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1 Introduction

The Randall-Sundrum (RS) model [1] is a 5-dimensional model with the fifth dimension, a

slice of anti-de Sitter spacetime with strong curvature, compactified (to a size comparable to

the Planck length) on a S1/Z2 orbifold. Two branes are located at the orbifold fixed points

φ = 0, π, the Planck brane and the TeV brane, respectively. The Standard Model fields

are localised on the TeV brane while gravitons exist in the full five-dimensional spacetime.

The five-dimensional spacetime metric is of the form

ds2 = e−kRcφηµνdxµdxν + R2
cdφ2 ; (1.1)
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k is a mass scale related to the curvature; exp(−kRcφ) is the warp factor which rescales

masses of fields localised on the TeV-brane. The electroweak hierarchy MP

MEW
∼ 1015 can

be generated by an exponent of order 30 and thus the model provides a solution to the

hierarchy problem. For this to work, the compactification radius Rc should be stabilised

against quantum fluctuations. This can be done by introducing a bulk scalar field which

generates a potential that allows for the stabilisation [2, 3]. The RS model predicts a dis-

crete spectrum of Kaluza-Klein (KK) excitations of the graviton and these couple to the

Standard Model fields with a coupling that is enhanced by the warp factor to be of the

order of electroweak strength. Several collider implications of these graviton resonances

have been studied in the literature [4–7].

Since the original RS model is a model of gravity in AdS spacetime it is possible to

relate it using the AdS/CFT correspondence [8] to a dual theory — a strongly coupled

gauge theory in four dimensions [9, 10]. In this description, it turns out that the fields

localised on the TeV brane are TeV-scale composites of the strongly interacting theory

making the RS model dual to a composite SM. Such a composite theory is unviable: the

simplest possibility is to modify the model so that only the Higgs field is localised on the

TeV brane while the rest of the SM fields are in the bulk [11, 12].

In constructing such variants of the RS model, it is not an easy task to avoid the

constraints coming from flavour hierarchy, electroweak precision tests and flavour-changing

neutral currents [13–18]. In particular, in order to avoid an unacceptably large contribution

to the electroweak T parameter an enhanced symmetry in the bulk like SU(2)L×SU(2)R×
U(1)(B−L) may be required. The heavier fermions need to be closer to the TeV brane so as

to acquire a large Yukawa coupling through a larger overlap with the Higgs wavefunction.

In other words, the profiles of the heavier fermions need to be peaked closer to the TeV-

brane. Conversely, the fermions close to the Planck brane will have small Yukawa couplings.

However, while the large Yukawa of the top demands proximity to the TeV brane, the left-

handed electroweak doublet, (t, b)L, cannot be close to the TeV brane because that induces

non-universal couplings of the bL to the Z. Such couplings are strongly constrained by Rb,

the measured branching ratio of Z → bb̄. So the doublet needs to be as far away from

the TeV brane as allowed by Rb, whereas the tR needs to be localised close to the TeV

brane to account for the large Yukawa of the top. Even with this choice of profiles the

bounds on the masses of the KK gauge bosons, coming from Z → bb̄ are found to be in the

region of 5TeV. A custodial symmetry can be invoked to relax this constraint and it also

allows other choices of profiles for the tR and (t, b)L. With this custodial symmetry and

for appropriate choices of the profiles for the tR and (t, b)L it is found that gauge boson

masses as low as 2-3 TeV can be consistent with the constraint from Z → bb̄ [14–18]. A

review of the literature on this subject can be found in reference [19].

The tR localised close to the TeV brane has an enhanced coupling to the first KK

excitation of the gluon in the bulk and as a result we expect that gKK → tt̄ (where gKK

represents the first KK excitation of the gluon) will be a significant decay mode from a dis-

covery perspective. The decay also lends itself to identification via spin determination, since

the enhanced coupling to tR over tL means the top quarks from KK gluon decays will be po-

larised [20]. There will be additional challenges for identification of the tt̄ pairs because they
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will be highly boosted in the lab frame, but this channel remains a promising search channel.

From a hadron collider perspective, we are interested in the production process pp→
gKK. The subprocess qq̄ → gKK has already been investigated in some detail for the

LHC [20, 21], as well as for the Tevatron [22], but because in many models the light

quarks have a relatively suppressed coupling to the gKK, it is worth also considering the

process gg → gKK, even though this process is one-loop at leading order. It is this process

that we consider in this paper. (Other, tree-level, processes, involving gg fusion to gKK in

association with additional top quark production, have also been considered previously [23].

A preliminary study of gg → gKK has already been performed [24], from which our analysis

differs by the consideration of an additional channel.)

It might appear prima facie that an extension of Yang’s theorem [25] should forbid

the on-shell production of a KK gluon from two on-shell Standard Model gluons. However,

to apply an extension of the theorem to deduce that an amplitude involving three spin-one

particles is zero would require the following conditions to be met:

• The three particles must be on-shell;

• Two of the particles must be massless;

• The amplitude must be symmetric under interchange of the massless particles.

The final condition is not met in the case of our process gg → gKK, because the SU(3)

structure of the problem means that the amplitude can contain terms that are antisym-

metric under interchange of the Standard Model gluons. More explicitly, an amplitude

involving three coloured gauge particles can always be decomposed into two parts: one

proportional to fabc and the other proportional to dabc. Since the dabc’s are symmetric

this part of the amplitude goes to zero due to the usual Yang’s theorem arguments. The

antisymmetry of the fabc means that this part of the amplitude picks up an extra sign and

survives the restrictions of the Yang’s theorem. Therefore, Yang’s theorem does not forbid

the process gg → gKK.

1.1 Theoretical strategy

In section 2, an argument regarding the general form that must be taken by the amplitude,

similar to those of references [26, 27], shows that it is then sufficient to consider a small sub-

set of possible diagrams in order to derive the overall amplitude. Consideration of the Feyn-

man rules in section 3 will show that our one-loop process can obtain contributions from a

large number of diagrams, with loops from fermions, KK excitations of fermions, and KK

excitations of gluons, as well as in principle requiring renormalization. In section 4, we show

that it is possible to evade renormalization by considering a particular subset of diagrams,

suggested by the general form argument. KK excitations of gluons above the first will be

mass-suppressed in the loop, and we therefore neglect diagrams containing such excitations.

In addition, it is in principle possible to add a Chern-Simons term to the Lagrangian

of the five-dimensional theory. This term is gauge-dependent, and a particular five-

dimensional gauge choice is required to ensure anomaly cancellation in the four-dimensional
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effective theory in which we are working. We start by considering a gauge that is simpler

for the loop calculation, and show a posteriori in section 5 that the change of gauge re-

quired for anomaly cancellation does not alter any of the diagrams already considered, and

produces only one more diagram (containing a scalar line). This additional diagram does

not alter the square of the on-shell matrix element. We finally estimate the cross-section

for on-shell KK gluon production in section 6, before concluding in section 7. Technical

information is relegated to appendices: in appendix A, we list the tensors satisfying the

general form argument, whereas in appendix B, we evaluate a Feynman parameter integral

analytically. We provide a recipe for how our results may be adapted to calculate the

off-shell KK gluon amplitude in appendix C.

1.2 Notation

We shall define the incoming gluon momenta to be p and q, with corresponding polarisa-

tion tensors εµ(p) and εν(q) respectively. The outgoing KK gluon momentum is r, with

corresponding polarisation tensor ερ
gKK(r). The polarisation tensors satisfy

εµ(p)pµ = 0 , (1.2)

εν(q)qν = 0 , (1.3)

ερ
gKK

(r)rρ = 0 . (1.4)

The momenta satisfy the on-shell conditions

p2 = q2 = 0 , (1.5)

r2 = M2
KK , (1.6)

where MKK is the mass of the first Kaluza-Klein excitation of the gluon, given approxi-

mately by the solution of [11]

J0

(

MKK

k
ekRcπ

)

= 0 , (1.7)

with J0 the Bessel function of the first kind of order zero, Rc the radius of compactification

of the extra dimension, and k the fixed parameter in the warp factor of order the Planck

scale. Four-momentum conservation (r = p + q) yields the on-shell gKK identity

2p · q = M2
KK . (1.8)

Finally, we factor out the polarisation vectors to define the tensor Fµνρ(p, q) in terms of

the matrix element M(p, q):

M(p, q) = ερ∗
gKK

(r)εµ(p)εν(q)Fµνρ(p, q) . (1.9)

2 General form of the amplitude

We may simplify the calculation by deriving a general form that must be taken by the

amplitude we are calculating.
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QCD current conservation, implied by gauge invariance, results in the properties

pµFµνρ = 0 , (2.1)

qνFµνρ = 0 . (2.2)

Since there are no tree-level diagrams, we may express Fµνρ in terms of an expansion in p

and q. (For more details on the conditions for validity of such an expansion – which are

met here — see reference [26].) Expanding first in p, we may write

Fµνρ = T 0
µνρ(q) + pαT 1

µνρα(p, q) . (2.3)

(We note that this is still a completely general expansion without truncation, because T 0
µνρ

and T 1
µνρα are functions of q and of p and q, respectively.) Since equation (2.1) must be

satisfied for all p with |p0| ≤MKK in the centre of mass frame and p2 = 0 (i.e. all physical

p), we can deduce that

T 0
µνρ = 0 (2.4)

and

T 1
µνρα = −T 1

ανρµ . (2.5)

We may therefore write the amplitude as

M = ερ∗
gKK

(r)εν(q)(εµ(p)pα − εα(p)pµ)T 1
µνρα . (2.6)

We next expand in q, writing

T 1
µνρα = t0µνρα(p) + qβt1µνραβ(p, q) . (2.7)

Similarly to the previous expansion, we note that since equation (2.2) must be satisfied for

all q with |q0| ≤MKK in the centre of mass frame and q2 = 0, we can deduce that

t0µνρα = 0 (2.8)

and

t1µνραβ = −t1µβραν . (2.9)

We may therefore write the amplitude as

M = ερ∗
gKK

(r)(εν(q)qβ − εβ(q)qν)(εµ(p)pα − εα(p)pµ)t1µνραβ(p, q) , (2.10)

where t1µνραβ has the following properties:

• Does not contain qβ, qν ;

• Does not contain pα, pµ ;

• Antisymmetric under α↔ µ ;

• Antisymmetric under β ↔ ν ;
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• We may exchange pρ ↔ −qρ in any term.

There are 27 different combinations of p, q, the metric tensor η, and the Levi-Civita tensor ǫ

that have these properties. The combinations are listed in appendix A. Having constructed

such terms, we can consider the contribution to Fµνρ that each will provide. We note that,

by construction, contraction according to equation (2.10) is equivalent to contraction of

the contribution to t1µνραβ with ερ
gKK(r)εν(q)qβεµ(p)pα, and we may therefore contract each

contribution according to the equation

Fµνρ = pαqβt1µνραβ . (2.11)

Such a contraction yields four different forms that may contribute to Fµνρ, namely

(ηµνp · q − qµpν) pρ , (2.12)

ǫµνγδp
γqδpρ , (2.13)

ǫµνργpγp · q − ǫµργδp
γqδpν , (2.14)

ǫµνργqγp · q − ǫνργδp
γqδqµ . (2.15)

We may therefore write

Fµνρ = A (ηµνp · q − qµpν) pρ + Bǫµνγδp
γqδpρ+

+ C
(

ǫµνργpγp · q − ǫµργδp
γqδpν

)

+ D
(

ǫµνργqγp · q − ǫνργδp
γqδqµ

)

, (2.16)

where A, B, C and D are constants. The problem of calculating the amplitude reduces to

the problem of calculating A, B, C and D, and where two terms have the same coefficient,

it suffices to evaluate the coefficient for one of them. This last observation will prove

important later for simplifying the calculation.

3 Feynman rules applicable to the calculation

Many of the vertices and propagators applicable to the calculation are ones that appear in

the Standard Model; however, it is necessary to add to the Feynman rules for those vertices

and propagators rules for the KK gluon propagator and for its interactions.

Following references [11, 28], we recall that the KK gluon arises from a mode expansion

of the components in the usual four dimensions of the five-dimensional gluon field into fields

depending upon the standard four-dimensional coordinates (A
(n)
µ (xµ)) and fields depend-

ing upon the extra-dimensional coordinate (χn(φ)). That is (following the conventions of

reference [28]),

Aµ(xµ, φ) =

∞
∑

n=0

A(n)
µ (xµ)

χn(φ)√
Rc

, (3.1)

where φ = x4/Rc. The particle to which we refer as the “KK gluon” is the first excited

mode A
(1)
µ — there are further excited modes, which we neglect as being suppressed by their

higher masses. The mode decomposition leaves open in principle the possibility of a scalar
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gluon A4, corresponding to the extra-dimensional component of the five-dimensional gluon.

We shall eventually be constrained in our choice of gauge for A4 by the requirement that the

four-dimensional effective theory be anomaly-free1. However, we may begin by making the

gauge choice A4 = 0 for calculational convenience. Whilst the subsequent change of gauge

affects some Feynman rules already used, the effects are loop-suppressed, so that their

consideration is only necessary at two-loop level, and may be neglected at the one-loop

level. Oscillations between KK modes are prevented by the orthonormality condition

∫ π

−π
dφχmχn = δmn . (3.2)

It is, however, notable that since there need be no momentum conservation in the extra

dimension (there is not translational invariance), there is no a priori reason why there

should not be interaction vertices between the Standard Model gluon and the KK gluon.

We may obtain the couplings at the interaction vertices (and, in particular, determine

whether the couplings are non-zero) by integrating out the extra-dimensional wavefunctions

χn that appear in the interaction terms. Reference [28] derives values for the wavefunc-

tions of

χ0 =
1√
2π

, (3.3)

χ1 =
ekRc|φ|

N1

[

J1

(

MKK

k
ekRc|φ|

)

+ α1Y1

(

MKK

k
ekRc|φ|

)]

, (3.4)

where N1 is a normalisation constant, α1 is a constant and J1 and Y1 are Bessel func-

tions of order 1. (The derivation is for an Abelian theory but holds in the non-Abelian

case.) The couplings are determined by substituting equation (3.1) into the interacting part

of the action (viz. −(1/4)Fµν(xµ, φ)Fµν(xµ, φ)) and integrating out the fifth dimensional

component of the action x4 = Rcφ.

For the Standard Model three-point coupling, this procedure gives us

g = g5

∫ π

−π
dφ

χ3
0√
Rc

=
g5√
2πRc

, (3.5)

which we use to determine the relationship between the five-dimensional coupling g5 and

the Standard Model coupling g.

For the gggKK coupling, we note that all relevant terms in the action will yield the

integral

3g5

∫ π

−π
dφ

χ2
0χ1√
Rc

=
3g5√
2π

∫ π

−π
dφ

χ0χ1√
Rc

= 0 , (3.6)

where we have used equations (3.3) and (3.2) respectively for the two equalities. So, as

already known, there is no gggKK vertex. By a similar argument, there is no ggggKK vertex.

1The five-dimensional theory is gauge-variant and consequently UV-divergent [29], but we can impose

upon the four-dimensional theory a condition of gauge-invariance (or equivalently freedom from gauge

anomalies) by our choice of five-dimensional gauge.
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For the ggKKgKK coupling, the relevant terms in the action will yield the integral

3g5

∫ π

−π
dφ

χ0χ
2
1√

Rc
=

3g5√
2π

∫ π

−π
dφ

χ2
1√
Rc

=
3g5√
2πRc

= 3g , (3.7)

where we have used equations (3.3), (3.2) and (3.5) respectively in the equalities. Noting

that the symmetry factor for the ggKKgKK vertex is 2! rather than the 3! of the ggg vertex,

we see that the two vertices have the same coupling.

The integral is very similar for the gggKKgKK coupling: we obtain

3!(g5)
2

∫ π

−π
dφ

χ2
0χ

2
1

Rc
=

3!(g5)
2

2π

∫ π

−π
dφ

χ2
1

Rc
=

3!(g5)
2

2πRc
= 3!g2 , (3.8)

again using equations (3.3), (3.2) and (3.5) respectively in the equalities. Noting that the

symmetry factor for the gggKKgKK vertex is 2! · 2! rather than the 4! of the gggg vertex,

we see that the two vertices have the same coupling.

The remaining gluon interaction vertices that we shall need are the gKKgKKgKK and

ggKKgKKgKK vertices (the four-point gKKgKKgKKgKK vertex is not required). To obtain

these two vertices requires integrating χ3
1, which, given (3.4), is non-trivial. The approxi-

mations given in reference [28] are sufficient to allow a numerical integration [30, 31], which

shows the couplings to be non-zero and of the same orders of magnitude as their Standard

Model counterparts (with kRc = 11, there is an enhancement of approximately 2.5 times).

Since again the symmetry factors and Lagrangian multiplicities balance between the ver-

tices and their Standard Model counterparts, we may write the couplings as g(111) for the

gKKgKKgKK coupling, and gg(111) for the ggKKgKKgKK coupling, where g(111) depends upon

the geometry of the extra dimension, but is approximately 2.5g when kRc = 11.

The KK gluon propagator has the same structure as the Standard Model gluon prop-

agator, but with a mass term. (We choose the Feynman gauge throughout.)

A one-loop calculation in Feynman gauge in principle can contain ghosts in diagrams.

In order to provide the appropriate cancellations the ghosts must have a mode expansion in

which the extra-dimensional component of the expansion is equal to that of the gluon com-

ponent, i.e. χn. This means that the values of the couplings of the ghost modes match the

values of the couplings of the corresponding gluon modes. The propagator for the KK ghost

has the same structure as the Standard Model ghost propagator, but with a mass term.

Finally, we shall need to consider the couplings between quarks and the KK gluon.

These couplings vary with the bulk profiles of the quarks and with their handedness; we

write the magnitude of the coupling as g(1q) in each case and include a chiral projector in

the Feynman rule.

The Feynman rules are summarized in figure 1. fabc are the SU(3) anti-symmetric

structure constants where a, b, c, . . . are adjoint SU(3) indices. ta are SU(3) generators and

A,B,C denote fundamental SU(3) indices.
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p
A, i B, j

iδAB(/p−mq)ji

p2−m2
q

p
a, α b, β

−iδabηαβ

p2

p
a, α b, β

−iδabηαβ

p2−M2
KK

p
a b

δab

p2−M2
KK

a, α

B, i

C, j

−ig(ta)CB(γα)ji

a, α

B, i

C, j

−ig(1q)(ta)CB(γα)jk
(

(1± γ5)/2
)

ki

(± in chiral projector according

to handedness of quark)

← p

ց q

ր r

a, α

b, β

c, γ

−gfabc[(p − q)γηαβ+

+ (q − r)αηβγ+

+ (r − p)βηγα]

← p

ց q

ր r

a, α

b, β

c, γ

−gfabc[(p − q)γηαβ+

+ (q − r)αηβγ+

+ (r − p)βηγα]
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← p

ց q

ր r

a, α

b, β

c, γ

−g(111)fabc[(p− q)γηαβ+

+ (q − r)αηβγ+

+ (r − p)βηγα]

a, α

b, β

d, δ

c, γ

−ig2[f eacf ebd(ηαβηγδ − ηαδηβγ)+

+ f eadf ebc(ηαβηγδ − ηαγηβδ)+

+ f eabf ecd(ηαγηβδ − ηαδηβγ)]

a, α

b, β

d, δ

c, γ

−igg(111) [f eacf ebd(ηαβηγδ − ηαδηβγ)+

+ f eadf ebc(ηαβηγδ − ηαγηβδ)+

+ f eabf ecd(ηαγηβδ − ηαδηβγ)]

q

a, α

b

c

gfabcqα

q

a, α

b

c

g(111)fabcqα

Figure 1. Feynman rules required to evaluate the diagrams relevant for the gg → gKK process.

The KK gluon is denoted by a double gluon line, and the KK ghost is denoted by lines of circles.

4 Diagrams

4.1 Quark loop diagrams

Figure 2 contains diagrams for the process that have a quark in the loop. We may write

the contributions to the amplitude from the individual diagrams as

F (q:a)
µνρ = −1

2
ig2g(1q)fadbδdeTr(tcte) [ηµα(p + r)ν + ηαν(−r − q)µ + ηµν(q − p)α]×

× ηαβ 1

r2

∫

d4l

(2π)4
Tr
[

γβ(/l −mq)γρ(1± γ5)(/l + /r −mq)
]

[l2 −m2
q][(l + r)2 −m2

q ]
, (4.1)
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ν, b, q

µ, a, p

ρ, c, r

(a)

ν, b, q

µ, a, p

ρ, c, r

(b) ν, b, q

µ, a, p

ρ, c, r

(c)

ν, b, q

µ, a, p

ρ, c, r

(d) ν, b, q

µ, a, p

ρ, c, r

(e)

Figure 2. Feynman diagrams for the process that involve a quark in the loop.

F (q:b)
µνρ = −1

2
ig2g(1q)Tr(tbtd)δdefaec ηαβ

q2 −M2
KK

[ηµβ(p− q)ρ + ηβρ(q + r)µ + ηρµ(−r − p)β]×

×
∫

d4l

(2π)4
Tr
[

γν(/l −mq)γα(1± γ5)(/l + /q −mq)
]

[l2 −m2
q ][(l + q)2 −m2

q]
, (4.2)

F (q:c)
µνρ = −1

2
ig2g(1q)Tr(tatd)δdef bec ηαβ

p2 −M2
KK

[ηνβ(q − p)ρ + ηβρ(p + r)ν + ηρν(−r − q)β]×

×
∫

d4l

(2π)4
Tr
[

γµ(/l −mq)γα(1± γ5)(/l + /p−mq)
]

[l2 −m2
q ][(l + p)2 −m2

q]
, (4.3)

F (q:d)
µνρ = −1

2
g2g(1q)Tr(tatctb)×

×
∫

d4l

(2π)4
Tr
[

γµ(/l − /p−mq)γρ(1± γ5)(/l + /q −mq)γν(/l −mq)
]

[(l − p)2 −m2
q][(l + q)2 −m2

q][l
2 −m2

q]
, (4.4)

F (q:e)
µνρ = −1

2
g2g(1q)Tr(tbtcta)×

×
∫

d4l

(2π)4
Tr
[

γν(/l − /q −mq)γρ(1± γ5)(/l + /p−mq)γµ(/l −mq)
]

[(l − q)2 −m2
q][(l + p)2 −m2

q][l
2 −m2

q]
, (4.5)
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denoting the contribution from quark loop diagram a by F
(q:a)
µνρ , etc. These contributions

are applicable to KK quarks as well, with appropriate modification of couplings.

4.2 Kaluza-Klein gluon (and ghost) loop diagrams

There are no diagrams with a gluon in the loop, since there is no vertex containing gluons

and a single KK gluon. However, there are diagrams with KK gluons (and KK ghosts) in

the loop. These diagrams are shown in figures 3 and 4.

We may write the contributions to the amplitude from the KK gluon diagrams as

F (g:a)
µνρ = −ig2g(111)fabdf efif chgδdeδfgδhi [(p− q)αηµν + (q + r)µηνα + (−r − p)νηµα]×

× 1

r2
ηαβηγδηǫζ

∫

d4l

(2π)4

{

1

[(l + r)2 −M2
KK][l2 −M2

KK]
×

× [(2r + l)ζηβγ + (−2l − r)βηγζ + (l − r)γηβζ ]×

× [(−r + l)δηǫρ + (−2l − r)ρηǫδ + (l + 2r)ǫηρδ]

}

, (4.6)

F (g:b)
µνρ = −ig2g(111)f cadf efif bhgδdeδfgδhi [(−r − p)αηρµ + (p− q)ρηµα + (q + r)µηρα]×

× 1

q2 −M2
KK

ηαβηγδηǫζ

∫

d4l

(2π)4

{

1

[(l − q)2 −M2
KK][l2 −M2

KK]
×

× [(−2q + l)ζηβγ + (q − 2l)βηγζ + (l + q)γηβζ ]×

× [(q + l)δηǫν + (q − 2l)νηǫδ + (l − 2q)ǫηνδ]

}

,

(4.7)

F (g:c)
µνρ = −ig2g(111)f cbdf efifahgδdeδfgδhi [(−r − q)αηρν + (q − p)ρηνα + (p + r)νηρα]×

× 1

p2 −M2
KK

ηαβηγδηǫζ

∫

d4l

(2π)4

{

1

[(l − p)2 −M2
KK][l2 −M2

KK]
×

× [(−2p + l)ζηβγ + (p − 2l)βηγζ + (l + p)γηβζ ]×

× [(p + l)δηǫµ + (p− 2l)µηǫδ + (l − 2p)ǫηµδ]

}

,

(4.8)

F (g:d)
µνρ = −ig2g(111) 1

r2
ηαβηγδfabd [(p− q)αηµν + (q + r)µηνα + (−r − p)νηµα] δdeδfg×

×
[

fxegfxfc(ηβγηδρ − ηβρηγδ) + fxecfxfg(ηβγηδρ − ηβδηγρ)+

+fxeffxgc(ηβδηγρ − ηβρηγδ)
]

∫

d4l

(2π)4
1

l2 −M2
KK

, (4.9)
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ν, b, q

µ, a, p

ρ, c, r

(a) ν, b, q

µ, a, p

ρ, c, r

(b)

ν, b, q

µ, a, p

ρ, c, r

(c) ν, b, q

µ, a, p

ρ, c, r

(d)

ν, b, q

µ, a, p

ρ, c, r

(e) ν, b, q

µ, a, p

ρ, c, r

(f)

ν, b, q

µ, a, p

ρ, c, r

(g) ν, b, q

µ, a, p

ρ, c, r

(h)

ν, b, q

µ, a, p

ρ, c, r

(i) ν, b, q

µ, a, p

ρ, c, r

(j)

Figure 3. Feynman diagrams for the process that involve a Kaluza-Klein gluon in the loop.
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F (g:e)
µνρ = −ig2g(111) 1

q2 −M2
KK

ηαβηγδf cad [(−r − p)αηρµ + (p− q)ρηµα + (q + r)µηρα]×

× δdeδfg
[

fxegfxfb(ηβγηδν − ηβνηγδ) + fxebfxfg(ηβγηδν − ηβδηγν)+

+fxeffxgb(ηβδηγν − ηβνηγδ)
]

∫

d4l

(2π)4
1

l2 −M2
KK

, (4.10)

F (g:f)
µνρ = −ig2g(111) 1

p2 −M2
KK

ηαβηγδf cbd [(−r − q)αηρν + (q − p)ρηνα + (p + r)νηρα]×

× δdeδfg
[

fxegfxfa(ηβγηδµ − ηβµηγδ) + fxeafxfg(ηβγηδµ − ηβδηγµ)+

+fxeffxga(ηβδηγµ − ηβµηγδ)
]

∫

d4l

(2π)4
1

l2 −M2
KK

, (4.11)

F (g:g)
µνρ = −ig2g(111)f cfeδdeδfgηαβηγδ×

×
[

fxadfxbg(ηµνηαδ − ηµδηνα + fxagfxbd(ηµνηαδ − ηµαηνδ)+

fxabfxdg(ηµαηνδ − ηµδηνα)
]

×

×
∫

d4l

(2π)4
[(l − r)βηργ + (−2l − r)ρηγβ + (l + 2r)γηβρ]

[(l + r)2 −M2
KK][l2 −M2

KK]
, (4.12)

F (g:h)
µνρ = −ig2g(111)f bfeδdeδfgηαβηγδ×

×
[

fxcdfxag(ηρµηαδ − ηρδηµα + fxcgfxad(ηρµηαδ − ηραηµδ)+

fxcbfxag(ηραηµδ − ηρδηµα)
]

×

×
∫

d4l

(2π)4
[(l + q)βηνγ + (q − 2l)νηγβ + (l − 2q)γηβν ]

[(l − q)2 −M2
KK][l2 −M2

KK]
, (4.13)

F (g:i)
µνρ = −ig2g(111)fafeδdeδfgηαβηγδ×

×
[

fxcdfxbg(ηρνηαδ − ηρδηνα + fxcgfxbd(ηρνηαδ − ηραηνδ)+

fxcbfxdg(ηραηνδ − ηρδηνα)
]

×

×
∫

d4l

(2π)4
[(l + p)βηµγ + (p− 2l)µηγβ + (l − 2p)γηβµ]

[(l − p)2 −M2
KK][l2 −M2

KK]
, (4.14)

F (g:j)
µνρ = −ig2g(111)fadif cfef bhgδdeδfgδhiηαβηγδηǫζ×

×
∫

d4l

(2π)4
1

[(l + p)2 −M2
KK][(l − q)2 −M2

KK][l2 −M2
KK]
×

× [(2p + l)ζηαµ + (−2l − p)µηαζ + (l − p)αηµζ ]×

× [(−r + l − q)βηργ + (q − 2l − p)ρηβγ + (l + p + r)γηρβ ]×

× [(q + l)δηǫν + (−2l + q)νηǫδ + (l − 2q)ǫηνδ] , (4.15)

denoting the contribution from KK gluon loop diagram a by F
(g:a)
µνρ , etc. We may write the

contributions to the amplitude from the KK ghost diagrams as
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ν, b, q

µ, a, p

ρ, c, r

(a) ν, b, q

µ, a, p

ρ, c, r

(b)

ν, b, q

µ, a, p

ρ, c, r

(c) ν, b, q

µ, a, p

ρ, c, r

(d)

Figure 4. Feynman diagrams for the process that involve a Kaluza-Klein ghost in the loop.

F (gh:a)
µνρ = ig2g(111)fadbf cghf eifδdeδfgδhi[(p + r)νηµα + (−r − q)µηνα + (q − p)αηµν ]×

× 1

r2
ηαβ

∫

d4l

(2π)4
(l + r)ρlβ

[(l + r)2 −M2
KK][l2 −M2

KK]
, (4.16)

F (gh:b)
µνρ = ig2g(111)faecfdiff bghδdeδfgδhi[(p− q)ρηβµ + (q + r)µηβρ + (−r − p)βηρµ]×

× 1

q2 −M2
KK

ηαβ

∫

d4l

(2π)4
lα(l + q)ν

[l2 −M2
KK][(l + q)2 −M2

KK]
, (4.17)

F (gh:c)
µνρ = ig2g(111)f becfdiffaghδdeδfgδhi[(q − p)ρηβν + (p + r)νηβρ + (−r − q)βηρν ]×

× 1

p2 −M2
KK

ηαβ

∫

d4l

(2π)4
lα(l + p)ν

[l2 −M2
KK][(l + p)2 −M2

KK]
, (4.18)

F (gh:d)
µνρ = ig2g(111)faidf ceff bghδdeδfgδhi×

×
∫

d4l

(2π)4
(l + p)µ(l − q)ρlν

[(l + p)2 −M2
KK][(l − q)2 −M2

KK][l2 −M2
KK]

, (4.19)

denoting the contribution from KK ghost loop diagram a by F
(gh:a)
µνρ , etc.

4.3 Counterterm diagrams

If we are to use bare parameters in the expressions for the diagrams given so far, then

diagrams containing counterterms will appear to balance the divergences from the previous

diagrams. However, we shall see that it is possible to avoid considering such diagrams,

and so we shall not detail them in full here. It suffices to observe that there are four

counterterm diagrams (their appearance is that of the KK ghost loop diagrams in figure 4,

with each KK ghost loop replaced by a counterterm), and that the Lorentz structure of

the counterterms is derived from consideration of the underlying Lagrangian term. In
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particular, each term in the three-point counterterm vertex has one momentum factor

carrying a Lorentz index (the other two being carried by a metric factor), and the two-point

counterterm vertex has the sum of a term where the metric carries both external Lorentz

indices and a term where there are two momentum terms each carrying an external Lorentz

index. We note that this latter term always contains a momentum factor that contracts

with an external polarisation vector to give zero. It is therefore the case that none of the

counterterm diagrams contains a term where there is more than one momentum factor

carrying an external Lorentz index. (There is also no term with a Levi-Civita tensor

carrying an external Lorentz index.)

5 Calculation of the amplitude

5.1 Simplification of the calculation

Before proceeding to calculate the gg → gKK amplitude, we note that we can simplify

our calculation significantly by using the general form derived in equation (2.16) to justify

disregarding many diagrams.

Firstly, we note that the only diagrams capable of producing a Levi-Civita tensor are

those containing a trace of a γ5, i.e. the diagrams with quark loops. Of the diagrams with

quark loops, we note that the loop integrals for diagrams (a), (b) and (c) only contain the

loop momentum and one other momentum, and have as a maximum two factors of the

momentum on the numerator (both of which contract with a trace of gamma matrices).

This means that, even taking reparametrisation of the integrand into account, the only

possible terms in the numerator contain either

• Two identical momenta contracted with a Levi-Civita tensor, which gives zero since

the Levi-Civita tensor is antisymmetric, or

• One loop momentum and one other momentum contracted with a Levi-Civita ten-

sor, which gives zero since such a term is odd in the loop momentum and the loop

momentum integral is over all of space-time, or

• No loop momenta, but such a term does not yield a Levi-Civita tensor, since the

trace involving a γ5 term contains only two other gamma matrices, and this is zero.

So the only contributions to amplitude coefficients B, C and D come from F
(q:d)
µνρ and F

(q:e)
µνρ .

Secondly, we note that in evaluating the contribution to amplitude coefficient A, we

may sum the coefficients of either the term ηµνp · qpρ or the term −qµpνpρ. We choose the

latter term.

We have already noted that no counterterm diagram contains more than one loop

momentum carrying an external Lorentz index, so no counterterm diagram provides a

contribution we need to evaluate.

In the quark loop sector, it initially appears that we can obtain a contribution we

need to evaluate from each diagram, it being possible to obtain terms with three external

momenta carrying external Lorentz indices in each case. However, we note that considering
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the loop momentum integral, in the case of diagram (a) such a term would have to contain

a factor of rρ, which contracts with the external polarisation vector to give zero, and

similarly such a term in diagram (b) would have to contain a factor of qν and such a term

in diagram (c) would have to contain a factor of pµ, both of which contract with external

polarisation vectors to give zero. So the only contributions to amplitude coefficient A from

the quark loop sector that we need to evaluate come from F
(q:d)
µνρ and F

(q:e)
µνρ .

Similarly, whilst in the KK gluon loop sector, it initially appears that we can obtain

a contribution we need to evaluate from diagrams (a), (b), (c) and (j), we note that the

terms with three external momenta carrying external Lorentz indices in diagrams (a), (b)

and (c) contain factors of rρ, qν and pµ respectively, all of which contract with external

polarisation vectors to give zero. So the only contribution to amplitude coefficient A from

the KK gluon loop sector that we need to evaluate comes from F
(g:j)
µνρ .

The behaviour of the KK ghost loop sector is similar to that of the quark loop sector,

and the only contribution to the amplitude coefficient A from the KK ghost loop sector

that we need to evaluate comes from F
(gh:d)
µνρ .

We have therefore reduced the calculations required to derive the amplitude to those

required to deduce the coefficients of single Levi-Civita tensors and of the term −qµpνpρ

in F
(q:d)
µνρ + F

(q:e)
µνρ , and of the term −qµpνpρ in F

(g:j)
µνρ + F

(gh:d)
µνρ .

5.2 Contribution from diagrams with quark loops

We have established that we only need to consider diagrams (d) and (e) in the quark loop

sector, and noting the similarities in their structure we begin by attempting to sum the

diagrams without evaluating them.

Firstly, we note that we can apply recursively the identity

tatb =
1

6
δabI3 +

1

2
(ifabc + dabc)tc , (5.1)

along with the property that the ta are traceless, to deduce that

Tr(tatbtc) =
1

4
(ifabc + dabc) . (5.2)

Next, we note that we can apply the charge conjugation relations

C−1γµC = −γµ T , C−1γµγ5C =
(

γµγ5
)T

, (5.3)

along with the cyclic property of the trace and the trace reversal property of the transpose,

to obtain

∫

d4l

(2π)4
Tr
[

γν(/l − /q −mq)γρ(1± γ5)(/l + /p−mq)γµ(/l −mq)
]

[(l − q)2 −m2
q][(l + p)2 −m2

q][l
2 −m2

q]
=

=

∫

d4l

(2π)4
Tr
[

(−/l −mq)(−γµ)(−/l − /p−mq)γρ(−1± γ5)(−/l + /q −mq)(−γν)
]

[(l − q)2 −m2
q][(l + p)2 −m2

q][l
2 −m2

q]
=

=

∫

d4l

(2π)4
Tr
[

(/l −mq)γµ(/l − /p−mq)γρ(1∓ γ5)(/l + /q −mq)γν

]

[(l + q)2 −m2
q][(l − p)2 −m2

q][l
2 −m2

q]
, (5.4)
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where we have taken l→ −l in the final line.

Substituting equations (5.2) and (5.4) into equations (4.4) and (4.5), we obtain

F (q:d)
µνρ + F (q:e)

µνρ = −1

4
g2g(1q)ifacb

∫

d4l

(2π)4
Tr
[

γµ(/l − /p−mq)γρ(/l + /q −mq)γν(/l −mq)
]

[(l − p)2 −m2
q][(l + q)2 −m2

q][l
2 −m2

q]
∓

∓ 1

4
g2g(1q)dacb

∫

d4l

(2π)4
Tr
[

γµ(/l − /p−mq)γργ
5(/l + /q −mq)γν(/l −mq)

]

[(l − p)2 −m2
q ][(l + q)2 −m2

q ][l
2 −m2

q]
.

(5.5)

Applying a Feynman parametrisation and integral redefinition

∫

d4l

(2π)4
f(l)

[(l − p)2 −m2
q][(l + q)2 −m2

q ][l
2 −m2

q]
=

=

∫ 1

0
dx

∫ 1−x

0
dy

∫

d4l

(2π)4
f(l + xp− yq)

[l2 + 2xy p · q −m2
q]

3
, (5.6)

where we have used equation (1.5) (p2 = q2 = 0) to simplify the final denominator, and

keeping from the first integral of equation (5.5) only the terms parallel to −qµpνpρ and from

the second integral of the equation only the terms parallel to ǫµνγδp
γqδpρ, ǫµργδp

γqδpν , and

ǫνργδp
γqδqµ (these are the only terms required to evaluate the coefficients A, B, C and D

in equation (2.16)), we obtain [32]

F (q:d)
µνρ + F (q:e)

µνρ

∣

∣

∣

relevant
terms

=

= 2ig2g(1q)fabc

∫ 1

0
dx

∫ 1−x

0
dy

∫

d4l

(2π)4
pνqµxy[pρ(1− 2x) + qρ(2y − 1)]

[l2 + 2xy p · q −m2
q]

3
±

± 2ig2g(1q)dabc

∫ 1

0
dx

∫ 1−x

0
dy

∫

d4l

(2π)4
xy(ǫµργδp

γqδpν − ǫνργδp
γqδqµ)

[l2 + 2xy p · q −m2
q]

3
. (5.7)

The momentum integrals may be evaluated by standard techniques to obtain

F (q:d)
µνρ + F (q:e)

µνρ

∣

∣

∣

relevant
terms

=

=
g2g(1q)fabc

(4π)2

∫ 1

0
dx

∫ 1−x

0
dy

pνqµxy[pρ(1− 2x) + qρ(2y − 1)]

m2
q − 2xy p · q ±

± g2g(1q)dabc

(4π)2
(ǫµργδp

γqδpν − ǫνργδp
γqδqµ)

∫ 1

0
dx

∫ 1−x

0
dy

xy

m2
q − 2xy p · q =

=
2g2g(1q)fabc

(4π)2
qµpνpρ I(mq,MKK)± g2g(1q)dabc

(4π)2
(ǫµργδp

γqδpν−ǫνργδp
γqδqµ)K(mq,MKK) ,

(5.8)

where

I(mq,MKK) =

∫ 1

0
dx

∫ 1−x

0
dy

xy(1− x− y)

m2
q − xyM2

KK

(5.9)
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and

K(mq,MKK) =

∫ 1

0
dx

∫ 1−x

0
dy

xy

m2
q − xyM2

KK

. (5.10)

So each quark loop contributes a total of −2g2g(1q)fabc

(4π)2
I(mq,MKK) to the coefficient A

in equation (2.16), a total of ∓ g2g(1q)dabc

(4π)2 K(mq,MKK) to the coefficient C and a total of

± g2g(1q)dabc

(4π)2
K(mq,MKK) to the coefficient D, where the sign of the contribution varies as

the quark is right- or left-handed. (We shall evaluate the integral I(mq,MKK) later; it will

turn out that we shall not need the integral K(mq,MKK).)

5.3 Contribution from diagrams with Kaluza-Klein gluon (or ghost) loops

We have established that we only need to consider diagram (j) in the KK gluon loop sector

and diagram (d) from the KK ghost loop. It is useful first to derive an identity for the

SU(3) structure constants contained in the expressions for these diagrams.

The structure constants fabc satisfy the identity

(T a)bc = −ifabc , (5.11)

where the T a are in the adjoint representation of SU(3) and satisfy the same algebra as

the fundamental representation. It therefore follows that

fadhf cfdf bhf = −i(T a)dh(T c)fd(T
b)hf =

= −iTr(T aT bT c) =

=
1

4
(fabc − idabc) , (5.12)

using equation (5.2).

We may now apply a Feynman parametrisation and integral redefinition to equa-

tions (4.15) and (4.19) and evaluate the numerators [32], obtaining

F (g:j)
µνρ = −9

2
g2g(111)(ifabc + dabc)qµpνpρ

∫ 1

0
dx

∫ 1−x

0
dy

∫

d4l

(2π)4
xy(1− x− y)

[l2 + 2xy p · q −M2
KK]3

,

(5.13)

F (gh:d)
µνρ =

1

4
g2g(111)(ifabc + dabc)qµpνpρ

∫ 1

0
dx

∫ 1−x

0
dy

∫

d4l

(2π)4
xy(1− x− y)

[l2 + 2xy p · q −M2
KK]3

.

(5.14)

The momentum integrals may be evaluated by standard techniques to obtain

F (g:j)
µνρ = −9

4

g2g(111)

(4π)2
(fabc − idabc)qµpνpρ I(MKK,MKK) , (5.15)

F (gh:d)
µνρ =

1

8

g2g(111)

(4π)2
(fabc − idabc)qµpνpρ I(MKK,MKK) , (5.16)

where I(MKK,MKK) is defined in equation (5.9).

We therefore obtain a contribution of 17
8

g2g(111)

(4π)2
(fabc − idabc)I(MKK,MKK) to the co-

efficient A in equation (2.16) from the KK gluon and KK ghost loops.
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5.4 Overall amplitude before anomaly cancellation

Summing the contributions from the quark loop diagrams and the KK gluon and KK ghost

loop diagrams, we derive that the amplitude for the process gg → gKK, neglecting higher

order excitations of the KK gluon and KK ghost, satisfies

Fµνρ = A (ηµνp · q − qµpν) pρ+

+ C
(

ǫµνργpγp · q − ǫµνργqγp · q − ǫµργδp
γqδpν + ǫνργδp

γqδqµ

)

, (5.17)

where

A =
17

8

g2g(111)

(4π)2
(fabc − idabc)I(MKK,MKK)−

∑

qL,qR

2g2g(1q)fabc

(4π)2
I(mq,MKK) , (5.18)

C =
∑

qR

g2g(1q)dabc

(4π)2
K(mq,MKK)−

∑

qL

g2g(1q)dabc

(4π)2
K(mq,MKK) , (5.19)

the expressions for the integrals I and K are given in equations (5.9) and (5.10), respec-

tively, and we emphasise that the left- and right-handed quark states must be treated as

separate particles in the sum for A.

At this stage, we note that the amplitude as calculated so far contains an anomaly

in the current associated with the outgoing KK gluon (that is, the on-shell Ward identity

rρFµνρ = 0 is not satisfied). This is because we have taken the gauge A4 = 0, which

we do not have the freedom to do in a five-dimensional non-Abelian theory with chiral

delocalised quarks if we desire anomaly cancellation [29]. We must therefore now apply a

gauge transformation that leaves the four-dimensional theory anomaly-free. We note that

from the perspective of our current calculation, this is a technical requirement that does

not affect the final result of the on-shell calculation. However, it does have the potential

to affect the result for Fµνρ.

5.5 Cancellation of the anomaly

It is possible to add to the five-dimensional Lagrangian for this theory the Chern-Simons

term [33]

LCS = cǫV WXY ZTr

(

AV ∂W AX∂Y AZ −
3i

2
AV AW AX∂Y AZ −

3

5
AV AW AXAY AZ

)

,

(5.20)

where AV = Aa
V ta, etc and V,W,X, . . . are 5-dimensional space-time indices. Of inter-

est to us are the three-point gggKK interaction vertices that result from this Lagrangian

term (the other vertices will only feature in higher-order corrections). Without making a

specific gauge choice, but keeping the form of the extra-dimensional wavefunctions noted

in section 6.3 (which we shall justify momentarily), we obtain from the four-dimensional

perspective two types of interaction term, depending upon whether the index for the extra

dimension attaches to a gauge field or to a derivative. The terms are the four-dimensional

Chern-Simons-like term

LCS4 = c1ǫ
µνργdabcA(0)a

µ ∂γA(0)b
ν ∂4A

(1)c
ρ (5.21)
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p
a b

iδab

p2

a b, β
p

δabpβ

ց p

ր q

c

a, α

b, β

ic2d
abcǫαβγδpγqδ

Figure 5. Additional relevant non-zero Feynman rules for gauges with A4 6= 0.

ν, b, q

µ, a, p

ρ, c, r

Figure 6. Additional Feynman diagram for the process gg → gKK for gauges with A4 6= 0.

(we note that the ∂4 can only act on the KK mode as the extra-dimensional wavefunctions

of the zero modes are flat, and all other possible terms can be obtained by using symmetry

or antisymmetry arguments from the one given), and the three-point “axion” term

LAx = c2ǫ
µνγδdabc

(

∂γAa
µ∂δA

b
νA

c
4 + 2Aa

µ∂γAb
ν∂δA

c
4

)

. (5.22)

The constants c1 and c2 may be chosen separately, since we inherit two degrees of freedom

from the five-dimensional theory, one from the coefficient of the five-dimensional Chern-

Simons term, and one from the gauge choice. We choose c1 = 0, and shall choose c2 so as

to provide the requisite anomaly cancellation.

The A4 field also enters into the kinetic gauge term of the Lagrangian, allowing oscil-

lation between the scalar axion and the four-dimensional gauge modes.

The additional Feynman rules resulting from the change of gauge and the addition of

the extra Lagrangian term are shown in figure 5.

These rules give rise to one extra diagram, shown in figure 6.
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The extra diagram gives a contribution to the amplitude of

F (axion)
µνρ = −c2d

abc 1

r2
ǫµνγδp

γqδrρ , (5.23)

and we can choose the constant c2 so that this contribution is equal on-shell to

Cǫµνγδp
γqδrρ , (5.24)

where C is as given in equation (5.19). This addition means that the amplitude now satisfies

the Ward identity rρFµνρ = 0, without disturbing the other Ward identities2. Since the

term rρ in the additional contribution is projected out by the KK polarisation tensor, it is

clear that this contribution makes no difference to the square of the final on-shell matrix

element. (We recall that the on-shell gKK amplitude is given by contracting Fµνρ with the

external polarisation vectors.)

Before finishing this technical aside, we note that making a gauge choice other than

A4 = 0 alters the form of the five-dimensional Yang-Mills equation [11, 28], and in particular

this has the potential to break the derivation of the extra-dimensional wavefunction χ(0) as

constant. However, this alteration may be viewed as a loop-level correction to the equation,

so that the effects of this alteration upon all the diagrams we have considered so far are two-

loop level. This alteration does have the potential to produce a tree diagram for gg → gKK

fusion, but the structure of such a diagram is such that it may be absorbed into the three-

point counterterm diagram and neglected from the perspective of a separate contribution.

6 Calculation of the production cross-section

Our first step in obtaining the production cross-section is to obtain the square of the matrix

element. For this we may use the polarisation sum formulae

εµ(p)εµ′∗(p) = −ηµµ′

+ Qµµ′

, (6.1)

εν(q)εν′∗(q) = −ηνν′

+ Qνν′

, (6.2)

ερ′
gKK

(r)ερ∗
gKK

(r) =
rρrρ′

M2
KK

− ηρρ′ , (6.3)

where Qµµ′

= (pµqµ′

+ pµ′

qµ)/(p · q) and Qνν′

= (qνpν′

+ qν′

pν)/(p · q). The square of the

matrix element satisfies

|M|2 = εµ(p)εν(q)ερ∗
gKK

(r)Fµνρε
µ′∗(p)εν′∗(q)ερ′

gKK
(r)F ∗

µ′ν′ρ′ , (6.4)

and substituting for the polarisation sum formulae and using equation (5.17), we obtain [32]

|M|2 =
M6

KK

32
|A|2 , (6.5)

2To prove the Ward identity fully it is also necessary to note that the term A(ηµνp · q − qµpν)pρ was

derived by applying the KK polarisation tensor to the term (A/2)(ηµνp · q − qµpν)(pρ − qρ).
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with A as given in equation (5.18), and where we have averaged over incoming polarisation

states. We note that the coefficient C has cancelled and we therefore do not need to eval-

uate the integrals K that feature in the equation for coefficient C and not in the equation

for coefficient A.

We may evaluate |A|2, incorporating averaging over incoming colour states and sum-

ming over outgoing colour states to obtain

|M|2 =
M6

KKg4

(4π)4

∣

∣

∣

∣

∣

4046

16384
g(111)2 [I(MKK,MKK)]2−

− 51

256
g(111)

∑

qL,qR

g(1q)[I(MKK,MKK)I(mq,MKK)]+

+
3

64

[

∑

qL,qR

g(1q)I(mq,MKK)

]2 ∣
∣

∣

∣

∣

, (6.6)

where we have combined the expressions resulting from the real and imaginary parts of the

matrix element to obtain this last expression.

Writing

|M|2 =
M6

KKg4

(4π)4
|M̃|2 , (6.7)

we can write an expression for the cross-section for the production of on-shell KK gluons

from the gluon-initiated states as

σ =
M2

KKα2
s

8π

∫

dyx1ga(x1,M
2
KK)x2gb(x2,M

2
KK)|M̃|2, (6.8)

where x1,2 =
√

τe±y, with
√

τ = MKK/
√

s, y being the rapidity of the KK gluon and
√

s

being the total centre of mass energy of the pp system.

We have used this expression to calculate the cross-section for the KK gluon from

the gg-initial state and compared it with the leading order qq̄ result (using the LO cross-

section presented in ref. [22]) at the Large Hadron Collider (LHC), assuming a centre-of-

mass energy of 14 TeV. The ratio is plotted for some typical values of the KK gluon mass

in figure 7. The cross-section from the gg NLO subprocesses turns out to be less than a

thousandth of the LO cross section. This is, in turn, due to appearance of the large KK

gluon mass squared in the denominators of the integral I which have been analytically

studied in appendix B to provide some intuitive basis for these numerical results.

In principle, to complete the full calculation of the KK gluon cross-section at NLO

one needs to calculate the qq̄-initiated diagrams at NLO. But given that the gg-initiated

contribution is tiny, it is expected that the qq̄-initiated contribution will be even smaller

due to the suppressed couplings of valence quarks and the calculation is, therefore, not of

much interest.

7 Discussion

As expected, the most significant contribution to the gg → gKK production process comes

from the tR loop, which has the strongest coupling to the gKK and interferes constructively
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Figure 7. The ratio of the gluon-initiated NLO and the qq̄ -initiated LO cross-sections for the

production of a KK gluon at the LHC with 14TeV centre of mass energy.

with other loop particles. Other loops not involving tR contribute non-negligibly to the

process however, owing partly to the number of different additional loops. We note that our

final result disagrees with a preliminary result obtained as part of ref. [24]. Like ref. [24],

we also find that the gg-initiated contribution is negligibly small.

It has been suggested [24] that the decay width for gKK → tt̄/bb̄ is sufficiently large

to suggest that the narrow width approximation would be an inaccurate approximation to

the total matrix element. In this case, off-shell gKK effects would be non-negligible and

one would like to generalise our calculation to the off-shell case. In appendix C, we have

provided a recipe to modify the amplitudes presented here to the case where the gKK is

off-shell. However, we should remember that this alone is not enough for a full study of

the off-shell effects for such a study would have to include the interference effects with the

Standard Model. The full calculation of the interference effects is, however, not of much

interest given the diminutiveness of the effects in the on-shell case.
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A Tensors satisfying the general form of section 2

The following combinations of p, q, the metric tensor η, and the Levi-Civita tensor ǫ, satisfy

the conditions given in section 2 that must be satisfied by the tensor t1µνραβ , as defined by

equation (2.10). Degenerate combinations have been removed (so, for example, terms with

a qρ are replaced by terms with −pρ, and terms with more than one ǫ tensor are removed

in favour of metric tensors). Each term may have a scalar coefficient.

ηαβpνqµpρ − ηµβpνqαpρ − ηανpβqµpρ + ηµνpβqαpρ (A.1)

ηαβηµνpρ − ηµβηανpρ (A.2)

ηαβηµρpν − ηµβηαρpν − ηανηµρpβ + ηµνηαρpβ (A.3)

ηβαηνρqµ − ηναηβρqµ − ηβµηνρqα + ηνµηβρqα (A.4)

ǫµναβpρ (A.5)

ǫµνραpβ − ǫµβραpν (A.6)

ǫµνρβqα − ǫανρβqµ (A.7)

ǫµνργpγpβqα − ǫανργpγpβqµ − ǫµβργpγpνqα + ǫαβργpγpνqµ (A.8)

ǫµνργqγpβqα − ǫανργqγpβqµ − ǫµβργqγpνqα + ǫαβργqγpνqµ (A.9)

ǫµνργpγηαβ − ǫανργpγηµβ − ǫµβργpγηνα + ǫαβργpγηνµ (A.10)

ǫµνργqγηαβ − ǫανργqγηµβ − ǫµβργqγηνα + ǫαβργqγηνµ (A.11)

ǫµναγpγpρpβ − ǫµβαγpγpρpν (A.12)

ǫµναγqγpρpβ − ǫµβαγqγpρpν (A.13)

ǫµναγpγηρβ − ǫµβαγpγηρν (A.14)

ǫµναγqγηρβ − ǫµβαγqγηρν (A.15)

ǫµνβγpγpρqα − ǫανβγpγpρqµ (A.16)

ǫµνβγqγpρqα − ǫανβγqγpρqµ (A.17)

ǫµνβγpγηρα − ǫανβγpγηρµ (A.18)

ǫµνβγqγηρα − ǫανβγqγηρµ (A.19)

ǫµνγδp
γqδpρqαpβ − ǫανγδp

γqδpρqµpβ − ǫµβγδp
γqδpρqαpν + ǫαβγδp

γqδpρqµpν (A.20)

ǫµνγδp
γqδpρηαβ − ǫανγδp

γqδpρηµβ − ǫµβγδp
γqδpρηαν + ǫαβγδp

γqδpρηµν (A.21)

ǫµνγδp
γqδηραpβ − ǫανγδp

γqδηρµpβ − ǫµβγδp
γqδηραpν + ǫαβγδp

γqδηρµpν (A.22)

ǫµνγδp
γqδηρβqα − ǫανγδp

γqδηρβqµ − ǫµβγδp
γqδηρνqα + ǫαβγδp

γqδηρνqµ (A.23)

ǫρβγδp
γqδηµνqα − ǫρβγδp

γqδηανqµ − ǫρνγδp
γqδηµβqα + ǫρνγδp

γqδηαβqµ (A.24)

ǫραγδp
γqδηβµpν − ǫρµγδp

γqδηβαpν − ǫραγδp
γqδηνµpβ + ǫρµγδp

γqδηναpβ (A.25)

ǫαµγδp
γqδηρβpν − ǫαµγδp

γqδηρνpβ (A.26)

ǫβνγδp
γqδηραqµ − ǫβνγδp

γqδηρµqα (A.27)
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B Analytic evaluation of the Feynman parameter integral used in the

calculation

In the calculation we arrive at the integral (equation (5.9))

I(mq,MKK) =

∫ 1

0
dx

∫ 1−x

0
dy

xy(1− x− y)

m2
q − xyM2

KK

. (B.1)

We note that in the integration region the expression xy has a maximum value of 1/4,

so for Standard Model quarks (where MKK ≫ 2mq) we may approximate the integral by

I(0,MKK), which gives us

I(mq,MKK) ≈ − 1

6M2
KK

. (B.2)

We also obtain the integral I(MKK,MKK). This may be evaluated as follows:

∫ 1

0
dx

∫ 1−x

0
dy

xy(1− x− y)

m2
q − xyM2

KK

=

=
1

M2
KK

∫ 1

0
dx

∫ 1−x

0
dy(x + y − 1) +

1− x− y

1− xy
=

=
1

M2
KK

∫ 1

0
dx

∫ 1−x

0
dy(2x− 1) +

1− 2x

1− xy
, (B.3)

since the integration region is symmetrical about the line x = y so we may interchange x

and y in any term in the integrand. We may evaluate this to obtain

− 1

6M2
KK

+
1

M2
KK

∫ 1

0
dx

[

(2x− 1)

x
log(1− xy)

]y=1−x

y=0

=

=− 1

6M2
KK

+
1

M2
KK

∫ 1

0
dx

(

2− 1

x

)

log(x2 − x + 1) =

=− 1

6M2
KK

+
1

M2
KK

∫ 1

0
dx

(

2− 1

x

)

[

log

(

x− 1

2
− i

√
3

2

)

+ log

(

x− 1

2
+ i

√
3

2

)]

=

=− 1

6M2
KK

+
2

M2
KK

(

−2 +
π√
3

)

−

− 1

M2
KK

∫ 1

0
dx

1

x

[

log

(

1− x
1
2 + i

√
3

2

)

+ log

(

1− x
1
2 + i

√
3

2

)]

=

=
1

M2
KK

(

2π√
3
− 25

6

)

+
1

M2
KK

[

Li2

(

1
1
2 + i

√
3

2

)

+ Li2

(

1
1
2 − i

√
3

2

)]

=

=
1

M2
KK

(

2π√
3
− 25

6

)

+
1

M2
KK

[

Li2

(

1

2
− i

√
3

2

)

+ Li2

(

1

2
+ i

√
3

2

)]

=

=
1

M2
KK

(

2π√
3
− 25

6

)

+
1

M2
KK

[

π2

6
− log

(

1

2
− i

√
3

2

)

log

(

1

2
+ i

√
3

2

)]

=
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=
1

M2
KK

(

2π√
3
− 25

6

)

+
1

M2
KK

[

π2

6
− π2

9

]

=

=
1

M2
KK

(

π2

18
+

2π√
3
− 25

6

)

≈ 1

100M2
KK

, (B.4)

where we have used a number of standard properties of the dilogarithm function (see,

e.g. appendix E.2 of reference [34]).

A similar approach may be used to obtain a full analytic solution to the integral

I(mq,MKK), although because the dilogarithms do not simplify as usefully in that case the

utility of the overall solution is comparatively smaller.

C Generalisation of our results to off-shell KK gluon production

We note that the argument of section 2 only assumes that the KK gluon is on-shell in

allowing the replacement pρ ↔ −qρ, so the argument still holds with the exception that we

obtain additional possible terms in the general form of the amplitude, which correspond to

replacing pρ with qρ in equations (2.12) and (2.13). The symmetry of the diagrams means

we know that the terms we shall obtain will replace pρ with (pρ − qρ)/2, although when

calculating the diagrams we also have to avoid making the replacements 2p ·q = r2 = M2
KK.

In addition, because we cannot use the polarisation tensor ερ
gKK(r) when deriving the general

form of the amplitude, we would have to include the term derived in equation (5.24).
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