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Abstract: It has been recently argued that Higgsing of theories with U(1)n gauge inter-

actions consistent with the Weak Gravity Conjecture (WGC) may lead to effective field

theories parametrically violating WGC constraints. The minimal examples typically in-

volve Higgs scalars with a large charge with respect to a U(1) (e.g. charges (Z, 1) in U(1)2

with Z ≫ 1). This type of Higgs multiplets play also a key role in clockwork U(1) theories.

We study these issues in the context of heterotic string theory and find that, even if there

is no new physics at the standard magnetic WGC scale Λ ∼ gIRMP , the string scale is just

slightly above, at a scale ∼
√
kIRΛ. Here kIR is the level of the IR U(1) worldsheet current.

We show that, unlike the standard magnetic cutoff, this bound is insensitive to subsequent

Higgsing. One may argue that this constraint gives rise to no bound at the effective field

theory level since kIR is model dependent and in general unknown. However there is an

additional constraint to be taken into account, which is that the Higgsing scalars with large

charge Z should be part of the string massless spectrum, which becomes an upper bound

kIR ≤ k20, where k0 is the level of the UV currents. Thus, for fixed k0, Z cannot be made

parametrically large. The upper bound on the charges Z leads to limitations on the size

and structure of hierarchies in an iterated U(1) clockwork mechanism.
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1 Higgsing and WGC constraints

There has been recently a revived activity in trying to characterize theories which cannot

possibly be embedded into a consistent theory of quantum gravity (and hence belong to

the swampland [1–3]) from those which can, see [4–26] for a partial list of recent references.

The classical constraint is the Weak Gravity Conjecture (WGC) [1–3] which, as applied to

a U(1) theory, states that a particle with charge q and mass

m2 ≤ q2g2M2
p , (1.1)

must exist in the low energy spectrum. Equation ((1.1)) only becomes a constraint on the

low energy effective field theory if we can somehow restrict q to be not too large. On the

other hand, the magnetic version of the constraint indicates there must be an associated

scale of new physics at

Λ2 ≃ g2M2
p . (1.2)

This is a genuine constraint on the cutoff of the effective field theory, which unlike (1.1)

does not depend on any unknown quantities. So making g ≪ 1 is not an innocent weakly

coupled limit but implies also a new physics scale. The strongest support for the WGC

comes from not having found any counterexamples in string theory, although no formal

proof exists at the moment. This type of bounds may be generalized from particles to

instantons, domain walls and branes leading to interesting constraints on axion cosmology,

relaxions and other interesting physical systems [1–26].

An important question is whether one can identify effective field theories which can be

ruled out on the basis of the WGC alone. In particular if we find an effective low-energy

theory violating eq. (1.1), can we conclude that the theory is in the Swampland? In ref. [27]

it was claimed that the answer to this question is no, at least without introducing extra

assumptions. In that reference, an explicit example was shown in which, starting from a

theory obeying the WGC, Higgsing can lead to an effective theory parametrically violating

eq. (1.2). So from a low energy analysis we cannot conclude whether a theory is consistent

or not. It is interesting to review this simple model before we go to its string theory version.
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There is a U(1)1 × U(1)2 theory with gauge couplings g1,2 and particles ψ1,2 with charges

(1, 0) and (0, 1) respectively. We assume they have masses m1,2 consistent with a bound as

in eq. (1.1). Consider now a massless scalar with charges (Z, 1) getting a vev v. The gauge

symmetry is broken like U(1)1 × U(1)2 → U(1) with a massless gauge linear combination

(we take for simplicity g1,2 = g and Z ≫ 1 here)

A = A2 −
1

Z
A1 =

(

− 1

Z
, 1

)

· ~A. (1.3)

The latter equality shows that A has norm 1, modulo 1/Z2 corrections. Now the field ψ1

couples to the massless gauge boson with an effective charge q1 = −1/Z. One can make in

principle Z parametrically large, so that ((1.2)) would predict the existence of new physics

at a scale ≃ (g/Z)Mp. If there are no fields in the EFT other than ψ1, ψ2 and the gauge

fields, there is no new physics scale at ≃ (g/Z)Mp, and the magnetic WGC fails under

Higgsing in this particular model.

As discussed in [30], the above reasoning makes the implicit assumption that the

UV theory before Higgsing (with fields ψ1, ψ2, A1, A2, and nothing else) is not in the

Swampland to begin with. Maybe this is not the case, which begs the question; or maybe,

whenever we have a sector like the one discussed above, the full theory behaves in such

a way that after Higgsing the new EFT cutoff is indeed (g/Z)MP . In the latter point of

view, advocated in [30], variants of the WGC are valid constraints on EFT’s which are not

in the Swampland, and the objections raised in [27] and which we have just reviewed do

not apply.

Nevertheless, presently we know of no way to exclude examples like the one just dis-

cussed, so we will take an agnostic point of view and try to find other similar constraints.

We will not be able to do this in general but, as we will see shortly, in a restricted class of

string models, we can do better. Namely, we will be able to write an upper bound on the

EFT cutoff which is invariant under Higgsing. Thus, in this class of models, we have an

alternative to the magnetic WGC which is free of the potential issues discussed above.

2 A string theory embedding

Let us consider now a string theory 4D compactification with some U(1)N gauge group and

charged matter fields. We consider here heterotic compactifications, which are particularly

versatile in producing massless spectra with a variety of charges, sometimes quite large. The

heterotic compactifications we consider can have both non-Abelian G or Abelian groups

U(1)N , and the gauge and gravity interactions are unified as (we use conventions as in [28])

αGkG = αiki = 16
M2

S

M2
p

, (2.1)

where M2
S = 1/α′, αG, αi are the corresponding fine-structure constants and kG is the Kac-

Moody level associated to each non-Abelian gauge factor (a positive integer). This formula

is a tree-level result, valid for U(1)’s arising from dimensional reduction of the 10d heterotic

gauge fields. From the worldsheet perspective, these are precisely the U(1)’s whose vertex
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operators are constructed out of worldsheet currents of the form
∑

I QI∂XI , where the XI ,

I = 1, . . . , 16 are the sixteen chiral gauge bosons in the bosonic formulation of the heterotic.

As discussed in [28], this formula can be proven directly from dimensional reduction of the

10d supergravity effective action; we thus restrict to heterotic compactifications within the

reach of supergravity. It can also be proven directly in worldsheet terms [29] for general

non-abelian current algebras; in our context, the result for the 10d heterotic current algebra

extends to abelian factors which arise after the gauge group is broken by compactification,

since at tree-level, the relationship between the 10d and 4d gauge couplings it is just a

volume factor.

The formula also assumes no kinetic mixing in the Abelian sector; this will be gener-

alized later on. In the simplest models kG = 1 whereas for U(1)’s ki is a normalization

factor of each Abelian factor which depends on the choice of U(1) generator. It is a positive

rational number (integer if all particle charges are chosen integer) which in principle may

be arbitrarily large. To be more precise, with the world-sheet current for a U(1) defined

as JQ = iQI∂XI , with OPE expansion

JQ(z)JQ(w) ≃
Q2

(z − w)2
+ . . . (2.2)

one has k1 = 2Q2. Here XI , I = 1 − 16 are the heterotic gauge left-moving coordinates.

Note that although the value of ki is convention dependent, the ratios of the charges of the

massless particles q2/ki are convention independent.

Reference [30] proved a sublattice version of the WGC which applies precisely to per-

turbative heterotic compactifications. For a U(1)N factor, modular invariance of the world-

sheet CFT leads to the existence of states with

qi = liki, m2 ≤ M2
P

∑

i

(g2i k
2
i l

2
i ), li ∈ Z. (2.3)

The states have charges in a sublattice with charges (0, . . . ki, . . . 0), and their masses satisfy

eq. (1.1).

Consider now a U(1)N subgroup in some heterotic compactification. Applying blindly

eq. (1.2) to this case we would expect N different new physics cut-offs Λ2
i ≃ g2iM

2
p . As

discussed above, these may turn out to yield new physics or not, depending on the particular

implementation of Higgsing in the theory - but in any case, it is impossible to know without

significant additional stringy input.

However, all these models have a clear upper bound on the EFT cutoff, namely the

string scale Λ2 ≃ M2
s - and we can rewrite it in terms of the low energy theory data. In

this way we get a new upper bound on the cutoff, independently of the magnetic WGC,

which is

Λ2
i = αikiM

2
p . (2.4)

Unlike the original magnetic WGC, this new cutoff scale is not motivated by any black

hole considerations, but by stringy physics. Indeed, it is just the string scale! We will now

make some considerations about this new cutoff scale:
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• As it stands now, one cannot write down the cutoff solely from effective field theory

data, since the levels ki do not show up anywhere in the effective field theory; they

are extra UV information. This does not mean that ((2.4)) is useless; as we will see

below in section 3, just assuming that the theory has a heterotic stringy completion

is enough to constrain the model in some cases.

• Just like the magnetic WGC, equation (2.4) only works in a basis where the charges

are integer quantized and there is no kinetic mixing between the different U(1)’s; the

case with kinetic mixing will be discussed momentarily.

• The cutoff is invariant even after Higgsing. From the stringy perspective, this has

to be the case, since the string scale is clearly insensitive to EFT phenomena such

as Higgsing, and the formula ((2.4)) holds both before and after Higgsing. We will

nevertheless see how this happens explicitly, from the EFT point of view.

Our starting point is a U(1)N theory with charge lattice Z
N . In this basis, in which

the charge lattice is standard, the U(1)’s are not canonically normalized. The two

point functions of the corresponding CFT currents satisfy

〈Ji(x)Jj(y)〉 ∝
kij

(x− y)2
, (2.5)

where kij is a positive-definite symmetric matrix with integer entries, the level matrix

k. Equation (2.5) also tells us the 2-point function of photons in the effective field

theory, which allows us to relate it to the gauge coupling matrix α in the kinetic term

1

16π

∫

~F ∧ ∗(α−1 ~F ) (2.6)

directly via a generalization of (2.4),

k = 16
M2

S

M2
P

α−1. (2.7)

The columns of k also define a sublattice of ZN . The sublattice WGC says precisely

that this sublattice has superextremal states.

We wish to show that (2.7) is invariant under Higgsing. Suppose we have J linearly

independent fields, J < N , with charge vectors ~vj , j = 1, . . . J , which acquire a

vev, and let V be the J × N matrix which has the ~vj as its rows. Then, Higgsing

imposes the condition V ~AIR = 0, so that ~AIR lives in the kernel of V. Let {~ni},
i = 1, . . . N − J be a orthonormal basis of kerV, and N a matrix which has these for

rows. Then the charge lattice after Higgsing is the (N − J)-dimensional sublattice of

vectors of the form

ΛIR :
{

~v ∈ R
N−J : ~v = N~q, ~q ∈ Z

N
}

. (2.8)

Naturally, we should also restrict the gauge coupling and the level matrix to the

surviving subspace. Since ~A = NT ~AIR, we get k → NkNT and α−1 → Nα−1NT , so

that (2.7) still holds after Higgsing.
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However, we are not done yet because NkNT is not really a level matrix in the same

sense that k was in the unhiggsed theory. We defined k to be the charge matrix in a

basis where the charge lattice is ZN−J , while ΛIR defined in (2.8) won’t be in general.

This can be achieved by a further general linear transformation A, which will again

preserve (2.7).

In conclusion, it is indeed the case that eqs. (2.4) and (2.7) also apply after Higgsing.

• The cutoff we obtained is secretly none other than the string scale. In any effective

field theory coming from a large volume heterotic compactification, the Kaluza-Klein

scale MKK is lower than the string scale, so the actual cutoff of the four-dimensional

effective field theory will be much lower than (2.4). In any case, (2.4) is always an

upper bound for the EFT cutoff.

• Unlike the WGC, we make no claim of (2.4) being a universal constraint which should

always apply in a consistent quantum theory of gravity. Rather, it has the same range

of validity as the worldsheet proof of the lattice WGC in [30]: it works for closed-

string U(1)’s.

Let us consider now the previous U(1)2 toy model embedded into such heterotic setting.

Let us take for simplicity g1 = g2 = g0 and k1 = k2 = k0. Consistency with the weakest

form of the WGC is still guaranteed, since the particle ψ2 with charge 1 under the unbroken

U(1) will obey the first condition (2.4).The same discussion applies now as in the field theory

case, and a particle ψ1 with charge (1, 0) will couple with a strength ≃ g/Z after Higgsing.

This sets the quantum of charge for AIR, so that the charge lattice is simply Z/Z; we get

to the canonical normalization simply by multiplication by Z, which yields

kIR = Z2k0, αIR =
α0

Z2
. (2.9)

Taking this into consideration, equation (2.4) will predict the existence of a new physics

scale at

Λ2
s ≃ kIRαIRM

2
p = M2

S . (2.10)

3 Clockwork

As mentioned before, the level of the current algebra k is not part of the information

readily available to the effective field theorist, so it is unclear how to even compute the

stringy cutoff. We will now input some extra information about the spectrum, which will

be enough to show that the model of [27] cannot be consistently embedded in the present

setup, at least for parametrically large Z.

We will also see that the Clockwork mechanism [34–39], which for our purposes here

is essentially N successive Higgsings, is also constrained, since the charges Zi of each step

are constrained, and N is constrained as well. One of the typical uses of the Clockwork is

the dynamical generation of tiny gauge couplings in a natural way, since we roughly have

gIR ∼ gUV/Z
N . The bounds on Z and N mean that there is a limit to the hierarchy that

can be achieved in this way - although as we will see it is not a too stringent one.
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Let us recall that in string theory massless fields cannot have arbitrarily large charges or

live in arbitrarily high dimensional representations. Massless states obey certain BPS-like

conditions which strongly constrain their charges. The mass formula for e.g. left-movers in

the string spectrum has the form (see e.g. [28])

α′M2

4
= hKM + hint +Nosc − 1 , (3.1)

where hint is the contribution to the conformal weight of the state coming from the internal

compact space, hKM is the contribution coming from Kac-Moody gauge degrees of freedom

(from the E8 × E8 or Spin(32) lattice), and Nosc counts oscillators. Thus for a particle

to be in the massless spectrum a necessary condition is to have hKM ≤ 1. On the other

hand the gauge conformal weight of a particle transforming in non-Abelian representations

Rr and transforming under Abelian groups U(1)s with charge qs and normalization ks is

given by [31–33]

hKM(Rr, kr, ks) =
∑

r

Cr

kr + cr
+
∑

s

q2s
ks

, (3.2)

where kr is the KM level of the associated non-Abelian factor, cr is the associated dual

Coxeter number (e.g. cr = N for SU(N)), and ks is the normalization of the Abelian

factors. Cr is the quadratic Casimir of the representation Rr.

Coming back to the U(1)2 toy model, for a scalar in the representation (Z, 1) to be

Higgsed (at least by an effective field theory mechanism), it has to be in the string massless

spectrum, hence it must have hKM ≤ 1. It is clear from the last term in eq. (3.2) that then

there is a bound Z2 ≤ k0 and that for fixed k0 the value of Z cannot be made parametrically

large, one rather has

Z2 ≤ k0 =
16

α0

M2
S

M2
p

. (3.3)

So in a consistent embedding of this model in a heterotic string compactification, we would

get a UV cutoff

Λ2 ≤ αIRZ
2k0M

2
P ≤ αIRk

2
0M

2
P . (3.4)

Let us recap for a moment and see what we’ve got so far. As already pointed out in [27], we

have obtained a model by Higgsing in which the gauge coupling can be made as tiny as one

wants, and in which nothing is happening at the magnetic WGC scale Λ2
mag. ∼ αIRM

2
P .

Whether a model with these properties can actually embedded in String Theory is not

known. But, even if it can, equation (2.4) tells us that the string scale is just a factor of k0
times higher, so we do get a light cutoff assuming that k0 is not too high. Equivalently, in

stringy setups we cannot take Z to be parametrically large, and thus get a tiny IR gauge

coupling, unless k0 ≫ 1 to begin with. But (3.3) tells us that this is equivalent to starting

with a tiny gauge coupling in the UV anyway, and begs the question. On top of this, there

are no explicit stringy examples with parametrically large k0. We conclude that the model

of [27] can only be consistently embedded in a heterotic compactification - or in general in

the closed string sector of any compactification whatsoever - if Z is not too large.
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By iteration of the kind of Higgsing considered in the field theory toy model through

N factors in a U(1)N gauge group, with equal charge Z in all Higgsings, one can obtain

light fields with highly suppressed charges of order Z−N . This is the clockwork mechanism

of refs. [34–39] applied to Abelian gauge interactions. If we were successful in embedding

such a model into the heterotic string, the suppression would be bounded as

1

ZN
≥

N
∏

i=1

1

k
1/2
i

=
N
∏

i=1

(

α
1/2
i Mp

4MS

)

, (3.5)

so that there is only supression if αi . 16M2
S/M

2
p . Finding a specific heterotic U(1)N

model with N sufficiently large and the required Higgs fields would probably be challenging

though. The bound (2.4) implies that the string scale is no further away than

Λ2 ≤ αIRk
2N
0 M2

P . (3.6)

While the mechanism works in principle, we should also note that in the heterotic setting,

N is bounded from above as well. The left-moving central charge in heterotic string theory

is fixed by conformal invariance to be cL = 22 (26 from bosonic string theory minus four

of the noncompact bosons). On the other hand, a Kac-Moody algebra with group g and

level k has a contribution to the central charge

cKM =
k dim(g)

k + cr
, (3.7)

and in particular a U(1)N factor contributes N to the central charge. It follows that, in

any stringy embedding of the clockwork, N ≤ 22.1 If the model also includes the SM, the

extra contribution to the central charge from the SM gauge fields is

cSM =
8kSU(3)

kSU(3) + 3
+

3kSU(2)

kSU(2) + 1
+ 1 ≥ 4, (3.8)

which lowers the bound to N ≤ 18. In fact in generic Calabi-Yau (CY) compactifications

of the heterotic string which feature no enhanced U(1)’s one rather has N ≤ 12.

4 Summary

Summing up, we have seen that it is a priori possible that within string theory Higgsing

may produce supressed effective gauge charges (e.g. of order g/Z using (Z, 1) Higgsing).

The mild/sublattice version of the WGC is always respected, but there may be no new

physics at the IR magnetic scale, as pointed out in [27]. We do not know whether these

models can actually embedded in string theory, but we have found that in any case in the

heterotic context the string scale Ms ∼
√
kIRΛWGC is secretly lurking not too far away.

Furthermore, this cutoff scale is invariant under further Higgsing. One might try to pull

kIR = Z2k0 up, and thus remove the low cutoff, but here is however the additional bound

Z ≤ k0 coming from the Higgs scalar being in the string massless spectrum. Taking this

1We are not counting graviphotons since these generically have Planck-suppressed couplings.
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into account, the string scale is necessarily at or below k0gIRMP . Unlike kIR, k0 is directly

related to details of the string compactification, so there is no natural way to make it

parametrically large. In fact, we know of no explicit stringy examples with parametrically

large k0.

The same mechanism also restricts the suppression one can make in an iterative clock-

work mechanism. In this clockwork mechanism the suppression cannot be stronger than

k−N
0 where k0 is the level of the UV theory. Although k0 has to be small, it is still possible

to achieve a large hierarchy if N is large enough. So these considerations do not prevent the

clockwork from being embedded into heterotic string theory. Of course, finding an actual

stringy embedding of the clockwork is a much more complicated issue. In particular, it is

not possible to achieve N & 12 in generic CY compactifications of the heterotic string.
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