (for ñ 6= 0) the ground states are bosonic and in the R-R sector. In fact, the problem

of finding the ground states can be solved using essentially classical geometry: we simply

need to find classical string configurations of minimal length. For ñ that is not divisible

by r, there is a basis of ground states that are in one-to-one correspondence with loops of

minimal length and winding number ñ in the geometry (3.3). In the limit α′ → 0, these

states reduce to the classical string configurations, but even for finite α′ these classical

string configurations are the minima of the worldsheet energy, and fluctuations around

these classical configurations correspond to massive worldsheet modes, and there is a

single ground state for each classical configuration.

To describe the classical configurations, we can fix an x3 coordinate and specify the

points where the classical string intersects the transverse coordinates T 2×C
3 in the geome-

try (3.3). At winding number ñ, the string intersects T 2×C
3 at ñ (not necessarily distinct)

points, and in order to be of minimal length the coordinates of these points should be in-

dependent of x3. The classical configurations are thus characterized by a set of ñ points in

T 2 × C
3 that is invariant, as a set, under the orbifold operation

(z, ζ1, ζ2, ζ3) ∼ (eiυz, eiυζ1, e
iυζ2, e

iυζ3) .

For ñ that is not divisible by r, there is a finite number of such sets, and they are all

localized at the origin of C
3, i.e., ζ1 = ζ2 = ζ3 = 0. They are therefore entirely described by

the z-coordinates of where the string intersects T 2: z, eiυz, e2iυ , . . . , ei(ñ−1)υ, since as we go

once around the x3 direction the coordinate z switches to eiυz. After ñ loops, z becomes

eiñυz which, in order to close the loop, should be identified with z, up to a shift in Z + Zτ.

The classical string configurations are then described by solutions z = ζMa,Mb
of

eiñυζMa,Mb
= ζMa,Mb

+Ma +Mbτ , (3.7)

and we consider two solutions ζMa,Mb
and ζMa

′,Mb
′ as equivalent if they differ by a lattice

element, i.e., if ζMa,Mb
− ζMa

′,Mb
′ ∈ Z + Zτ. In addition, ζMa,Mb

and eiυζMa,Mb
give

equivalent solutions, since the intersection points of the string with T 2 are unordered.

There is then only a finite number of inequivalent solutions to (3.7), and we will describe

them in detail at the end of this subsection. We conclude that the full single-particle

string spectrum (including excited states) decomposes into a finite sum of distinct sectors,

labeled by Ma,Mb, and the solution ζMa,Mb
, which is a point on T 2, describes the center

of mass of the string in the directions of T 2.

3We are grateful to Aki Hashimoto for pointing out this reference.
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We will denote a single-particle ground state with winding number ñ by the location

of the intersection of the classical string configuration with any particular T 2 fiber at a

constant x3. In other words, we denote a single-particle state corresponding to a solution

z of (3.7) by ∣∣∣[z, eiυz, . . . , e(ñ−1)iυz]
〉
, (3.8)

where z coordinates are always taken modulo the lattice Z + Zτ. Multi-string states are

denoted by
∣∣∣{[z1, eiυz1, . . . , e(ñ1−1)iυz1], [z2, e

iυz2, . . . , e
(ñ2−1)iυz2], . . . , [zp, e

iυzp, . . . , e
(ñp−1)iυzp]}

〉
,

where zi is a solution ζMai,Mbi
of (3.7) with ñ → ñi, and n =

∑p
1 ñi is the total winding

number.

The number of inequivalent solutions of (3.7) for ñ = 1 will be denoted by k. It is a

function of υ alone. As we will see below, in our three cases we get the following three values:

k = 1 when r = 6, υ = π
3 , τ = eπi/3, g =

(
1 −1

1 0

)
;

k = 2 when r = 4, υ = π
2 , τ = i, g =

(
0 −1

1 0

)
;

k = 3 when r = 3, υ = 2π
3 , τ = eπi/3, g =

(
0 −1

1 −1

)
.





(3.9)

As promised earlier, we conclude this subsection with a full description of the single-

particle ground states. For additional clarity, we found it convenient to use a pictorial

notation. We draw a fundamental cell of the lattice C/(Z + Zτ) as a parallelogram and

explicitly mark the location of the solutions for z on it. We denote the solutions z by a

dot surrounded by a circle, and if a solution z appears with multiplicity m, we surround it

with m concentric circles. Below, we explicitly present all the solutions.

Single-particle states for υ = π
2

(τ = i and r = 4). For n = 1 we get two fixed

points:
∣∣ qc

〉
= |[0]〉 ,

∣∣ qc 〉 =

∣∣∣∣
[
1

2
+

1

2
i

]〉
.

There are only two distinct solutions to (3.7), up to a lattice element in Z + Zτ , which can

be taken as ζ0,0 = 0 and ζ0,1 = 1
2 + 1

2 i. Two solutions ζMa,Mb
and ζMa

′,Mb
′ are equivalent

if Ma +Mb ≡Ma
′ +Mb

′ (mod 2).

For n = 2 we get three fixed points:

∣∣ qce
〉

= |[0, 0]〉 ,
∣∣ q qc c

〉
=

∣∣∣∣
[
1

2
,

1

2
i

]〉
,

∣∣ qce 〉 =

∣∣∣∣
[
1

2
+

1

2
i,

1

2
+

1

2
i

]〉
.

They are constructed from

ζ0,0 = 0 , ζ1,0 =
1

2
, ζ0,1 =

1

2
i , ζ1,1 =

1

2
+

1

2
i , (mod Z + Zi).
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For n = 3 we get two fixed points:

∣∣ qceg
〉

= |[0, 0, 0]〉 ,
∣∣ qceg〉 =

∣∣∣∣
[
1

2
+

1

2
i,

1

2
+

1

2
i,

1

2
+

1

2
i

]〉
.

Single-particle states for υ = π
3

(τ = eπi/3 and r = 6). For n = 1 we get a single

fixed point: ∣∣∣∣ �� ��qc

〉
= |[0]〉 .

For n = 2 we get two fixed points:

∣∣∣∣ �� ��qce

〉
= |[0, 0]〉 ,

∣∣∣∣ �� ��q qc c
〉

=

∣∣∣∣
[
1

3
+

1

3
τ,

2

3
+

2

3
τ

]〉
.

For n = 3 we also get two fixed points:

∣∣∣∣ �� ��qceg

〉
= |[0, 0, 0]〉 ,

∣∣∣∣ �� ��qq qcc c
〉

=

∣∣∣∣
[
1

2
,

1

2
τ,

1

2
+

1

2
τ

]〉
.

For n = 4 we again get two fixed points:

∣∣∣∣ �� ��qcegi

〉
= |[0, 0, 0, 0]〉 ,

∣∣∣∣ �� ��q qcece
〉

=

∣∣∣∣
[
1

3
+

1

3
τ,

1

3
+

1

3
τ,

2

3
+

2

3
τ,

2

3
+

2

3
τ

]〉
.

For n = 5 we get one fixed point:

∣∣∣∣ �� ��qcegik

〉
= |[0, 0, 0, 0, 0]〉 .

Single-particle states for υ = 2π
3

(τ = eπi/3 and r = 3). For n = 1 we get three

fixed points:

∣∣∣∣ �� ��qc

〉
= |[0]〉 ,

∣∣∣∣ �� ��qc
〉

=

∣∣∣∣
[
1

3
+

1

3
τ

]〉
,

∣∣∣∣ �� ��
qc
〉

=

∣∣∣∣
[
2

3
+

2

3
τ

]〉
.

For n = 2 we also get three fixed points:

∣∣∣∣ �� ��qce

〉
= |[0, 0]〉 ,

∣∣∣∣ �� ��qce
〉

=

∣∣∣∣
[
1

3
+

1

3
τ,

1

3
+

1

3
τ

]〉
,

∣∣∣∣ �� ��
qce
〉

=

∣∣∣∣
[
2

3
+

2

3
τ,

2

3
+

2

3
τ

]〉
.

The single-particle states are summarized in figure 1, and the complete basis of ground

states (i.e., including multi-particle states) is depicted in figure 2.

Notation for multi-particle states. The multi-particle states are states in the Fock

space of identical bosons. We denote multi-particle states by combining inside a single

ket the pictorial representations of the individual single-particle states which make up

the multi-particle state. For example, for υ = π
2 (τ = i and r = 4) and n = 2 we get the

following 2-particle states:

∣∣ qc qc
〉
,
∣∣ qc qc 〉 ,

∣∣ qc qc 〉 .
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υ = π
3

n = 1 pc n = 2 pce pc pc
n = 3 pceg pc

pc pc

n = 4 pcegi pce pce
n = 5 pcegik

υ = π
2

n = 1 pc
pc n = 2 pce

pce pc
pc

n = 3 pceg
pceg

υ = 2π
3

n = 1 n = 2
pc pc pc

pce pce pce

Figure 1. Single-particle ground states. Each ground state is depicted by the intersection of the

strings with the T 2 fiber at a fixed x3. The string can intersect the fiber more than once at the same

point, and the number of small circles surrounding the intersection point represents the number of

times that the string intersects the fiber at that point.

In the middle state, the two particles occupy different single-particle states, while in the

leftmost and rightmost states the two particles occupy the same single-particle state.

Note that, by definition, the corresponding wavefunctions are symmetric, so for example:∣∣ qc qc 〉 ≡
∣∣ qc qc

〉
.

Next, we will discuss symmetries of the string background. We will identify two Zk

symmetries, which act on the full spectrum, but in what follows we will only need their

action on ground states.

3.3 Zk momentum

The space W defined in (3.4) possesses an isometry

U : (z, x3) 7→
(
z +

1

k
+

1

k
τ, x3

)
, (3.10)

where k is the number of ground states of the ñ = 1 problem, listed in (3.9). It is not hard

to check that the isometry is compatible with the structure group of the fibration since,

for all three cases k = 1, 2, 3, the T 2 point with coordinate z = 1
k (1+ τ) is a solution to the

ñ = 1 version of (3.7), and so 1
k (1 + τ)eiυ and 1

k (1 + τ) differ by an element of the lattice

Z + Zτ. Thus, U defines an operator on the Hilbert space of states, and since Uk = 1 it

follows that the eigenvalues of U take the form e2πij/k with j ∈ Zk. We interpret this j as

a discrete Zk momentum.

The operator U takes single-particle states to single-particle states with the same

winding number ñ, and its action on any ground state can be computed from its action on

the single-particle states. For future reference, we list the action explicitly below.
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υ = π
3

n = 1
pc

1
Ns = 1

n = 2
pce

2
pc pc
1

Ns = 3

n = 3
pceg

3

pc pc pc
1

pc
pc pc
1

Ns = 5

n = 4
pcegi

5

pce pc pc
2

pc pc
pc pc
1

pce pce
2

Ns = 10

n = 5
pcegik

7

pceg pc pc
3

pce pc
pc pc
2

pc pce pce
2

pc pc
pc

pc pc
1

Ns = 15

υ = π
2

n = 1

n = 2

n = 3

pc

1
pc

1
Ns = 2

pce

2
pce

2

pc
pc

1
pc

pc

1
Ns = 6

pceg

3

pce
pc

2

pc
pce

2
pceg

3

pc
pc
pc

1

pc
pc pc
1

Ns = 12

υ = 2π
3

n = 1

n = 2

pc

1
pc
1

pc
1

Ns = 3

pce

2
pce
2

pce
2

pc pc
1

pc
pc

1
pc pc
1

Ns = 9

Figure 2. The complete basis of ground states. A ground state in this basis comprises of one or

more single-particle states from figure 1. As in the previous figure, each ground state is depicted

by the intersection of the strings with the fiber at x3 = 0. Several different states could have the

same depiction (if they decompose as n = n1 + · · ·+ np in different ways), and the numbers on top

of each cell indicate the multiplicity. Ns is the total number of states.

Action of U on single-particle states for υ = π
2

(τ = i and r = 4). In this case

k = 2. For ñ = 1, U acts as

U|[0]〉 =

∣∣∣∣
[
1

2
+

1

2
i

]〉
, U

∣∣∣∣
[
1

2
+

1

2
i

]〉
= |[0]〉 ,

or in pictorial notation,

U
∣∣ qc

〉
=
∣∣ qc 〉 , U

∣∣ qc 〉 =
∣∣ qc

〉
.
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For ñ = 2, U acts as:

U|[0, 0]〉=
∣∣∣∣
[
1

2
+

1

2
i,

1

2
+

1

2
i

]〉
, U

∣∣∣∣
[
1

2
,
1

2
i

]〉
=

∣∣∣∣
[
1

2
,
1

2
i

]〉
, U

∣∣∣∣
[
1

2
+

1

2
i,

1

2
+

1

2
i

]〉
= |[0, 0]〉 .

U
∣∣ qce

〉
=
∣∣ qce 〉 , U

∣∣ qce 〉 =
∣∣ qce

〉
, U

∣∣ q qc c
〉

=
∣∣ q qcc

〉
.

For ñ = 3, U acts as:

U|[0, 0, 0]〉 =

∣∣∣∣
[
1

2
+

1

2
i,

1

2
+

1

2
i,

1

2
+

1

2
i

]〉
, U

[
1

2
+

1

2
i,

1

2
+

1

2
i,

1

2
+

1

2
i

]
= |[0, 0, 0]〉 .

U
∣∣ qceg

〉
=
∣∣ qceg〉 , U

∣∣ qceg〉 =
∣∣ qceg

〉
.

Action of U on single-particle states for υ = π
3

(τ = eπi/3 and r = 6). In this

case k = 1 and U is the identity.

Action of U on single-particle states for υ = 2π
3

(τ = eπi/3 and r = 3). In this

case k = 3. For ñ = 1, U acts as:

U|[0]〉 =

∣∣∣∣
[
1

3
+

1

3
τ

]〉
, U

∣∣∣∣
[
1

3
+

1

3
τ

]〉
=

∣∣∣∣
[
2

3
+

2

3
τ

]〉
, U

∣∣∣∣
[
2

3
+

2

3
τ

]〉
= |[0]〉 .

U
∣∣∣∣ �� ��qc

〉
=

∣∣∣∣ �� ��qc
〉
, U

∣∣∣∣ �� ��qc
〉

=

∣∣∣∣ �� ��
qc
〉
, U

∣∣∣∣ �� ��
qc
〉

=

∣∣∣∣ �� ��qc

〉
.

For ñ = 2, U acts as:

U|[0, 0]〉 =
∣∣[13 + 1

3τ,
1
3 + 1

3τ ]
〉

U
∣∣[13 + 1

3τ,
1
3 + 1

3τ ]
〉

=
∣∣[23 + 2

3τ,
2
3 + 2

3τ ]
〉

U
∣∣[23 + 2

3τ,
2
3 + 2

3τ ]
〉

= |[0, 0]〉





U
∣∣∣∣ �� ��qce

〉
=

∣∣∣∣ �� ��qce
〉
, U

∣∣∣∣ �� ��qce
〉

=

∣∣∣∣ �� ��
qce
〉
, U

∣∣∣∣ �� ��
qce
〉

=

∣∣∣∣ �� ��qce

〉
.

3.4 Zk winding number

Our problem has a second conserved Zk quantum number. This one is defined by the

winding number of the string in the fiber direction. The winding number takes values in the

first homology group of the space, which in our case is homotopically equivalent to the space

W defined in (3.4). As we will check below, the first homology group is H1(W,Z) ≃ Z⊕Zk.

To see this, let us pick the origin (z = 0, x3 = 0) as a marked point, and let us define

three elements of the fundamental group π1(W ) as the equivalence classes of the following

three loops:

η = [t 7→ (z = 0, x3 = 2πRt)]

αa = [t 7→ (z = t, x3 = 0)]

αb = [t 7→ (z = tτ, x3 = 0)]





0 ≤ t < 1. (3.11)

The loops that define αa, αb run along the T 2 fiber, while η is defined by a loop that runs

along the S1 base. Note that the fundamental group π1(W ) is generated by η, αa, αb with

the relations

αaαb = αbαa , η−1αaη = αa
aαb

b , η−1αbη = αa
cαb

d ,
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where a,b, c,d are the elements of the SL(2,Z) matrix g defined in section 2.2. The

homology group H1(W,Z) is homeomorphic to the abelianization of π1(W ). The abelian-

ization of π1(W ) ignores the order of operators in the relations, and so we get an abelian

group generated by η and αa, αb with the relations (over the ring Z)

αa = αa
aαb

b , αb = αa
cαb

d .

Since it is more appropriate to denote the group operation inH1(W,Z) by a sum instead

of a product, we switch notation from η, αa, αb to ̺, βa, βb. The result is that H1(W,Z) is

generated by ̺, βa, βb, with the relations

βa = aβa + bβb , βb = cβa + dβb .

It is useful at this point to separate the cases:

• For τ = i, υ = π
2 , g = g′ ≡

(
0 −1

1 0

)
, we have k = 2 and βa = −βb = −βa, so

H1(W ) = Z ⊕ Z2, generated by ̺ ∈ Z and βa ∈ Z2.

• For τ = eπi/3, υ = π
3 , g = g′′ ≡

(
1 −1

1 0

)
, we have k = 1 and βb = βa and

βa = βa − βb so βa = βb = 0, and H1(W ) = Z, generated by ̺.

• For τ = eπi/3, υ = 2π
3 , g = −g′′−1 =

(
0 −1

1 −1

)
, we have k = 3 and βb = −βa and

βa = βb − βa. So H1(W ) = Z ⊕ Z3, generated by ̺ ∈ Z and βa ∈ Z3.

To a string configuration that winds n times around the base and has the homology

class n̺ + gβa (with g ∈ Zk), we assign a Zk charge of g. We now define the quantum

operator V to take the eigenvalue e2πig/k on such a state.

There is some arbitrariness in the definition of g because of our arbitrary choice of

the origin z = 0 of the T 2 fiber of W. Consider, for example, the case τ = i. The loop

[t 7→ (z = 0, x3 = 2πtR)] was defined to have homology class n̺ (with g = 0) and the loop

[t 7→ (z = 1
2+1

2 i, x3 = 2πtR)] then has homology class n̺+βa. But we could have just as well

chosen the origin at z = 1
2 + 1

2 i, thereby switching the eigenvalues of V. In general, replacing

V → eiφV (3.12)

for some arbitrary (constant) phase φ results in an equally reasonable definition of V. We

will, nevertheless, stick to the definition of V with the origin set at z = 0.

At this point we have found two operators V,U , acting on the Hilbert space of ground

states (and, in fact, on the full Hilbert space). Each operator defines a conserved Zk

quantum number, and by definition they satisfy

Vk = Uk = 1 . (3.13)

They obey the commutation relation

VUV−1U−1 = e
2πin

k , (3.14)
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which can be verified as follows. Consider a (classical) string configuration with n = 1

given by a section z = f(x3) of the fiber bundle W , where f is some continuous function

on the interval 0 ≤ x3 < 2πR with f(2πR) = eiυf(0). Now, translate the section by

a small c to z = f(x3) + c. This no longer satisfies the boundary conditions, and so to

close the string we need to add a piece of string that connects (z = f(0) + c, x3 = 0) to

(z = f(0) + eiυc, x3 = 0). As c is increased from 0 to 1
k (1 + τ), the extra piece of string

increases until it becomes a piece of string that stretches from start-point to end-point by

the complex vector 1
k (1+τ)(1−eiυ). It is easy to check that for the cases k = 2, 3 this vector

is in the homology class βa. We have thus arrived at the following conclusion: acting with U
on a string state with homology class n̺+ gβa produces a string state with homology class

n̺+(g+n)βa. The commutation relation (3.14) follows immediately from that observation.

For future reference, we list the action of V on single-particle states explicitly below.

Action of V on single-particle states for υ = π
2

(τ = i and r = 4). In this case

k = 2. For ñ = 1, V acts as:

V|[0]〉 = |[0]〉 , V
∣∣∣∣
[
1

2
+

1

2
i

]〉
= −

∣∣∣∣
[
1

2
+

1

2
i

]〉
.

V
∣∣ qc

〉
=
∣∣ qc

〉
, V

∣∣ qc 〉 = −
∣∣ qc 〉 . (3.15)

For ñ = 2, V acts as:

V|[0, 0]〉= |[0, 0]〉 , V
∣∣∣∣
[
1

2
,
1

2
i

]〉
=−

∣∣∣∣
[
1

2
,
1

2
i

]〉
, V

∣∣∣∣
[
1

2
+

1

2
i,

1

2
+

1

2
i

]〉
=

∣∣∣∣
[
1

2
+

1

2
i,

1

2
+

1

2
i

]〉
.

V
∣∣ qce

〉
=
∣∣ qce

〉
, V

∣∣ qce 〉 =
∣∣ qce 〉 , V

∣∣ q qcc
〉

= −
∣∣ q qcc

〉
.

For ñ = 3, V acts as:

V|[0, 0, 0]〉 = |[0, 0, 0]〉 , V
∣∣∣∣
[
1

2
+

1

2
i,

1

2
+

1

2
i,

1

2
+

1

2
i

]〉
= −

∣∣∣∣
[
1

2
+

1

2
i,

1

2
+

1

2
i,

1

2
+

1

2
i

]〉
.

V
∣∣ qceg

〉
=
∣∣ qceg

〉
, V

∣∣ qceg〉 = −
∣∣ qceg〉 .

Action on single-particle states for υ = π
3

(τ = eπi/3 and r = 6). In this case

k = 1 and V is the identity.

Action on single-particle states for υ = 2π
3

(τ = eπi/3 and r = 3). In this case

k = 3. For ñ = 1, V acts as:

V|[0]〉 = |[0]〉 , V
∣∣∣∣
[
1

3
+

1

3
τ

]〉
= e

2πi
3

∣∣∣∣
[
1

3
+

1

3
τ

]〉
, V

∣∣∣∣
[
2

3
+

2

3
τ

]〉
= e−

2πi
3

∣∣∣∣
[
2

3
+

2

3
τ

]〉
.

V
∣∣∣∣ �� ��qc

〉
=

∣∣∣∣ �� ��qc

〉
, V

∣∣∣∣ �� ��qc
〉

= e
2πi
3

∣∣∣∣ �� ��qc
〉
, V

∣∣∣∣ �� ��
qc
〉

= e−
2πi
3

∣∣∣∣ �� ��
qc
〉
.

For ñ = 2, V acts as:

V|[0, 0]〉 = |[0, 0]〉 , V
∣∣∣∣
[
1

3
+

1

3
τ,

1

3
+

1

3
τ

]〉
= e−

2πi
3

∣∣∣∣
[
1

3
+

1

3
τ,

1

3
+

1

3
τ

]〉
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V
∣∣∣∣
[
2

3
+

2

3
τ,

2

3
+

2

3
τ

]〉
= e

2πi
3

∣∣∣∣
[
2

3
+

2

3
τ,

2

3
+

2

3
τ

]〉
.

V
∣∣∣∣ �� ��qce

〉
=

∣∣∣∣ �� ��qce

〉
, V

∣∣∣∣ �� ��qce
〉

= e−
2πi
3

∣∣∣∣ �� ��qce
〉
, V

∣∣∣∣ �� ��
qce
〉

= e
2πi
3

∣∣∣∣ �� ��
qce
〉
.

3.5 Worldsheet symmetries

We will now discuss additional symmetries of the worldsheet CFT that do not directly

correspond to symmetries of the Hilbert space of ground states, but will later be used as

building blocks to construct operators that do act on the Hilbert space of ground states.

Furthermore, these extra worldsheet symmetries will be useful in section 3.7 when we

study T-duality.

The worldsheet theory can be regarded as a Zr orbifold of a compactification of type-

IIA theory on S1 × T 2, where S1 has radius 2πrR, and Zr is generated by an isometry as

in (3.3). The sector of the Hilbert space that corresponds to strings of winding number ñ

is a twisted sector of this orbifold theory. The rules of orbifolds [20, 21] dictate that the

Hilbert space H of such one-particle states is the Zr-invariant subspace of the Hilbert space

H′ ⊇ H of the CFT on a circle with twisted boundary conditions given by the identification

(z, x3, ζ1, ζ2, ζ3) ∼ (eiñυz, x3 + 2πñR, eiñυζ1, e
iñυζ2, e

iñυζ3) , υ ≡ 2π

r
. (3.16)

If ñ and r are not relatively prime (i.e., ñ = 2, 3, 4 for r = 6, and ñ = 2 for r = 4), the

Hilbert space H′ possesses discrete symmetries in addition to U ,V. This is because the

identification (3.16) generates a Zr/ gcd(r,ñ) ⊂ Zr subgroup of the orbifold group, and thus,

as far as H′ is concerned, the effective geometry is a Zr/ gcd(r,ñ)-orbifold, which can have a

larger group of symmetries than the Zr-orbifold.

To explain this in more detail, we need a worldsheet realization of the type-IIA back-

ground, but it will be sufficient to consider only the bosons and only in the directions of W.

We represent W as a Zr orbifold of T 2×S1, where T 2 is parameterized by z ∼ z+1 ∼ z+τ

as above, and S1 is parameterized by 0 ≤ y < 2πrR, and the orbifold group is generated by

(z, y) 7→ (eiυz, y + 2πR).

We define worldsheet coordinates (σ, η) and worldsheet bosons Z(σ, η), Y (σ, η) corre-

sponding to the coordinates z and y, so that Y is real and Z is complex. We work in a

twisted sector for which

Z(σ + 2π, η) = eiñυZ(σ, η) +Ma +Mbτ , Y (σ + 2π, η) = Y (σ, η) + 2πñR .

In this sector, the worldsheet fields have an expansion

Y = y0 + Pyη + ñσR+
∑

n′ 6=0

i

n′
γ−n′ein

′(η−σ) +
∑

n′ 6=0

i

n′
γ̃−n′ein

′(η+σ) , (3.17)

Z = ζMa,Mb
+
∑

n′∈Z

i

n′ − ñ
r

α−n′+ ñ
r

ei(n
′− ñ

r
)(η−σ) +

∑

n′∈Z

i

n′ + ñ
r

α̃−n′− ñ
r

ei(n
′+ ñ

r
)(η+σ) , (3.18)
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where Py is the Y -momentum, γ−n′ and γ̃−n′ are the integer-moded right and left moving

oscillators for Y , α−n′− ñ
r

and α̃−n′− ñ
r

are the fractionally moded right and left moving

oscillators for Z, and ζMa,Mb
is the solution of (3.7) and is a fixed point of rotation of the

T 2 fiber by an angle ñυ. We define two solutions ζMa,Mb
and ζMa

′,Mb
′ as equivalent if they

differ by a lattice vector, i.e., ζMa,Mb
− ζMa

′,Mb
′ ∈ Z + Zτ. In the ground states of the CFT

the oscillators are not excited and Py = 0. The states fall into a finite number of sectors

labeled by the inequivalent solutions ζMa,Mb
. We will denote these states by |ζMa,Mb

〉.
Note that if ζMa,Mb

is a solution, then so is

eiυζMa,Mb
= ζdMa+bMb, cMa+aMb

,

where we have used (2.3)–(2.4). But if eiυζMa,Mb
− ζMa,Mb

is not in Z + Zτ , then as far as

the worldsheet CFT is concerned, |ζMa,Mb
〉 and

∣∣eiυζMa,Mb

〉
are different states. However,

to get the string ground states, we need to impose (i) invariance under translations in σ,

and (ii) invariance under the orbifold group Zr. Now, define the operator R by

R|ζMa,Mb
〉 =

∣∣eiυζMa,Mb

〉
.

On ground states, it is equivalent to a combination of the Zr orbifold generator and world-

sheet translation in σ. The CFT ground states that correspond to string ground states

must therefore be invariant under R and thus are linear combinations of states of the form

ñ−1∑

j=0

∣∣eijυζMa,Mb

〉
. (3.19)

(Note that
∣∣eiñυζMa,Mb

〉
= |ζMa,Mb

〉, by virtue of (3.7).) Since we are not concerned with

excited states, we will take H′ as the Hilbert space spanned by the states |ζMa,Mb
〉, and

H ⊆ H′ as the subspace spanned by the states (3.19).

Now, let us assume that gcd(ñ, r) > 1. We can then find additional symmetries of H′

that do not commute with R as follows. For any ζ ∈ C/Z + Zτ that satisfies

eiñυζ − ζ ∈ Z + Zτ , (3.20)

we define two operators Ũ(ζ), Ṽ(ζ) on H′ by

Ũ(ζ)|ζMa,Mb
〉 = |ζMa,Mb

+ ζ〉 , Ṽ(ζ)|ζMa,Mb
〉 = e4πiRe(ζ∗ζMa,Mb

)|ζMa,Mb
〉 . (3.21)

We have the commutation relations

Ũ(ζ)Ũ(ζ ′) = Ũ(ζ ′)Ũ(ζ) , Ṽ(ζ)Ṽ(ζ ′) = Ṽ(ζ ′)Ṽ(ζ) ,

Ũ(ζ)Ṽ(ζ ′) = e−4πiRe(ζ∗ζ′)Ṽ(ζ ′)Ũ(ζ) .

For example, the symmetry operators U ,V defined in section 3.3–3.4 can be written as

U = Ũ
(

1

k
+

1

k
τ

)
, V = Ṽ

(
1

k
+

1

k
τ

)
. (3.22)

– 21 –



J
H
E
P
0
3
(
2
0
1
1
)
0
9
9

But in general, the operators Ũ(ζ), Ṽ(ζ) do not preserve the subspace of physical string

states H ⊂ H′, because in general Ũ(ζ), Ṽ(ζ) do not commute with R. However, we can

form R-invariant combinations such as

ñ−1∑

j=0

Ũ(eijυζ) ,
ñ−1∑

j=0

Ṽ(eijυζ) ,
ñ−1∏

j=0

Ũ(eijυζ)Ṽ(eijυζ) , . . .

that do preserve H and therefore define operators that act on the Hilbert space of string

ground states. We will return to these constructions in section 6.6.

Let us proceed to examples. For the first example, consider the case k = 2 (τ = i and

υ = π
2 , r = 4) and ñ = 2. We have four inequivalent solutions to (3.7):

ζ0,0 = 0, ζ1,0 =
1

2
, ζ0,1 =

1

2
i, ζ1,1 =

1

2
(1 + i) (mod Z + Zτ). (3.23)

If we define

Ṽa ≡ Ṽ(ζ1,0) , Ũa ≡ Ũ(ζ1,0) , Ṽb ≡ Ṽ(ζ0,1) , Ũb ≡ Ũ(ζ0,1) , (3.24)

then they act on the four-dimensional Hilbert space H′ as

Ṽa|ζMa,Mb
〉 = (−1)Ma |ζMa,Mb

〉 , Ṽb|ζMa,Mb
〉 = (−1)Mb |ζMa,Mb

〉 ,
Ũa|ζMa,Mb

〉 = |ζMa+1,Mb
〉 , Ũb|ζMa,Mb

〉 = |ζMa,Mb+1〉 ,

}
(3.25)

where (Ma + 1) and (Mb + 1) are understood to be additions in Z2. The states |ζMa,Mb
〉

are eigenstates of Ṽa, Ṽb, while

|Ka,Kb〉 ≡
1

2

∑

Ma,Mb∈Z2

(−1)KaMa+KbMb |ζMa,Mb
〉 (3.26)

are eigenstates of Ũa, Ũb. The operators U and V are related to Ũa, Ũb and Ṽa, Ṽb by

U ≡ Ũ(ζ1,1) = ŨaŨb , V ≡ Ṽ(ζ1,1) = ṼaṼb .

We can regard Ṽa, Ṽb as associated with two independent winding numbers

Ma,M b ∈ Z2, which characterize the topology of the map Z = Z(σ, η) from the

worldsheet to T 2. We define them by

Ma ≡Ma (mod 2) , M b ≡Mb (mod 2) .

The winding number Ma is associated with the βa cycle (a loop along a straight path

Z → Z + 1) and M b is associated with the βb cycle (Z → Z + i). Beyond the CFT, in

the full theory, the cycles βa, βb were identified in homology, and only one Z2 winding

number remained as an independent quantum number. But in the worldsheet CFT sector

with ñ = 2, we have a larger symmetry. The only identification is Z ∼ −Z (together

with Y ∼ Y + 4πR). Thus, for each of the two cycles of T 2 we end up with a separate Z2

winding number in the worldsheet theory.
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Now, let us recover the Hilbert subspace H ⊂ H′ of string ground states. In the string

theory, we need to keep only the states that are invariant under the entire Zr = Z4 orbifold

group, generated by Z → iZ together with Y → Y + 2πR. The resulting Zr-invariant

states span a 3-dimensional subspace H of the 4-dimensional H′, and the Zr-invariant

combinations that correspond to the states in section 3.2 are:

|ζ0,0〉 →
∣∣ qce

〉
, |ζ1,1〉 →

∣∣ qce 〉 , 1√
2
(|ζ0,1〉 + |ζ1,0〉) →

∣∣ q qcc
〉
. (3.27)

The operators

Ũa + Ũb , Ṽa + Ṽb , ṼaŨa + ṼbŨb , . . .

preserve the 3-dimensional Hilbert space spanned by
∣∣ qce

〉
,
∣∣ q qc c

〉
,
∣∣ qce 〉. They act as

(Ṽa + Ṽb)
∣∣ qce

〉
= 2
∣∣ qce

〉
, (Ũa + Ũb)

∣∣ qce
〉

=
√

2
∣∣ q qc c

〉
,

(Ṽa + Ṽb)
∣∣ q qc c

〉
= 0 , (Ũa + Ũb)

∣∣ q qcc
〉

=
√

2(
∣∣ qce

〉
+
∣∣ qce 〉) ,

(Ṽa + Ṽb)
∣∣ qce 〉 = −2

∣∣ qce 〉 , (Ũa + Ũb)
∣∣ qce 〉 =

√
2
∣∣ q qc c

〉
,





(3.28)

(ṼaŨa + ṼbŨb)
∣∣ qce

〉
= −

√
2
∣∣ q qcc

〉
,

(ṼaŨa + ṼbŨb)
∣∣ q qcc

〉
=

√
2(
∣∣ qce

〉
−
∣∣ qce 〉) ,

(ṼaŨa + ṼbŨb)
∣∣ qce 〉 =

√
2
∣∣ q qc c

〉
,





(3.29)

and so on.

As another example of this technique, consider the case k = 1 (τ = eπi/3 and υ = π
3 ,

r = 6) and ñ = 2. The relevant solutions to (3.7) are:

ζ0,0 = 0 , ζ1,0 =
i√
3
, ζ0,1 = − i√

3
(mod Z + Zτ).

(But also note the equivalent solutions ζ0,0 ≃ ζ1,1 ≃ ζ2,2, ζ1,0 ≃ ζ2,1 ≃ ζ0,2, and ζ0,1 ≃
ζ2,0 ≃ ζ1,2.) The orbifold generator acts on these fixed points ζMa,Mb

as multiplication by

eπi/3, and the invariant combinations are

|ζ0,0〉 ,
1√
2

(|ζ1,0〉 + |ζ0,1〉) .

They correspond to the string ground states

|ζ0,0〉 → |[0, 0]〉 =

∣∣∣∣ �� ��qce

〉
,

1√
2

(|ζ1,0〉 + |ζ0,1〉) →
∣∣∣∣
[
1

3
+

1

3
τ,

2

3
+

2

3
τ

]〉
=

∣∣∣∣ �� ��q qc c
〉
.

The group of additional worldsheet symmetries is generated by

Ṽa ≡ Ṽ(ζ1,0) , Ũa ≡ Ũ(ζ1,0) . (3.30)

They satisfy

Ṽ3
a = Ũ3

a = 1,

and can be regarded as related to Z3 winding number and momentum. They act on states as

Ṽa|ζMa,Mb
〉 ≡ e

2πi
3

(Mb−Ma)|ζMa,Mb
〉 , Ũa|ζMa,Mb

〉 = |ζMa+1,Mb
〉 . (3.31)
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The operators

Ũa + Ũ−1
a , Ṽa + Ṽ−1

a , ṼaŨa + Ṽ−1
a Ũ−1

a , . . .

preserve the 2-dimensional Hilbert space spanned by

∣∣∣∣ �� ��qce

〉
,

∣∣∣∣ �� ��q qc c
〉

, and act as

(Ṽa + Ṽ−1
a )

∣∣∣∣ �� ��q qc c
〉

= −
∣∣∣∣ �� ��q qc c

〉
, (Ũa + Ũ−1

a )

∣∣∣∣ �� ��q qc c
〉

=

∣∣∣∣ �� ��q qc c
〉

+
√

2

∣∣∣∣ �� ��qce

〉
,

(Ṽa + Ṽ−1
a )

∣∣∣∣ �� ��qce

〉
= 2

∣∣∣∣ �� ��qce

〉
, (Ũa + Ũ−1

a )

∣∣∣∣ �� ��qce

〉
=

√
2

∣∣∣∣ �� ��q qc c
〉
,





(3.32)

(ṼaŨa + Ṽ−1
a Ũ−1

a )

∣∣∣∣ �� ��qce

〉
=

√
2e−

2πi
3

∣∣∣∣ �� ��q qc c
〉
,

(ṼaŨa + Ṽ−1
a Ũ−1

a )

∣∣∣∣ �� ��q qc c
〉

= e
2πi
3

∣∣∣∣ �� ��q qc c
〉

+
√

2

∣∣∣∣ �� ��qce

〉
,





(3.33)

and so on.

3.6 Dependence on complex structure

At the beginning of this section, we compactified the field theory on T 2 (on the type-IIB

side) with periodic coordinates 0 ≤ x1 < 2πL1 and 0 ≤ x2 < 2πL2. For simplicity we took

the metric to be ds2 = dx2
1 +dx2

2, which sets the complex structure of T 2 to be ρ = iL1/L2.

For this metric ρ is purely imaginary, but we can easily allow a more general flat metric

with a complex structure that has a nonzero real part. We can then define the action of a

group SL(2,Z) of large diffeomorphisms on T 2 by

(
x1

x2

)
7→ G

(
x1

x2

)
, G ≡

(
ã b̃

c̃ d̃

)
∈ SL(2,Z) , (3.34)

which acts on the complex structure ρ as

ρ→ ãρ+ b̃

c̃ρ+ d̃
. (3.35)

(This SL(2,Z) is, of course, not related to the S-duality group of section 2.2. In the

following, we hope that the context makes it clear which SL(2,Z) we are referring to.)

The full Hilbert space is fibered over the moduli space of ρ’s, which is

SL(2,Z)\SL(2,R)/SO(2) ,

and two subgroups of SL(2,Z) become symmetries at two special values of ρ: Z4 ⊂ SL(2,Z)

generated by

(
0 −1

1 0

)
is a symmetry at ρ = i, and Z6 ⊂ SL(2,Z) generated by

(
1 −1

1 0

)

is a symmetry at ρ = eπi/3.

If we are only interested in the finite-dimensional Hilbert space of supersymmetric

ground states, as is the case here, we can say more. This finite-dimensional Hilbert space

is the fiber of a flat vector bundle over the moduli space of ρ. Thus, the fibers at different

complex structures ρ can be naturally identified, and the action of SL(2,Z), which is the
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holonomy group of the vector bundle, can be naturally defined on the fiber. In this way

we get a full SL(2,Z) symmetry acting on the Hilbert space of ground states. Unlike

the operators U ,V, this SL(2,Z) group is not a symmetry of the full theory, but only a

low-energy symmetry. Let us now identify the action of this SL(2,Z) on the type-IIA side.

3.7 T-duality

Following the sequence of dualities in table 1, we find that on the type-IIA side (the last

row in the table) we can identify ρ (defined in section 3.6) as the complexified area modulus

of the T 2 fiber of W :

ρ =
i

α′
IIA

Area(T 2) +
1

2π

∫

T 2

B . (3.36)

Here, B is the NS-NS two-form potential. The SL(2,Z) group from section 3.6 becomes

T-duality, and is generated by

S →
(

0 −1

1 0

)
∈ SL(2,Z) , S : ρ→ −1

ρ
,

and

T →
(

1 1

0 1

)
∈ SL(2,Z) , T : ρ→ ρ+ 1 .

At ρ = i, S generates a Z4 symmetry of the full theory. However, T can never be

extended to a symmetry of the full spectrum, while T S has order 6 and is a symmetry of

the full spectrum for ρ = eπi/3. Let us now determine the action of T and S on the ground

states.

Partial information can be gleaned from the commutation relations of S,T with U ,V
defined in section 3.3–3.4. Since we associated U with Zk momentum, and V with Zk

winding number, and since T-duality exchanges these two quantum numbers, we set:

S−1VS = U , S−1US = V−1 . (3.37)

We also expect that a general T-duality element G ∈ SL(2,Z) [defined in (3.34)] acts as

G−1VG = eiφ1V d̃U−c̃ , G−1UG = eiφ2V−b̃U ã . (3.38)

We included undetermined phases φ1, φ2 in the commutation relations, because U ,V do

not commute and their order in the expressions on the right-hand side of the equations

in (3.38) is important. Part of this phase ambiguity can be absorbed by a redefinition

G → U p̃V q̃G , (3.39)

under which

φ1 → φ1 +
2πn

k
p̃ , φ2 → φ2 −

2πn

k
q̃ .

But in general φ1, φ2 need to be nonzero, so that the eigenvalues of the left- and right-hand

sides of the equations in (3.38) will agree.
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Now, let us specialize to T . The generator T of SL(2,Z) commutes with the winding

number operator V, so we can choose φ1 = 0 in (3.38). We can also take φ2 = ±πn(k−1)/k,

so that the eigenvalues of the left- and right-hand sides of the rightmost equation of (3.38)

will agree. (We take − sign for k = 2 and + sign for k = 3.) Thus we get

T −1VT = V , T −1 UT = e
iπn(−1)k+1(k−1)

k UV−1 . (3.40)

For single-particle ground states of winding number ñ = n that is relatively prime to

r, equations (3.37) and (3.40) are sufficient to determine S and T , up to multiplication

by an overall phase and the freedom (3.39). In principle, these ambiguities can be further

restricted by requiring the SL(2,Z) relations S2 = (ST )3 = −1, but this will not be

required for our present purposes. The results for S,T are listed in appendix A.

If gcd(n, r) > 1, (3.37) and (3.40) are insufficient to completely determine S and T ,

and we need to study the worldsheet theory more carefully. In this case, the worldsheet

theory, as we saw in section 3.5, possesses additional discrete symmetries that can be

regarded as additional components of Z2 or Z3 winding and momentum. These symmetries

do not commute with the Zr-orbifold symmetry generator R and therefore do not lead

to symmetries of the Hilbert space of string ground states. However, since T-duality

is a duality at the level of CFT, we can use the additional discrete symmetries to glean

additional information about the action of S,T . We will demonstrate how this works below.

As a first example, consider the case υ = π
2 (τ = i). We will start with the n = 1, for

which of course gcd(n, r) = 1 and we do not get additional worldsheet symmetries; but it

is still instructive to start with this case. Referring to the notation of section 3.5, we have

only two inequivalent solutions to (3.7):

ζ1,1 ≃ ζ0,0 = 0, ζ1,0 ≃ ζ0,1 ≃ 1

2
(1 + i) (mod Z + Zτ).

The states |ζ0,0〉 and |ζ1,1〉 are eigenstates of winding, while 1√
2
(|ζ0,0〉 ± |ζ1,1〉) are

eigenstates of the translation Z → Z + 1
2 (1 + i). Hence, S maps |ζ0,0〉 to 1√

2
(|ζ0,0〉+ |ζ1,1〉),

and maps |ζ1,1〉 to 1√
2
(|ζ0,0〉 − |ζ1,1〉).

Now consider the case υ = π
2 and n = 2, for which gcd(n, r) = 2, and we do get

additional worldsheet symmetries, Ṽa, Ṽb, Ũa, Ũb, as explained in section 3.5. The T-duality

generators S,T are required to satisfy commutation relations similar to (3.37)–(3.40):

S−1ṼaS = Ũb , S−1ṼbS = Ũ−1
a , S−1ŨaS = Ṽb , S−1ŨbS = Ṽ−1

a , (3.41)

T −1ṼaT = Ṽa , T −1ṼbT = Ṽb , T −1ŨaT = ŨaṼ−1
b , T −1ŨbT = ŨbṼa . (3.42)

Solving (3.41)–(3.42), we find the explicit expressions:

S|ζKa,Kb
〉 =

1

2

∑

Ma,Mb∈Z2

(−1)KaMa+KbMb |ζMa,Mb
〉 ≡ |Ka,Kb〉 , (3.43)

and

T |ζKa,Kb
〉 = (−1)KaKb |ζKa,Kb

〉 . (3.44)
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The action of S,T on the subspace of string ground states can be deduced from (3.27)

and (3.43)–(3.44). The complete expressions are listed in appendix A.

As another example of this technique, consider the case υ = π
3 (τ = eπi/3) and n = 2.

The commutation relations of S,T with the extra symmetry generators (3.30) are:

S−1ṼaS = Ũa , S−1ŨaS = Ṽ−1
a , T −1ṼaT = Ṽa , T −1ŨaT = e

2πi
3 ŨaṼa , (3.45)

where we have chosen the phase in the rightmost equation so that (i) the eigenvalues of

the left- and right-hand sides will agree, and (ii) so that the subspace of string states will

be invariant under T . The solutions for S,T are listed in appendix A.

Worldsheet derivation of the action of T . We will end this section by checking the

formulas for T directly from the worldsheet description. Denote

ωF ≡ 1

2i Im τ
dz ∧ dz .

The integral of ωF on any T 2 fiber of W is 1. The operator T acts by shifting the NS-NS

2-form B-field of type-IIA by

B → B + ωF .

We will now check how this shift affects the phase of scattering amplitudes of the

string ground states. A string ground state, as discussed in section 3.2, corresponds to a

curve γ in target space, which we can take for the present discussion to be W. Consider a

worldsheet configuration that contributes to a scattering amplitude taking string ground

states that correspond to the curves γ1, γ2, . . . , γp into another ground states corresponding

to curves γ′1, γ
′
2, . . . , γ

′
q. The image of this worldsheet configuration in target space is a

surface Σ whose boundary is

∂Σ =

(
p⋃

i=1

γ−1
i

)
⋃



q⋃

j=1

γ′j


 , (3.46)

where γ−1
i is the curve with oposite orientation of γi. Define the phase factor

eiΦ(γ−1
1 ,γ−1

2 ,...,γ−1
p ,γ′

1,γ′
2,...,γ′

q) ≡ exp

(
i

∫

Σ
ωF

)
.

This phase is clearly independent of which Σ we choose, as long as it satisfies (3.46),

because ωF/2π is an integral cohomology class, whose integral over any closed surface is

an integer. Thus, the phase exp(iΦ) only depends on the curves γ−1
1 , . . . , γ′q.

Consider, for example, the case υ = π
2 and n = 1. We show in appendix A that

T
∣∣ qc

〉
=
∣∣ qc

〉
, T

∣∣ qc 〉 = e
iπ
2

∣∣ qc 〉 .

We would like to verify this phase difference of eπi/2 = i using the explicit worldsheet

considerations as above. So we study the action of T on a scattering amplitude with initial

state
∣∣ qc

〉
and final state

∣∣ qc 〉. But because of V-conservation (see (3.15)), we have to
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(a)

qc

qc

qc

qc

Σ

γ1���)

γ1PPPi γ2�
��1

γ2PPPq

(b)

� γ2
1

-γ2
2qce qceΣ′

Figure 3. The image in target space of string worldsheets representing a scattering amplitude of

string ground states. (a) Scattering of two identical string ground states into two other identical

string ground states. The boundary of the image of the worldsheet is the union of four loops,

corresponding to the four string states; the phase acquired under B → B + 1
2i
dz ∧ dz is equal to

the phase that the same transformation induces in (b) a worldsheet diagram for a 2-point function

of string ground states of winding number 2 .

have an even number of
∣∣ qc 〉 in the final state. So, we consider the scattering amplitude of

two
∣∣ qc

〉
states into two

∣∣ qc 〉 states. (See figure 3.) T acts as multiplication by i2 = −1

on this 4-point scattering amplitude, and this is what we wish to verify.

With the parameterization

0 ≤ t < 1,

define the loops

γ1 = [t 7→ (z = 0, x3 = 2πRt)] , γ2 =

[
t 7→

(
z =

1

2
(1 + τ), x3 = 2πRt

)]
.

We also use the standard loop-space product to define the double-wound loops:

γ2
1 = [t 7→ (z = 0, x3 = 4πRt)] , γ2

2 =

[
t 7→

(
z =

1

2
(1 + τ), x3 = 4πRt

)]
.

In addition define the loops

αa = [t 7→ (z = t, x3 = 0)] , αb = [t 7→ (z = tτ, x3 = 0)] ,

αa+b = [t 7→ (z = t(τ + 1), x3 = 0)] .

(See (3.11) for similar definitions.) The phase Φ is clearly additive, so

Φ(γ−1
1 , γ−1

1 , γ2, γ2) ≡ Φ(γ−2
1 , γ2

2) (mod 2π) .

We calculate the latter as follows. First note that the following 3-point phase vanishes:

Φ(γ−2
1 , γ2

2 , αa+b) ≡ 0 (mod 2π) .

To quickly see this, take Σ to be the following surface:

Σ =

[
(σ, η) 7→

(
z =

1

2
σ(1 + τ), x3 = 4πRη

)]
, 0 ≤ σ, η < 1 ,
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for which ∂Σ = γ−2
1 ∪ γ2

2 ∪ αa+b and
∫
Σ ωF = 0. We also have

Φ(αa
−1, αb

−1) ≡ 0 (mod 2π) ,

which can be verified by taking

Σ = [(σ, η) 7→ (z = σ, x3 = 2πRη)] , 0 ≤ σ, η < 1 .

Finally, note that

Φ(αa
−1, αb

−1, αa+b) ≡ π (mod 2π) .

To see this, consider Σ that is confined to one fiber at x3 = 0 and is bounded by the three

cycles αa
−1, αb

−1, αa+b. This Σ is a triangle and integrating ωF on it gives π. The above

results imply that

Φ(γ−2
1 , γ2

2) ≡ Φ(αa+b) ≡ π (mod 2π) ,

as claimed.

As another example, consider a 3-string scattering amplitude
∣∣ q qc c

〉
→
∣∣ qc qc 〉 (which

preserves both Z2 momentum and winding). The action of T on this amplitude will tell us

the phase difference between the T -eigenvalue of
∣∣ q qc c

〉
and the T -eigenvalue of

∣∣ qc qc 〉.
(This nontrivial phase will have an important consequence in section 6.5.) From (A.3)

and (A.5), we know that this phase difference is e−πi/2. To verify it, define the loop,

γ3 =

[
t 7→

(
z =

1

2
, x3 = 4πRt

)]
.

The loop γ3 corresponds to the state
∣∣ q qcc

〉
, since at t = 1

2 we have (z = 1
2 , x3 = 2πR) ≃

(z = 1
2τ, x3 = 0) by (3.4). What we need then is the phase Φ(γ3, γ

−1
1 , γ−1

2 ). To calculate it,

consider the following two surfaces (here τ = i):

Σ1 =

[
(σ, η) 7→

(
z =

1

2
σ, x3 = 2πRη

)]
, 0 ≤ σ, η < 1 ,

and

Σ2 =

[
(σ, η) 7→

(
z =

1

2
στ, x3 = 2πRη

)]
, 0 ≤ σ, η < 1 .

Also, define the curve:

δ = [t 7→





(z = 2t, x3 = 0) 0 ≤ t ≤ 1
4

(z = 1
2 + 2(t− 1

4)τ, x3 = 0) 1
4 ≤ t ≤ 1

2

(z = 2(3
4 − t) + 1

2τ, x3 = 0) 1
2 ≤ t ≤ 3

4

(z = 2(1 − t)τ, x3 = 0) 3
4 ≤ t ≤ 1





] .

Note that δ traces a square with vertices z = 0, 1
2 ,

1
2(1 + τ), 1

2τ inside the fiber over x3 = 0,

and the area bounded by it is 1
4 . To complete the calculation of the phase, we note that

∂(Σ1 ∪ Σ2) = γ−1
1 ∪ γ−1

2 ∪ γ3 ∪ δ , and

∫

Σ1∪Σ2

ωF = 0 .

Thus,

Φ(γ−1
1 , γ−1

2 , γ3) ≡ −Φ(δ) ≡ −π
2

(mod 2π) .
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4 Warm-up: C-twist

In section 2.2 we were interested only in g ∈ SL(2,Z) that act nonperturbatively and

fix a strongly-coupled value of τ. But there is another element g that we can consider:

g =

(
−1 0

0 −1

)
. It preserves every τ , and acts on the theory as charge conjugation. It

corresponds to υ = π and has order r = 2. We will refer to this twist as a C-twist.

Compactification with C-twist actually preserves the full N = 8 supersymmetry in

three dimensions. In addition, we can keep Im τ ≫ 1, so as to have a weakly-coupled

theory. We will now study the C-twist and demonstrate some of the ideas in the previous

section explicitly in this setting. We will study only the cases of U(1) and U(2) gauge

group. The case of U(n) with n ≥ 3 is more involved and will not be addressed here.

4.1 Group theory

Combining the C-twist with the appropriate R-twist, and adjusting (2.8)–(2.10) to include

a charge conjugation, we get the following boundary conditions

[
ψ

α̇
a (x0, x1, x2, x3 + 2πR)

]∗
= iΛ−1ψa

α(x0, x1, x2, x3)Λ , a = 1, . . . , 4 , (4.1)
[
ΦI(x0, x1, x2, x3 + 2πR)

]∗
= −Λ−1ΦI(x0, x1, x2, x3)Λ , I = 1 . . . 6 , (4.2)

−A∗
µ(x0, x1, x2, x3 + 2πR) = Λ−1Aµ(x0, x1, x2, x3)Λ − iΛ−1∂µΛ , (4.3)

where [· · · ]∗ is the complex conjugate n × n matrix (not the adjoint matrix), and Λ is an

arbitrary gauge transformation.

Now consider a closed path C at a constant x3 = 0 that starts and ends at the origin,

and consider the U(n)-holonomy g = P exp(i
∮
C A). Set Ω = Λ(0, 0, 0, 0). The combined

charge conjugation and gauge transformation act on g as

g 7→ [Ω−1gΩ]∗.

We will need the invariant subgroup of U(n), which is the subgroup of solutions to

g = [Ω−1gΩ]∗.

We denote it by G
(inv)
Ω ⊂ U(n), since it generally depends on Ω. We now proceed to study

the U(1) and U(2) cases in more detail.

4.2 U(1) gauge group

In this case G
(inv)
Ω = O(1) ≃ Z2. At low-energy, no propagating degrees of freedom survive

the twist (4.1)–(4.3). The low-energy gauge group is O(1) ≃ Z2, which means that when

we compactify the 2D space on T 2 we can have nontrivial Z2 Wilson lines around the two

independent 1-cycles of T 2. Let wa ∈ Z2 ≃ {1,−1} be the Z2 Wilson line along 1-cycle a

(a = 1, 2). (For convenience, we take the Z2 group to be multiplicative instead of additive.)

The four vacua are then labeled by |w1, w2〉, and we have a mass gap of 1/(2R).
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Now consider the type-IIA dual description of the vacua, as in section 3.2. The effect

of charge conjugation here is that it rotates the (dual) T 2 by υ = π. The four vacua are

therefore

∣∣ qc
〉

= |{0}〉 ,
∣∣ qc

〉
=

∣∣∣∣
{

1

2

}〉
,
∣∣ qc 〉

=

∣∣∣∣
{

1

2
τ

}〉
,
∣∣ qc 〉

=

∣∣∣∣
{

1

2
(1 + τ)

}〉
.

In order to match these type-IIA states with the field theory vacua |w1, w2〉, we define, as

in section 3.3, the Z2 momentum operators

U1

∣∣[12M + 1
2Nτ ]

〉
=
∣∣[12 (1 −M) + 1

2Nτ ]
〉
,

U2

∣∣[12M + 1
2Nτ ]

〉
=
∣∣[12M + 1

2(1 −N)τ ]
〉
,

}
(4.4)

and the Z2 winding number operators, as in section 3.4,

V1

∣∣[12M + 1
2Nτ ]

〉
= (−1)M

∣∣[12M + 1
2Nτ ]

〉
,

V2

∣∣[12M + 1
2Nτ ]

〉
= (−1)N

∣∣[12M + 1
2Nτ ]

〉
.

}
(4.5)

We will now argue that

U1 = (−1)m1 , U2 = (−1)e1 , V1 = (−1)e2 , V2 = (−1)m2 , (4.6)

where e1, e2 are the electric flux operators in directions 1, 2 respectively, and m1,m2 are

the magnetic flux operators.

Equations (4.6) can be derived by following the chain of dualities of table 1 backwards.

Starting on the type-IIA side (the last row of table 1), take a state with Kaluza-Klein

momenta p1, p10 ∈ Z in directions x1, x10. (We can assume that the state is localized in

the x3 direction.) The unitary operator U1 acts as a translation in the direction of x10 and

therefore multiplies the state by the phase eπip10 . Similarly, U2 multiplies the state by eπip1 .

Following the chain of dualities backwards in table 1, we find that on the type-IIB side p1

becomes fundamental string (F1) winding number in direction x1, while p10 becomes D1

winding number in direction x1. (See table 2.) The Kaluza-Klein state on the type-IIA

side therefore becomes a (p, q)-string, with p = p1 and q = p10. Bound to n D3-branes,

these quantum numbers become [12, 22] e1 = p1 units of electric flux in direction 1 and

m1 = p10 units of magnetic flux in the same direction. Similarly, V1 corresponds to the

exponential of string winding number in direction 10, and V2 to the exponential of string

winding number in direction 1. On the type-IIB side, these become fundamental string

winding number and D1-brane winding number in direction 2.

Now, let’s relate the |w1, w2〉 basis (on the field theory/type-IIB side) to the∣∣[12M + 1
2Nτ ]

〉
basis on the type-IIA side. On the field theory side, V1 = (−1)e2 can

be interpreted as the operator of a large gauge transformation acting on the components

of the gauge field as

A1 → A1 , A2 → A2 +
1

2L2
.

Similarly, U2 = (−1)e1 can be interpreted as the operator of a large gauge transformation

A1 → A1 +
1

2L1
, A2 → A2 .
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We can therefore identify the action on eigenstates of Wilson lines as

V1|w1, w2〉 = |w1,−w2〉 , U2|w1, w2〉 = |−w1, w2〉 . (4.7)

Comparing (4.7) to (4.4)–(4.5) we find

∣∣∣∣
[
1

2
M +

1

2
Nτ

]〉

IIA

=
1√
2

∑

M ′=0,1

(−1)M
′M
∣∣∣(−1)N , (−1)M

′
〉

IIB
. (4.8)

Now consider the operators U1,V2, which according to (4.6) are related to magnetic

flux. Using (4.4)–(4.5) and (4.8), we find

U1|w1, w2〉 = w2|w1, w2〉 , V2|w1, w2〉 = w1|w1, w2〉 . (4.9)

So w1 is the eigenvalue of magnetic flux (−1)m2 , and w2 is the eigenvalue of magnetic flux

(−1)m1 .

The connection between the discrete Z2 Wilson line w1 and the magnetic flux m2 can

be understood as follows. Let us pick a uniform gauge field with Wilson line w1 = −1:

A = 1
2L1

dx1. The charge conjugate field is −A, so we have to pick a nonzero Λ in (4.3).

Specifically, the gauge transformation that converts A to −A is Λ = exp(−ix1/L1). This

gauge transformation accompanies the coordinate transformation x3 → x3 + 2πR, and for

an ordinary T 3 compactification it would be interpreted [23, 24] as one unit of magnetic

flux in direction 2, i.e., m2 = 1. The connection between w2 and m1 is similar.

We can now understand the action of V1 and U2 as follows. According to (4.6), U2 =

(−1)e1 and therefore acts as a discontinuous gauge transformation with gauge parameter

Λ̃(x1, x2) = exp(−ix1/2L1). Such a gauge transformation does not preserve the boundary

conditions (4.3), because charge conjugation converts Λ̃ to Λ̃−1 = exp(ix1/2L1), but this

can be fixed by modifying the gauge transformation Λ that appears in (4.3) to

Λ → Λe
ix1
L1 .

This implies that U2 changes the magnetic flux m2 by one unit (modulo 2). Similarly,

V1 = (−1)e2 changes the magnetic flux m1 by one unit. Since, as we have seen in (4.9)

[combined with (4.6)], w1, w2 can be identified with the magnetic fluxes (−1)m2 , (−1)m1 ,

we recover the expressions (4.7) for the action of V1,U2 on states. We have therefore

completely mapped the field theory ground states to the type-IIA ground states.

Let us conclude this subsection with a few additional comments. First we note that the

magnetic flux m3 has to vanish, because charge conjugation acts on it as m3 → −m3, and

this cannot be fixed by any gauge transformation Λ in (4.3). The electric flux e3 therefore

also vanishes by S-duality. Finally, let us also write down the T-duality transformations

S,T . On the type-IIB (field theory) side they act geometrically, so we have

S|w1, w2〉 = |w2, w1〉 , T |w1, w2〉 = |w1, w1w2〉 .
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4.3 U(2) gauge group

Let’s now study the case of gauge group U(2). On the type-IIA side, a basis state is of one

of two types: (i) a single string with winding number 2; or (ii) two strings with winding

number 1.

The single-particle string states of winding number 2 are built from one of the four

types of states

|[z,−z]〉 ,
∣∣∣∣
[
z,

1

2
− z

]〉
,

∣∣∣∣
[
z,

1

2
τ − z

]〉
,

∣∣∣∣
[
z,

1

2
+

1

2
τ − z

]〉
,

where z is a free parameter on T 2/Z2, which needs to be quantized. In addition, the

location of the strings in the R
6 transverse directions is free and needs to be quantized,

too. This results in a continuous spectrum.

The two-particle states are given by combining two strings of winding number 1.

Each of these strings can be at any of the four locations studied in section 4.2, and since

they are identical bosons, the order is not important. We denote the states by |{[z], [z′]}〉,
where z, z′ ∈ C/(Z + Zτ) are any one of 0, 1

2 ,
1
2τ,

1
2 + 1

2τ. Altogether we get 10 states (two

identical bosons with 4 single-particle states). Similarly to (4.4), we define the symmetry

operators U1,U2 by

U1

∣∣{[12M + 1
2Nτ ], [

1
2M

′ + 1
2N

′τ ]}
〉

=
∣∣[12 (1 −M) + 1

2Nτ ], [
1
2 (1 −M ′) + 1

2N
′τ ]
〉

U2

∣∣{[12M + 1
2Nτ ], [

1
2M

′ + 1
2N

′τ ]}
〉

=
∣∣[12M + 1

2(1 −N)τ ], [12M
′ + 1

2(1 −N ′)τ ]
〉




,

(4.10)

and similarly to (4.5), we define V1,V2 by

V1

∣∣{[12M + 1
2Nτ ], [

1
2M

′ + 1
2N

′τ ]}
〉

= (−1)M+M ′∣∣{[12M + 1
2Nτ ], [

1
2M

′ + 1
2N

′τ ]}
〉

V2

∣∣{[12M + 1
2Nτ ], [

1
2M

′ + 1
2N

′τ ]}
〉

= (−1)N+N ′∣∣{[12M + 1
2Nτ ], [

1
2M

′ + 1
2N

′τ ]}
〉




.

(4.11)

Note that the 4 operators U1,U2,V1,V2 are mutually commuting.

Next, let us see how to get this spectrum from the field theory (type-IIB) side. Since

U(2) = [SU(2)×U(1)]/Z2, we can start by separately discussing the SU(2) and U(1) degrees

of freedom, and then consider how they combine to form states of the full U(2) theory.

We begin with the SU(2) degrees of freedom. Since SU(2) is pseudo-real, charge

conjugation is equivalent to a gauge transformation. Explicitly, the gauge transformation

is realized by the matrix iσ2 ∈ SU(2) (we denote the Pauli matrices by σ1, σ2, σ3), and for

an adjoint-valued field φ we have

−φ∗ = (iσ2)
−1φ(iσ2) .

Thus, combining the extra gauge parameter iσ2 with Λ in (4.1)–(4.3), we find that the C-

twist has no effect on the SU(2) degrees of freedom. As far as the SU(2) degrees of freedom

are concerned, we therefore have a standard compactification of N = 4 SU(2) SYM on T 3,

preserving 16 supersymmetries, and we are interested in the normalizable ground states.
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Let e′1, e
′
2, e

′
3 be the Z2 ’t Hooft electric fluxes of a state of the SU(2) theory, and

m′
1,m

′
2,m

′
3 the Z2 ’t Hooft magnetic fluxes.4 It turns out [25] that there is one supersym-

metric ground state for every combination of ’t Hooft fluxes that satisfies

e′1m
′
2 − e′2m

′
1 = e′1m

′
3 − e′3m

′
1 = e′2m

′
3 − e′3m

′
2 = 0 . (4.12)

We denote the corresponding ground state by |e′1, e′2, e′3,m′
1,m

′
2,m

′
3〉SU(2), and by conven-

tion this state is identically zero if (4.12) is not satisfied. We will soon require e′3 = m′
3 = 0,

and then the only nontrivial condition in (4.12) is

e′1m
′
2 − e′2m

′
1 = 0 . (4.13)

There are exactly 10 combinations of the Z2 fluxes e′1, e
′
2,m

′
1,m

′
2 that satisfy (4.13).

Let us comment that the result on the number of SU(2) ground states can be obtained

in several ways. One way is to count the supersymmetric bound states of 2 D3-branes

on T 3. This system is described at low-energy by U(2) super Yang-Mills theory, and its

Hilbert space is a tensor product of sectors of U(1) and SU(2) Hilbert spaces with the

SU(2) electric and magnetic fluxes determined by the modulo 2 residue of the U(1) electric

and magnetic fluxes. The U(1) electric and magnetic fluxes correspond to fundamental

string (F1) and D1-charge. The result, which can be established by T-duality on the three

directions of T 3, is that there is one supersymmetric bound state for each combination

of the electric and magnetic fluxes. It is a “bound state at threshold” if all magnetic

fluxes vanish, and not at threshold otherwise. The condition (4.12) ensures that the

total momentum carried by the U(1) flux is an integer. Alternatively, the result can be

established entirely in field theory (with the assumption that the Witten index is identical

to the number of ground states) [25], using results on the number of normalizable ground

states in theories with 16 supersymmetries [12, 26–28].

Next, let us discuss the U(1) degrees of freedom. In section 4.2 we showed that the

U(1) theory has 4 ground states, |w1, w2〉 (with w1, w2 = ±1). However, the discussion of

section 4.2 needs to be modified in order to be applicable to the U(2) theory, as we shall

now explain. Generally speaking, the problem is that the pure U(1) theory is invariant

under certain large gauge transformations that can no longer be considered good gauge

transformations in the U(2) theory. To explain this in detail, we need to discuss the

electric and magnetic fluxes more thoroughly.

Consider a U(2) gauge configuration AU(2) which we regard locally as a 2 × 2 matrix

of 1-forms. From this matrix we construct a U(1) gauge field by taking the trace, AU(1) =

trAU(2). This normalization is actually a matter of convention. For example, for a standard

toroidal compactification of U(n) gauge theory on T 3, we can choose to define AU(1) =

trAU(n), which corresponds to a surjective map U(n)
det−−→ U(1), or we can choose to define

AU(1) = 1
n trAU(n), which corresponds to an injective map U(1)

·I−→ U(n). Neither choice

4Here we do not restrict the magnetic or electric fluxes, since we need to combine the SU(2) degrees of

freedom with the U(1) later on. Of course, if we had just the SU(2) degrees of freedom, we would have

had to set all magnetic fluxes to zero, and if we had just SO(3) ≃ SU(2)/Z2 we would have had to set all

electric fluxes to zero.
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is optimal, however, because with the second choice we are forced to include sectors with

fractional magnetic flux (like 1
n), and with the first choice we are forced to include sectors

with fractional electric flux. We will see a manifestation of this below (4.16) where we will

have to include sectors for which a proper gauge transformation (det Λ̃) does not act as the

identity operator. In section section 6.1 we will choose to work with the second convention

but for the present section we proceed with AU(1) = trAU(2).

We now introduce U(1) magnetic fluxes m1,m2,m3. We have already seen in sec-

tion 4.2 that the C-twist requires m3 = 0. States with integer U(1) magnetic fluxes m1,m2

can be realized by the following classical solution to (4.3):

AU(2) =

(
m2
2L1

dx1 + m1
2L2

dx2 0

0 0

)
, Λ =

(
e
− im2x1

L1
− im1x2

L2 0

0 1

)
.

Following (4.6) we define

U1 ≡ (−1)m1 , V2 ≡ (−1)m2 . (4.14)

Now, let’s find the SU(2) magnetic fluxes m′
1,m

′
2 ∈ Z2 of this configuration. Locally, we

can split Λ into U(1) and SU(2) parts as

Λ = e
− im2x1

2L1
− im1x2

2L2


e

− im2x1
2L1

− im1x2
2L2 0

0 e
im2x1
2L1

+
im1x2
2L2


 .

We can read off the SU(2) ’t Hooft magnetic fluxes m′
1,m

′
2 from the SU(2) matrix on the

right-hand side. This shows that, as in ordinary toroidal compactifications, the SU(2) ’t

Hooft magnetic flux is determined by the U(1) magnetic flux according to

0 = m1 + m′
1 = m2 + m′

2 (mod 2) . (4.15)

Similarly, m′
3 = m3 (mod 2), and since m3 = 0 we get m′

3 = 0.

Let us now turn to electric fluxes. Consider the large gauge transformation

Λ̃ =

(
e

ix1
L1 0

0 1

)
= e

ix1
2L1


e

ix1
2L1 0

0 e
− ix1

2L1


 . (4.16)

All states of the U(2) theory must be invariant under Λ̃. On the right-hand side of (4.16) we

decomposed Λ̃ locally into a U(1) gauge transformation and an SU(2) gauge transformation.

However, note that the latter actually generates a discontinuous gauge transformation of

SU(2)—applying this gauge transformation locally is equivalent to acting with the operator

(−1)e
′
1 , according to ’t Hooft’s definition [23, 24]. On the U(1) degrees of freedom, with

our normalization, Λ̃ acts as det Λ̃ = exp(ix1/L1), which is a proper gauge transformation.

In section 4.2 we defined the operators U2,V1 which correspond to gauge transfor-

mations by discontinuous gauge parameters exp(ix1/2L1) and exp(ix2/2L2), respectively.

The U(1) part of the gauge transformation Λ̃ can therefore be identified with U2
2 , and we

conclude that in the U(2) theory all states must satisfy

U2
2 (−1)e

′
1 = V2

1 (−1)e
′
2 = 1. (4.17)
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In the realization (4.4)–(4.5) of U1,U2,V1,V2, we had V2
1 = U2

2 = 1 identically, but in the

present context of the U(2) theory, this is too restrictive. For example, U2
2 corresponds to

the gauge parameter 
e

ix1
2L1 0

0 e
ix1
2L1


 ,

which is discontinuous in U(2) and therefore not required to be the identity on physical

states.

Thus, the Hilbert space of the U(1) theory has to be a representation of the algebra

generated by U1,U2,V1,V2 with the relations

U2
1 = V2

2 = 1 , U1U2 = U2U1 , V1V2 = V2V1 ,

UiVj = (−1)δijVjUi , i, j = 1, 2,
(4.18)

and we can add the conditions

V4
1 = U4

2 = 1 , (4.19)

since U4
2 and V4

1 are generated by the continuous large gauge transformations e
ix1
L1 and e

ix2
L2 ,

and those do have to be the identity on physical states.

Note that V2
1 and U2

2 are central elements of this algebra, and all irreducible represen-

tations with V2
1 = U2

2 = 1 are equivalent to the one we studied in section 4.2. But we can

find other irreducible representations by allowing one or both of V2
1 and U2

2 to be (−1). In

light of (4.17), we can identify

U2
2 = (−1)e

′
1 , V2

1 = (−1)e
′
2 .

The algebra (4.18)–(4.19) then has the following 4-dimensional irreducible representation

with states |w1, w2, e1, e2〉, where e1, e2 ∈ Z2 are fixed (and we dropped the primes now),

and w1, w2 ∈ {−1, 1} take all possible values:




U1|w1, w2, e1, e2〉 = w2|w1, w2, e1, e2〉 ,
U2|w1, w2, e1, e2〉 = ie1 |−w1, w2, e1, e2〉 ,
V1|w1, w2, e1, e2〉 = ie2 |w1,−w2, e1, e2〉 ,
V2|w1, w2, e1, e2〉 = w1|w1, w2, e1, e2〉 .

(4.20)

(Note that replacing iej by (−i)ej can be absorbed by a change of basis, so we picked one

choice of square-root of (−1)ej at random.)

We can now combine the U(1) and SU(2) parts to form physical U(2) states. Incor-

porating the conditions (4.15) and (4.17) with the identifications (4.14) and (4.20), we can

construct a basis of physical states of the form

∣∣e′1, e′2,m′
1,m

′
2

〉
U(2)

≡
∣∣∣w1 = (−1)m

′
2 , w2 = (−1)m

′
1 , e′1, e

′
2

〉
U(1)

⊗
∣∣e′1, e′2, 0,m′

1,m
′
2, 0
〉
SU(2)

, (4.21)

with

e′1, e
′
2,m

′
1,m

′
2 ∈ Z2 , e′3 = m′

3 = 0.
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These are a total of 24 = 16 states, but they are reduced to 10 states when we implement

the condition (4.13).

Let us now map the basis of states (4.21) to the basis of states∣∣{[12M + 1
2Nτ ], [

1
2M

′ + 1
2N

′τ ]}
〉

discussed at the beginning of this subsection. The

discussion above motivates us to postulate the following relations between the type-IIA

and field-theory symmetry operators:

U1 = U1 , U2 = U2
2 , V1 = V2

1 , V2 = V2 .

With these identifications, the commutation relations agree. Comparing (4.10)–(4.11)

with (4.20), using (4.21), we find the relation between the type-IIA and U(2) field-theory

states:

∣∣∣∣
{[

1

2
M +

1

2
Nτ

]
,

[
1

2
M ′ +

1

2
N ′τ

]}〉

IIA

=

=
1

2

1∑

K=0

1∑

L=0

(−1)MK+NL
∣∣e′1 = L, e′2 = M −M ′,m′

1 = K,m′
2 = N −N ′〉

U(2)
, (4.22)

where M −M ′, and N − N ′ are understood to be mod 2, and of course, we have used

M − M ′ ≡ M + M ′ (mod 2) and N − N ′ ≡ N + N ′ (mod 2). We have also fixed an

arbitrary phase in the definition of the states |e′1, e′2,m′
1,m

′
2〉U(2).

Where does the condition (4.13) come from? It comes from the fact that the type-

IIA strings are identical bosons. To see this, note that the expression (4.22) is a priori

not symmetric under the interchange (M,N) ↔ (M ′, N ′). This exchange does not af-

fect (M − M ′) and (N − N ′), since they are Z2-valued, but it replaces (−1)MK+NL by

(−1)M
′K+N ′L. The operator that exchanges (M,N) ↔ (M ′, N ′) therefore acts as multi-

plication by (−1)(M−M ′)K+(N−N ′)L and can be identified with (−1)e
′
1m

′
2−e′2m

′
1 acting on

the states |e′1, e′2,m′
1,m

′
2〉U(2). Requiring the states to be invariant under the exchange

(M,N) ↔ (M ′, N ′) is therefore equivalent to (4.13).

We conclude the discussion of the U(2) C-twist by writing down the reverse transfor-

mation from the type-IIA states to the field theory states:

∣∣e′1, e′2,m′
1,m

′
2

〉
U(2)

=

=
1

2

1∑

M=0

1∑

N=0

(−1)Mm′
1+Ne′1

∣∣∣∣
{[

1

2
M +

1

2
Nτ

]
,

[
1

2
(M + e′2) +

1

2
(N + m′

2)τ

]}〉

IIA

.(4.23)

5 Solution for U(1) gauge theory

We will now present in detail the solution of the problem presented in section 2 for U(1)

gauge group, in which case the action of the three-dimensional field theory can be written

down exactly.
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5.1 The field theory side

The scalars, fermions, and gauge fields decouple from each other, and the scalars and

fermions are described by a free field theory with R-twisted boundary conditions as in

section 2.3:

ψa
α(x0, x1, x2, x3 + 2πR) = eiϕaψa

α(x0, x1, x2, x3) , a = 1, . . . , 4.

Zj(x0, x1, x2, x3 + 2πR) = ei(ϕj+ϕ4)Zj(x0, x1, x2, x3) , j = 1, 2, 3.

Here we take the N = 6 twist (2.11), for which ϕ1 = ϕ2 = ϕ3 = 1
2υ and ϕ4 = −3

2υ and

there are no zero modes. The scalars and fermions therefore do not give rise to any 2+1D

low-energy fields.

The vector field is a bit more involved. The action for the vector field contains two

terms: a 3+1D bulk term in the coordinate range 0 < x3 < 2πR, and a 2+1D “boundary”

term at x3 = 0 (or x3 = 2πR) associated with the S-twist. The bulk term is a standard

U(1) Yang-Mills action on the interval 0 < x3 < 2πR, but instead of identifying the two

endpoints, we allow the gauge fields at x3 = 0 and x3 = 2πR to be independent, and

define the 2+1D fields

A(0) ≡
2∑

µ=0

Aµ(x0, x1, x2, x3 = 0)dxµ , A(2πR) ≡
2∑

µ=0

Aµ(x0, x1, x2, x3 = 2πR)dxµ .

The gauge transformations are also not required to be periodic in x3.

The additional boundary term depends on the specific element g ∈ SL(2,Z) used in

the twist. For g = g′ ≡
(

0 −1

1 0

)
the S-twist is incorporated by adding the following 2+1D

term to the action [1, 29, 30]:

IS(g′) =
1

2π

∫
A(0) ∧ dA(2πR) . (5.1)

Here, the exterior derivative d in dA(2πR) is a 2+1D derivative. One way to see that this

term realizes the S-twist is to switch to Euclidean signature and think of x3 as a Euclidean

time coordinate (instead of x0). Then, in the Hamiltonian formalism, eiIS represents the

kernel of the S-duality operator which acts on wavefunctions (in the A3 = 0 gauge) as a

kind of “Fourier transform”:

Ψ(A) → Ψ̃(Ã) =

∫
[DA] exp

{
i

2π

∫
A ∧ dÃ

}
Ψ(A) , (5.2)

and the last expression can be seen by requiring the g′-duality to act on operators as

Ei → Bi , Bi → −Ei . (5.3)

If instead of g = g′ we had picked g = −g′ = (g′)−1, we would have ended up with the

boundary action

IS(−g′) = − 1

2π

∫
A(0) ∧ dA(2πR) . (5.4)
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For g = g′′ ≡
(

1 −1

1 0

)
=

(
1 1

0 1

)
g′ we get

IS(g′′) =
1

4π

∫
{−A(2πR) ∧ dA(2πR) + 2A(0) ∧ dA(2πR)} , (5.5)

since the effect of the SL(2,Z) transformation

(
1 1

0 1

)
on wavefunctions is multiplication

by a Chern-Simons term at level k = −1:

Ψ(A) → exp

{
− i

4π

∫
A ∧ dA

}
Ψ(A) .

Similarly, the action of g = −g′′ =

(
1 1

0 1

)
(g′)−1 is realized by the boundary term

IS(−g′′) =
1

4π

∫
{−A(2πR) ∧ dA(2πR) − 2A(0) ∧ dA(2πR)} . (5.6)

Now, given the various expressions for the boundary terms IS in (5.1),(5.5),(5.6),

it is easy to take the low-energy limit. We simply set A(0) = A(2πR) (up to a gauge

transformation), and find that IS(±g′) reduces to a Chern-Simons action at level k = ±2,

and IS(±g′′) reduces to a Chern-Simons action at level k = −1 ± 2. This can be

summarized in the formula

IS → 2 − a − d

4πc

∫
A ∧ dA ,

which is a U(1) Chern-Simons theory at level

k ≡ (2 − a − d)/c . (5.7)

Note that the gauge transformation parameter Λ, appearing in the gauge transformation

A → A + dΛ, is not required to be periodic in x3. Therefore, unlike an ordinary S1

compactification, the Wilson line
∫ 2πR
0 A3dx3 (at fixed x0, x1, x2) can be gauged away,

and there is no additional massless mode arising from the dimensional reduction of A3.

Let us summarize the results in the following list:

• for τ = i, υ = π
2 , g = g′ ≡

(
0 −1

1 0

)
, we have k = 2;

• for τ = eπi/3, υ = π
3 , g = g′′ ≡

(
1 −1

1 0

)
, we have k = 1;

• for τ = eπi/3, υ = 2π
3 , g = −g′′−1 =

(
0 −1

1 −1

)
, we have k = 3.

Note that the value of the Chern-Simons level k is the same as the number of ground

states with winding number n = 1 in type-IIA theory, given in (3.9). This is consistent

with the fact that U(1) Chern-Simons theory at level k has k ground states, as we will see

in section 5.3.
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5.2 Toroidal compactification

The expressions (5.1),(5.4), and (5.5) that we found in section 5.1 assume that the theory

is formulated on R
2,1 with certain boundary conditions that will become evident shortly.

When these boundary conditions are relaxed, or when the theory is compactified on T 2,

additional terms need to be added due to the possibility of electric or magnetic fluxes, as

we will now explain. For the sake of the discussion, let us assume Euclidean signature, and

let us compactify all directions 0, 1, 2 on T 3, so that

0 ≤ x0 < 2πL0 , 0 ≤ x1 < 2πL1 , 0 ≤ x2 < 2πL2 .

In (5.2) we wrote down the transformation from a wavefunction Ψ(A) to the dual

wavefunction Ψ̃(Ã). The expression contained the integral
∫
A∧dÃ. On T 3, this expression

is not well-defined, because A is not globally well-defined in sectors with nonzero magnetic

flux. To obtain correct expression, consider a sector with magnetic flux (m0,m1,m2),

where m0,m1,m2 are integers. We define the associated gauge field

A =
m0x1

2πL1L2
dx2 +

m1x2

2πL2L0
dx0 +

m2x0

2πL0L1
dx1 +A′ ,

where A′ is a globally defined 1-form. Similarly, set

Ã =
m̃0x1

2πL1L2
dx2 +

m̃1x2

2πL2L0
dx0 +

m̃2x0

2πL0L1
dx1 + Ã′ .

Then (5.2) should read

Ψ(A′;m0,m1,m2) →

Ψ̃(Ã; m̃0, m̃1, m̃2) =
∑

m0∈Z

∑

m1∈Z

∑

m2∈Z

∫
[DA′] exp

{

i

∫
A′ ∧

(
m̃0

4π2L1L2
dx1 ∧ dx2 +

m̃1

4π2L2L0
dx2 ∧ dx0 +

m̃2

4π2L0L1
dx0 ∧ dx1

)

−i
∫
Ã′ ∧

(
m0

4π2L1L2
dx1 ∧ dx2 +

m1

4π2L2L0
dx2 ∧ dx0 +

m2

4π2L0L1
dx0 ∧ dx1

)

+
i

2π

∫
A′ ∧ dÃ′

}
Ψ(A′;m0,m1,m2) . (5.8)

The expression within the curly brackets {· · · } can be written in terms of the discontinuous

A and Ã fields as

i

2π

∫
A ∧ dÃ+ iπ(m0m̃1 + m1m̃2 + m2m̃0) +

im0

L2

∫
Ã0(x0, 0, x2)dx0dx2

+
im1

L0

∫
Ã1(x0, x1, 0)dx0dx1 +

im2

L1

∫
Ã2(0, x1, x2)dx1dx2 . (5.9)

The last three terms may seem a little odd, especially since they are evaluated at arbitrary

locations (x1 = 0, x2 = 0, and x0 = 0), but they are required because of the discontinuity

in A at those locations.
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We can now Wick-rotate the expression (5.9) by setting

m0 =

∫
dA ∧ δ(x0)dx0 , (5.10)

and

m1 =

∫
dA ∧ δ(x1)dx1 =

1

2πL1

∫
dA ∧ dx1 ,

m2 =

∫
dA ∧ δ(x2)dx2 =

1

2πL2

∫
dA ∧ dx2 ,

(5.11)

and similarly,

m̃0 =

∫
dÃ ∧ δ(x0)dx0 , (5.12)

and

m̃1 =

∫
dÃ ∧ δ(x1)dx1 =

1

2πL1

∫
dÃ ∧ dx1 ,

m̃2 =

∫
dÃ ∧ δ(x2)dx2 =

1

2πL2

∫
dÃ ∧ dx2 .

(5.13)

We now find the correction to (5.1) by combining (5.9) with (5.10)–(5.13), and setting

A ≡ A(0) and Ã ≡ A(2πR).

For most purposes, (5.1) will be sufficient. In particular, the low-energy limit is simply

the compactification on T 2 of the Chern-Simons theory found in section 5.1. This can be

seen by setting A = Ã (i.e., A′ = Ã′ and mj = m̃j) in (5.9). However, one place where

we should be careful is when we consider electric fluxes. For example, let us discuss the

electric flux e1 in the direction of x1. First, note that e1 by itself is not S-duality invariant

and so is ill-defined in our setting. However, if we add the magnetic flux m1 we find that

the combination e1 + m1 (mod 2) is S-duality invariant. Thus,

(−1)e1+m1

is a well-defined Z2 quantum number. More generally, for other SL(2,Z) elements,

ej + mj (mod k), where k is the Chern-Simons level defined in (5.7), is invariant under

the S-duality twist, and

e
2πi
k

(ej+mj)

is a well-defined Zk quantum number. Let us see how to interpret this statement from the

action.

The operator (−1)e1 acts as the discontinuous gauge transformation

A→ A+
dx1

2L1
.

In the action (5.8) this translates to

A′ → A′ +
dx1

2L1
, Ã′ → Ã′ +

dx1

2L1
, (5.14)
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while keeping mj and m̃j (j = 0, 1, 2) unchanged. Under (5.14), the action (5.9) then picks

up an extra term iπ(m̃1 − m1), which, using (5.10)–(5.13), can be written as

i

2

∫
[F02(x3 = 0) − F02(x3 = 2πR)]dx0dx2 .

Assuming that A0 is periodic in x2, this becomes the difference of Wilson lines:

iπ

∫
[A2(x3 = 2πR, x0 = ∞) −A2(x3 = 0, x0 = ∞)]dx2

−iπ
∫

[A2(x3 = 2πR, x0 = −∞) −A2(x3 = 0, x0 = −∞)]dx2 . (5.15)

Now, what is the operator (−1)m1? Acting on quantum states, it would multiply the

wavefunction by

exp

{
iπ

∫
F23dx2dx3

}
A3=0−→ exp

{
iπ

(∫
[A2(x3 = 2πR) −A2(x3 = 0)]dx2

)}
.

If a symmetry multiplies quantum states by eiφ(x0), where φ(x0) is a time-dependent phase,

then it multiplies the path-integral by exp{i(φ(x0 = ∞)−φ(x0 = −∞))}. Thus, altogether

(−1)m1+e1 keeps the action invariant. We also see that this operator reduces to (−1)e1 in

the low-energy Chern-Simons theory, because the low-energy Chern-Simons theory action

depends only on A′ = Ã′ on which (5.14) acts as (−1)e1 .

5.3 U(1) Chern-Simons theory on T 2

Now we describe in detail the theory upon compactification of the two spatial directions

on T 2 (parameterized by 0 ≤ xj ≤ 2πLj for j = 1, 2). As we have seen in section 5.1, the

low-energy theory is a U(1) Chern-Simons theory at level k with action

I =
k

4π

∫
A ∧ dA .

We are interested in the Hilbert space of states of this theory on T 2 (all are ground

states since the theory is topological), and we will now take a few paragraphs to review it

(see [33] for more details).

We denote the kth root of unity by

ω ≡ e
2πi
k .

We also define two independent Wilson loop operators in terms of the integrals of the gauge

fields on two independent 1-cycles of T 2:

W1 = exp

{∫ 2πL1

0
A1(t, 0)dt

}
, W2 = exp

{∫ 2πL2

0
A2(0, t)dt

}
. (5.16)
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The Hilbert space of Chern-Simons theory on T 2 at level k has k states, and we can pick

a basis where W1,W2 are represented by

W1 =




1

ω
. . .

ωk−2

ωk−1



, W2 =




1

1

1
. . .

1



. (5.17)

These operators satisfy the relations

W1W2 = ωW2W1 , Wk
1 = Wk

2 = 1 . (5.18)

We denote the states in the basis in which (5.17) holds by

|p〉 , p = 0, . . . , k − 1 ∈ Z/kZ , (5.19)

so that

W1|p〉 = ωp|p〉 , W2|p〉 = |p+ 1〉 .
The Chern-Simons theory is topological and therefore independent of the metric on

T 2. There is an SL(2,Z) group of large diffeomorphisms, introduced in section 3.6, that

acts on T 2 as (
x1

x2

)
7→ G

(
x1

x2

)
, G ≡

(
ã b̃

c̃ d̃

)
∈ SL(2,Z) , (5.20)

(We stress again that this SL(2,Z) should not be confused with the S-duality group.)

For the same reason as in section 3.7, it is represented projectively on the Hilbert space

(i.e., commutation relations close up to a phase). That is, we can require an element

G ∈ SL(2,Z) to satisfy

G−1W1G = W−b̃
2 W ã

1 , G−1W2G = W d̃
2 W−c̃

1 , (5.21)

but the order of the operators on the right-hand side of each equation is arbitrary, since

the Wilson operators W1 and W2 do not commute, and this is why we get only a projective

representation. Another ordering would correspond to replacing G by W l
1Wm

2 G for some

integers l,m. For our purposes we will only need to realize two elements of SL(2,Z), and

the projective nature of the representation will not be important to us. The elements that

we need are listed below.

The element S ≡
(

0 −1

1 0

)
∈ SL(2,Z) acts as

S|p〉 =
1√
k

∑

q

ωpq|q〉, (5.22)

and is a special case of the Verlinde matrix [31, 32]. It is easy to verify that

S−1W1S = W2 , S−1W2S = W−1
1 .
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The other generator of SL(2,Z) is T ≡
(

1 1

0 1

)
. For even k it acts as

T |p〉 = e
πi
k

p2|p〉 , k ≡ 0 (mod 2) . (5.23)

For odd k, (5.23) is ill-defined since the phase exp(πi
k p

2) depends on p and not just on p

mod k. In fact, as we will discuss in section 5.4, things get a little more complicated for

odd k, but with the proper modification of the definition of T , it turns out that we can

use the expression

T |p〉 = e
πi
k

p(p+k)|p〉 . (5.24)

In general, there is some freedom in the expressions that we have given above for T .
For odd as well as even k, we can replace T → eiφWN ′

1 T for some arbitrary integer N ′

and phase φ, and this will only introduce an inconsequential phase in the commutation

relation T −1W2T . In principle, φ can be determined if we wish to preserve the relation

(T S)3 = −1, not just up to a phase.

Now, let us discuss electric flux. Consider large discontinuous U(1) gauge transforma-

tions of the form

Λ1(x1, x2) = e
iνx1
L1 , Λ2(x1, x2) = e

iνx2
L2 , (5.25)

where 0 < ν < 1 is arbitrary, for the time being. Let Ω1,Ω2 be the corresponding operators

on the Hilbert space, which we can identify with exponentials of the electric fluxes e1, e2:

Ω1 = e2πiνe1 , Ω2 = e2πiνe2 . (5.26)

They act by conjugation on the Wilson operators:

Ω−1
1 W1Ω1 = e2πiνW1 , Ω−1

2 W1Ω2 = W1 , Ω−1
1 W2Ω1 = W2 , Ω−1

2 W2Ω2 = e2πiνW2 .

These equations are solvable only if ν is an integer multiple of 1/k. Setting

ν =
1

k
, Λ1(x1, x2) = e

ix1
kL1 , Λ2(x1, x2) = e

ix2
kL2 , (5.27)

we can identify

Ω1 ≡ W2 , Ω2 ≡ W−1
1 , (5.28)

and they act on states as:

Ω1|p〉 = |p+ 1〉 , Ω2|p〉 = ω−p|p〉 . (5.29)

Thus, electric flux is defined only modulo k. The state |p〉 is an eigenstate of Ω2 with

eigenvalue ω−p, and hence has e2 = −p, and the state

1√
k

k−1∑

j=0

ω−qj|j〉

is an eigenstate of Ω1 with eigenvalue ωq, and hence has e1 = q.
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5.4 Wavefunctions

An explicit description of the Hilbert space of Chern-Simons theory on T 2 can be given in

terms of θ-functions [33, 34, 36, 37].

In general, the states of Chern-Simons theory on a Riemann surface can be obtained

by quantization of the space of flat connections on the Riemann surface [32]. For U(1)

gauge group on T 2 of complex structure ρ = ρ1 + iρ2, a flat connection corresponds to a

constant gauge field A ≡ A1dx1 +A2dx2. We parameterize it by the complex combination

a ≡ − iρ2

π
Az =

1

2π
(−ρA1 +A2) ,

where we used the complex coordinate z ≡ x1 + ρx2. Because gauge equivalent configura-

tions are identified, we find that a lives on a T 2 of complex structure ρ, with a ≃ a+1 ≃ a+ρ.

The Chern-Simons action implies a nonzero commutation relation between the operator

â that represents a and its conjugate â
†. These commutation relations can be represented

by the following operators,

â
† =

ρ2

πk

∂

∂a

, â = a , (5.30)

acting on analytic functions ψ(a). The formulas above for â and its complex conjugate â
†

are compatible with an inner product [34] given by

〈ψ|ψ〉 =

∫
e
−πk

ρ2
|a|2|ψ|2d2

a . (5.31)

Imposing the periodicity conditions a ≃ a+1 ≃ a+ρ, we get a k-dimensional Hilbert space

with a basis

ψp(a) = θ(ka + pρ; kρ)e
πk
2ρ2

a
2+ 1

k
πiρp2+2πipa

, (5.32)

where the θ-function is given by

θ(a; ρ) ≡
∞∑

n=−∞
eπiρn2+2πina .

The operators W1,W2 act on a generic wavefunction ψ(a) [which is understood to be

a linear combination of the ψp(a)’s] as

W1ψ(a) = e
− π

ρ2
a− π

2kρ2 ψ

(
a +

1

k

)
, W2ψ(a) = e

−πρ
ρ2

a−π|ρ|2

2kρ2 ψ

(
a +

ρ

k

)
. (5.33)

The factors e
− π

ρ2
a− π

2kρ2 and e
−πρ

ρ2
a−π|ρ|2

2kρ2 are required in order to preserve unitarity, which

can be understood as follows: the transformation a → a + 1
k , for example, needs to be

accompanied by a
† → a

† + 1
k , and the latter is generated by e

− π
ρ2

a

.

In this representation it is easy to check the T -transformation

T |p〉 = e
πi
k

p2 |p〉 (5.34)

for even k (up to an unimportant overall phase), and odd k will be discussed below.
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Odd k. For odd k, the definition of Chern-Simons theory requires a spin structure on

the three-manifold [38]. For that reason, theories with odd k are sometimes referred to as

spin Chern-Simons theories [39].

In our case, we can see a manifestation of this in the behavior of the wavefunc-

tions (5.32) under SL(2,Z). There are 4 distinct spin structures on T 2, and the wavefunc-

tion (5.32) corresponds to one particular spin structure. The transformation ρ→ ρ+1 does

not preserve this spin structure, and indeed, for odd k the Hilbert space is not closed under

it. (It is only closed under its square ρ→ ρ+ 2.) We can see this by a direct calculation:

ψp(a, ρ+ 1) = e
1
k
πip2+πipe

− πk
2ρ2

a

e
− πk

8ρ2 ψp

(
a +

1

2
, ρ

)
.

However, if we define

T ψ(a, ρ) ≡ e
− πk

2ρ2
a− πk

8ρ2 ψ

(
a +

1

2
, ρ+ 1

)
, (5.35)

then we find closure:

T ψp = e
1
k
πip2+πipψp .

Note that the factor e
− πk

2ρ2
a

in (5.35) can be understood as realizing a
† → a

† + 1
2 , in agree-

ment with (5.34). Thus, (5.35) represents the large diffeomorphism ρ → ρ+ 1 augmented

by a change of coordinates that represents translation by 1/2 of the T 2.

The dependence of the theory on the spin structure of T 2 is related to the dependence

of the partition function of a 5+1D (anti-)self-dual free 2-form on spin structure [40]. The

connection arises because our setting is related to a compactification of the (2, 0)-theory

on W × T 2 (see section 7).

5.5 Connecting to the type-IIA picture

We would like to match the states |p〉 (p = 0, . . . , k−1) of Chern-Simons theory with linear

combinations of the k ground states of the type-IIA theory that we found in section 3.2.

Our strategy is to identify the symmetry operators U ,V that we defined in section 3.3–3.4

with operators on the Chern-Simons Hilbert space.

We believe that the correct identification is

V = W1 , U = W2 . (5.36)

As a check, note that with this identification the commutation relations (3.13)–(3.14) agree

with (5.18).

To motivate (5.36) further, we can compare the connection between the operators

above and electric flux. Combining (5.26) (with ν = 1/k) and (5.28) we get

W1 = ω−e2 , W2 = ωe1 . (5.37)

Now, similarly to what we did in section 4.2, we can follow the chain of dualities of section 3

backwards, starting with U ,V on the type-IIA side, to find out what they do on the type-IIB
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side. On the type-IIA side (the last row of table 1), take an eigenstate with Kaluza-Klein

momenta p1, p10 ∈ Z in directions x1, x10. (We can assume that the eigenstate is localized

in the x3 direction.) The unitary operator U acts as a translation, and therefore multiplies

its eigenstate by the phase e2πi(p1+p10)/k. Following the chain of dualities backwards in

table 1, we saw in section 4.2 that the Kaluza-Klein state on the type-IIA side becomes a

(p, q)-string with p = p1 and q = p10 on the type-IIB side, and that bound to n D3-branes,

these quantum numbers become [12, 22] e1 = p1 units of electric flux and m1 = p10 units

of magnetic flux in direction 1. We conclude that on the gauge theory side U acts as

U = e
2πi
k

(e1+m1) . (5.38)

Similarly, V is related to fundamental string winding number, and we find

V = e−
2πi
k

(e2+m2) . (5.39)

To see this, we note, for example, that the operator that has the eigenvalue e2πi(p1+p10)/k

under the adjoint action of V is simply W1.

To interpret (5.38)–(5.39) correctly, we need to discuss how to define the electric and

magnetic fluxes in the presence of the S-duality twist. First, note that ej +mj (j = 1, 2) is

generally not invariant under S-duality, but it is not hard to check that if k is determined

by g as in (3.9), then (ej + mj) is invariant mod k. As we have argued in section 5.2, the

operator exp[2πi
k (ej +mj)] in the full 3+1D theory reduces to exp[2πi

k ej ] in the low-energy

Chern-Simons theory. We can therefore identify V and U as

U = ωe1 , V = ω−e2 , (5.40)

which together with (5.37) leads to (5.36).

The basis states defined at the end of section 3.2 are eigenstates of V with eigenvalues

ωp. Up to an unimportant phase, they can be identified as eigenstates |p〉 of W1 defined

in (5.19). We conclude with a list of identifications of these states.

Single-particle states for υ = π
2

(τ = i and k = 2).

∣∣ qc
〉

= |0〉 ,
∣∣ qc 〉 = |1〉 .

Single-particle states for υ = π
3

(τ = eπi/3 and k = 1).

∣∣∣∣ �� ��qc

〉
= |0〉 .

Single-particle states for υ = 2π
3

(τ = eπi/3 and k = 3).

∣∣∣∣ �� ��qc

〉
= |0〉 ,

∣∣∣∣ �� ��qc
〉

= |1〉 ,
∣∣∣∣ �� ��

qc
〉

= |2〉 . (5.41)
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6 U(n) gauge group on T 2

In section 5 we have seen that for U(1) gauge group, the solution to our problem (as posed

in section 2) is a Chern-Simons theory at one of the levels k = 1, 2, 3. The level is deter-

mined by the choice of coupling constant τ and the SL(2,Z) element g. We now turn to the

nonabelian case of U(n) gauge group. A natural question, then, is whether the solution to

the U(n) problem (with the restrictions on n as given in section 2.4) is also a Chern-Simons

theory. And if not, what is it? To explore this question we will use the dual type-IIA de-

scription of the Hilbert space of ground states of the U(n) theory on T 2 that we found in sec-

tion 3, and compare it to the Hilbert space of Chern-Simons theory at the appropriate level.

As we saw in (3.6), the type-IIA Hilbert space H(n, υ) can be decomposed into sub-

spaces H(n1,n2,...,np)(υ) by specifying the winding numbers n1, . . . , np of the individual

strings. We will analyze these subspaces separately, using the following three tools:

1. The T-duality group SL(2,Z) generated by T ,S;

2. The Zk × Zk symmetry generated by U ,V (which is useful for k > 1);

3. The decomposition of the gauge group U(n) = [U(1) × SU(n)]/Zn.

Together with the known solution for U(1), the last point allows us to construct from

each of the H(n1,...,np)’s another Hilbert space H̃(n1,...,np) of states that we can associate

with the SU(n) degrees of freedom only. This will be done in section 6.1. The coupling to

the U(1) degrees of freedom is encoded in the action of large gauge transformations related

to the Zn ⊂ SU(n) center. They form a Zn × Zn symmetry group that is generated by a

pair of large gauge transformations. In this way, we will end up with Hilbert subspaces

H̃(n1,...,np)(υ) on which an action of the semidirect product of SL(2,Z) and Zn×Zn is given.

This will also be described in detail in section 6.1 [see (6.5)].

In general the analysis depends on the total winding number n and the angle υ, but

there is one observation that we can make independently of them. For every n and υ,

there is unique sector H̃(1,1,...,1)(υ) with n particles of winding number 1. In section 6.4

we will argue that this sector corresponds to the Hilbert space of SU(n) Chern-Simons

theory at level k. The interpretation of other sectors is more mysterious and we will defer

the discussion of them to section 6.5.

We take the T 2 to be in directions x1, x2, and as in section 2, the S1 is of radius R in

direction x3.

6.1 The center U(1) ⊂ U(n)

Except for global issues related to electric and magnetic fluxes, the U(1) center of the gauge

group U(n) decouples. Arguments similar to those in section 5 lead to the conclusion that at

low-energy (below the compactification scale 1/R) it gives rise to a decoupled sector of U(1)

Chern-Simons theory. (The global issues will be discussed below.) The level is k′ = kn,

where k is that of the U(1) problem given in section 5. This can be seen as follows.
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A gauge field A of the U(1) center is diagonally embedded in U(n) as

A→



A

A
. . .


 .

Inserted into the U(n) Yang-Mills action, this normalization of A gives rise to a U(1) action

with coupling constant nτ. Then the S-dual U(1) action, expressed in terms of a dual U(1)

gauge field Ã, has coupling constant − 1
nτ . Now consider the S-twist by g′ (the case with

υ = π
2 and k = 2), which requires the theory to be self-dual. To achieve self-duality,we need

to rescale the dual gauge field by defining Ã = nÃ′. We can then set the S-twisted boundary

conditions to be, roughly speaking, Ã′(2πR) = A(0). Inspecting (5.2), and repeating the

arguments of section 5, then shows that the proper Chern-Simons level is k′ = 2n. Similarly,

it can be checked that the effective U(1) Chern-Simons level is k′ = kn for the other values

of k, where k is the function of υ defined in (3.9). (When checking this, note that the shift

of the U(n) θ-angle that corresponds to τ → τ+1 induces τ → τ+n for the U(1) variables.)

Now compactify the remaining two spatial directions of the theory on T 2 (parameter-

ized by 0 ≤ xj ≤ 2πLj for j = 1, 2). The Hilbert space of states of U(1) Chern-Simons

theory at level k′ = kn on T 2 has k′ states, which we denote by

|p〉U(1) , p = 0, . . . , k′ − 1 .

We pick a basis of the Hilbert space so that these states are eigenstates of the U(1) Wilson

line operator W1 corresponding to the 1-cycle around the x1-axis,

W1 = exp

{∫ 2πL1

0
A1(x1, 0)dx1

}
, (6.1)

so that

W1|p〉U(1) = e
2πip
kn |p〉U(1) .

(For a quick review of U(1) Chern-Simons theory on T 2, see section 5.3, replacing k that

appeared there with k′.) A general state |ψ〉U(n) of the Hilbert space of the U(n) theory

can then be decomposed as

|ψ〉U(n) =

kn−1∑

p=0

|ψ; p〉SU(n) ⊗ |p〉U(1) , (6.2)

where |ψ; p〉SU(n) are the “coefficients” which can be interpreted as wavefunctions of the

SU(n) degrees of freedom only.

Let us now discuss the global issues that arise because U(n) is not U(1) × SU(n) but

rather [U(1)×SU(n)]/Zn. When compactifying a U(n) gauge theory on T 2, we require the

Hilbert space of states to be invariant under large U(n) gauge transformations. In particu-

lar, we need to consider the two gauge transformations Ωj (j = 1, 2) with gauge parameters

Ωj(x1, x2) = diag

(
e

ixj
Lj , 1, . . . , 1

)
,
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which are continuous in U(n), but cannot be lifted to continuous gauge transformations

in U(1) × SU(n). Indeed, they can be written as Ωj = Ω′
jΩ

′′
j with

Ω′
j(x1, x2) = diag

(
e

ixj
nLj , e

ixj
nLj , . . . , e

ixj
nLj

)
∈ U(1), (6.3)

Ω′′
j (x1, x2) = diag

(
e

(n−1)ixj
nLj , e

− ixj
nLj , . . . , e

− ixj
nLj

)
∈ SU(n), (6.4)

but Ω′
j and Ω′′

j have a discontinuity at xj = 0 ≡ 2πLj.

Nevertheless, Ω′
1 and Ω′

2 define unitary operators on the Hilbert space of U(1) Chern-

Simons theory on T 2 which act on the states |p〉U(1) as (see section 5.3)

Ω′
1|p〉U(1) = |p+ k〉U(1) , Ω′

2|p〉U(1) = e−
2πip

n |p〉U(1) .

The decomposition (6.2) then implies that

Ω′′
1|ψ; p〉SU(n) = |ψ; p + k〉SU(n) , Ω′′

2|ψ; p〉SU(n) = e
2πip

n |ψ; p〉SU(n) . (6.5)

We conclude that a state of the form (6.2) is in the Hilbert space of the U(n) theory

provided that the SU(n) states in the decomposition satisfy (6.5).

Identifying the Zk momentum and winding number operators. In section 3.3–

3.4 we defined the symmetry operators U ,V on the type-IIA dual. Let us identify these

operators on the gauge theory side. From the definition it is clear that U ,V act only on

the U(1) ⊂ U(n) degrees of freedom, since on the type-IIA side they are defined in terms

of the “center-of-mass” of the strings. We therefore turn to the analysis of large gauge

transformations that act only on the U(1) degrees of freedom.

Define the discontinuous U(1) gauge transformations

Υ
(α)
j (x1, x2) = diag

(
e

iαxj

k′Lj , . . . , e
iαxj

k′Lj

)
∈ U(1) , j = 1, 2,

where α is a real parameter. We will see momentarily that it has to be an integer. Let W1

be the U(1) Wilson line as in (6.1), and define the Wilson line W2 in direction 2 similarly.

Then, by definition, Υ
(α)
1 has the following commutation relations with the Wilson lines:

(Υ
(α)
1 )−1W1Υ

(α)
1 = e

2πiα
k′ W1 , (Υ

(α)
1 )−1W2Υ

(α)
1 = W2 , (6.6)

and similarly for Υ
(α)
2 . Given the explicit k′-dimensional representation of W1,W2 (see

section 5.3), it is not hard to check that a solution to (6.6) exists only for integer α, in

which case we can take

Υ
(α)
1 = Wα

2 , Υ
(α)
2 = W−α

1 .

But even with α ∈ Z, the operators Υ
(α)
j might not preserve the Hilbert space of U(n)

Chern-Simons theory. For example, acting on (6.2) we get

Υ
(α)
2 |ψ〉U(n) =

kn−1∑

p=0

e−
2πiαp

kn |ψ; p〉SU(n) ⊗ |p〉U(1) ,
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and assuming the “coefficients” |ψ; p〉SU(n) satisfy the condition (6.5), we find that the

new “coefficients” e
2πiαp

kn |ψ; p〉SU(n) do not satisfy the rightmost equation of (6.5) unless

α ∈ nZ. Similarly,

Υ
(α)
1 |ψ〉U(n) =

kn−1∑

p=0

|ψ; p − α〉SU(n) ⊗ |p〉U(1) ,

and the leftmost condition of (6.5) is not satisfied unless α ∈ nZ. In order to preserve the

Hilbert space, we therefore require α to be an integer multiple of n. We therefore define

K1 ≡ Υ
(n)
1 = Wn

2 , K2 ≡ Υ
(n)
2 = W−n

1 . (6.7)

They generate a k2-dimensional group that preserves the U(n) Hilbert space, and they

act as

K1|ψ〉U(n) =

kn−1∑

p=0

|ψ; p − n〉SU(n) ⊗ |p〉U(1) ,

K2|ψ〉U(n) =

kn−1∑

p=0

e−
2πip

k |ψ; p〉SU(n) ⊗ |p〉U(1) .

(6.8)

The operators K1,K2 satisfy the clock-and-shift relations

K1K2 = e
2πin

k K2K1 , (K1)
k = (K2)

k = 1 .

We can now connect the type-IIA operators U ,V to the gauge theory by identifying

U = K1 , V = K−1
2 , (6.9)

in analogy with (5.36). We therefore get

V|ψ〉U(n) =

kn−1∑

p=0

e
2πip

k |ψ; p〉SU(n) ⊗ |p〉U(1) ,

U|ψ〉U(n) =

kn−1∑

p=0

|ψ; p − n〉SU(n) ⊗ |p〉U(1) .

(6.10)

Action of SL(2, Z). There are two more operators that we find useful to define on the

Hilbert space of the U(n) theory on T 2. In section 3.6 we discussed the SL(2,Z) action of

large diffeomorphisms of T 2, and we mentioned that it induces an action on the Hilbert

space of ground states. The action of SL(2,Z) on the U(1) states is well-known. Setting

the generators of SL(2,Z) to be

T =

(
1 1

0 1

)
, S =

(
0 −1

1 0

)
,
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we have (see section 5.3)

S|p〉U(1) =
1√
kn

kn−1∑

q=0

e
2πi
kn

pq|q〉U(1) ,

T |p〉U(1) =

{
e

iπ
kn

p2 |p〉U(1) for even kn,

e
iπ
kn

p(p+kn)|p〉U(1) for odd kn.

(6.11)

There are restrictions on the action of T ,S on the SU(n) states since they have to

preserve the U(n) Hilbert space (6.2) with the conditions (6.5). The restrictions have

certain implications for the commutation relations among T ,S and Ω′′
1 ,Ω

′′
2. We have

T |ψ〉U(n) =





∑kn−1
p=0 e

πip2

kn T |ψ; p〉SU(n) ⊗ |p〉U(1) for even kn,
∑kn−1

p=0 e
πip(p+kn)

kn T |ψ; p〉SU(n) ⊗ |p〉U(1) for odd kn,

and therefore (6.5) implies

T −1Ω′′
2T |ψ; p〉SU(n) = e

2πip
n |ψ; p〉SU(n) , (6.12)

and

T −1Ω′′
1T |ψ; p〉SU(n) =

{
e

2πip
n

+ πik
n |ψ; p+ k〉SU(n) for even kn,

e
2πip

n
+ πik(n+1)

n |ψ; p + k〉SU(n) for odd kn.
(6.13)

Using (6.5) again, we can rewrite these relations as

T −1Ω′′
2T = Ω′′

2 , T −1Ω′′
1T =

{
e−

πik
n Ω′′

2Ω
′′
1 for even kn

e
πik(n−1)

n Ω′′
2Ω

′′
1 for odd kn

(on ground states).

(6.14)

Similarly, we find

S−1Ω′′
1S = Ω′′

2 , S−1Ω′′
2S = (Ω′′

1)
−1 (on ground states). (6.15)

So, in order for T and S to preserve the Hilbert space with the conditions (6.5), they must

obey the commutation relations (6.14)–(6.15).

6.2 U(n) Chern-Simons Hilbert space as a symmetric product

The states of SU(n) Chern-Simons theory on T 2 at level k are in one-to-one correspondence

with irreducible representations of SU(n) that correspond to Young diagrams with at

most k columns [32]. For example, for SU(2) the states are labeled by an irreducible

representation of SU(2) with spin j at most k/2, and so we can label the states by an

integer m = 2j = 0, . . . , k.

We are interested in how the SL(2,Z) generators T ,S act on the states, as well as in

the large gauge transformations Ω′′
1,Ω

′′
2 , which are defined similarly to (6.4) and generate

two Zn symmetries of the Hilbert space. For this purpose, we work with a particularly

convenient representation of the Hilbert space that is derived from the Hilbert space of

U(n) Chern-Simons theory, as we shall now explain.
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To describe Chern-Simons theory with U(n) gauge group requires two levels — a level

k′ for U(1) and a level k for SU(n). The theory is then denoted by

[U(1)k′ × SU(n)k]/Zn ,

where the Zn quotient refers to modding out by large gauge transformations Ωj = Ω′
jΩ

′′
j

defined similarly to (6.3)–(6.4). The level k′ can in principle be any integer multiple of

n, and can be changed by adding to the Chern-Simons action a U(1) Chern-Simons term

for the trace of the gauge field. One customary choice is k′ = n(k + n), for which the

(bare) Lagrangian doesn’t have a separate Chern-Simons term for the trace of the gauge

field. Another choice is k′ = kn. This choice is particularly convenient, because we have

the equivalence of Hilbert spaces [33, 34]:

H([U(1)kn × SU(n)k]/Zn) ≃ H(U(1)k)⊗n/Sn (6.16)

where [· · · ]/Sn denotes the symmetric part of the tensor product.

Equation (6.16) is to be understood as follows: both sides are equivalent representa-

tions of T ,S, as well as Ω1,Ω2. In particular, the dimensions of both sides are equal:

dimH([U(1)kn × SU(n)k]/Zn) = kn

(
n+ k − 1

k

)
1

n2
=

(
n+ k − 1

k − 1

)

= dim
[
H(U(1)k)⊗n

]
S
.

(6.17)

In fact, (6.16) can be understood in terms of wavefunctions as well. To explain this, we

need to first discuss the wavefunctions of U(n) Chern-Simons theory on T 2. The states of

Chern-Simons theory on a Riemann surface can be obtained by quantization of the space of

flat connections on the Riemann surface [32]. For T 2, the flat connections can be encoded

in the conjugacy class of the two commuting holonomies of the gauge field around two inde-

pendent cycles of T 2. The resulting wavefunctions have been explicitly described in [33–37].

For U(1) gauge group, the two holonomies can be combined into a complex variable that

takes values on a dual T 2. This dual T 2 also has complex structure ρ, and the wavefunctions

are related to θ-functions, as we reviewed in section 5.4. For U(n) gauge group, with the

help of a gauge transformation, the two commuting holonomies can be reduced to a maximal

torus U(1)n ⊂ U(n). The two holonomies associated with the ith U(1) factor (i = 1, . . . , n)

can be combined into a complex variable ai which takes values in T 2, and so is subject to

the identifications ai ∼ ai + 1 ∼ ai + ρ. The wavefunctions ψ(a1, . . . , an) are required to be

symmetric in the n variables (because of the Weyl group Sn) and can be expressed in terms

of partition functions of U(n) WZW models at level k (which are characters of the corre-

sponding affine Lie algebra [41, 42]). Explicit expressions can be found in [33, 34, 36, 37].

On the other hand, the wavefunctions of H(U(1)k)⊗n are proportional to symmetrized

products of the wavefunctions ψpi
(ai) described in section 5.4:

Ψp1,...,pn(a1, . . . , an) ≡
∑

σ∈Sn

n∏

i=1

ψpi
(aσ(i)) . (6.18)
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Here, again, the U(1) wavefunctions can be expressed in terms of θ-functions as reviewed in

section 5.4. Now, the main point is that these symmetrized products of θ-functions (6.18)

span the same Hilbert space as the characters of U(n) WZW at level k, as explained

in [33, 34]!

Using (6.16) it is easy to calculate the action of T ,S,Ω′′
1 ,Ω

′′
2 on H(SU(n)k) by cal-

culating the action of T ,S,Ω1,Ω2 on the right-hand side using the formulas of section 5,

and then extracting the SU(n) degrees of freedom from the left-hand side using the U(1)

results in section 6.1. In doing so, it is very useful, using (6.9), to compare the action

of U ,V on type-IIA states and on the expansion (6.2) [as given in (6.10)], and derive

restrictions on the the SU(n) states that appear in the expansion (6.2) as coefficients.

Once we have these restrictions, we can derive the action of the SL(2,Z) operators T and

S on the SU(n) states. We illustrate this procedure with an example in section 6.3. The

general case is described in appendix B.

6.3 Example: U(2)

We will demonstrate the decomposition into U(1) and SU(n) degrees of freedom in the

case k = 2 and n = 2.

Consider the sector of 2-particle states on the type-IIA side where each string has wind-

ing number 1. Since we identified the single-particle states with those of U(1) Chern-Simons

theory in section 5, (6.16) implies that states in this sector can be identified with those of

U(2) Chern-Simons theory. We expand the basis states given in section 3.2 using (6.10):

∣∣ qc qc
〉

=
3∑

p=0

(∣∣ qc qc ; p
〉
SU(n)

⊗ |p〉U(1)

)
,

∣∣ qc qc 〉 =

3∑

p=0

(∣∣ qc qc ; p
〉
SU(n)

⊗ |p〉U(1)

)
,

∣∣ qc qc 〉 =

3∑

p=0

(∣∣ qc qc ; p
〉
SU(n)

⊗ |p〉U(1)

)
.

Now let’s compare the eigenvalues of V on both sides. Since
∣∣ qc qc 〉 and

∣∣ qc qc
〉

have

V-eigenvalue +1, only even p’s can appear in their expansions [see (6.10)]. Similarly,∣∣ qc qc
〉

has V-eigenvalue −1, and therefore only odd p’s can appear in its expansion.

Next, we note that
∣∣ qc qc

〉
+
∣∣ qc qc 〉 and

∣∣ qc qc 〉 have U -eigenvalue +1 while∣∣ qc qc
〉
−
∣∣ qc qc 〉 has U -eigenvalue −1. We conclude that the expansion of U(2) states

in terms of SU(2) and U(1) states must take the form

∣∣ qc qc
〉

= |a〉SU(2) ⊗ |0〉U(1) + |c〉SU(2) ⊗ |2〉U(1) (6.19)
∣∣ qc qc 〉 = |b〉SU(2) ⊗

(
|1〉U(1) + |3〉U(1)

)
, (6.20)

∣∣ qc qc 〉 = |c〉SU(2) ⊗ |0〉U(1) + |a〉SU(2) ⊗ |2〉U(1) , (6.21)

where |a〉, |b〉, |c〉 are 3 states of the SU(2) degrees of freedom.

– 54 –



J
H
E
P
0
3
(
2
0
1
1
)
0
9
9

We now note that the SL(2,Z) action of large diffeomorphisms becomes T-duality

on the type-IIA side. Using the action of T ,S on the single-particle states as listed in

appendix A, and the action of T ,S on the U(1) variables as given in (6.11), we can find

the action of T ,S on the SU(2) basis of states |a〉, |b〉, |c〉:

S =




1
2

1√
2

1
2

1√
2

0 − 1√
2

1
2 − 1√

2
1
2


 , T =




1 0 0

0 e
πi
4 0

0 0 −1


 . (6.22)

We also find, using (6.5), the action of large gauge transformations:

Ω′′
1 =




0 0 1

0 1 0

1 0 0


 , Ω′′

2 =




1 0 0

0 −1 0

0 0 1


 . (6.23)

We will now present explicit expressions for the wavefunctions that realize the

decomposition (6.19)–(6.21). The single-particle states
∣∣ qc

〉
and

∣∣ qc 〉 can be identified

with wavefunctions of U(1) Chern-Simons theory. The latter can be explicitly represented

in terms of θ-functions, as we recalled in (5.32). In order to realize (6.19)–(6.21), we need

to recast the product of two such wavefunctions in a way that separates the “center of

mass” U(1) variable.

We denote the wavefunctions of Chern-Simons theory for any k as5 (see section 5.4)

ψp, k(a) = θ(ka + pρ; kρ)e
πk
2ρ2

a
2+ 1

k
πiρp2+2πipa

, p = 0, . . . , k − 1 . (6.24)

The correspondence between the single-particle states and their wavefunctions can be found

using (5.33) and (5.36); for example, for k = 2, we get

∣∣ qc
〉
→ ψ0, 2 ,

∣∣ qc 〉→ ψ1, 2 .

Next, we use the identity

θ(z1; τ)θ(z2; τ) = θ(z1 + z2; 2τ)θ(z1 − z2; 2τ) + eπi(τ+2z2)θ(z1 + z2 + τ ; 2τ)θ(z1 − z2 − τ ; 2τ)

to rewrite the 2-particle wavefunctions as

ψp1, k(a1)ψp2, k(a2) + ψp1, k(a2)ψp2, k(a1)

= ψp1+p2, 2k

(
a1 + a2

2

)[
ψp1−p2, 2k

(
a1 − a2

2

)
+ ψp2−p1, 2k

(
a1 − a2

2

)]

+ψp1+p2+k, 2k

(
a1 + a2

2

)[
ψp1−p2−k, 2k

(
a1 − a2

2

)
+ ψp2−p1+k,2k

(
a1 − a2

2

)]
.(6.25)

We interpret the functions of (a1 + a2) as the U(1) parts,

|p〉U(1) → ψp, 2k

(
a1 + a2

2

)
,

5For the purposes of this discussion, we can actually be more general, and do not need to restrict

ourselves to k = 2.
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and the factors in the square brackets [· · · ] in (6.25) as the SU(2) parts. Specializing to

k = 2 again, we see that the decomposition (6.19)–(6.21) is consistent with:

|a〉SU(2) → ψ0, 4

(
a1 − a2

2

)
,

|b〉SU(2) → 1√
2

[
ψ1, 4

(
a1 − a2

2

)
+ ψ3, 4

(
a1 − a2

2

)]
, (6.26)

|c〉SU(2) → ψ2, 4

(
a1 − a2

2

)
.

In section 6.4 we will interpret these as wavefunctions of SU(2) Chern-Simons theory at

level 2.

SL(2, Z) action on SU(2) Chern-Simons theory. For future reference, we list here the

action of T ,S,Ω′′
1 ,Ω

′′
2 on the Hilbert space of SU(2) Chern-Simons theory at level k = 1, 2, 3.

For k = 1, the basis states |a〉, |b〉 are defined, using (6.16), by
∣∣∣∣ �� ��qc �� ��qc

〉
= |a〉SU(2) ⊗ |0〉U(1) + |b〉SU(2) ⊗ |1〉U(1) .

In this basis, we have

T =

(
1 0

0 e−πi/2

)
, S =

1√
2

(
1 1

1 −1

)
, (6.27)

Ω′′
1 =

(
0 1

1 0

)
, Ω′′

2 =

(
1 0

0 −1

)
. (6.28)

For k = 2, the results are in (6.22)–(6.23).

For k = 3, the basis states |a〉, |b〉, |c〉, |d〉 are defined by the decomposition
∣∣∣∣ �� ��qc �� ��qc

〉
= |a〉SU(2) ⊗ |0〉U(1) + |b〉SU(2) ⊗ |3〉U(1) ,

∣∣∣∣ �� ��qc �� ��qc
〉

= |a〉SU(2) ⊗ |2〉U(1) + |b〉SU(2) ⊗ |5〉U(1) ,

∣∣∣∣ �� ��
qc

�� ��
qc
〉

= |a〉SU(2) ⊗ |4〉U(1) + |b〉SU(2) ⊗ |1〉U(1) ,

∣∣∣∣ �� ��qc �� ��qc
〉

= |c〉SU(2) ⊗ |1〉U(1) + |d〉SU(2) ⊗ |4〉U(1) ,

∣∣∣∣ �� ��qc �� ��
qc
〉

= |c〉SU(2) ⊗ |3〉U(1) + |d〉SU(2) ⊗ |0〉U(1) ,

∣∣∣∣ �� ��qc �� ��
qc
〉

= |c〉SU(2) ⊗ |5〉U(1) + |d〉SU(2) ⊗ |2〉U(1) ,

where we have used the same argument as in the paragraph preceding (6.19)–(6.21) to

simplify the decomposition into U(1) and SU(n) degrees of freedom. We get

T =




1 0 0 0

0 eπi/2 0 0

0 0 e−5πi/6 0

0 0 0 e2πi/3


 , S =

1√
6




1 1
√

2
√

2

1 −1 −
√

2
√

2√
2 −

√
2 1 −1√

2
√

2 −1 −1


 , (6.29)
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Ω′′
1 =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


 , Ω′′

2 =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


 . (6.30)

Note that S,T , as given above, are not the same as the realization of SL(2,Z) on

Chern-Simons states as given by [31, 32]. In [31, 32], S is realized by the Verlinde matrix:

SV |m〉 =

√
2

k + 2

∑

m′

sin
π(m+ 1)(m′ + 1)

k + 2

∣∣m′〉 , m = 0, . . . , k , (6.31)

where |m〉 is the state corresponding to spin m/2, and T is realized diagonally by

TV |m〉 = e
πim(m+2)

2(k+2) |m〉 m = 0, . . . , k . (6.32)

Formulas (6.31)–(6.32) were derived from the equivalence between states of Chern-Simons

theory on T 2 and characters of the WZW model, while formulas (6.22) and (6.27),(6.29)

were derived by realizing the Hilbert space of SU(2) Chern-Simons theory as a subspace of

H(U(1)k)2/S2. The discrepancy between (6.31)–(6.32) and (6.22), (6.27),(6.29) is because

they are written in difference bases, and the transformation from one basis to the other

involves nontrivial coefficients that are functions of the complex structure ρ. These coeffi-

cients transform nontrivially themselves under S and T , and hence the resulting formulas

are different. This point will be demonstrated explicitly in an example in section 6.4.

6.4 Chern-Simons theory and the [σ]-untwisted sector H[1](υ)

Each of the three cases k = 1, 2, 3 considered in section 3.2 has a special sector H[1](υ) =

H(1,1,...,1)(υ) comprising of n string states, all of which have winding number 1. The location

of these strings can be any one of k choices, so altogether the Hilbert space is the symmetric

product of single-particle Hilbert spaces:

H(1,1,...,1)(υ) ≃ H(U(1)k)⊗n/Sn . (6.33)

In fact, for the present discussion the restrictions on n from section 2.4 can be relaxed,

and we can allow any n ≥ 1, because even the cases n ≥ r still have a finite-dimensional

subspace of normalizable ground states (even though there is no mass gap now). The

finite-dimensional Hilbert space H[1](υ) is therefore well-defined for all n. This is the sector

we referred to in section 3.2 as the [σ]-untwisted sector.

We can now state our main observation: H[1] is equivalent to the Hilbert space

of [U(1)kn × SU(n)k]/Zn Chern-Simons theory at level k. This follows immediately

from (6.16).

As an example, take the case n = 2. In section 6.3 we studied the ba-

sis of symmetric 2-particle states of H(U(1)k)⊗2 with wavefunctions of the form

ψp1(a1)ψp2(a2) + ψp1(a2)ψp2(a1). In (6.25) we expressed these products as a linear

combination of products of wavefunctions of (a1 + a2) and wavefunctions of (a1 − a2).

According to (6.16), the symmetric part of the space H(U(1)k)⊗2 is the Hilbert space of
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U(2) Chern-Simons theory where the U(1) center is at level 2k and the SU(2) is at level

k. Indeed, the functions of (a1 + a2) correspond to the U(1) factor and are wavefunctions

of U(1) theory at level 2k, while the functions of (a1 − a2) can be recast as wavefunctions

of SU(2) theory at level k using the connection [31–34] between the latter and characters

of affine Lie algebras. Let us demonstrate how this is done.

The characters of the SU(2) affine Lie algebra at level k are related to the wavefunctions

we found in (6.25) as follows. Consider the Weyl-Kac characters

chλ
k(a) =

k∑

m=1−k

Cλ
m(ρ)Θm,k, Θm,k ≡

∑

n∈Z+m/2k

e2πi(n2ρ−na) , (6.34)

where Cλ
m(ρ) are the “string functions,” which satisfy the following relations [43]:

Cλ
m = 0 ∀λ 6= m (mod 2), Cλ

m = Cλ
−m, Cλ

m = Ck−λ
k+m . (6.35)

Here λ = 0, . . . , k corresponds to twice the “spin” of the highest weight of the represen-

tation. For k = 2, for example, these constraints yield 3 independent Cλ
m’s whose exact

forms are

C+ ≡ C0
0 + C0

2 =
η(q)

η(
√
q)η(q2)

, C− ≡ C0
0 − C0

2 =
η(
√
q)

[η(q)]2
, C1

1 =
η(q2)

[η(q)]2
, (6.36)

where η(q) is the Dedekind function of q ≡ e2πiρ. Relating them back to our wavefunctions

in (6.26), we find the relations:

|a〉SU(2) =
eπka

2
−/2ρ2

C+C−

(
C0

0 ch0
2(a−) − C0

2 ch2
2(a−)

)
, (6.37)

|c〉SU(2) =
eπka

2
−/2ρ2

C+C−

(
−C0

2 ch0
2(a−) + C0

0 ch2
2(a−)

)
, (6.38)

|b〉SU(2) =
eπka

2
−/2ρ2

C1
1

ch1
2(a−) , (6.39)

where a− ≡ (a2 − a1)/2.

Thus, we see explicitly that the wavefunctions of H(1,1)(υ) correspond to a basis of the

wavefunctions of U(2) Chern-Simons theory at level k. In particular, the states |a〉, |b〉, |c〉
of (6.26) correspond to a linear combination of the states of SU(2) at level k = 2 with

highest weight j = 0, 1, 2, respectively. The subtle point about the linear coefficients being

functions of ρ is that in the language of holomorphic quantization, the basis furnished by

the string theory is not yet normalized. A straightforward computation reveals that the

modular transformation properties of the string functions explain the discrepancy between

our formulae for T ,S and those found in standard literature for Chern-Simons theory. For

example, under ρ→ ρ+ 1 we find

C1
1 → C1

1 , C− → e−
πi
8 C+ , C+ → e−

πi
8 C− .

Thus, if one further orthonormalizes the string theory states, then, as shown above, the

states are those of nonabelian Chern-Simons theory.
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6.5 [σ]-twisted sectors

We now turn to the sectors of the Hilbert space where some strings have winding number

greater than 1. These are the sectors H(n1,...,np)(υ) that we called [σ]-twisted in section 3.2.

We distinguish two kinds of sectors:

1. Irreducible sectors—those sectors for which all individual strings have the same wind-

ing number, i.e., n1 = · · · = np. Those Hilbert spaces cannot be written as a product

of two Hilbert spaces with a smaller number of strings and same value of υ. In

particular, all single-particle sectors (p = 1 and n1 = n) are irreducible.

2. Reducible sectors—those sectors for which at least two individual strings have

different winding numbers, i.e., n1 > np. Those Hilbert spaces can always be written

as a product of at least two Hilbert spaces with a smaller number of strings and

same value of υ.

The Hilbert spaces of reducible sectors can always be written as tensor products of Hilbert

spaces of irreducible sectors, and are therefore equivalent to Hilbert spaces of a sum of

decoupled Chern-Simons theories with gauge groups of lower rank. For example, for υ = π
2

and n = 3 we have

H(2,1)

(
π

2

)
≃ H(1)

(
π

2

)
⊗H(2)

(
π

2

)
.

We have already identified H(1)(
π
2 ) as equivalent to the Hilbert space of U(1)2 Chern-Simons

theory, and below we will identify H(2)(
π
2 ) as the Hilbert space of [U(1)4 × SU(2)−2]/Z2

Chern-Simons theory (the gauge group here is U(2) ≃ [U(1) × SU(2)]/Z2), so altogether

we can identify H(2,1)(
π
2 ) as equivalent to the Hilbert space of a U(1)×U(2) Chern-Simons

theory. It therefore suffices to study the irreducible sectors, which we shall undertake below.

Let us here begin by outlining the plan. In each case we will decompose an irreducible

space H(n1,...,np)(υ) into irreducible representations of SL(2,Z) and present the action of

T ,S. We then extract the SU(n) degrees of freedom as in (6.2) and calculate the action of

T ,S on the resulting states |ψ; p〉SU(n). Next, we will attempt to map the states |ψ; p〉SU(n)

to ground states of SU(n) Chern-Simons theory on T 2 at some level k′′. We will find that

this is possible in all single-particle cases, and we will identify the level. A useful tool is

the action of the Zn × Zn symmetry group generated by the large gauge transformations

Ω′′
1 ,Ω

′′
2 as in (6.5).

We should make it clear that at this point we are not claiming that the theory is

Chern-Simons theory at level k′′ (although it is very likely), but only that the single-

particle Hilbert space H(n)(υ) is equivalent as a representation of SL(2,Z) and U ,V to the

Hilbert space of [U(1)kn × SU(n)k′′ ]/Zn. However, whether the low-energy theory really is

Chern-Simons theory or not, the SU(n) states |ψ; p〉SU(n) have to form a representation of

the Zn×Zn group, and in this sense we can say that at the very least the low-energy theory

is a Zn gauge theory (but of course Zn might be a subgroup of a bigger gauge group).

Accepting the equivalence between the single-particle sectors and their corresponding

U(n) Chern-Simons Hilbert spaces, and given the equivalence between the untwisted

sector H(1,1,...,1)(υ) and the corresponding U(n) Chern-Simons Hilbert space that we
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established in section 6.4, it is straightforward to construct the Chern-Simons Hilbert

space equivalent of reducible sectors H(n1,...,np)(υ), as long as no nj ≥ 2 appears more

than once in the sequence (n1, . . . , np). Thus, assuming

n1 > · · · > np−q > np−q+1 = · · · = np = 1 , (6.40)

and denoting, for brevity,

U(n′)kn′,k′′ ≡ H([U(1)kn′ × SU(n′)k′′ ]/Zn′) ,

we can identify

H(n1,...,np)(υ) ≃ U(n1)kn1,k1 ⊗ · · · ⊗ U(np−q)knp−q,kp−q
⊗ U(q)kq,k , (6.41)

where U(nj)knj ,kj
is our proposal, to be developed below, for the single-particle sector

H(nj)(υ), and kj (j = 1, . . . , p− q) depends on nj and k.

Note that (6.41) is not explicitly in the form [U(1)kn × (· · · )]/Zn. To reconcile (6.41)

with our discussion on the level kn of the U(1) center in section 6.1, we can consider

a wavefunction in the right-hand side of (6.41). It is a product of wavefunctions of

the component U(n′)kn′,k′′ Hilbert spaces. As we have explained in section 6.3, these

wavefunctions are products of θ-functions in variables a1, a2, . . . , which take values on T 2.

To address the question of the U(1) center, we fix a1, a2, . . . , and translate all variables by

ζ, which we take to be some holomorphic coordinate on T 2:

a1 → a1 + ζ, a2 → a2 + ζ, . . . .

The main point is that a wavefunction in U(n′)kn′,k′′ is a linear combination of level-kn′

θ-functions in ζ. In other words, it is a section of a holomorphic line bundle over T 2 with

first Chern class c1 = kn′. As a function of ζ, the product of the wavefunctions in all

the component Hilbert spaces on the right-hand side of (6.41) is a linear combination of

θ-functions of level k(q +
∑p−q

j=1 nj) = kn, as it should be.

The condition (6.40) is satisfied by all irreducible sectors except H(2,2)(
π
3 ). There are

therefore two sectors that are not covered by our results, both for k = 1. The first is

H(2,2)(
π
3 ) itself for n = 4, and the second is the reducible sector H(2,2,1)(

π
3 ) for n = 5,

which decomposes as U(1)1 ×H(2,2)(
π
3 ). We discuss the sector H(2,2)(

π
3 ) in some detail in

appendix C, but it generally remains a mystery to us.

We now turn to a case-by-case analysis of the single-particle irreducible sectors.

6.5.1 υ = π
2 (k = 2)

For k = 2 and n = 2 we have, on the type-IIA side, 3 single-particle states

∣∣ qce
〉
,
∣∣ q qc c

〉
,
∣∣ qce 〉 ,

which are a basis for a subspace we denote by H(2)(
π
2 ). Using the same argument as in the

paragraph preceding (6.19)–(6.21), we can separate the SU(2) degrees of freedom as follows:

∣∣ qce
〉

= |a〉SU(2) ⊗ |0〉U(1) + |c〉SU(2) ⊗ |2〉U(1) (6.42)
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∣∣ q qc c
〉

= |b〉SU(2) ⊗
(
|1〉U(1) + |3〉U(1)

)
, (6.43)

∣∣ qce 〉 = |c〉SU(2) ⊗ |0〉U(1) + |a〉SU(2) ⊗ |2〉U(1) . (6.44)

[We used the same notation |a〉, |b〉, |c〉 as in (6.19)–(6.21), but these states are, of course,

unrelated to the states |a〉, |b〉, |c〉 of (6.42)–(6.44).] Then, we can read off the action of the

SL(2,Z) generators T ,S, and the large Z2 gauge transformations Ω′′
1 ,Ω

′′
2 on |a〉, |b〉, |c〉:

T |a〉SU(2) = |a〉SU(2) , T |b〉SU(2) = e−
πi
4 |b〉SU(2) , T |c〉SU(2) = −|c〉SU(2) , (6.45)

S|a〉SU(2) = 1
2 |a〉SU(2) + 1√

2
|b〉SU(2) +1

2 |c〉SU(2) ,

S|b〉SU(2) = 1√
2
|a〉SU(2) − 1√

2
|c〉SU(2) ,

S|c〉SU(2) = 1
2 |a〉SU(2) − 1√

2
|b〉SU(2) +1

2 |c〉SU(2) ,





(6.46)

and

Ω′′
1 |a〉SU(2) = |c〉SU(2) , Ω′′

1|b〉SU(2) = |b〉SU(2) , Ω′′
1|c〉SU(2) = |a〉SU(2) , (6.47)

Ω′′
2 |a〉SU(2) = |a〉SU(2) , Ω′′

2|b〉SU(2) = −|b〉SU(2) , Ω′′
2|c〉SU(2) = |c〉SU(2) . (6.48)

Comparing the above with (6.22)–(6.23), we see that the action of T ,S,Ω′′
1 ,Ω

′′
2 agrees

with that on the Hilbert space of SU(2) Chern-Simons theory at level k = −2. [To see

this, note that the eigenvalues of T above are, up to an overall phase, conjugates of those

in (6.22).] Chern-Simons theories with negative levels k < 0 are equivalent to the theories

with positive levels (−k) but with the opposite orientation of spacetime. Thus, if we wish

to keep the same spacetime orientation for all the sectors of the theory, we have to include

negative Chern-Simons levels. We conclude that H(2)(
π
2 ) is equivalent to the Hilbert space

of [U(1)4 × SU(2)−2]/Z2 Chern-Simons theory.

For n = 3 we get two [σ]-twisted sectors. The first, corresponding to [σ] = (3), is

2-dimensional and spanned by ∣∣ qceg
〉
,

∣∣ qceg〉.

We denote it by H(3)(
π
2 ). Let us first separate the U(1)6 center, as in (6.2):

∣∣ qceg
〉

= |a〉SU(3) ⊗ |0〉U(1) + |b〉SU(3) ⊗ |2〉U(1) + |c〉SU(3) ⊗ |4〉U(1) ,∣∣ qceg〉 = |a〉SU(3) ⊗ |3〉U(1) + |b〉SU(3) ⊗ |5〉U(1) + |c〉SU(3) ⊗ |1〉U(1) ,

where |p〉U(1) (p = 0, . . . , 5) are states of U(1) Chern-Simons theory at level kn = 6, and we

have used the known action of U ,V to simplify the decomposition. |a〉SU(3), |b〉SU(3), |c〉SU(3)

are unspecified states associated with the SU(3) degrees of freedom only. Using (A.7)

and (6.11) we calculate (up to an overall phase):

T |a〉SU(3) = |a〉SU(3) , T |b〉SU(3) = e−
2πi
3 |b〉SU(3) , T |c〉SU(3) = e−

2πi
3 |c〉SU(3) ,
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and

S|a〉SU(3) = 1√
3

(
|a〉SU(3) + |b〉SU(3) + |c〉SU(3)

)

S|b〉SU(3) = 1√
3

(
|a〉SU(3) + e

2πi
3 |b〉SU(3) + e−

2πi
3 |c〉SU(3)

)

S|c〉SU(3) = 1√
3

(
|a〉SU(3) + e−

2πi
3 |b〉SU(3) + e

2πi
3 |c〉SU(3)

)





. (6.49)

The Z3 ⊂ SU(3) center acts, according to (6.5), as

Ω′′
2|a〉SU(3) = |a〉SU(3) , Ω′′

2|b〉SU(3) = e−
2πi
3 |b〉SU(3) , Ω′′

2|c〉SU(3) = e
2πi
3 |c〉SU(3) ,

and

Ω′′
1|a〉SU(3) = |b〉SU(3) , Ω′′

1|b〉SU(3) = |c〉SU(3) , Ω′′
1|c〉SU(3) = |a〉SU(3) .

These formulas for T ,S,Ω′′
1 ,Ω

′′
2, are consistent with the Hilbert space of SU(3) Chern-

Simons theory at level k = −1. To check that |a〉SU(3), |b〉SU(3), |c〉SU(3) agree with the

states of SU(3)−1 Chern-Simons theory, we note that U(3)−1 = [U(1)−3 ×SU(3)−1]/Z3 has

a one-dimensional Hilbert space, spanned by a state of the form

|0〉U(1)−3
⊗
∣∣a′
〉
SU(3)−1

+ |1〉U(1)−3
⊗
∣∣b′
〉
SU(3)−1

+ |2〉U(1)−3
⊗
∣∣c′
〉
SU(3)−1

where, as the notation suggests, |p〉U(1)−3
(p = 0, 1, 2) are the states of U(1)−3 Chern-

Simons theory. The T ,S transformations of |a′〉SU(3)−1
, |b′〉SU(3)−1

, |c′〉SU(3)−1
can then be

recovered from (5.22) and (5.24).

The second [σ]-twisted sector for n = 3 corresponds to [σ] = (2, 1) and is spanned by

∣∣ qc qce
〉
,
∣∣ qc q qcc

〉
,
∣∣ qc qce 〉,

∣∣ qc qce
〉
,
∣∣ qc q qcc

〉
,
∣∣ qc qce 〉. (6.50)

We denote it by H(2,1)(
π
2 ). As explained at the top of section 6.5, this sector is reducible,

and equivalent to the Hilbert space of U(1)2 × [U(1)4 ×SU(2)−2]/Z2 Chern-Simons theory.

So, altogether, in the case n = 3 we found that the Hilbert space is a direct sum of

three Hilbert spaces:

U(3)6,2 ⊕ U(3)6,−1 ⊕ [U(1)2 ⊗ U(2)4,−2] .

The first two have gauge group U(3), and the third has gauge group U(1) × U(2).

6.5.2 υ = π
3 (k = 1) and υ = 2π

3 (k = 3)

Except for the mysterious H(2,2)(
π
3 ) sector mentioned above, we again find that each

single-particle sector H(n)(υ) is equivalent to a Chern-Simons Hilbert space. The deriva-

tions are presented in appendix C, and the results are summarized in table 3 in the

concluding section.
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6.6 Wilson loop operators

So far we have found a correspondence between the Hilbert space of ground states of the

S-duality twisted compactification of N = 4 SYM of section 2 and the Hilbert space of

ground states of the type-IIA background of section 3. The next step is to extend this

correspondence to operators. The natural operators to start with on the type-IIB (gauge

theory) side are Wilson loops at a constant x3 and along a curve C ⊂ R
2,1 where R

2,1

corresponds to directions 0, 1, 2. Let us denote a Wilson loop operator in the fundamental

representation of U(n) by W(C, x3). We assume that the curvature of C is much smaller

than the compactification scale 1/R. We can also consider supersymmetric extensions of

Wilson loops, as constructed in [44, 45]. These include additional terms that depend on the

scalar fields of N = 4 SYM, but since we have eliminated all the zero modes of scalar fields

in section 2.3 we can expect that at low-energy the scalar fields are effectively zero, and it

is likely that the difference between ordinary and supersymmetric Wilson loops disappears.

In any case, we ask to what operator W(C, x3) flows to at low-energy. This question will

be addressed in more detail in an upcoming paper [46], but we will make a few preliminary

remarks in the present subsection. For simplicity, we restrict to the case k = 2.

Note that because of the S-duality twist, the operator W(C, x3) satisfies the boundary

conditions

W(C, x3) = M(C, x3 + 2πR) = W(C, x3 + 4πR)† = M(C, x3 + 6πR)† = W(C, x3 + 8πR) ,

(6.51)

where M is the magnetic dual ‘t Hooft loop operator, and W† is the charge-conjugate

Wilson loop operator in the anti-fundamental representation of U(n). We now define linear

combinations which diagonalize the boundary conditions (6.51):

V(p)(C, x3) ≡ W(C, x3)+i
pM(C, x3)+(−1)pW(C, x3)

†+(−i)pM(C, x3)
† , p = 0, 1, 2, 3.

(6.52)

Their Fourier transforms along x3 are

V(p)(C, x3) =
∑

m∈Z

V̂(p)

m+ p
4
(C)e(m+ p

4
)

ix3
R . (6.53)

For p 6= 0, when acting on the ground states all the modes V̂(p)

m+ p
4
(C) create linear com-

binations of states with nonzero fractional Kaluza-Klein momentum, and therefore have

energy at least 1
4R . Thus, when we project these operators to the Hilbert space of ground

states they all vanish except V(0). We can therefore surmise that the operators W(C, x3),

M(C, x3), W(C, x3)
†, and M(C, x3)

†, all flow at low-energy to the same operator:

W(C, x3), M(C, x3), W(C, x3)
†, M(C, x3)

† IR−→ 1

4
V̂(0)

0 . (6.54)

In other words, at low-energy only the S-duality invariant combination

V(0)(C, x3) ≡ W(C, x3) + M(C, x3) + W(C, x3)
† + M(C, x3)

†

is relevant. And in particular we note that even though the gauge group is complex,

V(0)(C, x3) is real and gives rise to a self-adjoint operator on the Hilbert space of ground

– 63 –



J
H
E
P
0
3
(
2
0
1
1
)
0
9
9

states. For example, for U(1) gauge group we saw that the Wilson loops W1,W2 defined

in (5.17) are self-adjoint for k = 2, even though they are not self-adjoint in Chern-Simons

theory at level k > 2. A similar phenomenon occurs for the C-twist that we studied in

section 4. This time the combinations that survive the low-energy limit are W + W†.
In section 4.2 we saw that starting with U(2) gauge group, with the help of a C-twist,

we get a low-energy SU(2) gauge theory. So, while Wilson loop operators in U(2) gauge

theory are not self-adjoint, they are in SU(2) since its fundamental and anti-fundamental

representations are equivalent!

The action of V(0)(C, x3) on ground states can be studied using the type-IIA dual by

introducing probe strings, but this is beyond the scope of the present paper and will be

discussed in detail in [46]. We will only mention that the operators defined in (3.28) play

a role in the construction.

7 Realization via the (2, 0)-theory

S-duality is geometrically realized in terms of the six-dimensional (2, 0)-theory. In this

section we will discuss a geometrical construction in terms of the (2, 0)-theory of a setting

similar to that of section 2. The (2, 0)-theory that was proposed by Witten in [48] is still

poorly understood, but there are at least two proposals for a definition: one as a M(atrix)-

model [49, 50] and another in terms of deconstruction [51]. (For some attempts in other

directions see [52]–[55].) In this section we will actually not have to use any of the funda-

mental definitions, however, because known results about the low-energy description of the

theory will suffice. The (2, 0)-theory has an SO(5) R-symmetry, so we cannot reproduce the

identical setting of section 2, because the full SO(6) R-symmetry twist cannot be realized

in terms of the (2, 0)-theory. Instead, we will produce a closely related setting as follows.

As Witten proposed [48], N = 4 U(n) super Yang-Mills theory with coupling constant

τ is the low-energy limit of a six-dimensional theory compactified on T 2, with τ being

the complex structure parameter of the torus, so that S-duality τ → (aτ + b)/(cτ + d)

is realized as an element of the mapping class group of the T 2. This immediately leads to

a realization of the S-duality twisted compactification defined in section 2.2: we simply

take the (2, 0)-theory (for the appropriate n) and compactify it on the space W defined in

section 3.1. Recall that W ≃ (T 2 × S1)/Zr, where S1 has radius 2πRr. The torus T 2 has

complex structure τ , and we denote its area by A, so that in the limit

A ≪ R2 , (7.1)

we recover the S-duality twisted compactification of section 2.2.

The R-symmetry twist of section 2.3, however, is more difficult to realize because the

(2, 0)-theory only has an SO(5) global R-symmetry, not SO(6). The enhanced SO(6) R-

symmetry of N = 4 SYM only arises as an effective low-energy symmetry. To get around

this obstacle, we note that the R-symmetry twist we used in section 2.3 can be continuously
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deformed while preserving N = 4 SUSY in 2+1D by replacing (2.11) with

γ′ =




e
i
2
υ

e
i
2
υ

eiǫ−
i
2
υ

e−iǫ− i
2
υ




∈ SU(4)R . (7.2)

For ǫ = υ we recover (2.11), while for ǫ = 0 we get an R-symmetry twist in a subgroup

SO(2) ⊂ SO(5) ⊂ SO(6), and thus it can be realized inside the SO(5) R-symmetry of

the (2, 0)-theory. For ǫ = 0 we also get additional bosonic and fermionic zero-modes from

the scalars and gluinos, but for 0 < ǫ ≤ υ they are absent. Presumably, the low-energy

description for 0 < ǫ ≤ υ is independent of ǫ (by supersymmetry, or if the theory is indeed

topological), and so we can study the theory at ǫ = 0 first, and then deform by a small ǫ,

provided we can understand that deformation in the low-energy description of the ǫ = 0

setting. In fact, for the specific purpose of understanding some of the [σ]-twisted sectors

in section 7.3, it will suffice to study the ǫ = 0 case.

To better understand the low-energy limit of the ǫ = 0 theory, which is a 2+1D theory

with N = 4 supersymmetry, we will make the plausible assumption that the low-energy

theory is independent of the dimensionless parameter A/R2 and take the limit opposite

to (7.1), namely

A
R2

→ ∞. (7.3)

To analyze this limit, it is convenient to describe W as an S1 fibration over a base T 2/Zr.

The fibers are constructed as follows. Fix a point on T 2 that corresponds to coordinate

z (with the identification z ∼ z + 1 ∼ z + τ), and consider the set of all points with

coordinates (z, x3), where x3 is arbitary. The generic fiber is an S1 of circumference 2πRr.

Because of the Zr action, the fibers that we get for z and e2πi/rz are identical, so the base

is T 2/Zr, as stated above.

This fibration is not quite a circle bundle, however, because there exist special points

on the T 2/Zr base where the fiber is smaller than the generic one. This happens if z is

invariant (up to Z + Zτ) under some nontrivial element of the orbifold group Zr. For τ = i

this is the case for three inequivalent z’s: z = 0, 1
2 , and 1

2(1 + i). The T 2 points 0 and
1
2 (1 + i) are fixed by the entire Z4, and the fiber over those points is of size 2πR, i.e., 1

4

of the generic fiber. The point 1
2 is fixed by a Z2 ⊂ Z4 subgroup and the fiber over it is

of size 4πR, i.e., 1
2 of the generic fiber. We can choose the fundamental domain of the Z4

action on T 2 to be a triangle with vertices z = 0, 1
2 (1 + i), 1 and with extra identifications

on the boundary of the triangle which are induced by the identification z ≃ 1 + iz and

z ≃ 1 − z. The result is depicted in the k = 2 portion of figure 4. The situation is similar

for τ = eπi/3. Here again there are three special points of T 2/Zr which are invariant under

subgroups of Zr, and the fibers there are smaller than the generic fiber.

For i = 1, 2, 3, we denote the ith special point by Qi ∈ T 2/Zr. We denote the order of

the subgroup of Zr that fixes the special point Qi by pi. The generic fiber has circumference
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Figure 4. Fundamental domains of the Zr action on T 2. Fundamental domains are triangles for

k = 1, 2 or a rhombus for k = 3 with edges identified as indicated by the markings. The special

points are fixed points of Zr or a proper subgroup of it, and the fractions indicate the size of the

S1 fiber. These fractions are the inverses of the orders of the fixed-point subgroup.

2πrR, and so the fiber at Qi has circumference 2πrR/pi. We find the following values of pi:

(p1, p2, p3) =





(3, 3, 3) for r = 3 (τ = eπi/3),

(4, 4, 2) for r = 4 (τ = i),

(6, 3, 2) for r = 6 (τ = eπi/3).

(7.4)

Figure 4 shows convenient reresentations of T 2/Zr with the special points marked by the

fraction 1/pi. Note that in all three cases

1 =

3∑

i=1

1

pi
. (7.5)

7.1 Reduction to 4+1D and 2+1D

When the (2, 0)-theory is compactified on W in the limit (7.3), we can “dimensionally

reduce” the theory on the generic S1 fiber to get, away from the three singular points

Q1, Q2, Q3, a low-energy 4+1D N = 2 super Yang-Mills theory (with 16 supersymmetry

generators). The theory is formulated on R2,1 × (T 2/Zr), and has a coupling constant

g
(5D)
YM = 2π(2Rr)

1
2 .

The space T 2/Zr is locally flat, except for curvature singularities at the special points

Q1, Q2, Q3.

We denote the bulk 4+1D U(n) gauge field by C′, and for simplicity of the discussion

ignore the superpartners. The resulting low-energy description is constructed by combining

the bulk 4+1D action for C′ with additional localized interactions at the special points

Q1, Q2, Q3.

What is the contribution of the special point Qi to the action? Near Qi the base looks

like R
2/Zpi

, which is a cone. The total space looks like (S1 × R
2)/Zpi

where Zpi
acts as

rotation by 2π/pi on R
2 and translation by 2πRr/pi on S1. To proceed, we switch to the M-

theory realization where we have n M5-branes on (S1×R
2)/Zpi

. We also need to realize the
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R-symmetry twist. For (7.2) with ǫ = 0, this twist can be expressed as a 2π/pi rotation in

an additional R
2 plane transverse to the M5-branes. Altogether, combining this transverse

R
2 ≃ C with the R

2 ≃ C that appears in (S1 ×R
2)/Zpi

, we get M-theory on (S1 ×C
2)/Zpi

where the generator of Zpi
acts on a point of (S1 × C

2) with coordinates (x3, ζ1, ζ2) as:

Zpi
: (x3, ζ1, ζ2) 7→

(
x3 +

2πRr

pi
, e

2πi
pi ζ1, e

− 2πi
pi ζ2

)
. (7.6)

We are now ready to describe the low-energy contribution of Qi to the action. We

can arrive at the answer by combining a thirteen-year-old result of Witten [57] with a

fairly recent result of Gaiotto and Witten [1]. In [57], Witten showed that M-theory on

(S1 × C
2)/Zpi

in the R → 0 limit and in the region near the origin (ζ1 = ζ2 = 0) is dual

to a (1, pi) 5-brane (an object with pi units of NS5-brane charge and 1 unit of D5-brane

charge) of type-IIB string theory. We will review Witten’s arguments below, and see

that under the duality the n M5-branes are transformed into n D3-branes that end on

the (1, pi) 5-brane. Luckily, in the last section of [1], Gaiotto and Witten described the

boundary interaction of n D3-branes ending on a (1, pi) 5-brane, and so we can use that

interaction to describe the vicinity of our special point Qi.

Before we proceed to the details of the interaction, let us review the part of Witten’s

arguments from [57] that apply to our case. Starting with (S1 × C
2)/Zpi

, we first replace

C
2 with a Taub-NUT space, whose metric can be written as

ds2 =

(
1 +

S

2r

)−1

(dy + cos θ dφ)2 +

(
1 +

S

2r

)
(dr2 + r2(dθ2 + sin2 θ dφ2)) , (7.7)

where y is a periodic coordinate with range 0 ≤ y < 2πS. The origin r = 0 is a smooth point,

and the isometry that acts as y → y + 2πS/pi (keeping the other coordinates unchanged)

rotates the tangent plane at the origin in exactly the same way that the C
2 parameterized

by (ζ1, ζ2) is rotated in (7.6). We then replace C
2 in the space (S1 × C

2)/Zpi
with the

Taub-NUT space (7.7) and take the limit of large S.

Next, we take r → ∞ at constant θ, φ, and focus on the T 2 in the (x3, y) directions.

The periodicities and the Zpi
orbifold induce the identifications

(x3, y) ≃ (x3, y + 2πS) ≃
(
x3 +

2πRr

pi
, y − 2πS

pi

)
.

Changing coordinates to a complex variable

w =
1

2πRr
(x3 + iy) ,

we find the identifications

w ≃ w + 1 ≃ w − 1

pi
+ i

S

piRr
.

We now reduce M-theory on the T 2 that is in the (x3, y) directions to type-IIB with

complex coupling constant

τIIB = − 1

pi
+ i

S

piRr
. (7.8)
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Figure 5. The fiber of the space (S1 × Taub-NUT)/Zpi
at r → ∞ and constant θ, φ is a T 2. The

S1 is in direction x3, and the Taub-NUT fiber is in direction y. The T 2 is represented here as a

fundamental cell of a lattice, and we picked the fundamental cell generated by the vectors ~a,~b. The

Taub-NUT direction is then ~a− pi
~b. In this example pi = 3.

To identify which (p, q) 5-brane we get in type-IIB, we have to find the Taub-NUT

charge of the metric in terms of w. More explicitly, for fixed and large r, the T 2 is fibered

over the S2 (parameterized by the θ, φ coordinates), and the structure group of the fibration

is generated by translations in y. (See figure 5.) In terms of w, the translation (x3, y) →
(x3, y + ǫ) is equivalent to w → w+ ǫ(piτIIB + 1). The combination piτIIB + 1 identifies the

Taub-NUT charge as the one that reduces to the (1, pi) 5-brane.

So, after reduction to type-IIB, we get n D3-branes ending on a (1, pi) 5-brane. Let

C′′′ be the 3+1D U(n) gauge field on the D3-branes, and let C be the 2+1D boundary

value of the gauge field at the endpoint where the D3-branes meet the (1, pi) 5-brane. From

the 4+1D perspective, C can be identified with the restriction of the 2+1D components

of the bulk gauge field C′ to the special point Qi. In the discussion that follows we will

suppress the superpartners for simplicity.

The description that Gaiotto and Witten provide for n D3-branes ending on a (1, pi)

5-brane was derived as the S-dual of the description of n D3-branes ending on a (pi, 1)

5-brane. The latter configuration is described simply by adding a Chern-Simons coupling

for the boundary gauge field. The Chern-Simons level is pi, and this can be derived by

a standard SL(2,Z) transformation that maps a (pi, 1) 5-brane to a (0, 1) 5-brane while

changing the type-IIB coupling constant as τIIB → τIIB + pi (see [58]). We denote the

U(n) gauge field of this Chern-Simons theory by Bi.

Following Gaiotto and Witten, S-duality is realized by coupling Bi to C through

additional degrees of freedom with global U(n) × U(n) symmetry (the “T (U(n))” theory

of [1]) and gauging one U(n) factor with Bi and the other with C. (See section 7.2 for an

example of how this works for U(1) gauge theory.) This description is valid if ReτIIB = 0.

But in our case, the type-IIB coupling constant (7.8) has a nonzero real part ReτIIB =

−1/pi. This adds an additional interaction in terms of F = dC′′′ + C′′′ ∧C′′′:

− 1

4πpi

∫

D3
tr(F ∧ F ) =

1

4πpi

∫ (
C ∧ dC +

2

3
C ∧ C ∧C

)
, (7.9)

where we have integrated tr(F ∧ F ) to obtain a Chern-Simons coupling at level 1/pi at
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the boundary. In principle there is an equal and opposite term at the other end of the

D3-branes, wherever it may be, but this is of no concern to us since we are only interested

in the interactions near the end of the (1, pi) 5-brane.

The final step is to reduce to the 2+1D low-energy theory. At low energy the 2+1D

components of the bulk gauge field C′ can be assumed to be constant along T 2/Zr, and in

particular we can identify the three C gauge fields as one and the same. Adding up the 3

fractional Chern-Simons interactions (7.9) at levels 1/pi, and using (7.5), we find that the

low-energy effective action has a Chern-Simons interaction at level 1 for C:

1

4π
tr

∫ (
C ∧ dC +

2

3
C ∧ C ∧ C

)
.

In addition, the Lagrangian has 3 Chern-Simons interactions – an interaction at level pi

for Bi (i = 1, 2, 3):
3∑

i=1

pi

4π
tr

∫ (
Bi ∧ dBi +

2

3
Bi ∧ Bi ∧Bi

)
,

and three copies (i = 1, 2, 3) of the T (U(n)) theories described in [1], each coupled to Bi

and C. At this point we point out again that superpartners of the gauge fields have been

suppressed.

7.2 Recovering the U(1) result

For U(1) gauge theory, we construct the low-energy 2+1D interactions as follows. First, we

have a low-energy gauge field C that descends from the bulk field C′. It has a Chern-Simons

interaction at level 1, i.e., 1
4π

∫
C∧dC. Then, we have additional degrees of freedom from the

three special points. These are equivalent to the degrees of freedom of a D3-brane that ends

on a (1, p) 5-brane. The description of that system was given in [1] in terms of the action

1

4π

∫
(pB ∧ dB + 2B ∧ dCb) , (7.10)

where Cb is the bulk D3-brane gauge field, restricted to the boundary. We can identify it

with our low-energy field C.

Let us briefly comment on how the expression (7.10) was derived. It is the S-dual of

the boundary interaction of a D3-brane ending on a (p, 1) 5-brane, the latter being given

by a level p Chern-Simons interaction of the boundary gauge field Cb. As explained in [59],

the 2B ∧ dCb term realizes the S-duality [see (5.1)].

For each of the cases listed in (7.4), we have three special points, so we need to include

three interactions of the type (7.10), with the appropriate values of p. We denote the 3

localized gauge fields by B1,B2,B3. The various values of p are the denominators of the

fractions appearing in figure 4. Thus, we have

I = Isp +
1

2π

∫
(B1 + B2 + B3) ∧ dC , (7.11)

with
Isp = 1

4π

∫
(6B1 ∧ dB1 + 3B2 ∧ dB2 + 2B3 ∧ dB3) , (k = 1)

Isp = 1
4π

∫
(4B1 ∧ dB1 + 4B2 ∧ dB2 + 2B3 ∧ dB3) , (k = 2)

Isp = 1
4π

∫
(3B1 ∧ dB1 + 3B2 ∧ dB2 + 3B3 ∧ dB3) , (k = 3)




. (7.12)
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The general form of the interaction (7.11)–(7.12) is therefore

I =
1

4π

∫ ( 3∑

i=1

piBi ∧ dBi + 2dC ∧
3∑

i=1

Bi

)
, (7.13)

where p1, p2, p3 are integers determined by the level k.

Now consider an abelian Chern-Simons theory with action

1

4π

∫ ∑

i,j

hijBi ∧ dBj , (7.14)

where hij are integer elements of a nonsingular symmetric matrix. Compactified on T 2,

the number of states that we get is the determinant

Nstates = det{hij} .

However, the 4 × 4 matrix corresponding to (7.13) is singular:

det




p1 0 0 1

0 p2 0 1

0 0 p3 1

1 1 1 1


 = p1p2p3

(
1 − 1

p1
− 1

p2
− 1

p3

)
= 0.

Nevertheless, the zero mode can easily be extracted by changing variables:

B1 ≡ B′
1 , B2 ≡ B′

2 +
p1

p2
B′

1 , B3 ≡ B′
3 +

p1

p3
B′

1 , C ≡ C′ − p1B
′
1 .

Note that this transformation is always in SL(4,Z), since we have arranged the p1, p2, p3

in (7.12) so that p1

p2
and p1

p3
are integers.

The action (7.13) can now be written as

I =
1

4π

∫ ( 3∑

i=2

piB
′
i ∧ dB′

i + 2dC′ ∧
3∑

i=2

B′
i

)
, (7.15)

and B′
1 does not appear in the action. This means that when we look for ground states on

T 2, we should include a canonical kinetic term proportional to
∫
dB′

1 ∧ ∗dB′
1 (originating

from the gauge kinetic term for C and other terms). Such a term will ensure that states

coming from excitations with nonzero dB′
1 are not ground states. If we are only interested

in the ground states of the system it is therefore sufficient to concentrate on the abelian

Chern-Simons theory (7.15). The reduced matrices hij corresponding to (7.15) for the

cases k = 1, 2, 3 are:



3 0 1

0 2 1

1 1 1


 ,




4 0 1

0 2 1

1 1 1


 ,




3 0 1

0 3 1

1 1 1


 ,

and their determinants are 1, 2, 3, respectively! Thus, we have recovered the correct number

of ground states. We conclude this subsection with a few comments.
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1. We can trace the zero mode B′
1 back to the scalar field coming from the component

of the (2, 0) anti-self-dual 2-form B(−) along the z, z directions, i.e., B
(−)
zz . This term

corresponds to the 6th scalar field of N = 4 SYM, and in the construction of section 2

this zero mode gets lifted by an R-symmetry twist. In our (2, 0)-realization this scalar

is special, and while we could not add an R-symmetry twist to lift the zero mode at

the outset, we can add it to the low-energy theory at the end. In any case, we do not

get any additional multiplicity of ground states.

2. Näıvely, we can attempt to integrate out B1,B2,B3 in (7.13). The result is obtained

by setting Bi = − 1
pi

C, but plugging this back into (7.13) we get a vanishing action.

The problem with this prescription is that it ignores the integral periodicity of the

gauge fields. In fact, this is precisely what Gaiotto and Witten warned us not to do

when dealing with a D3-brane ending on a (pi, 1) 5-brane (see §8.3 of [1]). Here, we

see an explicit manifestation of what can go wrong if we disregard their advice!

3. There is a connection between the relations among the generators of the homology

group H2(T
2×W ) and operator relations in the Hilbert space of ground states. Con-

sider an abelian Chern-Simons theory of the form (7.14), with i, j = 1, . . . , d, com-

pactified on T 2. Let 0 ≤ x1, x2 ≤ 2π be coordinates on this T 2, αa
′, αb

′ the 1-cycles

along directions 1 and 2 respectively, and define Wilson lines along the αa
′, αb

′ cycles:

W1i = ei
H

αa′ Bi , W2i = e
i

H

αb
′ Bi .

If {hij} is invertable with inverse hij, the commutation relations are

W1iW2j = e2πihijW2jW1i .

The Hilbert space is a representation of this algebra. We then find that for every i,

Xi ≡
d∏

j=1

Whij

1j and Yi ≡
d∏

j=1

Whij

2j

commute with all W1i,W2j and so are central elements of the algebra. Without

loss of generality, we can set their value to 1. The Hilbert space can now be

constructed by diagonalizing all W1i (i = 1, . . . , d) simultaneously. Let |ψ〉 be any

common eigenstate of all W1i. Then, the full Hilbert space can be constructed by

acting with the W2i on |ψ〉 and obtaining states of the form
∏d

i=1 WNi

2i |ψ〉, where

(N1, . . . , Nd) ∈ Z
d is a vector of integers. The states of the Hilbert space thus

correspond to lattice points in Z
d, but not all lattice points give distinct states.

Since we have identified Yi = 1, we find that the lattice points (hi1, hi2, . . . , hid)

correspond to the same state as (0, 0, . . . , 0). Let Γ ⊂ Z
d be the sublattice generated

by the d vectors (hi1, hi2, . . . , hid) (i = 1, . . . , d). Then, the basis states of the Hilbert

space thus constructed can be identified with the finite-dimensional set Z
d/Γ. It is

not hard to see that Xi, Yi are central elements even when {hij} is not invertible.
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The point of this note is that in our case, the relations Xi = Yi = 1 have a natural

interpretation in terms of the (2, 0) theory. The Wilson loop operators W1i,W2i

descend from surface operators of the (2, 0) theory. The surface operators W(S) are

associated with closed surfaces S ⊂ T 2 ×W. In our case, since we are working with

the abelian theory and since we are only interested in the ground states, the surface

operators only depend on the homology class of S. This can be argued by noting

that in the ground state the anti-self-dual 3-form flux of the (2, 0)-theory vanishes,

and that when S and S ′ are in the same homology class, we can write S − S ′ = ∂Σ3

so that the difference between the integral of the 2-form of the (2, 0)-theory on S
and on S ′ is the integral of the anti-self-dual 3-form field-strength on Σ3. We can

therefore denote the surface operators as W([S]) where [S] is the homology class of S.
Now, we can match the Wilson lines of B1,B2,B3,C with surface operators as

follows. Let γi be the homology class of the exceptional fiber at the ith special point

(i = 1, 2, 3), and let γ0 be the homology class of the generic fiber. Then, we match

W(αa
′ × γi) → ei

H

αa
′ Bi , W(αa

′ × γ0) → ei
H

αa
′ C ,

and similarly,

W(αb
′ × γi) → e

i
H

αb
′ Bi , W(αb

′ × γ0) → e
i

H

αb
′ C .

The relations Xi = Yi = 1 are then seen to be a consequence of similar relations in

homology. (See [60] for a discussion of the commutation relations for the nonabelian

(2, 0)-theory.)

7.3 The U(2) theory

We now turn to the nonabelian gauge group U(2). Schematically, the action is of the form

I =
1

4π

∫ { 3∑

i=1

pi tr

(
Bi ∧ dBi +

2

3
Bi ∧Bi ∧ Bi

)
+ tr

(
C ∧ dC +

2

3
C ∧ C ∧C

)}

+
3∑

i=1

I
[T (U(2))]
i (Bi,C) , (7.16)

where B1,B2,B3 are the 2+1D U(2) gauge fields coming from the singular points

Q1, Q2, Q3, C is also a 2+1D U(2) gauge field, and I
[T (U(2))]
i is the coupling between Bi

and C through the additional T (U(2)) degrees of freedom. Roughly speaking, this coupling

realizes the nonabelian S-duality [1], whereby Bi and C are regarded as S-dual variables.

(As noted above, we are ignoring the superpartners in this discussion.)

Although Gaiotto and Witten have provided an explicit realization of T (U(2)) as the

low-energy limit of a certain N = 4 2+1D gauge theory, the full U(2) × U(2) symmetry,

and hence the coupling to Bi and C, relies on an enhanced symmetry of T (U(2)) that is

not explicit. We therefore do not know how to proceed at this moment. However, we can

make some comments about the [σ]-twisted sector.
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What is the interpretation of the [σ]-twisted sectors in terms of the (2, 0)-theory con-

struction? For U(2) gauge group, there is only one [σ]-twisted sector. In the type-IIA

description, the nontrivial σ ∈ S2 exchanges the two strings as we go in a loop from x3 = 0

to x3 = 2πR, and so it is reasonable to expect that in our present M-theory description,

we need to exchange the two M5-branes as we go from x3 = 0 to x3 = 2πR. This exchange

of the two branes accompanies the identification (z, x3) ∼ (eiυz, x3 + 2πR) of (3.4).

At this point we need to distinguish between two cases – even r and odd r. If r is odd,

then the identification (z, x3) ∼ (z, x3 + 2πRr) is accompanied by an exchange of the two

branes. If r is even this identification is not accompanied by an exchange of branes. The

two even cases are r = 4, 6. Since (z, x3) ∼ (z, x3 + 2πRr) is not accompanied by exchange

of the branes, the reduction to the 4+1D theory proceeds as in section 7.1.

One of the effects of the nontrivial σ on this low-energy 4+1D U(2) gauge theory is

that as we go around a special point Qi with odd pi, we have to also exchange the branches

of the D4-branes (that we formally get from the M5-branes). This can be interpreted as a

holonomy for C′, which after a suitable conjugation can be written as

P exp

∮

Qi

C′ =

(
1

(−1)r/pi

)
. (7.17)

For odd r/pi, this breaks the gauge group U(2) → U(1)×U(1). In addition, the boundary

interaction at Qi also needs to be modified. Altogether, the action appears quite compli-

cated and we will not attempt to develop it further in this paper. It will be interesting to

explore this in a future work.

8 Discussion

We have analyzed the Hilbert space of ground states of the S-duality twisted compactifica-

tion of N = 4 U(n) SYM on T 2, and have seen that in almost all cases, at least as a repre-

sentation of SL(2,Z) and the Zk symmetry operators U ,V, it breaks up into a direct sum

of Hilbert spaces of Chern-Simons theories with gauge groups of the form U(n1)×U(n2)×
· · ·×U(ns) (with n =

∑s
j=1 nj). Chern-Simons theory with U(nj) gauge group is described

by specifying the level of SU(nj) and the level of the U(1) center, so we use the notation

U(nj)k′
j ,k′′

j
≃ [U(1)k′

j
× SU(nj)k′′

j
]/Znj

.

(There were also two exceptional cases, which involved the Hilbert space H(2,2)(
π
3 ).)

The various decompositions that we get are listed in table 3. In particular, we saw in

section 6.4 that in all cases there is a distinguished sector — the [σ]-untwisted sector —

which is described by the Hilbert space of U(n)kn,k.

In this paper we only studied compactification on T 2. What do our results suggest for

the theory formulated on R
2,1? Is Chern-Simons theory the low-energy theory, and if so

what is the role of the various sectors with their different Chern-Simons levels and gauge

groups (as listed in table 3)? To make this question more precise, we need to connect the

operators of Chern-Simons theory to physical operators in our theory. But the low-energy
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υ = π
3 n = 1 U(1)1

(k = 1) n = 2 U(2)2,1 ⊕ U(2)2,−3

n = 3 U(3)3,1 ⊕ [U(1)1 × U(2)2,−3] ⊕ U(3)3,−2

n = 4 U(4)4,1 ⊕ 2[U(2)2,1 × U(2)2,−3] ⊕ [U(1)1 × U(3)3,−2] ⊕H(2,2)

n = 5 U(5)5,1 ⊕ U(5)5,1 ⊕ 2[U(3)3,1 × U(2)2,−3] ⊕ [U(1)1 ×H(2,2)]⊕
[U(2)2,1 × U(3)3,−2] ⊕ [U(2)2,−3 × U(3)3,−2]

υ = π
2 n = 1 U(1)2

(k = 2) n = 2 U(2)4,2 ⊕ U(2)4,−2

n = 3 U(3)6,2 ⊕ [U(1)2 × U(2)4,−2] ⊕ U(3)6,−1

υ = 2π
3 n = 1 U(1)3

(k = 3) n = 2 U(2)6,3 ⊕ U(2)6,−1

Table 3. The decomposition of the Hilbert spaces H(n, υ) into direct sums of Hilbert spaces of

Chern-Simons theories. The data in the table is collected from results in appendix C. Trivial

U(n′)n′,1 factors were added to conform to the form (6.41). Note that for n = 4 we have two copies

of U(2)2,1 × U(2)2,−3. They come from the sectors H(2,1,1) and H(4). Also, note that the sector

H(2,2) is unresolved.

limit of Wilson loops in the N = 4 theory cannot in general be simply a Wilson loop in

Chern-Simons theory, because for k = 2 for example, the latter is not generally self-adjoint

while the former is, as we have argued in section 6.6. If there is a connection between Chern-

Simons theory and the low-energy limit of the S-duality twisted compactification on R
2,1 it

would certainly have to be more complicated than the “crude” conjectures presented in [11],

which at best only captured the [σ]-untwisted sector. The answer to most of these questions

may lie in the proper description of the low-energy limit of Wilson loops. The tools we have

developed in this paper in principle allow the analysis of this problem as well, by probing

the type-IIB D3-branes with open strings. We hope to report on this matter soon [46].

In this paper we have concentrated on gauge groups of low rank, as we were restricted

by the condition n < r. In these cases, as explained in section 2.4, we expect a mass gap.

It would be interesting to extend the analysis to n ≥ r. Here there are several questions

that we can ask. First, we can still look for a low-energy description on R
2,1. Since we

are dealing with a 2+1D theory with N = 6 supersymmetry that we also expect to be

conformally invariant in the low-energy limit, the ABJM theories [61] spring as a natural

candidate. Indeed, we expect the low-energy limit for n ≥ r to be an ABJM theory with

an appropriate gauge group that can be determined from the moduli space. (Note that for

n < r the low-energy theories that we have proposed are supersymmetric in a trivial way

— as topological theories, all their SUSY generators are zero.) Second, we can explore

the subspace of normalizable ground states on T 2. Thus, for example, the H(n1,n2,...,np)(υ)

sector makes sense as long as nj < r (for j = 1, . . . , p), even if n =
∑p

1 nj ≥ r. The states in

this sector define the normalizable ground states of the T 2 compactification of the theory,

even though the full theory has a continuum of states that start at zero energy. As a simple
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case-study, we recall the analysis of the C-twist with U(2) gauge group in section 4.3.

There, we found that even though there is no mass gap, there is a finite-dimensional Hilbert

space of normalizable ground states. Moreover, we matched the ground states with the

states of the type-IIA strings, and the bosonic nature of the strings had an interesting in-

terpretation in terms of a restriction on the electric and magnetic fluxes [see (4.13)]. In the

more complicated case of an S-duality twist, we can also ask whether the subset of normal-

izable ground states has a description in terms of a topological field theory. For example,

in section section 6.4 we saw that the subsectors H(1,1,...,1)(υ) correspond to ground states

of U(n)kn,k Chern-Simons theory, even for n ≥ r. Other sectors might also have extensions

for n ≥ r. This avenue of investigation might be connected to ideas developed in [62] about

isolating the ground states of supersymmetric theories and finding a simpler description

for them separately. We conclude with a summary of a few of the open problems:

1. What is the underlying principle that determines the levels and gauge groups of the

[σ]-twisted sectors? Does the decomposition into sectors survive when the theory is

formulated on R
2,1, and if so are they to be regarded as “superselection sectors”,

or are there any physical operators that connect different sectors? And can the

permutation σ be interpreted as a discrete Sn ⊂ U(n) Wilson line? If so, why is

it restricted to Sn, i.e., how do fluctuations away from Sn receive a potential? Can

the unresolved sector H(2,2)(
π
3 ) be interpreted as a Chern-Simons Hilbert space? We

note that under certain circumstances flavor symmetry twists can induce Chern-

Simons interactions [63], but in our case the R-symmetry twist alone cannot induce a

low-energy Chern-Simons term because the R-symmetry is nonabelian. The Chern-

Simons couplings are intimately related to the S-duality twist.

2. How can these results be recovered directly from the (2, 0)-theory? In particular,

what is the low-energy description of the action (7.16)? What do the Chern-Simons

theories that we found teach us about the S-duality generating T (SU(n)) theories

that Gaiotto and Witten have found in [1]?

3. The description of the low-energy limit of Wilson loops as operators on the Hilbert

space of ground states is currently under investigation [46].

4. How can the results be extended to n ≥ r? In this case we can also explore the

large n limit in the context of the AdS/CFT correspondence [64]–[66]. If the [σ]-

untwisted sector H(1,1,...,1) survives the large n limit, it would be interesting to find

its holographic dual. Perhaps the holographic dual of Chern-Simons theory [67] will

somehow make an appearance.

5. The analysis of the S-duality and R-symmetry twist can also be performed on the

topologically twisted N = 4 SYM theories [68]. (Some preliminary results were

discussed in [11].) For n ≥ r, it might be interesting to look for connections with the

topologically twisted supersymmetric Chern-Simons theories [69, 70].

6. Recently, new ideas about surprising mathematical aspects of Chern-Simons theory

have emerged (see for instance [71, 72]). In this paper, we have suggested that
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Chern-Simons theory is related to S-duality. The latter is also intimately connected

to the Langlands correspondence [15]. So, perhaps it is worthwhile to search for a

connection between Chern-Simons theory and the Langlands program.
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A Explicit action of SL(2, Z) on ground states

Below we present the operators S and T that generate SL(2,Z) in the various single-

particle Hilbert spaces. The action of SL(2,Z) on the mutli-particle Hilbert spaces can,

of course, be calculated from the tensor products of the expressions below. We recall the

ambiguity (3.39) in the definition of S and T , to which we can also add a phase ambiguity

T → eiφU p̃V q̃T , S → eiφ
′U p̃V q̃S , (A.1)

as long as we preserve the group relations S2 = (ST )3 = −1. Below, we pick arbitrary

p̃, q̃, φ, φ′. Thus, the expressions below satisfy the group relations S2 = (ST )3 = −1 only

up to a phase. This can easily be fixed by choosing appropriate phases φ, φ′ in (A.1), but

we find the formulas easier to read without these phases, so we have not included them.

We note that only matrix elements of operators (constructed from S and T ) between initial

and final states that preserve U and V are physically meaningful, and the ambiguity (A.1)

does not affect those matrix elements.
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A.1 Action of S on single-particle states for υ = π
2 (τ = i and r = 4)

In this case k = 2. For n = 1, S acts as:

S
∣∣ qc

〉
=

1√
2

(∣∣ qc
〉

+
∣∣ qc 〉) , S

∣∣ qc 〉 =
1√
2

(∣∣ qc
〉
−
∣∣ qc 〉) , (A.2)

or, equivalently,

S|[0]〉 =
1√
2

(
|[0]〉 +

∣∣∣∣
[
1

2
+

1

2
i

]〉)
, S

∣∣∣∣
[
1

2
+

1

2
i

]〉
=

1√
2

(
|[0]〉 −

∣∣∣∣
[
1

2
+

1

2
i

]〉)
.

And for T we have:

T
∣∣ qc

〉
=
∣∣ qc

〉
, T

∣∣ qc 〉 = e
iπ
2

∣∣ qc 〉 , (A.3)

or, equivalently,

T |[0]〉 = |[0]〉 , T
∣∣∣∣
[
1

2
+

1

2
i

]〉
= e

iπ
2

∣∣∣∣
[
1

2
+

1

2
i

]〉
.

For n = 2, S acts as:




S
∣∣ qce

〉
= 1

2

∣∣ qce
〉

+ 1√
2

∣∣ q qcc
〉

+ 1
2

∣∣ qce 〉 ,

S
∣∣ q qc c

〉
= 1√

2

∣∣ qce
〉
− 1√

2

∣∣ qce 〉 ,

S
∣∣ qce 〉 = 1

2

∣∣ qce
〉
− 1√

2

∣∣ q qcc
〉

+ 1
2

∣∣ qce 〉 ,

(A.4)

or, equivalently,




S|[0, 0]〉 = 1
2 |[0, 0]〉 + 1√

2

∣∣[12 ,
1
2 i]
〉

+ 1
2

∣∣[12 + 1
2 i,

1
2 + 1

2 i]
〉
,

S
∣∣[12 ,

1
2 i]
〉

= 1√
2
|[0, 0]〉 − 1√

2

∣∣[12 + 1
2 i,

1
2 + 1

2 i]
〉
,

S
∣∣[12 + 1

2 i,
1
2 + 1

2 i]
〉

= 1
2 |[0, 0]〉 − 1√

2

∣∣[12 ,
1
2 i]
〉

+ 1
2

∣∣[12 + 1
2 i,

1
2 + 1

2 i]
〉
.

And for T we have:

T
∣∣ qce

〉
=
∣∣ qce

〉
, T

∣∣ q qcc
〉

=
∣∣ q qcc

〉
, T

∣∣ qce 〉 = −
∣∣ qce 〉 , (A.5)

or, equivalently,

T |[0, 0]〉= |[0, 0]〉 , T
∣∣∣∣
[
1

2
,
1

2
i

]〉
=

∣∣∣∣
[
1

2
,
1

2
i

]〉
, T

∣∣∣∣
[
1

2
+

1

2
i,

1

2
+

1

2
i

]〉
=−

∣∣∣∣
[
1

2
+

1

2
i,

1

2
+

1

2
i

]〉
.

For n = 3, S acts as:

S
∣∣ qceg

〉
=

1√
2

(∣∣ qceg
〉

+
∣∣ qceg〉) , S

∣∣ qceg〉 =
1√
2

(∣∣ qceg
〉
−
∣∣ qceg〉) , (A.6)
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or, equivalently,



S|[0, 0, 0]〉 = 1√

2

(
|[0, 0, 0]〉 +

∣∣[12 + 1
2 i,

1
2 + 1

2 i,
1
2 + 1

2 i]
〉)
,

S
∣∣[12 + 1

2 i,
1
2 + 1

2 i,
1
2 + 1

2 i]
〉

= 1√
2

(
|[0, 0, 0]〉 −

∣∣[12 + 1
2 i,

1
2 + 1

2 i,
1
2 + 1

2 i]
〉)
.

And for T we have:

T
∣∣ qceg

〉
=
∣∣ qceg

〉
, T

∣∣ qceg〉 = e−
iπ
2

∣∣ qceg〉 , (A.7)

or, equivalently,


T |[0, 0, 0]〉 = |[0, 0, 0]〉 ,

T
∣∣[12 + 1

2 i,
1
2 + 1

2 i,
1
2 + 1

2 i]
〉

= e−
iπ
2

∣∣1
2 + 1

2 i,
1
2 + 1

2 i,
1
2 + 1

2 i]
〉
.

A.2 Action of S on single-particle states for υ = π
3 (τ = eπi/3 and r = 6)

In this case k = 1. For n = 1, S and T act as:

S
∣∣∣∣ �� ��qc

〉
=

∣∣∣∣ �� ��qc

〉
, T

∣∣∣∣ �� ��qc

〉
=

∣∣∣∣ �� ��qc

〉
, (A.8)

or, equivalently,

S|[0]〉 = |[0]〉 , T |[0]〉 = |[0]〉 .
For n = 2, S acts as:

S
∣∣∣∣ �� ��qce

〉
=

1√
3

∣∣∣∣ �� ��qce

〉
+

√
2

3

∣∣∣∣ �� ��q qc c
〉
, S

∣∣∣∣ �� ��q qc c
〉

=

√
2

3

∣∣∣∣ �� ��qce

〉
− 1√

3

∣∣∣∣ �� ��q qc c
〉
, (A.9)

or, equivalently,




S|[0, 0]〉 = 1√
3
|[0, 0]〉 +

√
2
3

∣∣∣[ 1√
3
e

iπ
6 , 2√

3
e

iπ
6 ]
〉
,

S
∣∣∣[ 1√

3
e

iπ
6 , 2√

3
e

iπ
6 ]
〉

=
√

2
3 |[0, 0]〉 − 1√

3

∣∣∣[ 1√
3
e

iπ
6 , 2√

3
e

iπ
6 ]
〉
.

T acts as:

T
∣∣∣∣ �� ��qce

〉
=

∣∣∣∣ �� ��qce

〉
, T

∣∣∣∣ �� ��q qc c
〉

= e−
2πi
3

∣∣∣∣ �� ��q qc c
〉
, (A.10)

or, equivalently,

T |[0, 0]〉 = |[0, 0]〉 , T
∣∣∣∣
[

1√
3
e

iπ
6 ,

2√
3
e

iπ
6

]〉
= e−

2πi
3

∣∣∣∣
[

1√
3
e

iπ
6 ,

2√
3
e

iπ
6

]〉
.

For n = 3, we have two Z2 worldsheet momentum operators Ũa, Ũb and two Z2 world-

sheet winding number operators Ṽa, Ṽb. For the commutation relations we choose

S−1ṼaS = Ũb , S−1ṼbS = Ũ−1
a , S−1ŨaS = Ṽb , S−1ŨbS = Ṽ−1

a , (A.11)

T −1ṼaT = Ṽa , T −1ṼbT = −Ṽb , T −1ŨaT = −ŨaV−1
b , T −1ŨbT = ŨbVa . (A.12)

– 78 –



J
H
E
P
0
3
(
2
0
1
1
)
0
9
9

Note the (−) sign on the second and third equations of (A.12). We found that this phase

assignment is necessary so that T will commute with the orbifold action and keep invariant

the subspace spanned by
∣∣∣∣ �� ��qceg

〉
= |ζ0,0〉 ,

∣∣∣∣ �� ��qq qcc c
〉

=
1√
3
(|ζ0,1〉 + |ζ1,0〉 + |ζ1,1〉) .

We then find that S acts as:

S
∣∣∣∣ �� ��qceg

〉
=

1

2

∣∣∣∣ �� ��qceg

〉
+

√
3

2

∣∣∣∣ �� ��qq qcc c
〉
, S

∣∣∣∣ �� ��qq qcc c
〉

=

√
3

2

∣∣∣∣ �� ��qceg

〉
− 1

2

∣∣∣∣ �� ��qq qcc c
〉
, (A.13)

or, equivalently,


S|[0, 0, 0]〉 = 1

2 |[0, 0, 0]〉 +
√

3
2

∣∣[12 ,
1
2τ,

1
2 + 1

2τ ]
〉
,

S
∣∣[12 ,

1
2τ,

1
2 + 1

2τ ]
〉

=
√

3
2 |[0, 0, 0]〉 − 1

2

∣∣[12 ,
1
2τ,

1
2 + 1

2τ ]
〉
,

and T acts as

T
∣∣∣∣ �� ��qceg

〉
=

∣∣∣∣ �� ��qceg

〉
, T

∣∣∣∣ �� ��qq qcc c
〉

= −
∣∣∣∣ �� ��qq qcc c

〉
. (A.14)

or, equivalently,

T |[0, 0, 0]〉 = |[0, 0, 0]〉 , T
∣∣∣∣
[
1

2
,
1

2
τ,

1

2
+

1

2
τ

]〉
= −

∣∣∣∣
[
1

2
,
1

2
τ,

1

2
+

1

2
τ

]〉
.

For n = 4, S acts (similarly to the n = 2 case) as:

S
∣∣∣∣ �� ��qcegi

〉
=

1√
3

∣∣∣∣ �� ��qcegi

〉
+

√
2

3

∣∣∣∣ �� ��q qcece
〉
, S

∣∣∣∣ �� ��q qcece
〉

=

√
2

3

∣∣∣∣ �� ��qcegi

〉
− 1√

3

∣∣∣∣ �� ��q qcece
〉
, (A.15)

or, equivalently,



S|[0, 0, 0, 0]〉 = 1√
3
|[0, 0, 0, 0]〉 +

√
2
3

∣∣∣[ 1√
3
e

iπ
6 , 1√

3
e

iπ
6 , 2√

3
e

iπ
6 , 2√

3
e

iπ
6 ]
〉
,

S
∣∣∣[ 1√

3
e

iπ
6 , 1√

3
e

iπ
6 , 2√

3
e

iπ
6 , 2√

3
e

iπ
6 ]
〉

=
√

2
3 |[0, 0, 0, 0]〉 − 1√

3

∣∣∣[ 1√
3
e

iπ
6 , 1√

3
e

iπ
6 , 2√

3
e

iπ
6 , 2√

3
e

iπ
6 ]
〉
,

and T acts as

T
∣∣∣∣ �� ��qcegi

〉
=

∣∣∣∣ �� ��qcegi

〉
, T

∣∣∣∣ �� ��q qcece
〉

= e
2πi
3

∣∣∣∣ �� ��q qcece
〉
, (A.16)

or, equivalently,



T |[0, 0, 0, 0]〉 = |[0, 0, 0, 0]〉 ,

T
∣∣∣∣
[

1√
3
e

iπ
6 , 1√

3
e

iπ
6 , 2√

3
e

iπ
6 , 2√

3
e

iπ
6

]〉
= e

2πi
3

∣∣∣∣
[

1√
3
e

iπ
6 , 1√

3
e

iπ
6 , 2√

3
e

iπ
6 , 2√

3
e

iπ
6

]〉
.

For n = 5, S,T act as the identity:

S
∣∣∣∣ �� ��qcegik

〉
=

∣∣∣∣ �� ��qcegik

〉
, T

∣∣∣∣ �� ��qcegik

〉
=

∣∣∣∣ �� ��qcegik

〉
,

or, equivalently,

S|[0, 0, 0, 0, 0]〉 = |[0, 0, 0, 0, 0]〉, T |[0, 0, 0, 0, 0]〉 = |[0, 0, 0, 0, 0]〉.
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A.3 Action of S on single-particle states for υ = 2π
3 (τ = eπi/3 and r = 3)

In this case, k = 3. For n = 1, S acts as:




S
∣∣∣∣ �� ��qc

〉
= 1√

3

∣∣∣∣ �� ��qc

〉
+ 1√

3

∣∣∣∣ �� ��qc
〉

+ 1√
3

∣∣∣∣ �� ��
qc
〉
,

S
∣∣∣∣ �� ��qc

〉
= 1√

3

∣∣∣∣ �� ��qc

〉
+ 1√

3
e

2πi
3

∣∣∣∣ �� ��qc
〉

+ 1√
3
e−

2πi
3

∣∣∣∣ �� ��
qc
〉
,

S
∣∣∣∣ �� ��

qc
〉

= 1√
3

∣∣∣∣ �� ��qc

〉
+ 1√

3
e−

2πi
3

∣∣∣∣ �� ��qc
〉

+ 1√
3
e

2πi
3

∣∣∣∣ �� ��
qc
〉
,

(A.17)

or, equivalently




S|[0]〉 = 1√
3
|[0]〉 + 1√

3

∣∣∣[ 1√
3
e

iπ
6 ]
〉

+ 1√
3

∣∣∣[ 2√
3
e

iπ
6 ]
〉
,

S
∣∣∣[ 1√

3
e

iπ
6 ]
〉

= 1√
3
|[0]〉 + 1√

3
e

2πi
3

∣∣∣[ 1√
3
e

iπ
6 ]
〉

+ 1√
3
e−

2πi
3

∣∣∣[ 2√
3
e

iπ
6 ]
〉
,

S
∣∣∣[ 2√

3
e

iπ
6 ]
〉

= 1√
3
|[0]〉 + 1√

3
e−

2πi
3

∣∣∣[ 1√
3
e

iπ
6 ]
〉

+ 1√
3
e

2πi
3

∣∣∣[ 2√
3
e

iπ
6 ]
〉
.

T acts as

T
∣∣∣∣ �� ��qc

〉
=

∣∣∣∣ �� ��qc

〉
, T

∣∣∣∣ �� ��qc
〉

= e−
2πi
3

∣∣∣∣ �� ��qc
〉
, T

∣∣∣∣ �� ��
qc
〉

= e−
2πi
3

∣∣∣∣ �� ��
qc
〉
, (A.18)

or, equivalently,

T |[0]〉= |[0]〉 , T
∣∣∣∣
[

1√
3
e

iπ
6

]〉
=e−

2πi
3

∣∣∣∣
[

1√
3
e

iπ
6

]〉
, T

∣∣∣∣
[

2√
3
e

iπ
6

]〉
=e−

2πi
3

∣∣∣∣
[

2√
3
e

iπ
6

]〉
.

For n = 2, S acts as:




S
∣∣∣∣ �� ��qce

〉
= 1√

3

∣∣∣∣ �� ��qce

〉
+ 1√

3

∣∣∣∣ �� ��qce
〉

+ 1√
3

∣∣∣∣ �� ��
qce
〉
,

S
∣∣∣∣ �� ��qce

〉
= 1√

3

∣∣∣∣ �� ��qce

〉
+ 1√

3
e−

2πi
3

∣∣∣∣ �� ��qce
〉

+ 1√
3
e

2πi
3

∣∣∣∣ �� ��
qce
〉
,

S
∣∣∣∣ �� ��

qce
〉

= 1√
3

∣∣∣∣ �� ��qce

〉
+ 1√

3
e

2πi
3

∣∣∣∣ �� ��qce
〉

+ 1√
3
e−

2πi
3

∣∣∣∣ �� ��
qce
〉
,

(A.19)

or, equivalently,




S|[0, 0]〉 = 1√
3
|[0, 0]〉 + 1√

3

∣∣∣[ 1√
3
e

iπ
6 , 1√

3
e

iπ
6 ]
〉

+ 1√
3

∣∣∣[ 2√
3
e

iπ
6 , 2√

3
e

iπ
6 ]
〉
,

S
∣∣∣[ 1√

3
e

iπ
6 , 1√

3
e

iπ
6 ]
〉

= 1√
3
|[0, 0]〉 + 1√

3
e−

2πi
3

∣∣∣[ 1√
3
e

iπ
6 , 1√

3
e

iπ
6 ]
〉

+ 1√
3
e

2πi
3

∣∣∣[ 2√
3
e

iπ
6 , 2√

3
e

iπ
6 ]
〉
,

S
∣∣∣[ 2√

3
e

iπ
6 , 2√

3
e

iπ
6 ]
〉

= 1√
3
|[0, 0]〉 + 1√

3
e

2πi
3

∣∣∣[ 1√
3
e

iπ
6 , 1√

3
e

iπ
6 ]
〉

+ 1√
3
e−

2πi
3

∣∣∣[ 2√
3
e

iπ
6 , 2√

3
e

iπ
6 ]
〉
.
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T acts as

T
∣∣∣∣ �� ��qce

〉
=

∣∣∣∣ �� ��qce

〉
, T

∣∣∣∣ �� ��qce
〉

= e
2πi
3

∣∣∣∣ �� ��qce
〉
, T

∣∣∣∣ �� ��
qce
〉

= e
2πi
3

∣∣∣∣ �� ��
qce
〉
, (A.20)

or, equivalently, 


T |[0, 0]〉 = |[0, 0]〉 ,

T
∣∣∣[ 1√

3
e

iπ
6 , 1√

3
e

iπ
6 ]
〉

= e
2πi
3

∣∣∣[ 1√
3
e

iπ
6 , 1√

3
e

iπ
6 ]
〉
,

T
∣∣∣[ 2√

3
e

iπ
6 , 2√

3
e

iπ
6 ]
〉

= e
2πi
3

∣∣∣[ 2√
3
e

iπ
6 , 2√

3
e

iπ
6 ]
〉
.

B Action of SL(2, Z) on Chern-Simons Hilbert spaces

The Hilbert space of U(n) = [U(1) × SU(n)]/Zn Chern-Simons theory at level k on T 2,

where U(1) is at level kn and SU(n) is at level k, is equivalent to the symmetric product of

n copies of the Hilbert space of U(1)k. We use this to extract the SL(2,Z) representation

of the SU(n)k Hilbert space.

We can write the states of U(1)k as |p〉 with p = 0, . . . , k − 1, and the states of the

product of n copies as |p1, . . . , pn〉 with 0 ≤ pi ≤ k − 1. We then decompose

∑

σ∈Sn

∣∣pσ(1), . . . , pσ(n)

〉
=

kn−1∑

p=0

|p1, . . . , pn; p〉SU(n)|p〉U(1) .

As we will soon see, only n out of the kn terms on the right-hand side are nonzero, and

the normalization is

〈p1, . . . , pn; p|p1, . . . , pn; p〉 =
1

n
Np1...pn ,

where Np1...pn is calculated as follows. For 0 ≤ j < k, let mj be the number of indices i for

which pi = j. Then
∑k−1

j=0 mj = n and

Np1...pn =
n!∏
j mj!

.

We also need to match the action of large U(1) gauge transformations that reside

entirely inside the U(1) factor and do not affect the SU(n) degrees of freedom. They form

a Zk × Zk group, and act as
∑

σ∈Sn

∣∣pσ(1) + 1, . . . , pσ(n) + 1
〉

= K1

∑

σ∈Sn

∣∣pσ(1), . . . , pσ(n)

〉

=

kn−1∑

p=0

|p1, . . . , pn; p〉SU(n)|p+ n〉U(1) ,

and

e−
2πi
k

P

i pi

∑

σ∈Sn

∣∣pσ(1), . . . , pσ(n)

〉
= K2

∑

σ∈Sn

∣∣pσ(1), . . . , pσ(n)

〉

=

kn−1∑

p=0

e−
2πi
k

p|p1, . . . , pn; p〉SU(n)|p〉U(1) .
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So |p1, . . . , pn; p〉 is nonzero only if p =
∑

i pi (mod k), and we also get

|p1, . . . , pn; p− n〉 = |p1 + 1, . . . , pn + 1; p〉 . (B.1)

B.1 Action of T
For even k we have

e
iπ
k

P

i p2
i

∑

σ∈Sn

∣∣pσ(1), . . . , pσ(n)

〉
=
∑

σ∈Sn

T
∣∣pσ(1), . . . , pσ(n)

〉

=

kn−1∑

p=0

e
iπ
kn

p2T |p1, . . . , pn; p〉SU(n)|p〉U(1) .

So,

T |p1, . . . , pn; p〉SU(n) = e
iπ
k

(
Pn

i=1 p2
i− 1

n
p2
)
|p1, . . . , pn; p〉SU(n) .

For odd k and any n we have

T |p1, . . . , pn; p〉SU(n) = (−1)p−
Pn

i=1 pie
iπ
k

(
Pn

i=1 p2
i− 1

n
p2
)
|p1, . . . , pn; p〉SU(n) , (B.2)

where we have used a freedom similar to (3.39) to add an extra factor of (−1)p so that for

even k we have p −∑n
i=1 pi ≡ 0 (mod k) and therefore (−1)p−

Pn
i=1 pi = 1. Note also that

for odd n the extra (−1)p factor is necessary for consistency with (B.1).

B.2 Action of S
For S we have,

1

kn/2

∑

σ∈Sn

k−1∑

q1=0

· · ·
k−1∑

qn=0

e
2πi
k

Pn
i=1 qipσ(i) |q1, . . . , qn〉 =

∑

σ∈Sn

S
∣∣pσ(1), . . . , pσ(n)

〉

=
1√
kn

kn−1∑

q=0

e
2πi
kn

pqS|p1, . . . , pn; p〉SU(n)|q〉U(1) .

We now take the (partial) inner product of that state with 1√
kn

∑kn−1
q=0 e

2πi
kn

pq|q〉U(1), and

after some algebra we get

S|p1, . . . , pn; p〉SU(n) =

=
1√

kn+1n

k−1∑

q1=0

· · ·
k−1∑

qn=0

e
2πi
k

P

i qi(pi− 1
n

p)
n−1∑

m=0

e−
2πi
n

pm

∣∣∣∣∣q1, . . . , qn;mk +
∑

i

qi

〉

SU(n)

.

B.3 Action of Zn

The U(n) states are invariant, so

Ω′′
1|p1, . . . , pn; p〉SU(n) = |p1, . . . , pn; p + k〉SU(n) ,

Ω′′
2|p1, . . . , pn; p〉SU(n) = e−

2πi
n

p|p1, . . . , pn; p〉SU(n) .
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B.4 Example: [U(1)2 × SU(2)−3]/Z2

We have SU(2)−3 states of the form
∣∣∣p1, p2; 3m+

∑
pi

〉
SU(2)

, 0 ≤ p1, p2 < 3 , 0 ≤ m < 2 .

We add the U(1)2 states to get states of the form
∣∣∣p1, p2; 3m+

∑
pi

〉
SU(2)

|q〉U(1)

with 0 ≤ q < 2. We then mod out by Z2 × Z2 as follows. First,

q ≡ 3m+
2∑

i=1

pi ≡ m+
2∑

i=1

pi (mod 2) ,

so, q is completely determined by m, p1, p2. We therefore do not specify q any more. Next,

we need to keep only the Ω′′
1-invariant combinations:

|p1, p2〉s ≡
1∑

m=0

∣∣∣p1, p2; 3m+
∑

pi

〉
SU(2)

∣∣∣3m+
∑

pi

〉
U(1)

.

In order for the space spanned by |p1, p2〉s to be closed under T (and not just T 2), we need

to augment (B.2) by an extra factor of (−1)p. After some algebra, we then get

T |p1, p2〉s = (−1)
P

pie
πi
3

[
2(

P

pi)
2−

P

p2
i

]
|p1, p2〉s . (B.3)

These phases were used for identifying H(2)(
π
3 ) in appendix C. In the notation of (C.1)

we have
∣∣∣∣ �� ��qce

〉
=

√
2|0, 0〉s =

√
2|1, 1〉s =

√
2|2, 2〉s ,

∣∣∣∣ �� ��q qc c
〉

= |0, 1〉s = |1, 2〉s = |2, 0〉s = |1, 0〉s = |2, 1〉s = |0, 2〉s ,

and up to an overall phase (see the explanation at the beginning of appendix A), we find

that (B.3) agrees with (A.10).

C Decomposition of H(n1,...,np) into Chern-Simons Hilbert spaces

C.1 υ = π
3 (k = 1)

For k = 1, n = 2, we have

H
(

2,
π

3

)
= H(1,1)

(
π

3

)
⊕H(2)

(
π

3

)
.

The factor H(1,1) was discussed in section 6.4, so it only remains to discuss H(2). There are

two states which we decompose according to (6.2):
∣∣∣∣ �� ��qce

〉
= |a〉SU(2) ⊗ |0〉U(1) + |b〉SU(2) ⊗ |1〉U(1) ,

∣∣∣∣ �� ��q qc c
〉

= |d〉SU(2) ⊗ |0〉U(1) + |c〉SU(2) ⊗ |1〉U(1) ,
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where the U(1) is at level kn = 2.

Up to an unimportant overall phase, we find

T |a〉 = |a〉 , T |b〉 = e−
πi
2 |b〉 , T |c〉 = e

5πi
6 |c〉 , T |d〉 = e−

2πi
3 |d〉 . (C.1)

The overall phase can be fixed (up to a cubic root of unity) by calculating, with the above

assignments,

(T S)3 = e−
πi
4 .

So multiplying T by e
πi
12 , for example, would fix the phase. We also have

S|a〉 =
1√
6
|a〉 +

1√
6
|b〉 +

√
1

3
|c〉 +

√
1

3
|d〉 ,

S|b〉 =
1√
6
|a〉 − 1√

6
|b〉 −

√
1

3
|c〉 +

√
1

3
|d〉 ,

S|c〉 =

√
1

3
|a〉 −

√
1

3
|b〉 +

1√
6
|c〉 − 1√

6
|d〉 ,

S|d〉 =

√
1

3
|a〉 +

√
1

3
|b〉 − 1√

6
|c〉 − 1√

6
|d〉 ,

and

Ω′′
1|a〉 = |b〉 , Ω′′

1|b〉 = |a〉 , Ω′′
1|c〉 = |d〉 , Ω′′

1|d〉 = |c〉 ,
Ω′′

2|a〉 = |a〉 , Ω′′
2|b〉 = −|b〉 , Ω′′

2|c〉 = −|c〉 , Ω′′
2|d〉 = |d〉 .

These results agree with those of the SU(2) Chern-Simons theory at level k = −3

[see (6.29)]. So we get

H(2)

(
π

3

)
= H([U(1)2 × SU(2)−3]/Z2) .

For n = 3, we have sectors corresponding to [σ] = (1, 1, 1), (2, 1), and (3). The first was

discussed in section 6.4, and the second is a reducible sector. We now discuss the third case.

We decompose the basis states into the U(1) and SU(3) degrees of freedom as follows:

∣∣∣∣ �� ��qceg

〉
= |a〉SU(3) ⊗ |0〉U(1) + |b〉SU(3) ⊗ |1〉U(1) + |c〉SU(3) ⊗ |2〉U(1) ,

∣∣∣∣ �� ��qq qcc c
〉

= |d〉SU(3) ⊗ |0〉U(1) + |e〉SU(3) ⊗ |1〉U(1) + |f〉SU(3) ⊗ |2〉U(1) .

As usual, we extract the action of T ,S,Ω′′
1 ,Ω

′′
2 on SU(3) degrees of freedom by using the

known results for U(1) theory at level kn = 3. We get

T |a〉SU(3) = −|a〉SU(3) , T |b〉SU(3) = −e 2πi
3 |b〉SU(3) , T |c〉SU(3) = −e 2πi

3 |c〉SU(3) ,

T |d〉SU(3) = |d〉SU(3) , T |e〉SU(3) = e
2πi
3 |e〉SU(3) , T |f〉SU(3) = e

2πi
3 |f〉SU(3) ,
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up to an overall phase, and

S = 1
2




1√
3

1√
3

1√
3

1 1 1
1√
3

ω√
3

ω2√
3

1 ω ω2

1√
3

ω2√
3

ω√
3

1 ω2 ω

1 1 1 − 1√
3
− 1√

3
− 1√

3

1 ω ω2 − 1√
3
− ω√

3
− ω2√

3

1 ω2 ω − 1√
3
− ω2√

3
− ω√

3




,

where ω = e
2πi
3 , in the basis |a〉SU(3), . . . , |f〉SU(3). We also have

Ω′′
1|a〉SU(3) = |b〉SU(3) , Ω′′

1 |b〉SU(3) = |c〉SU(3) , Ω′′
1|c〉SU(3) = |a〉SU(3) ,

Ω′′
1|d〉SU(3) = |e〉SU(3) , Ω′′

1|e〉SU(3) = |f〉SU(3) , Ω′′
1|f〉SU(3) = |d〉SU(3) ,

and

Ω′′
2|a〉SU(3) = |a〉SU(3) , Ω′′

2|b〉SU(3) = e
2πi
3 |b〉SU(3) , Ω′′

2|c〉SU(3) = e−
2πi
3 |c〉SU(3) ,

Ω′′
2|d〉SU(3) = |d〉SU(3) , Ω′′

2 |e〉SU(3) = e
2πi
3 |e〉SU(3) , Ω′′

2|f〉SU(3) = e−
2πi
3 |f〉SU(3) .

The results agree with those of SU(3) Chern-Simons theory at k = −2. The latter can

be checked, for example, by studying the U(3)−2 = [U(1)−6 × SU(3)−2]/Z3 Chern-Simons

theory, using the known results for the U(1) degrees of freedom and (6.16).

For n = 4, we have [σ] = (1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1), and (4) sectors. The last case

is equivalent as representation of SL(2,Z) to the n = 2, [σ] = (2) case [see (A.15)–(A.16)].

To see this, one has to change basis (

∣∣∣∣ �� ��qcegi

〉
→ −

∣∣∣∣ �� ��q qc c
〉
,

∣∣∣∣ �� ��q qcece
〉

→ −
∣∣∣∣ �� ��qce

〉
, and recall

that T ,S as appear in appendix A are only determined up to an overall phase.)

The only remaining nontrivial case (i.e., neither untwisted nor reducible) is the [σ] =

(2, 2) sector. We can write H(2,2)(
π
3 ) as a symmetric product H(2,2)(

π
3 ) ≃ H(2)(

π
3 )⊗2/S2 ,

and using the result H(2)(
π
3 ) ≃ U(2)2,−3 from above, we can write H(2,2)(

π
3 ) as the sym-

metric product of Chern-Simons Hilbert spaces:

H(2,2)

(
π

3

)
≃ U(2)⊗2

2,−3/S2 .

This, however, is not good enough for our purposes, because we would like to present each

sector as the Hilbert space of a gauge theory, and U(2)⊗2/S2 is not a group.

The dimension of H(2,2)(
π
3 ) is 3, so if we attempt to write it as [U(1)4 × H̃(2,2)(

π
3 )]/Z4

we find that we need dim H̃(2,2)(
π
3 ) = 12. The dimension of the Hilbert space of SU(n′)k′

is (n′ + k′ − 1)!/k′!(n′ − 1)!, so if we assume n′ ≤ n we find only (n′ = 2, k′ = 11) and

(n′ = 12, k′ = 1), but these are easily ruled out. We have also explored product gauge

groups such as U(2)2k′,k′ × U(2)2k′′,k′′ with k′ + k′′ = 2, to no avail.

Perhaps we can obtain a clue to the solution by noting that the symmetric product of

n′ copies of SU(2)k′ is equivalent to the Hilbert space of a symplectic group,

H[SU(2)k′ ]⊗n′
/Sn′ ≃ H[Sp(n′)k′ ] , (C.2)
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as can easily be verified by writing out the explicit wavefunctions, using the character

formulas for affine Lie algebras [42] (see also [73] for a historical review and references).

Another observation is that H(2,2)(
π
3 ) is equivalent as a representation of only T 2 and S

to the Hilbert space of Sp(2)/Z2 ≃ SO(5) Chern-Simons theory at level 3. To see this,

take n′ = 2 and k′ = 3 in (C.2). The Hilbert space for SU(2) Chern-Simons theory at

level 3 was discussed at the end of section 6.3 — in particular, its dimension is 4, and the

Z2 large gauge transformation acts as (6.30). We can therefore obtain the Hilbert space

of Sp(2)/Z2 Chern-Simons theory by first taking the symmetric product of two copies of

H[SU(2)3], and then requiring invariance under (6.30).

The result is that it is a three-dimensional space spanned by

|a, a〉 + |b, b〉 , |a, d〉 + |b, c〉 , |c, c〉 + |d, d〉 ,

where, for example,

|a, a〉 ≡ |a〉SU(2) ⊗ |a〉SU(2) ,

|a, d〉 ≡ 1√
2
(|a〉SU(2) ⊗ |d〉SU(2) + |d〉SU(2) ⊗ |a〉SU(2)) ,

with |a〉, |b〉, |c〉, |d〉 as defined in section 6.3. Other states like |b, b〉 and |b, c〉 are defined

similarly. We can also read off the action of T 2 and S in this basis:

T 2 =




1 0 0

0 e
4πi
3 0

0 0 e
2πi
3


 , S = 1

3




1 2 2

2 1 −2

2 −2 1


 .

This matches exactly the action of T 2 and S on H(2,2)(
π
3 ), which can be found from (A.9)

and (A.10).

There is a caveat in this discussion, however, in that we only checked the action of

T 2, not T . The latter is actually not well-defined in the SO(5) Chern-Simons theory

Hilbert space, because it does not commute with Ω′′
2 of (6.30). In other words, H(2,2)(

π
3 ) is

equivalent to the Hilbert space of SO(5) Chern-Simons theory, not as a representation of

the full SL(2,Z), but as a representation of its subgroup Γ(2). The situation is reminiscent

of U(1) Chern-Simons theory at an odd level k, discussed in section 5.4, where the theory

depends on the choice of spin structure of T 2. Another problem with identifying the

[σ] = (2, 2) sector with Sp(2)/Z2 Chern-Simons theory is that it is not a subgroup of our

gauge group U(4), only its double-cover Sp(2) is. At this point, therefore, we are not

making any claims about the sector H(2,2)(
π
3 ).

For n = 5, we have [σ] = (1, 1, 1, 1, 1), (2, 1, 1, 1), (2, 2, 1), (3, 1, 1), (3, 2), (4, 1), and (5).

All sectors are either untwisted or reducible, except for the last one. But the (5) sector is

a trivial one-dimensional Hilbert space, so we may set

H(5)

(
π

3

)
= H[U(5)5,1] .
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C.2 υ = 2π
3 (k = 3)

For n = 2, we have

H
(

2,
2π

3

)
= H(1,1)

(
2π

3

)
⊕H(2)

(
2π

3

)
.

The factor H(1,1) was discussed in section 6.4, so it only remains to discuss H(2). There are

three states which we decompose according to (6.2):

∣∣∣∣ �� ��qce

〉
= |a〉SU(2) ⊗ |0〉U(1) + |b〉SU(2) ⊗ |3〉U(1) ,

∣∣∣∣ �� ��qce
〉

= |a〉SU(2) ⊗ |2〉U(1) + |b〉SU(2) ⊗ |5〉U(1) ,

∣∣∣∣ �� ��
qce
〉

= |a〉SU(2) ⊗ |4〉U(1) + |b〉SU(2) ⊗ |1〉U(1) ,

where the U(1) is at level kn = 6. Following the usual procedure, we get

S|a〉 =
1√
2
(|a〉 + |b〉) , S|b〉 =

1√
2
(|a〉 − |b〉) ,

and, up to a phase,

T |a〉 = |a〉 , T |b〉 = e
πi
2 |b〉 .

We also have

Ω′′
1 |a〉 = |a〉 , Ω′′

1|b〉 = −|b〉 , Ω′′
2|a〉 = |b〉 , Ω′′

2|b〉 = |a〉 .

These relations agree with the states of SU(2)−1, so

H(2)

(
2π

3

)
= H([U(1)6 × SU(2)−1]/Z2) .
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