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1 Introduction

The holographic AdS/CFT correspondence [1] has become a useful and powerful tool to

study quantum field theories in the strongly coupled regime (see [2–4] for reviews). Even

if most of the models studied in the holographic framework are very different from the

systems found in the phenomenology, many of the results obtained using them are believed

to be universal. To test the universality of these holographic results one should be able to

extend the holographic analysis to models including features present in real life systems.

In this paper we construct a model which allows to explore the extension of the

AdS/CFT correspondence in two directions. First of all, we add dynamical flavors, i.e.,

fields transforming in the fundamental representation of the gauge group. Moreover, our

model is dual to a four-dimensional system which is spatially anisotropic since one of the

spatial field theory directions of the metric is distinguished with respect to the other two.

The corresponding geometry is a black hole, i.e., it has an event horizon, and is based on

the D3-D5 brane intersection of type IIB supergravity. The D3-branes are the color branes

which, in the absence of D5-branes, generate the AdS5 × S5 geometry dual to SU(Nc)

N = 4 super Yang-Mills in 3 + 1-dimensions. The D5-branes are the flavor branes [5] and

are arranged in such a way that they create a (2+1)-dimensional, codimension one, defect

on the worldvolume of the D3-branes.

The field theory dual of this D3-D5 setup is well known. It was determined some

time ago in [6] (see also [7, 8]). It consists of a supersymmetric defect theory with (2+1)-

dimensional matter hypermultiplets coupled to a (3+1)-dimensional bulk theory. In the

past this D3-D5 setup was extensively studied in the approximation in which the D5-branes

are considered as probes in the D3-brane geometry (see, for example, [9–16]). This is the so-

called quenched approximation, which corresponds, in the field theory side, to neglecting

the quark dynamical effects due to quark loops. This probe brane approach is a good

approximation when the number of flavorsNf is much smaller than the number of colorsNc.

In this paper we analyze this D3-D5 brane configuration beyond the quenched approxi-

mation. To find gravity duals to unquenched flavor one has to solve the equations of motion

of supergravity in the presence of D-brane sources. These sources have Dirac δ-functions

and the corresponding Einstein equations are PDE’s which are extremely difficult to solve.

To overcome this difficulty we follow the proposal of [17] and consider a continuous dis-

tribution of D5-brane sources in such a way that there are no δ-functions anymore in our

equations of motion. This approach is accurate only when the number of flavors Nf is large.

Actually, it corresponds to the so-called Veneziano limit, in which both Nc and Nf are large

and their ratio Nc/Nf is fixed [18]. This smearing approach has been successfully applied

to obtain several geometries dual to flavored systems (see [19] for a review and references).

In many cases one gets analytic solutions at the price of modifying the R-symmetry of the

model (due to the average over different orientations of the flavor branes) and changing

the flavor group from U(Nf ) to U(1)Nf (the smeared flavor branes are not coincident).

Most of the smeared flavored geometries found in the literature preserve some amount

of supersymmetry. Indeed, in these models the preservation of supersymmetry is a crucial

guide to find the deformation induced by the flavor branes. However, there are other solu-
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tions which are not supersymmetric and correspond to systems at finite temperature and/or

finite baryon density (see [20–24]). For the D3-D5 system we are interested in, the smeared

supersymmetric solution has been obtained in [25]. In the case of massless quarks the solu-

tion is completely analytic and displays a Lifshitz-like anisotropic scaling symmetry. In this

paper we find the non-zero temperature generalization of this scaling background. It turns

out that adding an event horizon to the geometry of [25] is straightforward and amounts to

adding a blackening factor to the metric. This blackening factor has a non-standard power

dependence on the radial coordinate due to the spatial anisotropy of the geometry.

In our background the D5-branes are homogeneously distributed along the internal

directions, as well as across the cartesian direction transverse to the defect. Therefore, our

gravitational solution should be regarded as the holographic dual of a multilayered system.

The different layers are created by the stack of flavor D5-branes distributed in parallel

two-dimensional planes inside the three-dimensional space. The resulting system has one

distinguished direction and thus it is clearly anisotropic. We want to explore its properties

for observables living in a single layer and also for those connecting two different layers.

We will find that, non-trivially, the intra-layer dynamics is the same as that of a stack of

effective D2-branes, which means that strongly coupled 2+1 super Yang-Mills can be used

to describe our system. We will also be able to study some inter-layer properties.

In the condensed matter context it is quite common to have materials with stratified

structures containing multiple parallel layers. The possibility of having a holographic top-

down model with multiple layers is one of the main motivations for this work. It is worth

recalling in this respect that the D3-D5 brane intersection has been used to model the

quantum Hall effect and as a holographic model of graphene [13–15].

We will start our analysis by studying the thermodynamics of the D3-D5 black hole

and by computing by different methods the VEV of the stress-energy tensor of the dual

theory. This analysis will serve us to characterize the anisotropy of the system from the

holographic perspective. There is an extensive literature on anisotropic holography. In a by

no means exhaustive list, let us mention the articles [26–33], where other backgrounds dual

to anisotropic theories have been obtained (some of these geometries are also generated by

the backreaction of branes). We will also be able to compute the transport coefficients up

to second order for perturbations that propagate along the (2+1)-dimensional intersection

of the D3- and D5-branes. We will find that these transport coefficients are the same as

those of a D2-brane, a result which is not expected a priori.

It is interesting to recall that localized supergravity solutions for the D3-D5 system

have already been found in [34, 35]. These solutions contain cycles with fluxes which

can be interpreted as the location of the D5-branes. These D5-branes do not have open

string degrees of freedom. This is in contrast to our approach, where the flavor branes are

dynamical sources. By smearing these sources we get simpler supersymmetric solutions,

which can be easily generalized to construct a black hole.

The organization of the rest of this paper is the following. In section 2 we present our

black hole background, whose thermodynamic properties are analyzed in section 3. Besides

its temperature and entropy, we obtain the chemical potential associated to the D5-brane

charge. This allows us to obtain the Helmhotz and Gibbs free energies and find the speed

– 3 –
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of sound in the directions parallel and orthogonal to the defect. We will check these results

by computing the VEV of the stress-energy tensor from the regularized Brown-York tensor

of the gravity theory.

In section 4 we obtain an effective gravitational action for our problem in four-

dimensions, which we renormalize holographically by means of a suitable boundary coun-

terterm constructed from a superpotential. In section 5 we present a five-dimensional

gravitational action for our system, which includes a smeared codimension one DBI contri-

bution due to the D5-branes. The regulating boundary term for this action contains a bulk

superpotential, as well as a superpotential generated by the flavor branes. We use both

the four and five dimensional regulated actions to calculate the VEV of the stress-energy

tensor and to confirm the values obtained in the thermodynamic analysis. In section 6 we

use the four-dimensional effective action to compute the transport coefficients in the shear

and sound channels. Finally, in section 7 we summarize our results and discuss possible

extensions of our work. The paper is completed with four appendices with details of the

calculations presented in the main text.

2 The D3-D5 black hole

In this section we present the brane setup corresponding to our black hole geometry, as

well as its metric and forms. More details are provided in appendix A. Our background is

based on the following array of D3- and D5-branes:

1 2 3 4 5 6 7 8 9

(Nc) D3 : × × ×
(Nf ) D5 : × × × × ×

(2.1)

where the Nc D3-branes are color branes and the Nf D5-branes are flavor branes. As it is

clear from (2.1) the D5-branes create a (2+1)-dimensional defect in the (3+1)-dimensional

bulk gauge theory. In general, the directions 4-9 correspond to a Sasaki-Einstein cone,

with the D3-branes located at the tip of the cone. For concreteness we will consider here

the case in which the D3-branes are in flat space and, therefore, the base of the cone will

be just the five-sphere S
5.

The ten-dimensional metric of our geometry in Einstein frame has the factorized form:

ds210 = ds25 + dŝ25 , (2.2)

where ds25 is:

ds25 =
r2

R2

[

− b (dx0)2 + (dx1)2 + (dx2)2 + e−2φ (dx3)2
]

+ R2 dr2

b r2
, (2.3)

where R is a constant radius and b = b(r) is the blackening factor, given by:

b = 1 −
(

rh
r

)
10

3

, (2.4)
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with rh being the horizon radius. The function φ multiplying the metric (2.3) along the x3

direction is the type IIB supergravity dilaton, which is not constant due to the presence

of the D5-branes. The running of φ characterizes the anisotropy introduced by the flavor

branes in the (3 + 1)-dimensional gauge theory.

The metric dŝ25 in (2.2) corresponds to the internal part of the 10d geometry. As in the

smeared solution of [25] this internal metric is just a deformed S
5. This deformation can

be easily described when the S5 is represented as a U(1) bundle over CP2: the deformation

is just a squashing of the U(1) fiber relative to the CP
2 base. Actually, the internal part

of our metric is:

dŝ25 = R̄2

[

ds2
CP2 +

9

8
(dτ +A)2

]

, (2.5)

where R̄2 is a constant related to the radius R as:

R̄2 =
9

8
R2 . (2.6)

Our backreacted background is a solution of the equations of motion derived from the

total action of the system, which is the sum of the type IIB supergravity action and of the

action of the D5-branes:

S = SIIB + Sbranes . (2.7)

The action of type IIB supergravity in Einstein frame is:

SIIB =
1

2κ210

[
∫

d10x
√−g

(

R− 1

2
∂µφ∂

µφ

)

−
∫
(

1

2
eφF3 ∧ ∗F3 +

1

4
F5 ∧ ∗F5

)]

, (2.8)

while the action of the branes is given by the sum of DBI and WZ terms:

Sbranes = −T5

∑

Nf

(

∫

M6

d6ξ e
φ
2

√

−ĝ6 −
∫

M6

Ĉ6

)

, (2.9)

where T5 is the tension of the D5-brane (1/T5 = (2π)5 gs (α
′ )3), ĝ6 is the determinant

of the induced metric on the worldvolume M6 and Ĉ(6) is the pullback to M6 of the RR

six-form potential of the type IlB theory. In (2.8) we have only included the RR three- and

five-forms F3 and F5, which are the only non-trivial ones for our D3-D5 geometry.

The stack of color D3-branes induces a self-dual RR five-form F5 of the type:

F5 = K(r)
(

1 + ∗
)

d4x ∧ dr , (2.10)

where K = K(r) is a function of the radial variable whose explicit expression can be found

in appendix A (eq. (A.9)). Moreover, the Nf flavor D5-branes act as a source of the RR

three-form F3 through the WZ term of the action (2.9).

In the smearing approach, valid when Nf is large, we substitute the discrete distribu-

tion of flavor branes by a continuous distribution with the appropriate normalization, in

such a way that the smearing amounts to performing the substitution:

Nf
∑

∫

M6

Ĉ(6) =⇒
∫

M10

Ξ ∧ C(6) , (2.11)
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where Ξ is a four-form (the so-called smearing form), with components along the direc-

tions orthogonal to the worldvolume of the flavor branes, which characterizes the charge

distribution of the flavor branes. As shown in [25] this WZ coupling induces the following

violation of Bianchi identity of F(3):

dF3 = 2κ210 T5 Ξ . (2.12)

The detailed form of F3 and Ξ in terms of differentials of the coordinates is given in

appendix A (see (A.6) and (A.7)). It is important to notice that Ξ does not depend on x3

(it only depends on dx3), which means that we are homogeneously distributing our flavor

branes in the x3 direction and, therefore, we can regard our setup as dual to a multilayer

system. Moreover, Ξ is also independent of the radial coordinate r, as expected for a charge

distribution corresponding to massless quarks. The radii R and R̄ depend on the number

of color branes Nc. Indeed, they can be written as:

R4 =
256

1215
Qc , R̄4 =

4

15
Qc , (2.13)

where Qc is proportional to Nc and given by:

Qc =
(2π)4 gs α

′ 2Nc

Vol(M5)
= 16π gs α

′ 2 Nc . (2.14)

In what follows we will take gs = α′ = 1. Moreover, F3 and the dilaton φ depend on the

quantity Qf ∼ Nf , as shown in (A.6) and (A.8). The precise relation between Qf and Nf

is written in (A.10). It is important to point out that our solution is not analytic in Nf ,

which means that we cannot take the unflavored limit Nf = 0 and recover the isotropic

AdS5 × S
5 background.1

When rh = 0 (and b = 1) our solution is supersymmetric, as shown in [25], and

can be found by solving a set of first-order BPS equations. This supersymmetric solution

is invariant under a set of Lifshitz-like anisotropic scale transformations in which the x3

coordinate transforms with an anomalous exponent z = 3 (see [25] for further details about

this scaling symmetry).

In order to explore the physical consequences of the anisotropy of our background,

we have computed in appendix B the potential energy, at zero temperature, for a quark-

antiquark pair, following the holographic prescription of refs. [36, 37]. We have considered

the cases in which the charges are in the same layer (i.e., when they have the same value

of x3) and when they are separated along x3. Let us summarize here the results. The

intra-layer potential takes the form:

Vqq̄ ∼
N

2

3
c

N
1

3

f

1

d
4

3

‖

, (2.15)

1One can take this Nf = 0 limit in the equations of motion but not in their particular solution corre-

sponding to our background.
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where d‖ is the qq̄ distance in the x1x2 plane. Moreover, for charges with the same values

of (x1, x2) and separated a distance d⊥ along the coordinate x3, we obtain:

Vqq̄ ∼
N2

c

N3
f

1

d4⊥
. (2.16)

The different behaviors (2.15) and (2.16) gives us a measure of the effects of the anisotropy

on physical observables. Another effect of this anisotropy is encoded in the entanglement

entropies for slab regions and their complements at zero temperature. For a slab with a fi-

nite width l‖ in the plane, the entanglement entropy behaves as (see appendix B for details):

S‖ ∼
N

2

3

f N
5

3
c

l
4

3

‖

, (2.17)

whereas if the slab has a finite width l⊥ along x3 we get:

S⊥ ∼ N4
c

N4
f

1

l6⊥
. (2.18)

Eqs. (2.17) and (2.18) contain information about the quantum correlations of the model.

In particular, the dependence of the entropies on the length determines the critical

behavior of the mutual information. Interestingly, S‖ depends on Nc and l‖ as in the case

of a D2-brane. We will find several times in this paper this equivalence of the intra-layer

physics with the one corresponding to an effective D2-brane.

When rh 6= 0 our solution has a horizon and becomes a black hole with a non-zero

temperature. In this case one can show that it solves the Einstein equations with sources

that follow from the action (2.7). In particular the DBI term of (2.9) contributes to the

energy-momentun tensor and, as already mentioned, the WZ term induces a violation of

the Bianchi identity of F3. In the next section we explore the thermodynamic properties

of this black hole.

3 Thermodynamics of the black hole

Let us now work out the thermodynamics of the black hole presented in the previous

section. First of all, we recall that the temperature T is given by the general formula:

T =
1

2π

[

1√
grr

d

dr

(√−gx0x0

)

]

r=rh

, (3.1)

which leads to the following relation between T and the horizon radius rh:

T =
5 rh
6π R2

. (3.2)

Using (2.13) we can recast this relation in terms of Qc as:

rh =
25 π

3
3

2 5
3

2

Q
1

2
c T . (3.3)
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The entropy density s is given by the Bekenstein-Hawking formula:

s =
2π

κ210

A8

V3
, (3.4)

where A8 is the volume at the horizon of the eight-dimensional space orthogonal to t and r

and V3 is the infinite constant volume of the three-dimensional Minkowski directions. For

our black hole geometry we get:

A8

V3
= 2−

11

3 3
17

6 5−
1

2 π3Q
2

3

f Q
1

2
c r

7

3

h . (3.5)

After using (3.3) to relate rh and T , we arrive at:

s =
23

54 3
2

3 π
2

3

Q
2

3

f Q
5

3
c T

7

3 . (3.6)

Notice the fractional powers of Qc and Qf in (3.6), which mean that s has a non-standard

dependence on Nc and Nf . To explore further this dependence, let us rewrite (3.6) in terms

of Nc and Nf . With this purpose we use the relations (2.14) and (A.10), from which we

get that the combination appearing in (3.6) is given by:

Q
2

3

f Q
5

3
c =

256

3 3
2

3

π
7

3 N
2

3

f N
5

3
c , (3.7)

and the entropy density can be written as:

s = αsN
2

3

f N
5

3
c T

7

3 , (3.8)

where αs is the following numerical coefficient:

αs =
2048

5625

π
5

3

3
1

3

≈ 1.701 . (3.9)

The ADM energy of the background is given by the standard equation:

EADM = − 1

κ210

√

|gtt|
∫

Mt,r∞

√

det g8 (KT − K0 ) , (3.10)

where the symbols KT and K0 denote the extrinsic curvatures of the eight-dimensional

subspace within the nine-dimensional (constant time) space, at finite and zero temperature,

respectively. For an arbitrary hypersurface the extrinsic curvature K is given by:

K =
1√

det g9
∂µ

(

√

det g9 nµ
)

, (3.11)

with nµ being a normalized vector perpendicular to the surface. For a constant r hyper-

surface, we have:

nµ =
1√
grr

δµr . (3.12)

– 8 –
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For our geometry it is straightforward to prove that:

K =
7

3R

√
b , (3.13)

where b is the blackening factor (2.4). From this result it follows that:

KT =
7

3R

√

1 −
(

rh
r

)
10

3

, K0 =
7

3R
, (3.14)

and thus the difference of the extrinsic curvatures appearing in (3.10) is:

KT − K0 ≈ − 7

6R

(

rh
r

)
10

3

, (r → ∞) . (3.15)

The energy density ǫ can now be easily computed, with the result:

ǫ =
EADM

V3
=

7

10
αsN

2

3

f N
5

3
c T

10

3 = βsQ
2

3

f Q
5

3
c T

10

3 , (3.16)

where αs is the numerical coefficient (3.9) and we have introduced a new numerical factor

βs, given by:

βs =
28

3125 (3π)
2

3

. (3.17)

Notice that the entropy density (3.6) can be rewritten as:

s =
10

7
βsQ

2

3

f Q
5

3
c T

7

3 . (3.18)

The free energy density f in the canonical ensemble is defined as:

f = ǫ − T s . (3.19)

By using (3.8) and (3.16) we readily obtain:

f = − 3

10
αsN

2

3

f N
5

3
c T

10

3 = −3

7
βsQ

2

3

f Q
5

3
c T

10

3 . (3.20)

To explore the complete thermodynamics of the system it is convenient to consider the

situation in which the number of flavor D5-branes can change. In our setup this number of

flavor branes is determined by Qf . Therefore, we allow Qf to vary and we will introduce

the chemical potential Φ, conjugate to Qf . The first law of thermodynamics for these

variables becomes:

dǫ = T ds + Φ dQf . (3.21)

Clearly, the chemical potential Φ measures the energy cost of introducing additional flavor

branes in the system. After performing the Legendre transform as in (3.19), we can write

the variation of the free energy f in the canonical ensemble as:

df = −s dT + Φ dQf . (3.22)

– 9 –
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It follows immediately from (3.22) that s and Φ are given by the following partial derivatives

of f :

s = −
(

∂f

∂T

)

Qf

, Φ =

(

∂f

∂Qf

)

T

. (3.23)

By using (3.20), it is now straightforward to compute the partial derivative of f with

respect to T and check the first equation in (3.23). Moreover, by computing the derivative

of (3.20) with respect to Qf we obtain the expression of the chemical potential Φ:

Φ = −2

7
βsQ

− 1

3

f Q
5

3
c T

10

3 . (3.24)

The Gibbs free energy, i.e., the thermodynamic potential in the grand canonical ensemble,

is defined as:

g = f − ΦQf . (3.25)

Plugging (3.20) and (3.24) on the right-hand side of (3.25) we get the value of g for our

system:

g = −1

7
βsQ

2

3

f Q
5

3
c T

10

3 . (3.26)

As argued in [27] (see also [40]), the two thermodynamic potentials f and g are related to

the pressure in the x1x2 plane (pxy) and in the x3 direction (pz) as:

f = −pxy , g = −pz . (3.27)

To demonstrate these identifications of the free energies with the pressures one should take

into account the extensivity of the energy and the anisotropic character of our system

(details can be found in [27]). In our system these pressures are thus given by:

pxy =
3

7
βsQ

2

3

f Q
5

3
c T

10

3 =
3

7
ǫ , pz =

1

7
βsQ

2

3

f Q
5

3
c T

10

3 =
1

7
ǫ . (3.28)

The speeds of sound along the x1x2 and x3 are defined as:

v2xy =

(

∂pxy
∂ǫ

)

Qf

, v2z =

(

∂pz
∂ǫ

)

Qf

. (3.29)

Using (3.28) we can readily evaluate the derivatives on the right-hand side of (3.29), with

the result:

v2xy =
3

7
, v2z =

1

7
, (3.30)

to be compared with the value v2s = 1/2 for a 2d CFT and v2s = 1/3 for a 3d CFT.2

The pressure difference is a manifestation of the anisotropy of the system and is mea-

sured by the non-vanishing chemical potential. Actually, it is straightforward to verify

that, for our system, one has:

pz − pxy = ΦQf . (3.31)

2The speed of sound for a Dp-brane is v2s = 5−p

9−p
. Therefore vxy coincides with the speed of sound of a

D2-brane.

– 10 –



J
H
E
P
0
2
(
2
0
1
8
)
1
3
9

Moreover, we have the following equation of state:

ǫ = 2 pxy + pz . (3.32)

By combining (3.31) and (3.32) we can obtain the two pressures as functions of ǫ and Qf :

pxy =
1

3
ǫ − 1

3
ΦQf , pz =

1

3
ǫ +

2

3
ΦQf . (3.33)

It is also easy to relate the different quantities to the entropy:

ǫ =
7

10
Ts , f = − 3

10
Ts , g = − 1

10
Ts , ΦQf = −1

5
Ts . (3.34)

From these equations one can show that the following relation holds:

ǫ =
3

4
Ts +

1

4
ΦQf , (3.35)

as well as the so-called Gibbs-Duhem relations:

ǫ + pxy = Ts , ǫ + pz = Ts + ΦQf . (3.36)

Finally, the heat capacity is:

cv = ∂T ǫ =
7

3
αsN

2

3

f N
5

3
c T

7

3 =
10

3
βsQ

2

3

f Q
5

3
c T

7

3 . (3.37)

To get some insight on the nature of our solution, let us analyze the dependence of the

entropy density s on Nc, Nf and T and let us compare it with some known results for other

gravity duals. It follows from (3.18) that s behaves with the temperature as s ∼ T
7

3 . For

a Dp-brane background s ∼ T
9−p
5−p [41]. Taking p = 2 in this last formula we obtain the

same behavior as in (3.18). This is an indication that our geometry is related to the one

generated by D2-branes. Actually, if we define λ as:

λ =
Nc

N2
f

, (3.38)

then the entropy density (3.18) can be written as:

s ∼ N2
c λ

− 1

3 T
7

3 , (3.39)

which is exactly the form of the entropy of a D2-brane black hole if λ is interpreted as a

’t Hooft coupling [41].3 In the case of a stack of Nc D2-branes, realizing 2 + 1 dimensional

super Yang-Mills, the ’t Hooft coupling is λ = g2YM Nc (λ = Nc in our units). Our result

suggests that, in our flavored system, the relevant scaling of the coupling with Nc and

Nf is the one written in (3.38). Notice that having a ratio of the numbers of color and

flavors as parameter is very natural in a limit of the Veneziano type. Notice also [42]

3Equivalently, if we define the temperature-dependent effective dimensionless coupling as λeff(T ) = λ/T ,

the entropy density (3.39) can be written as s ∼ N2
c [λeff(T )]

− 1

3 T 2. We are grateful to Javier Tarŕıo for

suggesting this interpretation of our entropy formula.
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that the dimensionless parameter controlling the backreaction of the flavor D5-branes is

κ210Nf TD5R
−2 ∼ Nf/

√
Nc. In this parameter Nc and Nf scale precisely as in (3.38).

The matching we found of the entropy with the one corresponding to a D2-brane is an

indication that the dynamics in the x1x2 plane (at least its deviation from conformality) is

governed by a 2 + 1 dimensional super Yang-Mills theory in the strongly coupled regime.

The value of the speed of sound vxy found above points in the same direction. In section 6

we will confirm this fact by computing the hydrodynamic transport coefficients for pertur-

bations propagating in the x1x2 plane. Actually, there is a direct way to relate our setup

to a system of D2-branes. Indeed, by performing a T-duality transformation along the x3

direction we can convert our D3-D5 solution into a D2-D6 geometry, in which the D2’s are

the color branes and the D6’s are the flavor branes. In this D2-D6 solution the x3 direc-

tion is now a distinguished coordinate transverse to the color branes. The corresponding

ten-dimensional metric of type IIA supergravity in the Einstein frame takes the form:

ds2IIA =

(

4Qf

3

)
1

4 r
9

4

R
5

2

[

− b (dx0)2 + (dx1)2 + (dx2)2 +
R4

r4
dr2

b
+

+
9

8

R4

r2

(

(dx̄3)2

r
4

3

+ ds2
CP2 +

9

8
(dτ +A)2

)

]

, (3.40)

where b = b(r) is the blackening factor (2.4) and the coordinate x̄3 is related to the original

cartesian coordinate x3 by the following rescaling:

x̄3 =

(

4
√
2

9Qf

)
1

3

x3 . (3.41)

Notice that the D2-branes in this D2-D6 solution are smeared in x3, since none of the

functions of the metric depends on this coordinate.

This type IIA background is also endowed with a running dilaton φIIA, as well as RR

two- and four-forms, given by:

e2φIIA =

(

3

4Qf

)
7

3

R2 r
1

3 ,

F2 = Qf Im (Ω̂2) ,

F4 =
20

3

(

2Q2
f

9

)
1

3 r
7

3

R4
dr ∧ dx0 ∧ dx1 ∧ dx2 . (3.42)

3.1 Stress-energy tensor

The energy density and the pressures of our model can also be obtained by calculating the

holographic stress-energy tensor. We will compute this tensor by using several methods

and we will check that one gets the same results as those we obtained in the previous

subsection by using anisotropic thermodynamics. In this subsection we will compute the

VEV of the stress-energy tensor from the Brown-York tensor at the boundary, following the

prescription of [43]. In sections 4 and 5 we will dimensionally reduce our ten-dimensional
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theory and will calculate the stress-energy tensor by holographic renormalization, after

adding suitable boundary terms to the reduced actions.

The Brown-York tensor of the ten-dimensional gravity theory is:

τij =
1

κ210

(

Kij − K γij
)

, (3.43)

where γij is the induced metric at a r = constant surface, Kij is the extrinsic curvature of

the surface and K = γij Kij . The VEV of the stress-energy tensor of the dual theory is

related to the Minkowski components of the Brown-York tensor at the boundary [43]:

〈Tµ
ν〉 = VSE

√−γMin τµν

∣

∣

∣

∣

reg , rΛ→∞

, (3.44)

where VSE is the volume for the compact 5d part of the metric, which for the S5 is

VSE =

(

9π

8

)3

R5 . (3.45)

In (3.44) γMin is the determinant of the Minkowski part of the induced metric. The right-

hand side of (3.44) is divergent at the UV boundary. We will give below a precise prescrip-

tion to eliminate this divergence.

The extrinsic curvature tensor Kij can be obtained from the covariant expression:

Kij = −1

2

(

∇i nj + ∇j ni

)

, (3.46)

where ni are the components of the normal vector to the r = constant surface ( ni ni = 1).

In a diagonal metric as the one we have in (2.3), the vector ni is given by:

ni =
√
grr δri . (3.47)

Let us now introduce the notation:

gx0x0 ≡ −k21 = − r2

R2
b , gx1x1 = gx2x2 ≡ k22 =

r2

R2
,

gx3x3 ≡ k23 =
1

R2

(

4Qf

3

)
4

3

r
2

3 , grr ≡ k2r =
R2

r2 b
, (3.48)

where we are assuming that the metric is given by (2.3) and (2.5). With these notations,

we have:
√−γMin = k1 k

2
2 k3 =

1

R4

(

4Qf

3

)
2

3

r
10

3 b
1

2 , (3.49)

and it is straightforward to compute the components of the extrinsic curvature along the

Minkowski directions. The non-vanishing components are:

Kx0x0 =
k1 k

′
1

kr
, Kx1x1 = Kx2x2 = −k2 k

′
2

kr
,

Kx3x3 = −k3 k
′
3

kr
, K = − 1

kr
∂r log

(

k1 k
2
2 k3

)

. (3.50)
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Plugging these results in (3.43) we get explicitly the non-zero components of the Brown-

York tensor:

τx
0

x0 =
1

κ210

1

kr
∂r log

(

k22 k3
)

=
1

κ210R

7

3
b
1

2 ,

τx
1

x1 = τx
2

x2 =
1

2κ210R
r b

1

2 ∂r log
(

r
14

3 b
)

=
1

κ210R

1

3 b
1

2

[

7− 2

(

rh
r

)
10

3

]

,

τx
3

x3 =
1

2κ210R
r b

1

2 ∂r log
(

r6 b
)

=
1

κ210R

1

b
1

2

[

3 − 4

3

(

rh
r

)
10

3

]

. (3.51)

Let us now specify the regulating procedure we will employ to compute 〈Tµ
ν〉. Since we

are interested in matching the thermodynamic values found above, it is enough to subtract

the zero temperature supersymmetric value, as it was done in [20] for the D3-D7 system.

More concretely, we will take 〈Tµ
ν〉 to be given by:

〈Tµ
ν〉 = VSE lim

rΛ→∞

[

√−γMin τµν − b
1

2 lim
rh→0

(√−γMin τµν
)

]

r=rΛ

, (3.52)

where the b
1

2 factor is introduced to match the geometries at the cutoff. Using (3.49)

and (3.51) we get that the only non-zero components of 〈Tµ
ν〉 are:

〈T x0

x0〉 = −ǫ , 〈T x1

x1〉 = 〈T x2

x2〉 =
3 ǫ

7
, 〈T x3

x3〉 =
ǫ

7
, (3.53)

where ǫ is the ADM energy density (3.16). Equivalently, we can write the VEV of the

stress-energy tensor as:

〈Tµ
ν〉 = diag

(

− ǫ , pxy , pxy , pz
)

, (3.54)

where pxy and pz are precisely the values of the pressures found before by introducing the

chemical potential.

Notice that the calculation of pxy and pz using the Brown-York tensor depends on the

behavior of the geometry as we increase the holographic coordinate r and approach the

boundary. On the contrary, the calculation of the pressures based on Φ is determined by

the behavior of the geometry as we vary the flavor charge Qf . The agreement of the results

found by these two methods is a non-trivial consistency check of our gravity dual.

4 Effective action in 4d

In order to apply the full machinery of the holographic duality to our system it is quite

convenient to integrate the action over the internal manifold and convert our problem into

a system of low dimensional gravity. There are two possible approaches to carry out this

reduction. First of all, we could consider the x3 coordinate as internal and reduce the

system to a four-dimensional system in the coordinates (t, x1, x2, r). This is the point of

view we will adopt in this section. This approach is very useful to study the dynamics of

the system in the (x1, x2) plane and, indeed, we will use the results of this section in our

analysis of the hydrodynamics modes of section 6. Alternatively, we could include x3 in
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our set of reduced coordinates and deal with a five-dimensional anisotropic problem. We

will analyze this 5d reduction in the next section.

The reduction of our problem to a low dimensional gravity system will allow us to

implement a holographic renormalization procedure. We will be able to compute in this

framework the VEV of the stress-energy tensor and to confirm the thermodynamic results

of section 3.1. Moreover, in section 6 we will study the fluctuations of the 4d fields and we

will obtain some hydrodynamic coefficients.

Let us consider the following reduction ansatz to four dimensions of the 10d metric:

ds210 = e
10

3
γ−β gmndz

m dzn + e
10

3
γ+2β (dx3)2 + e−2(γ+λ) ds2

CP2 + e2(4λ−γ) (dτ+A)2 , (4.1)

where gmn = gmn(z) is a 4d metric and the scalar fields γ, λ and β depend on the 4d

coordinates zm = (t, x1, x2, r). In addition, in the reduced theory we have the dilaton field

φ = φ(z). The action of this 4d gravity theory can be obtained from the one of type IIB

supergravity. The details of this calculation are given in appendix C. The expression of

this effective action is:

Seff =
V5 Vx3

2κ210

∫

d4z
√−g4

[

R4 −
40

3
(∂γ)2 − 20 (∂λ)2 − 3

2
(∂β)2 − 1

2
(∂φ)2 − V

]

, (4.2)

where V is the following potential for the scalar fields φ, γ, λ and β:

V = 4 e
16

3
γ+12λ−β − 24 e

16

3
γ+2λ−β +Q2

f e
4γ+4λ−3β+φ +

Q2
c

2
e

40

3
γ−β + 6Qf e

14

3
γ−2λ−2β+ φ

2 .

(4.3)

In order to write the equations of motion of the reduced theory in a compact form, let us

collect the four scalar fields in a single vector Ψ with components:

Ψ = (φ, γ, λ, β) . (4.4)

Moreover, we define a coefficient αΨ which takes the following values for the different scalar

fields:

(αφ , αγ , αλ , αβ) =

(

1 ,
3

80
,
1

40
,
1

3

)

. (4.5)

Then, Einstein equations can be compactly written in terms of Ψ as:

Rmn =
∑

Ψ

1

2αΨ
∂mΨ ∂nΨ +

1

2
gmn V . (4.6)

Moreover, if we define the d’Alembertian of any scalar field Ψ as:

�Ψ ≡ 1√−g4
∂m

(√−g4 g
mn ∂nΨ

)

, (4.7)

then, the equations for the scalar fields are:

�Ψ = αΨ ∂Ψ V . (4.8)
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Let us now write our black hole solution in terms of the 4d variables. The four-

dimensional metric takes the diagonal form:

ds24 = −c21(r) dt
2 + c22(r)[(dx

1)2 + (dx2)2] + c23(r) dr
2 . (4.9)

The actual values of the ci coefficients for our background are:

c21(r) =

(

9

8

)3(4Qf

3

)
2

3

R2 b(r) r
7

3 ,

c22(r) =

(

9

8

)3(4Qf

3

)
2

3

R2 r
7

3 =
c21(r)

b(r)
,

c23(r) =

(

9

8

)3(4Qf

3

)
2

3 R6

r
5

3 b(r)
=

R4

r4 b2(r)
c21(r) , (4.10)

where b(r) is the blackening factor defined in (2.4). Moreover, in our geometry the different

scalars take the values:

eφ =

(

3

4Qf

)
2

3

r
2

3 , eγ =

(

8

9

)
3

5 1

R
,

eλ =

(

9

8

)
1

10

, eβ =
9

8

(

4Qf

3

)
2

3

R
2

3 r
1

3 . (4.11)

One can easily verify that these metric and scalar fields solve (4.6) and (4.8).

Let us have a closer look at the 4d metric we obtained. Plugging the ci(r) func-

tions (4.10) into (4.9), we get:

ds24 ∼ r
7

3

[

− b(r) dt2 + (dx)1 + (dx2)2 + R4 dr2

b(r) r4

]

. (4.12)

It is easy to check that this metric is equivalent to the one obtained when the 10d geometry

of the D2-brane is reduced to 4d (change to the new radial coordinate ρ = r
3

2 and compare

with the reduced metric written in [44]). Another way of reaching the same conclusion is

by noting that under a scale transformation of the type:

t → λ t , x1,2 → λx1,2 , r → r/λ , (4.13)

the zero-temperature metric changes homogeneously as:

ds24 → λ− 1

3 ds24 . (4.14)

This behavior corresponds to a hyperscaling violation of the type ds24 → λθ ds24, with

hyperscaling violation exponent θ = −1
3 which, as shown in [45], is the θ exponent cor-

responding to a D2-brane. However, our 4d theory has more scalars than the reduced

theory of a D2-brane and, therefore, even if the metrics are equal, both problems are not

equivalent in principle.
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4.1 Stress-energy tensor

We now compute the VEV of the stress-energy tensor in this dimensionally reduced gravity

theory. First of all we need to renormalize holographically the on-shell action by adding

boundary terms. Besides the standard Gibbons-Hawking term, we will add a countert-

erm constructed with the superpotential for the potential V written in (4.3) [46]. This

superpotential will be denoted by W4d and must satisfy:

V =
1

2

[

3

80

(

∂γ W4d

)2
+

1

40

(

∂λW4d

)2
+

1

3

(

∂β W4d

)2
+
(

∂φW4d

)2
]

− 3

8
W 2

4d . (4.15)

It can be readily checked that the function:

W4d = −6 e
8

3
γ− 4λ− β

2 − 4 e
8

3
γ+6λ− β

2 + Qc e
20

3
γ− β

2 + 2Qf e
2γ+2λ+φ

2
− 3β

2 , (4.16)

solves (4.15). Moreover, one can verify that W4d gives rise to the BPS equations satisfied

by the zero temperature supersymmetric solution of [25].

In terms of W4d the boundary action takes the form:

Sboundary =
V5 Vx3

2κ210

∫

r→∞
d3x

√
γ
(

2K + W4d

)

, (4.17)

where γ is the determinant of the induced metric on constant-r slices and K = Kµ
µ is

the trace of the extrinsic curvature of these slices. One can check that, after diving by

the infinite volume V3 of the 2 + 1 dimensional Minkowski spacetime, the sum of the

actions (4.2) and (4.17) evaluated on-shell is finite. We get:

Srenormalized

V3 Vx3

=
Seff,on−shell + Sboundary,on−shell

V3 Vx3

=
3

7
βsQ

2

3

f Q
5

3
c T

10

3 (4.18)

where βs is the constant defined in (3.17). To obtain (4.18) we have integrated from r = rh
to r = ∞. Notice that Srenormalized is equal, as it should, to minus the free energy density

f (compare with (3.20)). The minus sign in this relation is due to the fact that we are

working in Minkowski signature.

By taking the functional derivative of the on-shell renormalized action with respect to

the boundary metric we obtain the expectation value of the field theory stress-energy tensor:

〈Tµ
ν〉 =

V5 Vx3

2κ210

√
γ
[

− 2Kµ
ν + δµν

(

2K + W4d

)

]

r→∞
. (4.19)

Evaluating the right-hand side of (4.19) for our solution, we get:

〈Tµ
ν〉 = diag

(

− ǫ , pxy , pxy
)

, (4.20)

where ǫ is the ADM energy density (3.16) and pxy is the pressure in the xy plane written

in (3.28).
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5 Effective action in 5d

Let us now reduce our system to five dimensions, namely those corresponding to the co-

ordinates zm = (t, x1, x2, x3, r). In principle this reduction would allow us to study the

inter-layer properties and could be used to analyze the consequences of the anisotropy of the

model. In this section we will use this 5d formalism to compute the complete stress-energy

tensor and to establish the holographic dictionary for the D5-brane chemical potential.

Let us adopt the following reduction ansatz for the metric:

ds210 = e
10

3
γ gpq dz

p dzq + e−2(γ+λ) ds2
CP2 + e2(4λ−γ) (dτ +A)2 , (5.1)

where gpq is a 5d metric and the scalar fields γ and λ depend on the 5d coordinates zm. It

is important to notice that the RR three form F3 for our solution has a leg in x3, as well

as two legs in the internal space (see (A.6)). Therefore, when it is reduced to 5d it gives

rise to a one-form F1, which we will represent in terms of a scalar potential V as:

F1 = dV . (5.2)

Moreover, our D5-branes are codimension-one objects (extended along the hypersurface

x3 = constant and smeared over x3). The corresponding DBI action contains the deter-

minant of the induced metric on this 4d surface, which we will denote by ĝ4, integrated

over x3 to take into account the smearing. In addition to the metric and V , the 5d theory

has three scalar fields (γ, λ and the dilaton φ). The total effective action is worked out in

appendix C and takes the form:

Seff =
V5

2κ210

∫

d5z
√−g5

[

R5 −
40

3
(∂γ)2 − 20(∂λ)2 − 1

2
(∂φ)2 − 1

2
e4γ+4λ+φ(∂V)2 − U

]

− V5

2κ210

∫

d5z
√

−ĝ4
[

6Qfe
14

3
γ−2λ+φ

2

]

, (5.3)

where U is the potential:

U = 4 e
16

3
γ+12λ − 24 e

16

3
γ+2λ +

Q2
c

2
e

40

3
γ . (5.4)

For our D3-D5 black hole solution the 5d metric takes the form:

ds25 = −d21(r) dt
2 + d22(r)

[

(dx1)2 + (dx2)2
]

+ d23(r) (dx
3)2 + d2r(r) (dr)

2 , (5.5)

where the different d functions are given by:

d21(r) =

(

9

8

)2

r2R
4

3 b(r) ,

d22(r) =

(

9

8

)2

r2R
4

3 ,

d23(r) =

(

9

8

)2(4Qf

3

)
4

3

R
4

3 r
2

3 ,

d2r(r) =

(

9

8

)2 R
16

3

r2 b(r)
. (5.6)
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In (5.6) the function b(r) is the blackening function (2.4). Moreover, the scalar fields

corresponding to the D3-D5 black hole are:

eφ =

(

3

4Qf

)
2

3

r
2

3 , eγ =

(

8

9

)
3

5 1

R
, eλ =

(

9

8

)
1

10

. (5.7)

Notice that they are the same as in (4.11). The function V is given by:

V =
√
2Qf x

3 . (5.8)

It can be easily checked that the metric written in (5.5) and (5.6), together with the scalars

written in (5.7) and the function V written in (5.8), satisfy the equations of motion derived

from the action (5.3) (these equations have been explicitly written in appendix C).

It is also interesting to relate these fields to the ones corresponding to the 4d approach

for our solution. The 5d to 4d reduction is analyzed in appendix C (section C.3). As

mentioned above, the scalars (φ, γ, λ) take the same values in 4d and 5d. Moreover, the 4d

scalar β is related to d3 as:

eβ = d3 , (5.9)

while the functions c1, c2 and c3 of the 4d metric are related to the d functions as:

c21 = d3 d
2
1 , c22 = d3 d

2
2 , c23 = d3 d

2
r . (5.10)

5.1 Stress-energy tensor

Let us now construct boundary counterterms which regularize the on-shell effective action

and allow to implement the holographic renormalization formalism and compute the VEV

of the stress-energy tensor. First of all we obtain a superpotential W5d for the potential U

written in (5.4). This superpotential must satisfy the equation:

U =
1

2

[

3

80

(

∂γ W5d

)2
+

1

40

(

∂γ W5d

)2
+
(

∂φW5d

)2
]

− 1

3
W 2

5d , (5.11)

which is solved by the function:

W5d = −6 e
8γ
3
−4λ − 4 e

8γ
3
+6λ + Qc e

20

3
γ . (5.12)

Notice that the three terms on the right-hand side of (5.12) are in one-to-one correspondence

with the terms in the 4d superpotential W4d which do not contain Qf (see (4.16)). Let us

next define a new function Wflavor, related to the last term in (4.16), as:

Wflavor = 2Qf e
2λ+2γ+φ

2 . (5.13)

The counterterms needed to renormalize the action (5.3) will have the same structure as

Seff . First of all, we will have a 5d part, containing the metric γab induced on constant r

slices, as well as the Gibbons-Hawking term and the 5d superpotential (5.12). In addition,
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we will have a 4d part corresponding to the smeared sources, which contains the determi-

nant of the metric γ̂ab induced on constant r and constant x3 slices. We construct this

term by using the flavor function defined in (5.13). The total boundary action is:

Sboundary =
V5

2κ210

∫

r→∞
d4x

√
γ
(

2K + W5d

)

+
V5

2κ210

∫

r→∞
d4x

√

γ̂ Wflavor . (5.14)

One can check that the addition of Sboundary makes the total on-shell action (divided by

V3Vx3) finite. Actually, one has:

Srenormalized

V3Vx3

=
Seff,on−shell + Sboundary,on−shell

V3Vx3

=
3

7
βsQ

2

3

f Q
5

3
c T

10

3 . (5.15)

Notice that Srenormalized/V3Vx3 coincides with minus the free energy density f in the ten-

dimensional approach (see (3.20)), as it should.

The VEV of the stress-energy tensor of the dual theory can be obtained by taking the

functional derivative of Srenormalized with respect to the boundary metric. As a result of

this calculation we get contributions from the two types of terms in (5.14):

〈Tµ
ν〉 =

V5

2κ210

√
γ
[

− 2Kµ
ν + δµν

(

2K + W5d

)

]

r→∞
+ 〈Tµ

ν〉flavor , (5.16)

where 〈Tµ
ν〉flavor is only non-vanishing if both indices µ and ν take values 0, 1, 2 and, in

this case, is given by:

〈Tµ
ν〉flavor = Qf

V5

κ210

√

γ̂ e2λ+2γ+φ
2 δµν

∣

∣

∣

r→∞
, µ, ν = 0, 1, 2 . (5.17)

One can easily verify that 〈Tµ
ν〉 is given by the same expression as in the 10d analysis,

namely by (3.54) with ǫ, pxy and pz equal to the values written in (3.16) and (3.28).

5.2 Holographic dictionary

Clearly, the contribution (5.17) is essential to reproduce the different values of the two

pressures pxy and pz, i.e., to correctly represent the anisotropic behavior of the model. As

argued in section 3, this anisotropy is characterized by the D5-brane chemical potential Φ.

It is therefore very important to find a dictionary allowing us to read the value of Φ from the

value of some supergravity field at the UV boundary. This is the purpose of this subsection.

In our holographic setup Φ should be related to the value of the potential under which

the D5-branes are electrically charged. Notice that the D5-branes in our reduced theory

extend along x0 x1 x2 and are smeared along x3. Therefore, we expect Φ to be extracted

from the components of a three-form C3 along x0 x1 x2. One can find C3 by the following

argument. First of all, we write the equation of motion of F1 (eq. (C.25)) as:

d
(

e4γ+4λ+φ ∗ F1

)

= 0 , (5.18)

where ∗ denotes the Hodge dual of the 5d theory. Next, we interpret (5.18) as a Bianchi

identity, i.e., as the closure of the four-form F4 defined as:

F4 = e4γ+4λ+φ ∗ F1 . (5.19)
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It follows that F4 can be represented in terms of a three-form C3:

F4 = d C3 , (5.20)

and we will soon verify that C3 is the three-form we are seeking. To check this statement

we will find the form for our solution. First of all we notice that:

∗ F1 =
√
2Qf

d1 d
2
2 dr

d3
dx0 ∧ dx1 ∧ dx2 ∧ dr . (5.21)

From (5.21) we can readily verify that C3 can be taken as:

C3 = A
(

Q
− 1

3

f r
10

3 + C
)

dx0 ∧ dx1 ∧ dx2 , (5.22)

where A is a known numerical constant (independent of Qf and Qc) and C is another con-

stant which we will fix by requiring regularity at the horizon or, equivalently by demanding

the vanishing of C3 at r = rh. This condition leads to the following value of C:

C = −Q
− 1

3

f r
10

3

h . (5.23)

Taking into account that r
10

3

h ∝ Q
5

3
c T

10

3 , we find:

C ∝ Q
5

3
c Q

− 1

3

f T
10

3 . (5.24)

By comparing (5.24) and (3.24) we conclude that the chemical potential Φ and the constant

C are proportional:

Φ ∝ C . (5.25)

Notice also that C is (proportional to) the subleading term in the expansion of the x0x1x2

component of C3 near the boundary. This identification of Φ is similar to the one obtained

in [27] for the case of an anisotropic background generated by D7-branes. The fact that

is the subleading term that is being identified with Φ, and not the leading term as in

other holographic setups, can be traced back to the Hodge duality that we are doing when

passing from F1 to F4.

6 Fluctuations and hydrodynamics

We will now explore the hydrodynamic properties of our system. In particular we will

compute the transport coefficients for perturbations propagating along the x1x2 plane. The

purpose of this calculation is to characterize the effects of flavors, and of the corresponding

induced anisotropy, on the transport properties of our system. As already mentioned in the

introduction, our main result is that the transport coefficients in the x1x2 plane are the same

as those of a D2-brane. This result confirms the conclusions of our static thermodynamic

analysis and implies that, in our model, the dynamics of the excitations within a layer is

governed by an effective strongly coupled super Yang-Mills theory in 2+1 dimensions.
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Following the standard procedure [47], we have to study the fluctuations of the 4d

metric and scalar fields around their background values (4.10) and (4.11). In order to do

this, we will perform the following substitution in the equations of motion:

gmn → gmn + hmn , Ψ → Ψ + δΨ , (6.1)

for Ψ = (φ, γ, λ, β) and we will keep only the first-order terms in hmn and δΨ. Moreover,

we will work in the radial gauge for the metric, in which:

hmr = 0 , (m = t, x1, x2, r) . (6.2)

Let us start by computing the variation of the scalar equation (4.8). One can easily check

that, at first order, we have:

δ�Ψ = �δΨ +
1

2
gmn ∂mΨ ∂n(h

p
p) − 1√−g4

∂m

(√−g4 h
mn ∂nΨ

)

. (6.3)

The last term in (6.3) is always zero in the radial gauge when the scalar fields of the back-

ground only depend on the radial variable. For a metric of the type (4.9), �δΨ becomes:

�δΨ =
1

c23

[

∂2
r (δΨ) + ∂r log

(

c1 c
2
2

c3

)

∂r (δΨ)

]

− ∂2
t (δΨ)

c21
+

∂2
x1 (δΨ) + ∂2

x2 (δΨ)

c22
, (6.4)

and the first-order equation for δΨ is:

∂2
r (δΨ) + ∂r log

(

c1c
2
2

c3

)

∂r(δΨ)− c23
c21
∂2
t (δΨ) +

c23
c22

(

∂2
x1(δΨ) + ∂2

x2(δΨ)
)

(6.5)

+
∂rΨ

2
∂r

(

hx1x1 + hx2x2

c22
− htt

c21

)

= c23αΨδ[∂ΨV ] .

The first-order variation of the Einstein equation (4.6) is:

δ Rmn =
∑

Ψ

1

2αΨ

(

∂m (δΨ) ∂nΨ + ∂mΨ ∂n(δΨ)
)

+
1

2
hmn V +

1

2
gmn δV , (6.6)

where δ Rmn can be written in terms of covariant derivatives of the metric perturbation

hmn as:

δ Rmn =
1

2

[

DpDm hpn + DpDn h
p
m − DpD

p hmn − DmDn h
p
p

]

. (6.7)

By plugging (6.7) into (6.6), we arrive at the following equation for the metric fluctuations:

DpDm hpn + DpDn h
p
m − DpD

p hmn − DmDn h
p
p =

=
∑

Ψ

1

αΨ

(

∂m (δΨ) ∂nΨ + ∂mΨ ∂n(δΨ)
)

+ hmn V + gmn δV . (6.8)

– 22 –



J
H
E
P
0
2
(
2
0
1
8
)
1
3
9

6.1 The shear channel

The fluctuation equations (6.5) and (6.8) are highly coupled. However, one can identify

several consistent truncations in which only few fluctuations are non-zero. Without loss of

generality, let us consider a perturbation propagating along the x2 direction. The first of

the consistent truncations that we will analyze is the so-called shear channel, in which only

the metric fluctuations ht x1 and hx1 x2 are excited. Let us assume that these fluctuations

have frequency ω and momentum q and, accordingly, let us parametrize them as:

ht x1 = e−i(ω t− q x2) c22(r)Htx(r) ,

hx1 x2 = e−i(ω t− q x2) c22(r)Hxy(r) , (6.9)

where c2(r) is the function written in (4.11) and has been included in the ansatz (6.9) for

convenience. The equations of motion of Htx and Hxy are studied in detail in appendix D.

It turns out that they can be reduced to a single second-order differential equation for a

gauge invariant combination X, defined as:

X ≡ q Htx + ωHxy . (6.10)

The equation satisfied by X is:

X ′′ +
(10 + 3 b(r))ω2 − 13 b2(r) q2

3 b(r) r (ω2 − b(r) q2)
X ′ +

R4

r4 b2(r)
(ω2 − b(r) q2)X = 0 . (6.11)

Let us now work in a new radial variable x, related to r as:

x =
[

b(r)
]
1

2 . (6.12)

In this new variable the horizon is located at x = 0, whereas the boundary is at x = 1. We

will consider the gauge-invariant combination X as a function of x. Moreover, it is quite

convenient to introduce the dimensionless momentum and frequency q̂ and ω̂, defined as:

q̂ =
q

2π T
, ω̂ =

ω

2πT
. (6.13)

Then, if the prime now denotes derivatives with respect to x, eq. (6.11) takes the form:

X ′′ − 1

x

q̂2 x2 + ω̂2

q̂2 x2 − ω̂2
X ′ − q̂2 x2 − ω̂2

x2(1− x2)
7

5

X = 0 . (6.14)

We want to solve (6.14) by imposing infalling boundary conditions at the horizon x = 0,

as well as Dirichlet boundary conditions at the boundary x = 1. These solutions only

exist when the frequency ω and the momentum q are related in a particular way, which

determines the dispersion relation ω = ω(q) of our modes. In the hydrodynamic regime the

momentum q is small and one can expand ω in a power series in q. In the shear channel

we are studying this relation takes the form:

ω = −iDη q
2
(

1 + τsDη q
2
)

, (6.15)
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where we are keeping terms up to quartic power of q. The dispersion relation (6.15)

depends on two transport coefficients Dη and τs, which we will calculate for our system in

this section. We will work in the dimensionless variables defined in (6.13). Moreover, we

define the rescaled coefficients D̂η and τ̂s as:

D̂η = 2π T Dη , τ̂s = 2π T τs . (6.16)

In terms of the rescaled quantities, the dispersion relation (6.15) takes the form:

ω̂ = −i D̂η q̂
2
(

1 + τ̂s D̂η q̂
2
)

. (6.17)

The coefficient D̂η determines the ratio of the shear viscosity η to the entropy density s,

namely:

η

s
=

D̂η

2π
. (6.18)

Below we will find that, for our system, D̂η = 1/2, which is equivalent to having η/s =

1/(4π). In what follows we compute τs explicitly for our system and it turns out that τs is

the same as the one found in [48] for the geometry of the D2-brane.

Let us come back to the integration of the differential equation (6.14). In order to

impose infalling boundary conditions at the horizon x = 0, we will adopt the ansatz:

X(x) = x−iω̂ S(x) , (6.19)

where S(x) must be regular at x = 0. Let us expand S(x) in powers of q̂ as:

S(x) = S0(x) + q̂2 S2(x) + · · · . (6.20)

Plugging the expansions (6.20) and (6.15) into (6.14) and separating the different orders

in q̂, we get the following system of equations:

S′′
0 − 1

x
S′
0 = 0 ,

S′′
2 − 1

x
S′
2 =

(

1

(1− x2)
7

5

− 2D̂η

x2

)

S0 +
2D̂η

x

(

1− D̂η

x2

)

S′
0 . (6.21)

We can also expand S(x) in powers of x near x = 0:

S(x) = 1 + σ2 x
2 + σ4 x

4 + · · · , (6.22)

where the coefficients σ2 and σ4 are easy to obtain by substituting this expansion into (6.14).

They are given by:

σ2 =
5i q̂2(2i+ ω̂) − 7i ω̂3

20 ω̂ (i+ ω̂)
,

σ4 =
−25 q̂4 (4i+ ω̂) + 70 q̂2 ω̂(2i+ ω̂)2 + 7ω̂3(24− 24iω̂ − 7ω̂2)

800 ω̂ (i+ ω̂) (2i+ ω̂)
. (6.23)
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By expanding σ2 and σ4 in powers of q̂ using the dispersion relation (6.15), we arrive at

the following expression of S(x), valid for low x and low q̂:

S(x) = 1 − x2

2D̂η

+
q̂2 x2

80 D̂η

(

20 D̂η (2 τ̂s − 1) + (14 D̂η − 5)x2
)

+ O(q̂3) . (6.24)

We will next compare (6.24) with the result of integrating the system (6.21) and expanding

the result of this integration in powers of x near x = 0. The integration of the first equation

in (6.21) is straightforward and yields the result:

S0(x) = A + B x2 , (6.25)

where A and B are integration constants. By comparing (6.25) with the first two terms

in (6.24) we conclude that A = 1 and B = −1/(2D̂η) and, therefore, S0(x) is given by:

S0(x) = 1 − x2

2 D̂η

. (6.26)

By imposing the Dirichlet condition S0(x = 1) = 0 at the boundary, we obtain that, as

already announced, D̂η must be:

D̂η =
1

2
, (6.27)

and S0 takes the form:

S0(x) = 1 − x2 . (6.28)

Using these values of S0(x) and D̂η on the right-hand side of the second equation of the

system (6.21) we arrive at the equation:

S′′
2 − 1

x
S′
2 =

1

(1− x2)
2

5

− 1 , (6.29)

whose general solution is:

S2(x) = C + (1 + 2D − 2 log x)
x2

4
− 25

24
e

2πi
5 x

6

5 F

(

− 3

5
,
2

5
;
7

5
;
1

x2

)

. (6.30)

In (6.30) C and D are integration constants which can be determined by expanding the

result near x ≈ 0 and comparing it with the terms proportional to q̂2 of (6.24). The

expansion of (6.30) near x ≈ 0 is:

S2(x) = C +
5

12
+

x2

2

[

D +
1

2

(

γ − iπ + ψ

(

2

5

))

]

+
x4

20
+ · · · , (6.31)

where γ ≈ .577 is the Euler-Mascheroni constant and ψ(z) is the logarithmic derivative of

the Euler gamma function Γ(z). This result coincides with (6.24) if the constants C and

D are:

C = − 5

12
,

D = −1

2

[

1 − 2 τ̂s + γ − iπ + ψ

(

2

5

)]

. (6.32)
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Substituting (6.32) in (6.30) we get the function S2(x), namely:

S2(x) = − 5

12
+

(

2 τ̂s−γ+iπ−ψ

(

2

5

)

−2 log x

)

x2

4
− 25

24
e

2πi
5 x

6

5 F

(

− 3

5
,
2

5
;
7

5
;
1

x2

)

, (6.33)

which only contains τ̂s as unknown parameter. By imposing that S2(x = 1) = 0, τ̂s is fixed

to be:

τ̂s =
1

2

[

γ + ψ

(

8

5

)]

. (6.34)

Equivalently, the unrescaled parameter is:

τs =
1

4π T

[

γ + ψ

(

8

5

)]

. (6.35)

This value of τs coincides with the one found in the literature for the D2-brane [48].

6.2 The sound channel

In the so-called sound channel, the following set of metric fluctuations, propagating along

x2, are decoupled from the others:

(htt, htx2 , hx1x1 , hx2x2) , (6.36)

and are coupled to the fluctuations of the scalar fields. Let us parametrize these metric

fluctuations as:

htt = e−i(ω t− q x2) c21(r)Htt(r) , htx2 = e−i(ω t− q x2) c22(r)Hty(r) ,

hx1x1 = e−i(ω t− q x2) c22(r)Hxx(r) , hx2x2 = e−i(ω t− q x2) c22(r)Hyy(r) , (6.37)

where c1(r) and c2(r) are the functions written in (4.10). Similarly, we represent the scalar

fluctuations as:

δφ = e−i(ω t− q x2)Φ(r) , δγ = e−i(ω t− q x2) Γ(r) ,

δλ = e−i(ω t− q x2) Λ(r) , δβ = e−i(ω t− q x2)B(r) . (6.38)

Let us now introduce a compact notation for the scalar fluctuations. We denote by Ψ̂(r)

the radial part of the fluctuation Ψ = (φ, γ, λ, β), namely:

Ψ̂(r) = (Φ(r),Γ(r),Λ(r), B(r)) . (6.39)

Then, (6.38) can be rewritten simply as:

δΨ = e−i(ω t− q x2)Ψ̂(r) . (6.40)

The full set of equations for the fields of (6.37) and (6.38) is written in appendix D. As

usual, these equations are highly redundant due to the diffeomorphism gauge invariance.

This redundancy can be reduced by defining new fields. Accordingly, let us define new
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scalar fluctuation fields ZΦ, ZΓ, ZΛ and ZB, denoted collectively by ZΨ̂, as the following

combination of Ψ̂ and Hxx:

ZΨ̂ = Ψ̂ − Ψ′

∂r log c22
Hxx . (6.41)

As argued in [44, 49, 50], these are the gauge invariant combinations of the scalar fields

and the metric. It is proved in appendix D that the equations for the Z’s close among

themselves (see the system (D.12)). Moreover, there is a particular combination ZS of

these fields which can be decoupled from the other scalars. This combination is:

ZS(r) ≡ 3ZB(r) + 2ZΦ(r) . (6.42)

The equation satisfied by ZS(r) has been written in (D.14). Following [47], we now define

the gauge invariant metric fluctuation ZH as:

ZH = Hyy +
2q

ω
Hty +

q2

ω2

c21
c22

Htt +

(

q2

ω2

c21∂r log c1
c22∂r log c2

− 1

)

Hxx . (6.43)

The equation satisfied by ZH has been written in (D.15). This equation shows that ZH is

only coupled to ZS . Since ZS does not couple to any other scalar, we can start our analysis

by finding ZS and then using this result in the equation for ZH . It is shown in appendix D

that the only acceptable solution for ZS is the trivial one ZS = 0. Thus, we are left with

a single equation for the gauge invariant metric fluctuation ZH . Let us adopt for ZH an

ansatz similar to the one used for the fluctuations in the shear channel, namely:

ZH(r) =
[

b(r)
]− iω̂

2 Y (r) . (6.44)

Furthermore, we will work in the x variable defined in (6.12). After some work one can

verify that the equation satisfied by Y (x) is:

Y ′′ +

[

5− 2(3 + 2iω̂)x2 − 10i ω̂
]

q̂2 + 7(2i ω̂ − 1)ω̂2

x
[

(5 + 2x2)q̂2 − 7 ω̂2
] Y ′+

+

[

− q̂2

(1− x2)
7

5

+
1

x2

(

1

(1− x2)
7

5

− 1

)

ω̂2 +
8(1 + iω̂) q̂2

(5 + 2x2)q̂2 − 7 ω̂2

]

Y = 0 , (6.45)

where the primes denote derivative with respect to the new variable x.

We want to integrate the differential equations for Y (x) in the hydrodynamic limit of

low momentum. We will impose infalling boundary conditions at the horizon for ZH(r)

and we will demand that the fluctuations vanish at the boundary. The infalling boundary

condition at the horizon x = 0 is equivalent to the regularity of Y (x) at this point. These

conditions would require a specific dispersion relation ω = ω(q), which at low momentum

can be expanded as:

ω = vs q − iΓ q2 + T q3 , (6.46)

where we have only kept terms up to third order in q. The coefficient vs of the linear term

in (6.46) is the speed of sound and the quadratic coefficient Γ is the attenuation which, in

p spatial dimensions, is related to the shear viscosity η and the bulk viscosity ζ as:

Γ =
1

T s

[

p− 1

p
η +

ζ

2

]

, (6.47)

– 27 –



J
H
E
P
0
2
(
2
0
1
8
)
1
3
9

where s is the entropy density. In our p = 2 case this expression becomes:

Γ =
1

2T s
(η + ζ) . (6.48)

The cubic coefficient T is usually [51] parametrized as:

T =
Γ

vs

[

v2s τeff − Γ

2

]

, (6.49)

where τeff is an effective equilibration time which, in p spatial dimensions, is related to the

second-order transport coefficients τπ and τΠ of the Israel-Stewart theory as:

τeff =
τπ + p

2(p−1)
ζ
η
τΠ

1 + p
2(p−1)

ζ
η

. (6.50)

In our p = 2 model we have:

τeff =
τπ + ζ

η
τΠ

1 + ζ
η

. (6.51)

In what follows it is quite convenient to work with the dimensionless momentum and

frequency q̂ and ω̂ defined in (6.13). In terms of these rescaled quantities, the dispersion

relation (6.46) takes the form:

ω̂ = vs q̂ − iΓ̂ q̂2 + T̂ q̂3 , (6.52)

where Γ̂ and T̂ are related to Γ and T as:

Γ̂ = 2π T Γ , T̂ = (2πT )2 T . (6.53)

Let us now analyze (6.45) in the hydrodynamic approximation. We first expand Y (x)

in powers of q̂ (up to second order) as:

Y (x) = Y0(x) + iq̂ Y1(x) + q̂2 Y2(x) . (6.54)

By using (6.54) and (6.46) in (6.45), one can readily show that Y0(x) satisfies the equation:

Y ′′
0 +

5− 7 v2s − 6x2

x(5 − 7v2s + 2x2)
Y ′
0 +

8

5− 7 v2s + 2x2
Y0 = 0 , (6.55)

whose general solution is:

Y0(x) = C1

(

1 +
2x2

7v2s − 5

)

+ C2

(

2(7v2s − 5) + (2x2 − 5 + 7v2s) log x
)

, (6.56)

where C1 and C2 are integration constants. Regularity at the horizon (x = 0) requires that

C2 = 0. By imposing that

Y0(x = 1) = 0 , (6.57)

we get the speed of sound vs, namely:

vs =

√

3

7
, (6.58)
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which coincides with the value we found in our static analysis for the propagation in the

x1x2 plane, i.e., it is the same as the speed of sound propagating along the gauge theory

directions of a D2-brane.

Without loss of generality we can take C1 = 1 (or, equivalently, Y0(x = 0) = 1) and,

therefore, Y0(x) becomes:

Y0(x) = 1− x2 . (6.59)

The equation for Y1 is:

Y ′′
1 +

5− 7 v2s − 6x2

x(5− 7 v2s + 2x2)
Y ′
1 +

8

5− 7 v2s + 2x2
Y1 =

=
8vs

5− 7 v2s + 2x2

[

14 Γ̂

5− 7 v2s + 2x2
− 1

]

Y0 +
vs
x

[

2− 112x2 Γ̂

(5− 7 v2s + 2x2)2

]

Y ′
0 . (6.60)

Using the values of Y0 and vs written in (6.59) and (6.58) this equation becomes:

Y ′′
1 +

1− 3x2

x(1 + x2)
Y ′
1 +

4

1 + x2
Y1 = 4

√

3

7

7 Γ̂− 2

1 + x2
. (6.61)

The general solution of (6.61) is:

Y1(x) =

√

3

7
(7 Γ̂− 2) + C1 (1− x2) + C2

(

4 + (1− x2) log x2
)

, (6.62)

where, again, C1 and C2 are integration constants. The regularity requirement at the

horizon x = 0 implies that C2 = 0. Moreover, the UV condition Y1(x = 1) = 0 fixes the

rescaled attenuation to be:

Γ̂ =
2

7
, (6.63)

which, according to (6.53), is equivalent to the following value of Γ:

Γ =
1

7π T
. (6.64)

Taking into account that η/s = 1/4π, it follows from (6.64) and (6.48) that the ratio of

the bulk and shear viscosities for our model is:

ζ

η
=

1

7
, (6.65)

This value for ζ/η is exactly the same as the one corresponding to a D2-brane [44], which

saturates Buchel’s bound [52]:
ζ

η
= 2

(

1

2
− v2s

)

. (6.66)

Let us next look at the equation for Y2(x). Using the values of vs and Γ̂ already determined,

this equation reduces to:

Y ′′
2 +

1− 3x2

x(1 + x2)
Y ′
2 +

4

1 + x2
Y2 = g(x) , (6.67)
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where g(x) is the following function:

g(x) =
1

(1− x2)
2

5

− 3

7

(

1 − 1

x2
+

1

x2(1− x2)
2

5

)

− 4

7

7
√
21 T̂ − 4

1 + x2
. (6.68)

The homogeneous equation in (6.67) is just the same as in (6.61). We already found two

independent solutions in (6.62), which we now denote by y1(x) and y2(x):

y1(x) = 1 − x2 , y2(x) = (1− x2) log x2 + 4 . (6.69)

Then, the general solution of (6.67) can be written as:

Y2(x) = D1 y1(x) + D2 y2(x) + yp(x) , (6.70)

where D1 and D2 are constants and yp(x) is a particular solution of the full inhomogeneous

equation. We will use the method of variation of constants to find yp(x). The result can

be written as:

yp(x) = y2(x)

∫

dx
y1(x) g(x)

W (x)
− y1(x)

∫

dx
y2(x) g(x)

W (x)
, (6.71)

where W (x) is the Wronskian:

W (x) = y1(x) y
′
2(x) − y′1(x) y2(x) . (6.72)

Let us rewrite (6.71) in a more convenient way following [53, 54]. First of all, we define

h(x) as the ratio between the two solutions of the homogeneous equation:

h(x) =
y2(x)

y1(x)
. (6.73)

The Wronskian W (x) is related to the derivative of h(x) as:

W (x) = h′(x) y21(x) , (6.74)

and, therefore, we can rewrite (6.71) as:

yp(x) = y1(x)

[

h(x)

∫

dx
g(x)

y1(x)h′(x)
−
∫

dx
h(x) g(x)

h′(x) y1(x)

]

. (6.75)

After an integration by parts, this equation can be recast as:

yp(x) = y1(x)

∫

dxh′(x)

∫ x g(z)

y1(z)h′(z)
dz . (6.76)

We now impose the regularity condition at the horizon x = 0. Using the integral expres-

sion (6.76) one can show that near x → 0 the solution behaves as:

Y2(x) ≈ A + B log x + · · · (6.77)
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where A and B are constants and the dots represent terms that vanish at x = 0. Our

regularity condition demands that the term with the logarithm be absent in (6.77). Then,

we require:

B = 0 . (6.78)

This determines the constant D2 in (6.70) to be:

D2 =
1

14

[

3

2

(

γ − iπ + ψ

(

2

5

))

− 1

]

, (6.79)

where γ = 0.577 is the Euler-Mascheroni constant and ψ(x) = Γ′(x)/Γ(x) is the digamma

function. We next impose the UV boundary condition at x = 1:

Y2(x → 1) = 0 , (6.80)

which determines the value of T̂ as:

T̂ =
1

7

√

3

7

(

1 + γ + ψ

(

8

5

))

. (6.81)

Numerically, T̂ ≈ 0.1592. Using (6.53) we find the following value of T :

T =

√
3

28
√
7 (π T )2

(

1 + γ + ψ

(

8

5

))

. (6.82)

Taking into account the value of Γ we found (eq. (6.64)), this result corresponds to having

an equilibration time τeff equal to:

τeff =
1

4π T

[

5

3
+ γ + ψ

(

8

5

)]

, (6.83)

which again coincides with the one found for the geometry of a D2-brane [53, 54]. From

this value of τeff we get the following relation between the two Israel-Stewart coefficients,

namely:

7 τπ + τΠ =
2

πT

[

5

3
+ γ + ψ

(

8

5

)]

. (6.84)

7 Summary and conclusions

Let us summarize our main results. We have succeeded in generalizing the D3-D5 geom-

etry of [25] to include an event horizon. Our solution is analytic and simple and is the

gravity dual of the defect theory introduced in [6] at non-zero temperature in the approxi-

mation in which the massless flavors are smeared. The geometry found is homogeneous but

anisotropic in the gauge theory directions: it preserves translational invariance but breaks

rotational symmetry.

We have studied the thermodynamics and hydrodynamics of the model. We have

checked several thermodynamic relations and found that the results are consistent with the

laws of anisotropic thermodynamics. We also obtained dimensionally reduced gravitational
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actions for our system in four and five dimensions. In both dimensionalities we managed

to construct boundary terms to renormalize the on-shell action and find the stress-energy

tensor. Moreover, we obtained the hydrodynamic transport coefficients (up to second

order) for perturbations propagating in the x1x2 plane. These transport coefficients are

exactly the same as those of the D2-brane, a result which is not obvious despite the 2+1

dimensionality of our defect theory.

It follows from our results that the energy of our system scales with Qc and Qf as

Q
5

3
c Q

2

3

f , which determines the dependence of the effective number of degrees of freedom on

the number of colors and flavors. This type of dependence with Qc and Qf shows up in our

thermodynamic results of section 3, as well as in the dependence of the entanglement en-

tropy S‖ (see eq. (2.17)). The non-integer powers of Qc and Qf in this scaling are reflecting

the strong coupling regime of the dynamics of the layers. The main result of our thermo-

dynamic and hydrodynamic analysis is that this layer behavior can be reproduced by an

effective D2-brane or, equivalently, by 2+1 super Yang-Mills in the strong coupling regime.

Let us discuss some possible extensions of our work. We could use our entanglement

entropy results for slabs of appendix B to study the quantum correlations of the model.

From the dependence of the entanglement entropy on the width of the slab it should be

immediate to study the mutual information of two slabs and to analyze the possible phase

transitions. Moreover, we could also test our geometry with different probe branes, which

would correspond to adding new degrees of freedom. One possibility would be adding D5-

brane probes of the same type as the ones that originated the background and studying

their thermodynamics as in [55]. In this probe brane setup it is rather easy to add a

baryonic chemical potential. Another possibility would be adding D7-branes extended

along the four Minkowski directions, which would allow us to study the anisotropy of the

model from a different point of view.

We have restricted our hydrodynamic study to modes propagating in the x1x2 plane.

It would be very interesting to extend this analysis to modes propagating along x3 and

to explore the effects of anisotropy on the transport coefficients. To carry out this task

we should make use of the 5d reduced action found in section 5. However, this reduced

model contains a codimension one object embedded in the fixed hypersurface x3 = constant

(and smeared over x3). The fluctuations of this action involving the x3 direction are very

difficult to treat and we could not find the analogue of the decoupled gauge invariant

combinations of section 6. On general grounds we would expect to find the same speed of

sound vz as in (3.30). In the shear channel we could violate the KSS bound, as it happens

in other anisotropic models [56, 57]. As a preliminary calculation one can consider the

perturbation of the x1x3 component of the metric and study the response function. By

using the standard Kubo formalism in the holographic setup, we get (see, for example, [29]):

η⊥
s

=
gx1x1

gx3x3

∣

∣

∣

∣

∣

r=rh

. (7.1)

The value of the transverse viscosity η⊥ obtained in this way satisfies η⊥/s ∼ Q
2

3
c Q

− 4

3

f T
4

3 ,

which certainly can be arbitrary small as T → 0 and, therefore, violates the KSS bound at

low temperatures.
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One important feature of our geometry is that it does not have a weak anisotropy

limit and, in fact, it is non-analytic in Qf when Qf → 0. This is due to the fact that the

flavors introduced are massless. It was shown in [25] how to generalize the supersymmetric

(T = 0) solution to the case in which the flavors are massive. In this case the flavor branes

do not reach the origin and there is a cavity around r = 0 in which the D5-brane charge

is zero and the equations of motion are those of the unflavored system. The radius of the

cavity is related to the mass of the quarks. The massive solutions found in [25] interpolate

between the unflavored metric in the IR and the massless flavored geometry in the UV.

By sending the quark mass to infinity the size of the cavity increases and the geometry

becomes AdS5 × S
5. This is quite natural from the point of view of field theory since in

this infinite mass limit we are making the flavors non dynamical. From the holographic

point of view, the quark mass is an external parameter which allows to modify the degree

of anisotropy. It would be very interesting to generalize some of the results found here to

this massive case and to explore the development of anisotropy and their effects on the

physical observables. Work along these lines is in progress.
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A Details of the background

Let us write a coordinate representation of the internal part of our background. The metric

of CP2 can be written as:

ds2
CP2 = dχ2 +

cos2 χ

4
((ω1)2 + (ω2)2) +

cos2 χ sin2 χ

4
(ω3)2 , (A.1)

where χ is an angular coordinate taking values in the range 0 ≤ χ ≤ π and ω1, ω2 and

ω3 are three SU(2) left-invariant one-forms, which can be written in terms of three angles

(θ, ϕ, ψ) as follows:

ω1 = cosψ dθ + sinψ sin θ dϕ ,

ω2 = sinψ dθ − cosψ sin θ dϕ ,

ω3 = dψ + cos θ dϕ . (A.2)

The fiber τ in (2.5) takes values in the range 0 ≤ τ ≤ 2π and the one-form A is:

A =
1

2
cos2

(

χ

2

)

ω3 . (A.3)
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The vielbein basis of CP
2 is:

e1 =
1

2
cos

(

χ

2

)

ω1 , e2 =
1

2
cos

(

χ

2

)

ω2 ,

e3 =
1

2
cos

(

χ

2

)

sin

(

χ

2

)

ω3 , e4 =
1

2
dχ . (A.4)

We can use these one-forms to define the two-form Ω̂2 as:

Ω̂2 = e3iτ (e1 + ie2) ∧ (e3 + ie4) , (A.5)

Let us now write our ansatz for F3 as:

F3 = Qf dx
3 ∧ Im Ω̂2 , (A.6)

where Qf is a constant proportional to the number of flavors Nf . The modified Bianchi

identity for F3 is:

dF3 = −3Qf dx
3 ∧ Re Ω̂2 ∧ (dτ +A) . (A.7)

The dilaton for our solution is:

e
3φ
2 =

3

4Qf
r (A.8)

Moreover, the RR five-form F5 for our background can be written as:

F5 = ∂r
(

e−φ h−1
) (

1 + ∗
)

d4x ∧ dr . (A.9)

The precise relation between Qf and Nf can be obtained by analyzing the embeddings of

the family of flavor branes that source the background. For the case of flavor branes dual

to massless quarks we get:

Qf =
4πNf

9
√
3

. (A.10)

B Wilson loops and entanglement entropies

In this appendix we calculate the potential energy for static quark-antiquark pairs, as well

as the entanglement entropy for slab regions and their complements.

B.1 Quark-antiquark potentials

To calculate the potential energy between a “quark” and an “antiquark” we will follow the

holographic prescription to compute the Wilson loops developed in [36, 37] . In this method

one has to solve the equations of motion of a fundamental string with its two ends lying at

the UV boundary. These equations are obtained by extremizing the Nambu-Goto action:

S =
1

2π

∫

dτdσ e
φ
2

√

− det g2 , (B.1)

where g2 is the Einstein frame induced metric on the worldvolume of the string. We

consider separately the cases in which the quark and the antiquark are in the same layer

(i.e., with the same value of the coordinate x3) and the configuration in which they have

the same value of (x1, x2) and different values of x3.
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B.1.1 Intra-layer potential

Let us first consider a fundamental string hanging from the UV boundary r → ∞ and

extended along one of the layer directions (say along x1 ≡ x). with the other two cartesian

coordinates being constant. We parametrize the worldvolume of such a string by means of

the coordinates (τ, σ) = (x0, x1). The Nambu-Goto action (B.1) takes the form:

S

T
=

∫

dx e
φ
2

√

(r′)2 +
r4

R4
≡
∫

dxL , (B.2)

where the prime denotes derivative with respect to x, T =
∫

dx0 and we have defined an

effective lagrangian function L. Since L does not depend explicitly on x, the Euler-Lagrange

equation of motion has the following first integral:

r′
∂L

∂r′
− L = constant , (B.3)

or, more explicitly:

r4 e
φ
2

√

(r′)2 + r4

R4

= r20 R
2 e

φo
2 , (B.4)

where r0 is the turning point, i.e., the minimal value of the coordinate r, and φ0 = φ(r = r0).

It is now straightforward to use (B.4) to obtain r′:

r′ = ± r2

R2

√

(

r

r0

)4

eφ−φ0 − 1 , (B.5)

from which we easily get the parallel cartesian coordinate x as a function of the holographic

coordinate r:

x(r) = ± R2

r0

∫ r
r0

1

dy

y2
√

y
14

3 − 1

. (B.6)

It follows that the quark-antiquark distance d‖ at the boundary is:

d‖ =
2R2

r0

∫ ∞

1

dy

y2
√

y
14

3 − 1

=
2R2√π

r0

Γ
(

5
7

)

Γ
(

3
14

) . (B.7)

Let us now use (B.4) to compute the on-shell action for this configuration of the funda-

mental string. After some calculation we get:

Son−shell

T
= 2

1

2π

e
φ0
2

r20

∫ rmax

r0

r2 eφ−φ0 dr
√

(

r
r0

)4
eφ−φ0 − 1

. (B.8)

Using the value of the dilaton for our background, we obtain:

Son−shell

T
=

1

π

(

3

4Qf

)
1

3

r
4

3

0

∫ rmax

r0

1

y
8

3 dy
√

y
14

3 − 1

, (B.9)
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which is a divergent integral when rmax → ∞. We regularize this divergence by subtracting

the action of two fundamental strings going straight from r = 0 to the boundary at r =

rrmax. The resulting finite action divided by T is identified with the qq̄ potential:

Vqq̄ =
Sreg
on−shell

T
=

Son−shell

T
− 2

2π

∫ rmax

0
dr e

φ
2 =

Son−shell

T
− 3

4π

(

3

4Qf

)
1

3

r
4

3
max . (B.10)

One can easily show that Vqq̄ can be rewritten as:

Vqq̄ = − 1

π

(

3

4Qf

)
1

3

r
4

3

0

[

3

4
−
∫ ∞

1
dy y

1

3

(

y
7

3

√

y
14

3 − 1

− 1

)]

. (B.11)

The integral inside the brackets in this last expression can be computed analytically. We

get:

Vqq̄ = − 3

4
√
π

(

3

4Qf

)
1

3

r
4

3

0

Γ
(

5
7

)

Γ
(

3
14

) . (B.12)

By using the relation (B.7) we can eliminate r0 in favor of the qq̄ distance d‖. After some

calculation we get:

Vqq̄ = −β‖
Q

2

3
c

Q
1

3

f

1

d
4

3

‖

, β‖ =
16π

1

6

9 · 5 2

3

(

Γ
(

5
7

)

Γ
(

3
14

)

)
7

3

. (B.13)

B.1.2 Inter-layer potential

Let us now repeat the analysis of the previous section for the case in which the fundamentals

are separated at the boundary in the transverse direction x3 ≡ z to the layers. We now

take τ = x0 and σ = z and consider an ansatz of the form r = r(z). The corresponding

Nambu-Goto action becomes:

S

T
=

1

2π

∫

dz e
φ
2

√

(r′)2 + e−2φ
r4

R4
≡
∫

dzL , (B.14)

where now r′ = dr/dz. Proceeding as in section B.1.1, we get:

r′ = e−φ r2

R2

√

(

r

r0

)4

eφ0−φ − 1 , (B.15)

which yields the following function z = z(r):

z(r) = ± R2

r
1

3

0

(

3

4Qf

)
2

3
∫ r

r0

1

dy

y
4

3

√

y
10

3 − 1

, (B.16)

as well as the following transverse distance:

d⊥ = 2
R2

r
1

3

0

(

3

4Qf

)
2

3
∫ ∞

1

dy

y
4

3

√

y
10

3 − 1

= 6
√
π

(

3

4Qf

)
2

3 Γ
(

3
5

)

Γ
(

1
10

)

R2

r
1

3

0

. (B.17)
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The unregulated on-shell action in this case is given by:

Son−shell

T
=

e
φ0
2

π r20

∫ rmax

r0

r2 dr
√

(

r
r2
0

)4

eφ0−φ − 1

=
1

π

(

3

4Qf

)
1

3

r
4

3

0

∫ rmax

r0

1

y2 dy
√

y
10

3 − 1

,

(B.18)

whereas the qq̄ potential is:

Vqq̄ = − 1

π

(

3

4Qf

)
1

3

r
4

3

0

[

3

4
−
∫ ∞

1
dy y

1

3

(

y
5

3

√

y
10

3 − 1

− 1

)]

. (B.19)

By performing the integral in this last expression we arrive at:

Vqq̄ = − 3

4
√
π

(

3

4Qf

)
1

3

r
4

3

0

Γ
(

3
5

)

Γ
(

1
10

) . (B.20)

Finally, we can rewrite this intra-layer potential in terms of d⊥ as:

Vqq̄ = −β⊥
Q2

c

Q3
f

1

d4⊥
, β⊥ =

212 π
3

2

32 · 52

(

Γ
(

3
5

)

Γ
(

1
10

)

)5

. (B.21)

B.2 Entanglement entropy

Let A be a spatial region in the gauge theory. The holographic entanglement entropy

between A and its complement is obtained by finding the eight-dimensional spatial surface

Σ whose boundary coincides with the boundary of A and minimizes the functional [38, 39]:

SA =
1

4G10

∫

Σ
d8ξ

√

det g8 , (B.22)

where G10 is the ten-dimensional Newton constant (G10 = 8π6 in our units) and g8 is the

induced metric on Σ in the Einstein frame. The entanglement entropy between A and its

complement is given by SA evaluated on the minimal surface Σ. We will obtain SA when A

is a slab extended infinitely in two spatial cartesian directions and having a finite width in

the third one. We will consider separately the two cases corresponding to the two possible

orientations of the slab.

B.2.1 Parallel slab

Let us consider first the case in which A is the region {− l‖
2 ≤ x1 ≤ l‖

2 , −∞ < x2, x3 <

+∞}, i.e., when the slab has a finite width in the direction parallel to the layers. We will

characterize the surface Σ by a function r = r(x), where x ≡ x1. After integrating over all

coordinates except x, we get:

S‖

L2 L3
=

R4

32π3

(

3

2
√
2

)6 ∫

e−φ r

√

(r′)2 +
r4

R4
dx , (B.23)
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where L2,3 =
∫

dx2,3 and r′ = dr/dx. The Euler-Lagrange equations which minimize S‖

admit the following first integral:

r5 e−φ

√

(r′)2 + r4

R4

= R2 r30 e
−φ0 , (B.24)

where r0 is the minimal value of r and φ0 = φ(r = r0). It follows that r
′ is given by:

r′ = ± r2

R2

√

(

r

r0

)6

e2(φ0−φ) − 1 = ± r2

R2

√

(

r

r0

)
14

3

− 1 , (B.25)

and, therefore:

x(r) = ± R2

r0

∫ r
r0

1

dy

y2
√

y
14

3 − 1

. (B.26)

Then, the length l‖ in the direction parallel to the layers is:

l‖ =
2R2

r0

∫ ∞

1

dy

y2
√

y
14

3 − 1

=
2R2√π

r0

Γ
(

5
7

)

Γ
(

3
14

) . (B.27)

One can now evaluate the entropy for this configuration. We get:

S‖

L2 L3
=

R4

16π3

(

3

2
√
2

)6

r20 e
−φ0

∫ rmax

r0

1

y
8

3 dy
√

y
14

3 − 1

. (B.28)

The integral (B.28) is divergent at the UV and has been regulated by introducing a max-

imal radial coordinate rmax. The divergent part of S‖ can be obtained by computing the

contribution of the upper limit to the integral (B.28) and gives:

Sdiv
‖

L2 L3
=

3R4

64π3

(

3

2
√
2

)6(4Qf

3

)
2

3

r
4

3
max . (B.29)

We now define Sfinite
‖ as:

Sfinite
‖

L2 L3
=

S‖ − Sdiv
‖

L2 L3
. (B.30)

One can readily demonstrate that:

Sfinite
‖

L2 L3
= − R4

16π3

(

3

2
√
2

)6

r20 e
−φ0

[

3

4
−
∫ ∞

1
dy y

1

3

(

y
7

3

√

y
14

3 − 1

− 1

)]

, (B.31)

which, after performing the integration, gives:

Sfinite
‖

L2 L3
= − 3

√
π

64π3

(

3

2
√
2

)6(4Qf

3

)
2

3 Γ
(

5
7

)

Γ
(

3
14

)R4 r
4

3

0 . (B.32)

By using the relation (B.27) between r0 and l‖, we can rewrite Sfinite
‖ as:

Sfinite
‖

L2 L3
= −γ‖

Q
2

3

f Q
5

3
c

l
4

3

‖

, γ‖ =
2

45 · 5 2

3 π
11

6

(

Γ
(

5
7

)

Γ
(

3
14

)

)
7

3

. (B.33)
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B.2.2 Transverse slab

We now take A to be {−∞ < x1, x2 < +∞ , − l⊥
2 ≤ x3 ≤ l⊥

2 }, i.e., a slab with finite width

in the direction x3 transverse to the layers. If z ≡ x3, the surface Σ is parametrized by a

function r = r(z) and the functional to be minimized is:

S⊥

L1 L2
=

R4

32π3

(

3

2
√
2

)6 ∫

r

√

(r′)2 +
r4

R4
e−2φ dz . (B.34)

The corresponding first integral is now:

r5 e−2φ

√

(r′)2 + r4

R4 e−2φ
= R2 r30 e

−φ0 , (B.35)

and, as a consequence, r′ is given by:

r′ = ± r2

R2
e−φ

√

(

r

r0

)6

e2(φ0−φ) − 1 = ± r2

R2
e−φ

√

(

r

r0

)
14

3

− 1 . (B.36)

Therefore z(r) is the following integral:

z(r) = ±
(

3

4Qf

)
2

3 R2

r
1

3

0

∫ r
r0

1

dy

y
4

3

√

y
14

3 − 1

, (B.37)

and the transverse length l⊥ is related to r0 as:

l⊥ = 6
√
π

(

3

4Qf

)
2

3 Γ
(

4
7

)

Γ
(

1
14

)

R2

r
1

3

0

. (B.38)

The functional S⊥ evaluated on the minimal surface is given by:

S⊥

L1 L2
=

R4

16π3

(

3

2
√
2

)6

r20

∫ rmax

r0

1

y
10

3 dy
√

y
14

3 − 1

, (B.39)

and its divergent part is:
Sdiv
⊥

L1 L2
=

R4

32π3

(

3

2
√
2

)6

r2max . (B.40)

Defining Sfinite
⊥ by subtracting Sdiv

⊥ from S⊥:

Sfinite
⊥

L1 L2
=

S⊥ − Sdiv
⊥

L1 L2
, (B.41)

we get:

Sfinite
⊥

L1 L2
= − R4

16π3

(

3

2
√
2

)6

r20

[

1

2
−
∫ ∞

1
dy y

(

y
7

3

√

y
14

3 − 1

− 1

)]

, (B.42)
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which, after computing the integral, becomes:

Sfinite
⊥

L1 L2
= − 1

32π3

(

3

2
√
2

)6√
π

Γ
(

4
7

)

Γ
(

1
14

) R4 r20 . (B.43)

Finally, using the relation (B.38), we arrive at:

Sfinite
⊥

L1 L2
= −γ⊥

Q4
c

Q4
f

1

l6⊥
, γ⊥ =

(

16

15

)4√
π

(

Γ
(

4
7

)

Γ
(

1
14

)

)7

. (B.44)

C More on the reduced equations

In this appendix we give details on the dimensional reduction of our setup. We first consider

the reduction to four dimensions.

C.1 4d reduction

Let us consider the reduction ansatz of the 10d metric written in (4.1). For this ansatz,

the determinant of the 10d and 4d metrics are related as:

√

−G10 = e
10

3
γ−β

√

G5
√−g4 , (C.1)

where G5 is the determinant of the 5d compact internal manifold. Moreover, the relation

between the Ricci scalars in 10d and 4d is:

R10 = e−
10

3
γ+β

[

R4 −
40

3
(∂γ)2 − 20 (∂λ)2 − 3

2
(∂β)2 + 24 e

16

3
γ+2λ−β − 4 e

16

3
γ+12λ−β + Λ

]

,

(C.2)

where Λ is given by:

Λ =
1√−g4

∂m

[√−g4 g
mn ∂n

(

β − 10

3
γ

)]

. (C.3)

As Λ leads to a total derivative in the 4d Einstein-Hilbert action and, thus, it does not

contribute to the equations of motion and we simply drop it from our equations. The

Einstein-Hilbert action in 10d can be written as:
∫

d10X
√

−G10R10 = V5 Vx3

∫

d4z
√−g4

[

R4 − 40

3
(∂γ)2 − 20 (∂λ)2 − 3

2
(∂β)2 +

+24 e
16

3
γ+2λ−β − 4 e

16

3
γ+12λ−β

]

, (C.4)

where V5 is the volume of the five-dimensional compact space and Vx3 ≡
∫

dx3.

Let us now write the contribution of the remaining fields of type IIB supergravity to the

reduced action. We start with the contribution of the dilaton φ, which is proportional to:
∫

d10X
√

−G10
1

2
GMN ∂M φ∂N φ = V5 Vx3

∫

d4z
√−g4

1

2
gmn ∂m φ∂nφ . (C.5)
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Moreover, the RR five-form F5 in these new variables is:

F5 = Qc e
40

3
γ−β √−g4 d4z ∧ dx3 , (C.6)

and its contribution to the effective action is proportional to:

∫

1

2
F5 ∧ ∗F5 = V5 Vx3

∫

d4z
√−g4

Q2
c

2
e

40

3
γ−β . (C.7)

Similarly, the RR three-form F3 contributes as:

∫

1

2
eφ F3 ∧ ∗F3 = V5 Vx3

∫

d4z
√−g4 Q2

f e
φ+4γ+4λ−3β . (C.8)

It remains to calculate the contribution of the DBI action of the flavor D5-branes, which

is given by:

− 3V5 Vx3 Qf

κ210

∫

d4z
√−g4 e

14

3
γ− 2β−2λ+ φ

2 . (C.9)

Putting everything together, we can write the effective action as in (4.2), where V is the

potential for the scalar fields φ, γ, λ and β written in (4.3).

Let us now write down the equations of motion derived from the action (4.2). First of

all, the equation of motion for the 4d metric is:

Rmn =
1

2
∂mφ∂nφ +

40

3
∂mγ ∂nγ + 20 ∂mλ∂nλ +

3

2
∂mβ ∂nβ +

1

2
gmn V , (C.10)

where Rmn is the Ricci tensor for gmn. These equations are equivalent to the ones written

in (4.6). Moreover, if we define the d’Alembertian of any scalar field Ψ as in (4.7), the

equations for φ, γ, λ and β are:

�φ = ∂φV , � γ =
3

80
∂γV ,

�λ =
1

40
∂λV , �β =

1

3
∂βV , (C.11)

where we have denoted ∂V
∂φ

= ∂φ V and similarly for the other scalar fields. Notice that the

four equations in (C.11) can be written more compactly as in (4.8). Let us now write the

equations (C.11) for the scalars more explicitly:

�φ=Q2
fe

4γ+4λ−3β+φ+3Qfe
14

3
γ−2λ−2β+φ

2 , (C.12)

�γ=−24

5
e

16

3
γ+2λ−β+

4

5
e

16

3
γ+12λ−β+

3Q2
f

20
e4γ+4λ−3β+φ+

Q2
c

4
e

40

3
γ−β+

21Qf

20
e

14

3
γ−2λ−2β+φ

2 ,

�λ=−6

5
e

16

3
γ+2λ−β+

6

5
e

16

3
γ+12λ−β+

Q2
f

10
e4γ+4λ−3β+φ− 3Qf

10
e

14

3
γ−2λ−2β+φ

2 ,

�β=8e
16

3
γ+2λ−β− 4

3
e

16

3
γ+12λ−β−Q2

fe
4γ+4λ−3β+φ−Q2

c

6
e

40

3
γ−β−4Qfe

14

3
γ−2λ−2β+φ

2 .
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C.2 5d reduction

Let us now consider a reduction of the 10d metric to a 5d metric according to the

ansatz (5.1). The determinants of the 10d and 5d metrics are related as:

√

−G10 = e
10

3
γ
√

G5
√−g5 , (C.13)

where G5 is the determinant of the 5d compact internal manifold. Up to terms which give a

total derivative in the Einstein-Hilbert action, the Ricci scalars in 10d and 5d are related as:

R10 = e−
10

3
γ

[

R5 − 40

3
(∂γ)2 − 20 (∂λ)2 + 24 e

16

3
γ+2λ − 4 e

16

3
γ+12λ

]

. (C.14)

Then, the Einstein-Hilbert action in 10d can be written as:

∫

d10X
√

−G10R10 = V5

∫

d5z
√−g5

[

R5−
40

3
(∂γ)2− 20 (∂λ)2+24 e

16

3
γ+2λ−4 e

16

3
γ+12λ

]

,

(C.15)

where V5 is the volume of the 5d compact space. Let us write the contribution of the

remaining fields of type IIB supergravity to the effective action. The dilaton contributes as:

∫

d10X
√

−G10
1

2
GMN ∂M φ∂N φ = V5

∫

d5z
√−g5

1

2
gpq ∂p φ∂qφ . (C.16)

The RR five-form is:

F5 = Qc e
40

3
γ √−g5 d5z , (C.17)

and contributes to the effective action as:

∫

1

2
F5 ∧ ∗F5 = V5

∫

d5z
√−g5

Q2
c

2
e

40

3
γ . (C.18)

Let us consider the following ansatz for the RR three-form F3:

F3 =
1√
2
F1 ∧ Im Ω̂2 , (C.19)

where Ω̂2 is the two-form (A.5) and F1 has only components along the 5d space. We will

represent F1 in terms of a scalar potential V as in (5.2). Then, the contribution of V to

the action is:
1

2

∫

M10

F3 ∧ ∗F3 =
V5

2

∫

d5z
√−g5 e

4γ+4λ+φ (∂V)2 . (C.20)

The DBI action of the flavor D5-branes is:

SDBI = −T5

∑

Nf

∫

d6ξ e
φ
2

√

−ĝ6 (C.21)

After smearing and integration over the internal manifold, the DBI action becomes:

SDBI = −6Qf V5

2κ210

∫

d5z
√

−ĝ4 e
φ
2
+ 14

3
γ−2λ , (C.22)
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where ĝ4 is the determinant of the metric obtained by taking the pullback of the 5d metric

on a surface with constant x3. Putting everything together we arrive at the effective

action (5.3). The equations of motion for the scalars φ, γ and λ derived from (5.3) are:

�φ = ∂φU +
1

2
e4λ+4γ+φ

(

∂V
)2

+ 3Qf

√−ĝ4√−g5
e

14

3
γ− 2λ+ φ

2 ,

� γ =
3

80
∂γU +

3

40
e4λ+4γ+φ

(

∂V
)2

+
21

20
Qf

√−ĝ4√−g5
e

14

3
γ− 2λ+ φ

2 ,

�λ =
1

40
∂λU +

1

20
e4λ+4γ+φ

(

∂V
)2 − 3

10
Qf

√−ĝ4√−g5
e

14

3
γ− 2λ+ φ

2 , (C.23)

where � is the laplacian operator for the 5d metric. Let us group the 5d scalars into a

single three-component field Ψ = (φ, γ, λ). Then, the three scalar equations of (C.23) can

be compactly written as:

�Ψ = αΨ ∂Ψ U +
1

2
αΨ

(

∂V
)2

∂Ψ

(

e4λ+4γ+φ
)

+ 6Qf

√−ĝ4√−g5
αΨ ∂Ψ

(

e
14

3
γ−2λ+φ

2

)

, (C.24)

where the coefficients αΨ are those written in (4.5) for the three scalars (φ, γ, λ). The

equation of V is:

∂p

[√−g5 e
4λ+4γ+φ gpq ∂q V

]

= 0 , (C.25)

while the Einstein equations are:

Rpq =
∑

Ψ

1

2αΨ
∂pΨ ∂q Ψ +

1

2
e4λ+4γ+φ ∂pV ∂qV +

1

3
gpq U +

+3Qf

√−g4√−g5
e

14

3
γ− 2λ+ φ

2

(

4

3
gpq − ĝ(4)pq

)

. (C.26)

It is straightforward to demonstrate that the metric written in (5.5) and (5.6), together

with the scalars displayed in (5.7) and (5.8), satisfy (C.23), (C.25) and (C.26).

C.3 5d → 4d reduction

Let us now perform an additional reduction of the 5d action to four dimensions. We will

reduce along the coordinate x3 and we will adopt the following ansatz for the 5d metric:

ds25 = e−β ds24 + e2β (dx3)2 , (C.27)

where β is a new scalar which depends on the 4d coordinates. The determinant of the 5d

metric and the one corresponding to the pullback to the surface x3 = constant are related

to the determinant g4 of the reduced 4d metric as:

√−g5 = e−β √−g4 ,
√

−ĝ4 = e−2β √−g4 . (C.28)

Moreover, after neglecting a total derivative, we can relate the Einstein-Hilbert term of the

action (C.15) to the one corresponding to the reduced 4d action as:

∫

d5z
√−g5R5 =

∫

d4z
√−g4

(

R4 − 3

2
(∂β)2

)

. (C.29)
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Let us now split the one-form F1 as:

F1 = χdx3 + f1 , (C.30)

where f1 is a closed one-form that has legs only in the 4d space. Using that:

F2
1 =

(

∂V
)2

= e−2β χ2 + eβ f2
1 , (C.31)

we can write the term containing V in (5.3) as:

√−g5

[

− 1

2
e4γ+4λ+φ (∂V)2

]

=
√−g4

[

− 1

2
e4γ+4λ+φ

(

e−3β χ2 + f2
1

)

]

. (C.32)

Collecting all these results, we can write the effective action as:

Seff =
V5 Vx3

2κ210

∫

d4z
√−g4

[

R4 − 40

3
(∂γ)2 − 20 (∂λ)2 − 3

2
(∂β)2 −

−1

2
(∂φ)2 − 1

2
e4γ+4λ+φ f2

1 − V

]

, (C.33)

where the 4d potential V is related to the 5d one U in (5.4) by the relation:

V = e−β U +
1

2
e4γ+4λ+φ−3β χ2 + 6Qf e

14

3
γ−2λ−2β+φ

2 . (C.34)

It is now straightforward to verify that the action (C.33) reduces to the one written in (4.2)

when we truncate the former in such a way that f1 = 0 and the scalar χ takes the following

constant value:

χ =
√
2Qf . (C.35)

D Hydrodynamic fluctuations

In this appendix we provide details of the analysis of the hydrodynamic fluctuations, which

complement the presentation given in section 6 on the main text. We will consider sepa-

rately the two channels.

D.1 Shear channel

One can show that the fluctuation equations (6.5) and (6.8) for the ansatz (6.9) reduce to:

H ′′
tx + ∂r log

(

c42
c1 c3

)

H ′
tx + W Htx − q

c23
c22

(

q Htx + ωHxy

)

= 0 ,

H ′′
xy + ∂r log

(

c1 c
2
2

c3

)

H ′
xy + W Hxy + ω

c23
c21

(

q Htx + ωHxy

)

= 0 ,

q c21H
′
xy + ω c22H

′
tx = 0 , (D.1)

where W is the function:

W = c23 V + 2 ∂2
r log c2 + 2 ∂r log c2 ∂r log

(

c1 c
2
2

c3

)

. (D.2)
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One can verify easily that W vanishes for our background. Therefore, we will omit it in the

equations that follow in this section. Notice that the last equation in (D.1) is first-order in

the radial derivative and it can be used to reduce the number of equations of the system.

Actually, if we define the gauge invariant combination X as in (6.10) and combine this

definition and the last equation in (D.1) to express the first derivatives of Htx and Hxy in

terms of X ′, we get:

H ′
tx =

q c21
q2 c21 − ω2 c22

X ′ , H ′
xy = − ω c22

q2 c21 − ω2 c22
X ′ . (D.3)

Moreover, one can show that the system (D.1) reduces to the following second-order dif-

ferential equation for X:

X ′′ +
q2 c21 ∂r log

(

c4
2

c1 c3

)

− ω2 c22 ∂r log
(

c1 c
2
2

c3

)

q2 c21 − ω2 c22
X ′ − c23

c22 c
2
1

(q2 c21 − ω2 c22)X = 0 . (D.4)

By using the values of c1, c2 and c3 written in (4.10), one can easily demonstrate that (D.4)

can be converted into (6.11).

D.2 Sound channel

Plugging (6.40) and (6.37) into (6.5) we get the following second order equation for Ψ̂(r):

Ψ̂′′ + ∂r log

(

c1 c
2
2

c3

)

Ψ̂′ +

[

c23
c21

ω2 − c23
c22

q2
]

Ψ̂+

+
1

2
Ψ′ (H ′

xx +H ′
yy −H ′

tt) = c23 αΨ δ̂
[

∂Ψ V
]

(D.5)

where, for every Ψ = (φ, γ, λ, β), we define:

δ̂
[

∂Ψ V
]

= ∂φ∂ΨV Φ(r) + ∂γ∂ΨV Γ(r) + ∂λ∂ΨV Λ(r) + ∂β∂ΨV B(r) . (D.6)

Let us now write the equations for the metric fluctuations, which are obtained by taking

different values for the (m,n) indices in (6.8). To write these equations compactly, let us

denote by δ̂V the following radial function:

δ̂V = ∂φV Φ(r) + ∂γV Γ(r) + ∂λV Λ(r) + ∂βV B(r) . (D.7)

Then, one can check that (6.8) is equivalent to the following second-order equations:

H ′′
tt+∂r log

(

c21c
2
2

c3

)

H ′
tt−ω2 c

2
3

c21
(Hxx+Hyy)−q2

c23
c22
Htt−2ωq

c23
c21
Hty− (D.8)

−∂r logc1(H
′
xx+H ′

yy)−c23δ̂V +HttW̃ = 0 ,

H ′′
ty+∂r log

(

c42
c1c3

)

H ′
ty+ωq

c23
c22
Hxx+HtyW = 0 ,

H ′′
xx+∂r log

(

c1c
3
2

c3

)

H ′
xx+

(

ω2 c
2
3

c21
−q2

c23
c22

)

Hxx−∂r logc2(H
′
tt−H ′

yy)+c23δ̂V +HxxW = 0 ,

H ′′
yy+∂r log

(

c1c
3
2

c3

)

H ′
yy+

c23
c21
(ω2Hyy+2qωHty)+q2

c23
c22
(Htt−Hxx)+

+∂r logc2(H
′
xx−H ′

tt)+c23δ̂V +HyyW = 0 ,
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together with three first order constraints associated to the gauge fixing condition (6.2):

qH ′
ty + ω(H ′

xx +H ′
yy) = ∂r log

c1
c2

(

2qHty + ω(Hxx +Hyy)
)

− ω
∑

Ψ

Ψ′

αΨ
Ψ̂ ,

ω
c22
c21
H ′

ty + q(H ′
tt −H ′

xx) = −q∂r log
c1
c2
Htt + q

∑

Ψ

Ψ′

αΨ
Ψ̂ ,

∂r log c
2
2H

′
tt − ∂r log(c1c2)(H

′
xx +H ′

yy) =
c23
c21

(

ω2(Hxx +Hyy) + 2ωqHty

)

+

+q2
c23
c22
(Htt −Hxx) + c23δ̂V −

∑

Ψ

Ψ′

αΨ
Ψ̂ . (D.9)

In (D.8) W is the function defined in (D.2), which vanishes in our background and, there-

fore, will be omitted from now on. The function W̃ appearing in the first equation in (D.8)

is defined as:

W̃ = c23 V + 2 ∂2
r log c1 + 2 ∂r log c1 ∂r log

(

c1 c
2
2

c3

)

. (D.10)

This function also vanishes in our background and will also be omitted in the equations

that follow.

We now write the equations for the scalar fluctuations in terms of the new fields ZΨ̂

defined in (6.41). With this aim, let us define Wφ, Wγ , Wλ and Wβ as the following linear

combinations of the ZΨ̂’s:

WΨ = αΨ

∑

Ψ′

∂2V

∂Ψ ∂Ψ′
ZΨ̂′ . (D.11)

It turns out that the equations of motion of the scalar fluctuations can be written as:

Z ′′
Φ + ∂r log

(

c1c
2
2

c3

)

Z ′
Φ + c23

(

ω2

c21
− q2

c22

)

ZΦ − 3 c23
7

(

Wφ − 2Wβ

)

= 0 ,

Z ′′
Γ + ∂r log

(

c1c
2
2

c3

)

Z ′
Γ + c23

(

ω2

c21
− q2

c22

)

ZΓ − c23Wγ = 0 ,

Z ′′
Λ + ∂r log

(

c1c
2
2

c3

)

Z ′
Λ + c23

(

ω2

c21
− q2

c22

)

ZΛ − c23Wλ = 0 ,

Z ′′
B + ∂r log

(

c1c
2
2

c3

)

Z ′
B + c23

(

ω2

c21
− q2

c22

)

ZB − 2 c23
7

(

2Wβ −Wφ

)

= 0 . (D.12)

By combining the first and last equations in (D.12), one can immediately show that the

scalar ZS defined in (6.42) satisfies the simple equation:

Z ′′
S + ∂r log

(

c1c
2
2

c3

)

Z ′
S + c23

(

ω2

c21
− q2

c22

)

ZS = 0 . (D.13)

More explicitly, this equation can be written as:

Z ′′
S + ∂r log

(

r
13

3 b(r)
)

Z ′
S +

R4

r4 b2(r)

(

ω2 − b(r) q2
)

ZS = 0 . (D.14)
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One can demonstrate that the equation for the gauge invariant metric fluctuation ZH

takes the form:

Z ′′
H + F(r)Z ′

H + G(r)ZH +H(r)ZS = 0 , (D.15)

where the functions F(r), G(r) and H(r) are given by:

F(r) = ∂r log

(

c1 c
2
2

c3

)

− 4 ∂r log

(

c1
c2

)

+ ξ1(r) ,

G(r) = c23

(

ω2

c21
− q2

c22

)

+ 4

[

∂r log

(

c1
c2

)]2

− ∂r log

(

c1
c2

)

ξ1(r) ,

H(r) = − q2

ω2

c21
c22

[

∂βV

(

1− ∂r log c1
∂r log c2

)

c23 + 6β′ ξ2(r)

]

, (D.16)

with:

ξ1(r) =
q2∂rc

2
1

∂2
r log c2

(∂r log c2)2

(

1− ∂2
r log c1∂r log c2

∂2
r log c2∂r log c1

)

+ 4ω2∂rc
2
2

(

1− ∂r log c1
∂r log c2

)

q2c21

(

∂r log c1
∂r log c2

+ 1
)

− 2ω2c22

,

ξ2(r) =
(q2c21 − ω2c22)

∂2
r log c2∂r log c1−∂2

r log c1∂r log c2
∂r log c2

+ 2ω2c22(∂r log c1 − ∂r log c2)
2

q2c21∂r log(c1c2)− 2ω2c22∂r log c2
. (D.17)

Notice that ZH only couples to the scalar field ZS . Thus, we are left with (D.13) and (D.15)

to be solved in the hydrodynamic approximation.

The scalar fluctuation equation (D.14) only involves the function ZS and, therefore,

can be studied independently of ZH . Let us adopt the following ansatz for ZS(r):

ZS(r) =
[

b(r)
]− iω̂

2 K(r) , (D.18)

for which the infalling boundary conditions at the horizon are satisfied if K(r) is regular at

the horizon. Actually, it is much more convenient to change variables and work in the vari-

able x defined in (6.12). Recall that the horizon is located at x = 0, whereas the boundary is

at x = 1. The fluctuation equation (D.14) is equivalent to the following equation for K(x):

K ′′ +
1− 2i ω̂

x
K ′ +

[

1 − (1− x2)
7

5

]

ω̂2 − x2 q̂2

x2 (1− x2)
7

5

K = 0 , (D.19)

where now the primes denote derivatives with respect to the new variable x. We want to

solve (D.19) for low q̂. Accordingly, we expand K(x) as:

K(x) = K0(x) + iq̂ K1(x) + q̂2K2(x) . (D.20)

Plugging (D.20) and (6.46) into (D.19) and separating the different orders in q̂, we find

the following systems of equations:

K ′′
0 +

K ′
0

x
= 0 ,

K ′′
1 +

K ′
1

x
=

2vs
x

K ′
0 ,

K ′′
2 +

K ′
2

x
=

2Γ

x
K ′

0 +
1

(1− x2)
7

5

(

1− v2s
x2

)

K0 +
v2s
x2

K0 − 2vs
x

K ′
1 . (D.21)
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The equation for K0(x) can be straightforwardly integrated in general:

K0(x) = c1 + c2 log x , (D.22)

where c1 and c2 are constants. The regularity requirement of K0(x) at x = 0 implies that

c2 = 0, while the condition K0(x = 1) = 0 imposes that c1 vanishes and, thus K0(x) = 0.

For this value of K0(x) the equation for K1(x) in (D.21) is the same as the one for K0(x).

Therefore, the only valid solution for our boundary conditions is K1(x) = 0. Furthermore,

the same happens for K2(x) and, thus, we finally have that the solution for K(x) satisfying

the boundary conditions is the trivial one, namely:

K(x) = 0 . (D.23)

Therefore, it follows that ZS(r) = 0, as claimed in the main text.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[19] C. Núñez, A. Paredes and A.V. Ramallo, Unquenched flavor in the gauge/gravity

correspondence, Adv. High Energy Phys. 2010 (2010) 196714 [arXiv:1002.1088] [INSPIRE].

[20] F. Bigazzi, A.L. Cotrone, J. Mas, A. Paredes, A.V. Ramallo and J. Tarrio, D3-D7

quark-gluon plasmas, JHEP 11 (2009) 117 [arXiv:0909.2865] [INSPIRE].

[21] N. Jokela, J. Mas, A.V. Ramallo and D. Zoakos, Thermodynamics of the brane in

Chern-Simons matter theories with flavor, JHEP 02 (2013) 144 [arXiv:1211.0630]

[INSPIRE].

[22] F. Bigazzi, A.L. Cotrone, J. Mas, D. Mayerson and J. Tarrio, D3-D7 quark-gluon plasmas at

finite baryon density, JHEP 04 (2011) 060 [arXiv:1101.3560] [INSPIRE].

[23] A.F. Faedo, A. Kundu, D. Mateos, C. Pantelidou and J. Tarŕıo, Three-dimensional super
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