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1 Introduction

One of the most important results of the AdS/CFT correspondence [1–3] is the duality

between the expectation value of Wilson loops in N = 4 SYM and the area of minimal sur-

faces in AdS5 [4, 5]. There is a large amount of work on the subject, see for example [6–10]

and, in particular [11–20] for the circular Wilson loop, the most studied case. The main

interest of this problem is its integrability properties [21–36]. The basic idea is that the

computation of the Wilson loops in the strong coupling limit is translated into finding the

area of the minimal surface ending on a boundary curve defined by the Wilson loop. In

order to determine the minimal surface dual to a given Wilson loop and find the area,

it is important to exploit the integrability of the string sigma model and the conformal

invariance of the boundary theory. Recently in [37], a integrability-based and manifestly

conformally invariant formalism was proposed for studying Wilson loops dual to minimal

surfaces in Euclidean AdS3. In this case the boundary is R2 and the curve is given by a
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function X(s) = X1(s)+ iX2(s). One needs to find the reparametrization between the con-

formal angle θ of the string worldsheet and the arbitrary parameter s. Then the Schwarzian

derivative of X(θ) provides the boundary conditions for the Pohlmeyer functions α, f , and

it defines the potential of a Schrödinger-like equation whose solutions encode the shape of

the curve. In this context, the one-parameter family of boundary curves expected from

integrability [38] can be simply obtained by solving the Schrödinger-like equation with the

λ-deformed potential without finding the corresponding minimal surfaces. In [39], this for-

malism was applied to study Wilson loops perturbatively away from the circular contour

and the area of the dual minimal surfaces was found to high orders. In [40], solutions to the

Schrödinger-like equation were obtained in terms of Mathieu functions. In [41], a numerical

method was implemented to find the reparametrization s(θ) for Wilson loops of arbitrary

shapes. These provide checks for the applicability of the integrability-based method. For

the case of general AdSn+1 that we consider here, in [42, 43] the role of λ-deformations or

master symmetry as generator of the integrable charges was explained.

In this paper, we generalize the aforementioned AdS3 formalism to higher dimensional

AdSn+1. Since the equations for minimal surfaces in AdSn+1 are also integrable the ideas

are similar although the calculations are more involved. In AdS3 a central role was played

by the Schwarzian derivative since it is conformally invariant. For that reason, as a first

step, in section 2 we introduce an analogous set of conformal invariant quantities (ζ, µa)

associated with a given curve in Rn. They determine the boundary conditions for the

Pohlmeyer reduction, transform simply under λ-deformations, and can be used to define

other useful invariants such as the conformal curvature and torsion. We also define the

boundary linear problem which can be solved to reconstruct the curve starting from the

invariants. In section 3, we review the standard Pohlmeyer reduction to study minimal

surfaces in Euclidean AdSn+1. In the next section, we show how the boundary conditions

for the Pohlmeyer reduction are determined by the conformal invariants on the boundary

curve. In section 5, we study the transformation properties of the boundary conformal

invariants under λ-deformations. Here we describe how to construct the λ-deformed curves

from the original one and define conformal and reparametrization invariant quantities which

transform simply under λ-deformation. These quantities are used in section 6 to give a

formula for the regularized area in the form of a boundary integral. In section 7, we apply

this method on the wavy Wilson line as an example. The last section is a summary.

2 Conformal invariants for curves in Rn and a boundary linear problem

The construction of conformal invariants for a curve in Rn can be done in a manner that

parallels the Pohlmeyer reduction which we review in the next section. Doing it in this

way will ensure a direct relation between the boundary values of the Pohlmeyer functions

and the conformal invariants.

Consider a curve x(s) in Rn. Define the unit tangent as

v =
x′

|x′|
(2.1)
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where we denoted s derivatives with a prime (x′ = ∂sx(s)). We also need to define a

normal frame, that is, a set of normals na(s) such that

na · v = 0, na · nb = δab. (2.2)

At each point of the curve there is an SO(n − 1) ambiguity in choosing the normals. We

introduce the “gauge fields”

bab(s) = nb · ∂sna. (2.3)

Since we are interested in studying conformal properties of the curve, we embed Rn in

R(n+1,1) in such a way that the conformal SO(n+1, 1) group of Rn acts linearly in R(n+1,1).

Define now the following R(n+1,1) basis vectors at each point of the curve:

y =
1

|x′|

(
x,

1

2
(x2 − 1),

1

2
(x2 + 1)

)
, (2.4)

y′ = −|x
′|′

|x′|
y + (v,v · x,v · x), (2.5)

y′′ = −
(
|x′|′

|x′|

)′
y − |x

′|′

|x′|
y′ + (v′,v′ · x,v′ · x) + |x′|(0, 1, 1), (2.6)

na = (na,na · x,na · x) + (na · v′)y. (2.7)

These vectors satisfy:

y2 = 0, y′2 = 1, y · y′ = 0,

y′ · y′′ = 0, y · y′′ = −1,

y · na = 0, y′ · na = 0, y′′ · na = 0.

(2.8)

We can now define the following SO(n+ 1, 1) invariant quantities

ζ = y′′2 = v′2 + 2
|x′|′′

|x′|
− 3
|x′|′2

|x′|2
, (2.9)

µa = y′′′ · na = na ·
(
v′′ − |x

′|′

|x′|
v′
)
. (2.10)

We should note that the µa’s are not gauge invariant; namely they depend on the choice

of normals and therefore they are conformally invariant only up to gauge transformations.

Further, ζ and µa are not reparameterization invariant. Actually, under a change of pa-

rameter s→ σ, they transform as

ζ(σ) = (∂σs)
2ζ(s) + 2{s, σ}, (2.11)

µa(σ) = (∂σs)
2µa(s). (2.12)

where {s, σ} = ∂3σs
∂σs
− 3

2

(
∂2σs
∂σs

)2
denotes the Schwarzian derivative. Namely, ζ(σ) and µa(σ)

transform like the real and imaginary parts of the Schwarzian derivative in AdS3, thus

providing a natural higher dimensional generalization. For that reason, we choose ζ(σ)
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and µa(σ) as the quantities to characterize the curve in a conformally invariant way. Later

it will be useful to define quantities that are also gauge invariant, for example

µ =

√∑
a

µ2
a, T (s) =

|Dsµ̂a|√
µ(s)

, (2.13)

where T (s) is called the conformal torsion (see [44] for the more standard definition that

agrees with the present one1), µ̂a = µa
µ , and the covariant derivative is defined as

Dsµa = ∂sµa − bab µb. (2.14)

The torsion T (s) is not only conformally invariant and gauge invariant but also reparam-

eterization invariant. In fact, µ can be used to define a conformal arc-length one-form

ω =
√
µds which is invariant under s→ σ and allows to introduce the reparameterization

invariant function

χ(s) =

ˆ s

A

√
µ(s′)ds′ (2.15)

Here A is an arbitrary point on the curve. With χ, we can define another reparameterization

invariant quantity, known as the conformal curvature Q [44]:

Q(s) = −1

2

ζ(s)− 2{χ, s}
µ(s)

. (2.16)

The χ, Q and T are conformally as well as gauge and reparametrization invariant quantities

of the curve and will play an important role in computing the area. For some purposes

it is natural to parameterize the curve using χ(s) in which case µ̂a(χ) = µa(χ) and the

conformal curvature and torsion become simply

Q(χ) = −1

2
ζ(χ), T (χ) = |Dχµa(χ)| (2.17)

One can define further invariants by taking higher order derivatives but these are the only

invariants needed in the rest of the paper.

Going back to the gauge dependent quantities, it is useful to note that

y′′′ = −ζy′ − 1

2
ζ ′y + µana, (2.18)

n′a = babnb + µay. (2.19)

We can summarize the derivatives as

∂s


y

y′

y′′

na

 =


0 1 0 0

0 0 1 0

−1
2ζ
′ −ζ 0 µb

µa 0 0 bab



y

y′

y′′

nb

 (2.20)

1See appendix A for a detailed comparison.
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From here it is clear that, if ζ, µa and bab are given we can reconstruct the curve, up to a

conformal transformation, by solving the linear problem

∂s


α1

α2

α3

βa

 =


0 1 0 0

0 0 1 0

−1
2ζ
′ −ζ 0 µb

µa 0 0 bab



α1

α2

α3

βb

 (2.21)

or equivalently

α′′′1 + ζα′1 +
1

2
ζ ′α1 = µaβa, (2.22)

Dsβa = µaα1. (2.23)

It is necessary to find n+2 linearly independent solutions αµ=1...n+2
1 that can be assembled

into the vector yµ = αµ1 . Later we will see that the λ deformation symmetry can be

introduced as a change in the functions µa. After that, the linear problem just described

can be used to reconstruct the λ-deformed curves.

3 Pohlmeyer reduction

The standard approach to study minimal surfaces in Euclidean AdSn+1 is through the

Pohlmeyer reduction [45]. Here we use the notation of [46]. The string action is given by

S =
1

2

ˆ
dσdτ(∂Y · ∂̄Y )− Λ(Y · Y + 1). (3.1)

The equations of motion are

∂∂̄Y µ = ΛY µ, (3.2)

where Λ is a Lagrange multiplier imposing the constraint Y · Y = −1 and is given by

Λ = ∂Y · ∂̄Y. (3.3)

It should be supplemented by the Virasoro constraints

∂Y · ∂Y = 0 = ∂̄Y · ∂̄Y. (3.4)

Now we introduce extra vectors Nµ
a with a = 1, . . . , n− 1 so that we have a basis

{∂Y µ, ∂̄Y µ, Nµ
a , Y

µ} (3.5)

with Na · Y = 0, Na · ∂Y = 0, Na · ∂̄Y = 0, and Na ·Nb = δab. We also define the functions

α, ua and Bab as:

Λ =
1

2
e2α, (3.6)

ua = 2Na · ∂2Y, ūa = 2Na · ∂̄2Y, (3.7)

Bab = Nb · ∂Na, B̄ab = Nb · ∂̄Na. (3.8)
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Using the equations of motion and the constraints we find that

∂2Y µ = 2∂α∂Y µ +
1

2
uaN

µ
a , (3.9)

∂̄2Y µ = 2∂̄α∂̄Y µ +
1

2
ūaN

µ
a , (3.10)

DNµ
a = −uae−2α∂̄Y µ, (3.11)

D̄Nµ
a = −ūae−2α∂Y µ, (3.12)

where the covariant derivatives are

Dva = ∂va −Babvb, D̄va = ∂̄va − B̄abvb. (3.13)

Using the commutators [∂, ∂̄] = 0 and [D, D̄] = FB where FB is the field strength associated

with the gauge field Bab, we obtain the following Pohlmeyer equations:

∂∂̄α =
1

4
(e2α + uaūae

−2α), (3.14)

D̄ua = ∂̄ua − B̄abub = 0, (3.15)

Dūa = ∂ūa −Babūb = 0, (3.16)

FB = ∂̄Bab − ∂B̄ab +BacB̄cb − B̄acBcb =
1

2
(uaūb − ūaub)e−2α. (3.17)

It is also convenient to use a normalized basis {e−α∂σY µ, e−α∂τY
µ, Nµ

a , Y µ} and write

∂


e−α∂σY

µ

e−α∂τY
µ

Nµ
a

Y µ

 = V


e−α∂σY

µ

e−α∂τY
µ

Nµ
a

Y µ

 (3.18)

and its complex conjugate. Here V can be written as

V =
1

2
eα(M0n + iM0n+1) + i∂αMnn+1 −

1

2
e−αua(Man − iMan+1) +

1

2
BabMab (3.19)

where we labeled the rows and columns of V as (a = 1, . . . , n−1, n, n+ 1, 0). The matrices

Mµν are the generators of SO(n + 1, 1) in the vector representation (see appendix). The

consistency condition for this linear system implies that

∂̄V − ∂V̄ + V V̄ − V̄ V = 0 (3.20)

namely the Pohlmeyer current

jP = V dz + V̄ dz̄ (3.21)

is flat. This is a direct consequence of the Pohlmeyer equations and the commutation

relations of the Mµν matrices and therefore is independent of the representation used for

them. Sometimes it is convenient to write the matrices Mµν in another representation,

for example the spinor one but we will not do so in this paper. Although the Pohlmeyer

reduction provides a well-known way to solve the minimal surface equations, we have to

find the particular solution associated with a given curve, namely, we have to find the

boundary values of the Pohlmeyer fields in terms of the shape of the boundary curve. In

the next section, we find that those boundary values are related to the conformal invariants

of the boundary curve described in section 2.
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4 Boundary conditions for the Pohlmeyer reduction

To determine the boundary conditions for the Pohlmeyer reduction, we perform an ex-

pansion near the boundary. In appendix B, following [47] we describe an expansion in

Poincaré coordinates that can be easily converted in an expansion in embedding coordi-

nates as needed here. Alternatively, we can solve the equations directly in embedding

coordinates obtaining the same result.

More precisely, the world-sheet is taken to be the upper half plane z = (σ, τ > 0), and

one approaches the boundary by taking τ → 0. Using the equation of motion (3.2) and

Virasoro constraints (3.4), the embedding coordinates and the Lagrange multiplier Λ have

expansions in τ of the following form:

Y µ(σ, τ) =
1

τ
yµ0 (σ) +

(
1

2
y′′µ0 (σ)− 2Λ2(σ)yµ0 (σ)

)
τ + yµ3 (σ)τ2 +O(τ3), (4.1)

Λ(σ, τ) =
1

2τ2
+ Λ2(σ) + Λ4(σ)τ2 +O(τ3). (4.2)

Here yµ0 (σ) is the boundary curve in embedding coordinates, and Λ2(σ) is given by

Λ2(σ) = −1

6
y′′20 (σ). (4.3)

Meanwhile, the following relations hold:

y2
0 = 0, y′0

2 = 1, y0 · y3 = 0 y′0 · y3 = 0, (4.4)

where prime denotes taking derivative with respect to σ. Using the relation (3.6), it is easy

to see that

(∂2α− (∂α)2)|τ→0 =
1

2

(
∂2 ln Λ− 1

2
(∂ ln Λ)2

)
|τ→0 = −3

2
Λ2. (4.5)

One can also expand the Na’s in terms of τ :

Nµ
a (σ, τ) = nµa0(σ) + nµa1(σ)τ + nµa2(σ)τ2 + nµa3τ

3 +O(τ4). (4.6)

From the orthogonality of Na with Y , ∂Y and ∂̄Y , one has

y0 · na0 = 0, y′0 · na0 = 0, y′′0 · na0 = 0,

y0 · na1 = 0, y′0 · na1 = 0, y′′0 · na1 = −3y3 · na0,

y0 · na2 = 0, y′0 · na2 = −1

2
y′′′0 · na0, y0 · na3 =

1

2
y3 · na0.

(4.7)

Plugging the series expansion of Y µ into the definitions (3.7), we obtain the boundary

values of ua and ūa:
ua(σ, τ = 0) = −νa(σ)− iµa(σ),

ūa(σ, τ = 0) = −νa(σ) + iµa(σ),
(4.8)

with the definitions

νa(σ) = 3y3(σ) · na0(σ), (4.9)

µa(σ) = y′′′0 (σ) · na0(σ). (4.10)
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Here µa(σ) is the same as the one defined in (2.10) and νa(σ) is a new quantity depending

on y3(σ), or equivalently Xi
3(σ) as defined in (B.6). As can be seen from [47] the value of

νa is related to the variation of the area with respect to changes in the shape of the contour

(see appendix B) and therefore can be thought as a conjugate momentum to the shape.

Furthermore, from eq. (3.8), we define

B
(σ)
ab = Bab + B̄ab = Nb · ∂σNa. (4.11)

The boundary value of B
(σ)
ab is given by

bab0(σ) = nb0(σ) · ∂σna0(σ). (4.12)

Comparing the expression of Λ2(σ), ua(σ), and bab0(σ) with the boundary conformal

invariants and gauge fields we defined in section 2, we can identify the following limiting

values:

4(∂2α− (∂α)2)|τ→0 = ζ(σ), (4.13)

−Im(ua(σ, τ = 0)) = µa(σ), (4.14)

bab0(σ) = bab(σ). (4.15)

In the last equation, we take na0 to be of the form (2.7) and used that

nb0 · ∂σna0 = nb · ∂σna + (na · v′)y · (∂σna, ∂σna · x, ∂σna · x), (4.16)

with the second term vanishing. Equations (4.13), (4.14) and (4.15) state the relation

between the boundary values of the Pohlmeyer functions and the conformal invariants of

the curve. One could use this to solve the Pohlmeyer equations, find the functions ζ, µa
and bab, and reconstruct the boundary curve up to a conformal transformation by solving

the boundary linear problem described in section 2. In this paper the idea is the opposite,

we want to use these relations as boundary condition for the Pohlmeyer equations, in the

same way as done in [37] for AdS3. However, as seen before in (2.11) and (2.12), ζ(σ) and

µa(σ), are not reparameterization invariant, and neither is bab which transform like

bab(σ) = (∂σs)bab(s). (4.17)

Therefore, given a curve in terms of an arbitrary parameter s, the reparameterization s(σ)

has to be found. The idea is similar to the case of AdS3 [39, 41]. One should propose a

reparameterization s(σ) and use µa and bab as boundary conditions to solve the Pohlmeyer

equations (ζ(σ) is not needed for this). After that there are two computations of ζ(σ),

one directly from the boundary curve (2.9), and the other from the limiting value of the

conformal factor α (4.13). If both agree, then s(σ) is the correct reparameterization. If

they disagree, the difference is a measure of the error that can be minimized numerically.

This way to define the problem is better illustrated in figure 1. To summarize this section,

we obtained a clear picture, similar to the one in AdS3 to approach the problem for generic

AdSn+1. It is not a direct computation of the area but could be converted into one by

– 8 –
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boundary	condi,ons	

Figure 1. The procedure for finding the reparametrization s(σ) and solving the Pohlmeyer equa-

tions. Given the curve x(s) and a set of normals na(s) we compute (ζ(s), µa(s), bab(s)). Then a repa-

rameterization s(σ) is proposed and (ζ(σ), µa(σ), bab(σ)) computed. The values of (µa(σ), bab(σ))

are used as boundary values for the Pohlmeyer reduction. Once that is solved, the limiting value of

α at the boundary determines ζ(σ) independently. If it does not agree with the previously computed

one, the difference should be minimized by changing s(σ) until they agree.

using a numerical procedure as in [41] or by expanding near the straight line [39]. The main

result up to here is the correct identification of the boundary values of the Pohlmeyer field

in terms of conformal invariants and a precise test of the conformal reparameterization (or

conformal gauge), namely the agreement of two alternative computations of ζ(σ). Notice

that, as discussed in [37], this mimics what has been done before for the flat space case.

5 λ-deformations

A manifestation of integrability is that the Pohlmeyer flat current can be deformed with

a complex parameter λ while remaining flat, a symmetry that can be used to generate

an infinite tower of conserved charges [42, 43]. When |λ| = 1, the reality conditions are

preserved and we obtain a one parameter family of boundary curves and minimal surfaces

with the same area. In terms of the Pohlmeyer functions, the λ-deformation is the simple

– 9 –
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replacement ua → λua, ūa → 1
λ ūa. The deformed flat current is written as

V =
1

2
eα(M0n + iM0n+1) + i∂αMnn+1 −

1

2
e−αλua(Man − iMan+1) +

1

2
BabMab,

V̄ =
1

2
eα(M0n − iM0n+1)− i∂̄αMnn+1 −

1

2
e−α

1

λ
ūa(Man + iMan+1) +

1

2
B̄abMab.

(5.1)

Again, one can choose a representation for the generators Mµν and solve the deformed

linear problem to find the deformed surfaces and boundary curves.

To see the transformation properties of the boundary quantities under λ-deformation,

we look at the boundary conditions of the Pohlmeyer reduction. The functions ζ(σ) and

bab(σ) are unchanged by the λ-deformation. Meanwhile, the function µa(σ) should be

modified to

µa(σ)→ µλa(σ) = −Im(λua(σ, τ = 0)), (5.2)

i.e., the µλa in the boundary linear problem (2.21) for the λ-deformed curve is given by

µλa(σ) = − i
2

(λ− 1

λ
)νa(σ) +

1

2
(λ+

1

λ
)µa(σ). (5.3)

We see that the gauge dependent conformal invariant quantities µa(σ) transform simply un-

der λ-deformations. To reconstruct the λ-deformed curve, one needs to solve the boundary

linear problem (2.21) with the potentials ζ(σ), bab(σ) and µλa(σ).

Another useful result is that, since the boundary value of ua has the same properties

as µa under conformal transformations and reparameterizations they can be used to de-

fine a generalized version of the conformal arc-length, curvature and torsion that play an

important role in determining the area. Thus, we define a generalized conformal arc-length:

χ̃(σ) =

ˆ σ

A

√
U(σ′)dσ′, (5.4)

where U(σ) is the boundary value of the holomorphic function

U(z) =
√
uaua. (5.5)

The holomorphicity of U(z) is easily seen by observing ∂̄(uaua) = 2uaD̄ua = 0. Under

λ-deformations, U → λU , and

χ̃λ(σ) =
√
λχ̃(σ). (5.6)

implying that {χ̃, σ} is invariant. We can then define the generalized conformal curvature

and torsion accordingly

Q̃(σ) = −1

2

ζ(σ)− 2{χ̃, σ}
U(σ)

, (5.7)

T̃ (σ) =
|Dσûa|√
U(σ)

, (5.8)

where ûa = ua
U . They also transform simply under λ-deformations:

Q̃λ(σ) =
1

λ
Q̃(σ), (5.9)

T̃ λ(σ) =
1√
λ
T̃ (σ). (5.10)
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The quantities χ̃, Q̃ and T̃ are again gauge independent and invariant under conformal

transformation and reparametrization but now they also transform very simply under λ-

deformations. In the next section, we will see that an integral of a λ-independent combi-

nation of χ̃, Q̃ and T̃ gives the area of the minimal surface.

6 Computation of the area

In this section, we derive the formula for the regularized area in AdSn+1 and give a for-

mula for the area in terms of a boundary integral of the generalized conformal invariants

introduced in the previous section. From the string action (3.1), the area of the minimal

surface is given by

A∞ = 2

ˆ
dσdτΛ =

ˆ
dσdτe2α. (6.1)

This integral diverges near the boundary and needs to be regularized. The way to find the

regularized area is similar to the case of Euclidean AdS3 [37].

Take a contour at Z = ε where Z is the Poincaré coordinate and ε is small. The area

can then be expanded in terms of ε:

A∞ =
Aε
ε

+Af +O(ε2). (6.2)

From eq. (6.1) and (3.14), we have

A∞ = −
ˆ
Z=ε
∇α · ∇Z

|∇Z|
dl −

ˆ
dσdτuaūae

−2α. (6.3)

In the appendix, we give the boundary expansion of Z. It is easy to see that

∂τZ = |X ′0|+ 3τ2Z3 +O(τ3), (6.4)

∂σZ = τ |X ′0|′ + τ3Z ′3 +O(τ3), (6.5)

and

|∇Z| = |X ′0|+ τ2

(
3Z3 +

1

2

|X ′0|′
2

|X ′0|

)
+O(τ3). (6.6)

Meanwhile, from eq. (3.6) and (4.2), we see that near the boundary, α has the expansion

α(σ, τ) = − ln τ +O(τ2), (6.7)

and

∂τα = −1

τ
+O(τ), (6.8)

∂σα = O(τ2). (6.9)

Therefore, we have

∇α · ∇Z
|∇Z|

= −1

τ
+O(τ). (6.10)
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Near the boundary, one has dl = dσ +O(τ2). We see that

A∞ =

ˆ
1

τ
dσ −

ˆ
dσdτuaūae

−2α

=

ˆ
1

ε
|X ′0|dσ −

ˆ
dσdτuaūae

−2α

=
L

ε
−
ˆ
dσdτuaūae

−2α.

(6.11)

In the second equation we use that Z = ε = τ |X ′0|. Therefore, the finite area is given by

Af = −
ˆ
dσdτuaūae

−2α. (6.12)

Using the holomorphic function U(z) defined in the previous section (5.5), we can write

χ̃(z) =

ˆ z

A

√
U(z′)dz′, (6.13)

where A is an arbitrary point in the world-sheet that, for convenience, we take to be at

the boundary. Using the Pohlmeyer equations, we can prove that the following current

is closed

jz =
2√
U

[
(∂α)2 − ∂2α− DuaDua

4U2
+
∂2U

4U
− 1

16

(
∂U

U

)2
]

=
2√
U

[
(∂α)2 − ∂2α+

1

2
{χ̃, z} − 1

4
DûaDûa

]
, (6.14)

jz̄ = −uaūa√
U
e−2α,

where ûa = ua
U . Notice that there are terms in jz that are purely holomorphic. They were

added to make j a one form under holomorphic coordinate transformations:

z → w(z), (6.15)

α → α+
1

2
ln
∂z

∂w
+

1

2
ln
∂z̄

∂w̄
, (6.16)

ua →
(
∂z

∂w

)2

ua, ūa →
(
∂z̄

∂w̄

)2

ūa, (6.17)

Bab →
∂z

∂w
Bab, B̄ab →

∂z̄

∂w̄
B̄ab, (6.18)

jz → jw =
∂z

∂w
jz, jz̄ → jw̄ =

∂z̄

∂w̄
jz̄. (6.19)

We can now write the finite part of the area as

Af = −
ˆ
dσdτuaūae

−2α =
i

2

ˆ
d(χ̃j) =

i

2

ˆ
R
χ̃j, (6.20)

where we used dσ ∧ dτ = i
2dz ∧ dz̄. This integral is performed on the boundary of the

upper half plane, i.e. the real line R parameterized by σ. Explicitly, we have

Af =
i

2

ˆ
χ̃(σ)(jz∂σz + jz̄∂σ z̄)dσ. (6.21)

– 12 –
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On the boundary, jz̄ vanishes and ∂σz = 1. We have the following boundary values:

U(σ)2 = ν2
a − µ2

a + 2iνaµa, (6.22)

{χ̃, z}|R = {χ̃, σ}, (6.23)

DûaDûa|R = DσûaDσûa. (6.24)

where we used D̄ûa = 0 to replace Dûa = Dσûa. The final formula for the area in terms

of the boundary data is

Af = i

ˆ
χ̃(σ)

∂χ̃(σ)

(
−1

4
ζ(σ) +

1

2
{χ̃, σ} − 1

4
DσûaDσûa

)
dσ

=
i

4

ˆ
(2Q̃− T̃ 2)χ̃dχ̃,

(6.25)

where χ̃, Q̃, and T̃ are the generalized conformal arc-length, curvature and torsion. Using

eq. (5.6), (5.9) and (5.10), we see that the integrand in the area formula is λ-independent

as expected from integrability. Notice from A that the combination 2Q− T 2 that appears

(in generalized form) in the area formula also appears in the standarized expansion of the

curve around a point. In the case of AdS3 the torsion vanishes and the formula reduces

to the one found in [37] although now we have a nicer geometric interpretation of the

integrand in terms of a generalized conformal curvature. Finally, notice that this formula

relies on U(z) having no zeros on the world-sheet, otherwise extra terms given by integrals

around the cuts of χ̃ are required (see [41]).

7 Wavy Wilson line

The wavy Wilson line was originally studied by Semenoff and Young in [48] and greatly

improved in [39], there has been renewed interest in this topic due to the possibility of

defining a 1d conformal theory on the Wilson line [49, 50]. In this section, we take the

wavy line as an example of applying the formalism described in the previous sections.

7.1 Boundary curve and conformal invariants

The shape of the wavy line in Rn is given by

x(s) = (εξa(s), s), (7.1)

and we are interested in a power series expansion for ε → 0. Here s being the conformal

parameter for the straight line but notice that for the wavy line s will no longer be a

conformal parameter and a reparameterization s(σ) will have to be found. The tangent

and normals of the straight line are

v(0) = (0, . . . , 0, 1), (7.2)

n(0)
a = (0, . . . , 1, . . . , 0), (7.3)

– 13 –



J
H
E
P
0
2
(
2
0
1
8
)
0
2
7

where 1 is the ath component in the second equation. It is then straightforward to write

a particular set of normals to the wavy line

na = n(0)
a − εξ′av(0) − 1

2
ε2ξ′aξ

′
bn

(0)
b +

1

2
ε3ξ′2b ξ

′
av

(0) +O(ε4), (7.4)

where prime denotes s derivative. Using the definitions in section 2, one obtains the

conformal invariants and the gauge field on the boundary

ζ(s) = ε2(3ξ′′2a + 2ξ′′′a ξ
′
a) +O(ε4), (7.5)

µa(s) = εξ′′′a −
1

2
ε3(ξ′aξ

′
bξ
′′′
b + 6ξ′′aξ

′′
b ξ
′
b + ξ′2b ξ

′′′
a ) +O(ε5), (7.6)

bab(s) =
1

2
ε2(ξ′′aξ

′
b − ξ′′b ξ′a) +O(ε4). (7.7)

Note the even powers of ε in ζ and bab, and odd powers in µa. This is due to the symmetry

of the curve under ε → −ε and n
(0)
a → −n(0)

a that maps na → −na. The conformal

parameter σ of the wavy line is related to s by a reparametrization which can be expanded

in terms of ε

s(σ) = σ + ε2s2(σ) +O(ε4). (7.8)

The expansion starts at the second order in ε because ζ has no correction at first order.

Using the reparametrization properties (2.11), (2.12), (4.17), one can write down ζ(σ),

µa(σ) and bab(σ) in terms of ξa and si(σ)

ζ(σ) = ε2(2
...
s 2 + 3ξ̈2

a + 2
...
ξ aξ̇a) +O(ε4), (7.9)

µa(σ) = ε
...
ξ a +

1

2
ε3(4ṡ2

...
ξ a + 2s2

....
ξ a − ξ̇aξ̇b

...
ξ b − 6ξ̈aξ̈bξ̇b − ξ̇2

b

...
ξ a) +O(ε5), (7.10)

bab(σ) =
1

2
ε2(ξ̈aξ̇b − ξ̈bξ̇a) +O(ε4). (7.11)

Here we use dot to denote the derivative with respect to σ. One can solve the α in the

Pohlmeyer reduction order by order with the boundary conditions µa and bab and calculate

ζ according to (4.13). Comparing it with (7.9) fixes the reparametrization up to the

same order.

7.2 Pohlmeyer equations

The Pohlmeyer functions corresponding to the straight line are given by

α = − ln τ, ua = 0, Bab = 0. (7.12)

For the wavy line, one can expand α, ua and Bab around the straight line solution in

terms of ε:

α = − ln τ + ε2α(2) +O(ε4), (7.13)

ua = εu(1)
a + ε3u(3)

a +O(ε5), (7.14)

Bab = ε2B
(2)
ab +O(ε4), (7.15)
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The powers of ε are consistent with the boundary values. Plugging into (3.14), we obtain

the first few orders of the Pohlmeyer equations:

ε1 : ∂̄u(1)
a = 0, ∂ū(1)

a = 0, (7.16)

ε2 : 4∂∂̄α(2) − 2

τ2
α(2) = u(1)

a ū(1)
a τ2, (7.17)

∂̄B
(2)
ab − ∂B̄

(2)
ab =

1

2
τ2(u(1)

a ū
(1)
b − ū

(1)
a u

(1)
b ), (7.18)

ε3 : ∂̄u(3)
a = B̄

(2)
ab u

(1)
b , ∂ū(3)

a = B
(2)
ab ū

(1)
b . (7.19)

Continuing to higher orders, the equations should be solved recursively with the boundary

conditions given in the previous subsection.

7.3 Computing the area

In this subsection, we compute the area for the wavy line to the leading order correction

from the straight line and compare the result with the one obtained by Semenoff and

Young in [48].

To find the area, we need to perform the integral

Af = −ε2
ˆ
dσdττ2u(1)

a ū(1)
a , (7.20)

which requires solving for u
(1)
a . According to (7.16), u

(1)
a is holormorphic and at the bound-

ary one has

Im(u(1)
a (σ, τ = 0)) = −

...
ξ a. (7.21)

At this order, there is no correction in the reparametrization, i.e., s = σ and the functions

ξa(σ) describing the shape of the wavy line can be analytically continued to holomorphic

functions ga(z) such that

Re(ga(σ, τ = 0)) = ξa(σ). (7.22)

This leads to the identification

u(1)
a (z) = −i∂3ga(z). (7.23)

Therefore, (7.20) can be rewritten as

Af = −ε2
ˆ
dσdττ2∂3ga(z)∂̄3ḡa(z̄). (7.24)

Integrating by parts, (7.24) reduces to

Af = −ε2
ˆ
dσdτ∂

(
τ2∂3ga∂̄

3ga + iτ∂ga∂̄
3ḡa −

1

2
ga∂̄

3ḡa

)
= − i

2
ε2
ˆ
R
dz̄

(
τ2∂3ga∂̄

3ga + iτ∂ga∂̄
3ḡa −

1

2
ga∂̄

3ḡa

)
=
i

8
ε2
ˆ
R
dσ(

...
ḡ aga − ḡa

...
g a),

(7.25)
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where dots indicates ∂σ. In the last equation we take τ = 0 and use that for a holomorphic

function ∂ga(z) = ∂σga(z) and similarly for ḡ(z̄). One can integrate by parts again and use

some algebra to obtain

Af =
1

2

ˆ
R
dσξ̈aη̇a = −1

2

ˆ
R
dσξ̇aη̈a, (7.26)

where we define

ηa(σ) = Im(ga(σ, τ = 0)). (7.27)

By the standard dispersion relation due to the analyticity of ga, we have

η̇a(σ
′) = − 1

π

 
dσ

ξ̇a(σ)

(σ − σ′)
. (7.28)

where
ffl

denotes principal value. Plugging into (7.26), integrating by parts and with some

calculations, we find

Af = − 1

4π
ε2
ˆ
R
dsds′

(ξ′a(s)− ξ′a(s′))2

(s− s′)2
. (7.29)

This agrees with the result obtained by Semenoff and Young in [48].

8 Conclusions

In this work we studied the problem of finding a minimal area surface ending on an ar-

bitrary curve in the boundary of AdSn+1 by a non-trivial generalization of previous ideas

applicable to AdS3 [37, 39]. It is well-known that the equations of motion are integrable

and can be greatly simplified using the Pohlmeyer reduction. In this paper we show that

the boundary conditions for the Pohlmeyer reduction are given by conformal invariants

of the curve (4.13), (4.14), (4.15) but require choosing the correct conformal parameteri-

zation of the curve, namely the one that extends to conformal gauge in the world-sheet.

Thus, we provide a test at the boundary, in terms of a further conformal invariant ζ(σ),

that determines if we have the correct parameterization, namely the boundary equivalent

of the Virasoro constraints in the world-sheet. After that, by identifying a certain flat

current (6.14) we obtained perhaps the most interesting result of the paper, a formula for

the area in terms of generalized conformal arc-length, curvature and torsion (6.25). These

generalized invariants make use not only of the shape of the curve (Xi
0(s) in (B.5)) but

also of a boundary condition given by the third normal derivative of the contour at the

boundary (Xi
3(σ) in (B.6) or νa in (4.9)). This extra boundary condition can be related to

the shape of the curve by solving the Pohlmeyer reduction problem and the self-consistency

condition for the parameterization of the curve. From the point of view of integrability

this relation between boundary conditions can be determined by imposing the vanishing

of an infinite set of conserved quantities. Once the problem is set up, it can be solved

numerically as in [41] for AdS3 or by an expansion near the straight-line solution as done

in [39] for AdS3 and here for AdSn+1 (albeit only at the lowest order). If the techniques

of [39] can be applied to this more general problem we can make contact of the four point

functions recently computed in [50].
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A χ, Q and T in R3 boundary of AdS4

In the case of three dimensional boundary R3, it is straightforward to find the expressions

of conformal arc-length, conformal curvature and conformal torsion in terms of arc-length,

curvature, and torsion of the curve. If we take the parameter s to be arc-length, we have

|x′| = 1 which simplifies the formulas of section 2. Further, it is convenient to use the

Frenet-Serre frame of normals (n,k) defined as

v′ = κn, n′ = −κv + τk, k′ = −τn. (A.1)

Here κ is the ordinary curvature and τ the torsion. Using these formulas we find

ζ = v′2, (A.2)

µa = na · v′′, (A.3)

Dsµa = na · (v′′′ + κ3n), (A.4)

leading to

χ =

ˆ s

A

√
µds =

ˆ s

A
(κ′2 + κ2τ2)

1
4ds, (A.5)

Q = −1

2

ζ − 2{χ, s}
µ

=
1

8µ3
(4µ′′µ− 4κ2µ2 − 5µ′2), (A.6)

T =
|Dµ̂a|√

µ
=

1

µ
5
2

(κ2τ3 − κκ′′τ + κκ′τ ′ + 2κ′2τ), (A.7)

which agree with the standard definitions [44]. Another formula for µa can be obtained by

defining the curvatures

κa = na · v′, ⇒ κ1 = κ, κ2 = 0, (A.8)

and then the simple formula

µa = Dsκa (A.9)

follows. Also, given a point on the curve, using symmetries, the curve in its neighborhood

can be written as

x = x, (A.10)

y =
x3

3!
+ (2Q− T 2)

x5

5!
+O(x6), (A.11)

z = T
x4

4!
+

1
√
µ

dT

ds

x5

5!
+O(x6). (A.12)

As mentioned in the main text, the combination 2Q − T 2 is the same as the one that

appears in the formula for the area (6.25), although there, it is in a generalized form where

we replaced µa by ua.
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B Near boundary expansion in Poincare coordinates

We consider the world-sheet to be the upper half plane with coordinates (σ, τ), the bound-

ary being at τ = 0. The equations of motion are

(∂2
σ + ∂2

τ )Xi =
2

Z

(
∂σX

i∂σZ + ∂τX
i∂τZ

)
, (B.1)

(∂2
σ + ∂2

τ )Z =
1

Z

[
(∂σZ)2 + (∂τZ)2 − ∂σXi∂σX

i − ∂τXi∂τX
i
]
. (B.2)

We expand the solutions near the boundary as

Xi(σ, τ) =

∞∑
n=0

Xi
n(σ)τn, (B.3)

Z(σ, τ) =

∞∑
n=1

Zn(σ)τn. (B.4)

The first several coefficients of the expansion are [47]:

Xi
0 = given boundary curve, X i

1 = 0, X i
2 =

1

2
X ′′0

i − Z ′1
Z1
X ′0

i, (B.5)

Xi
3 = undetermined, with X3 ·X ′0 = 0, (B.6)

Z1 = |X ′0|, Z2 = 0, Z3 =
1

3

Z ′1
2

Z1
− 1

6
Z ′′1 −

1

3

|X ′′0 |2

Z1
, (B.7)

where primes denote derivative with respect to σ. It is important to notice that Xi
3(σ)

is perpendicular to the tangent X ′0
i but otherwise not determined. Finding Xi

3 requires

solving the minimal area problem, namely imposing that the surface is regular. In [47] a

very nice relation between the variation of the area and Xi
3 was given:

Xi
3 = −1

3
|X ′i0|2

δAf
δX i

0

(B.8)

that shows Xi
3 behaves like a momentum conjugate to Xi

0. Using this we can write, in the

notation of section 4,

νa = −|x′i0|2 nia
δAf
δxi0

(B.9)

as mentioned in the main text. For higher order terms it is easy to derive a recursive

relation that allows to obtain a high order expansion using a computer algebra program:

Xi
n+1 =

1

(n+ 1)(n− 2)

[
−X ′′in−1 +

2Z ′1
Z1

X ′in−1 +
2

Z1

n−2∑
p=0

(n− p+ 1)(p+ 1)Zn−p+1X
i
p+1

+
1

Z1

n−3∑
p=0

(
−Zn−pX ′′ip − (p+ 1)(p+ 2)Zn−pX

i
p+2 + 2Z ′n−pX

′i
p

) ]
, (B.10)

Zn+1 =
1

n(n+ 1)

1

Z1

[
−
n−1∑
p=1

Zn−pZ
′′
p −

n−2∑
p=0

(p+ 1)(p+ 2)Zn−pZp+2

+2

n−1∑
p=1

Z ′n−pZ
′
p − 2

n−1∑
p=1

(n− p+ 1)(p+ 1)Xi
n−p+1X

i
p+1

]
. (B.11)
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C AdS coordinates and SO(n+ 1, 1) generators

The space AdSd=n+1 can be embedded into Rd,1 as the subspace satisfying the constraint

Y 2 = ηµνY
µY ν = −1, (C.1)

with the metric

η = diag[1, . . . , 1,−1]. (C.2)

It is also useful to solve the constraint in terms of Poincare coordinates (Xi=1...n, Z) as

Yi =
Xi

Z
, Y0 =

1

2Z
(1 + Z2 +X2

i ), Yd =
1

2Z
(−1 + Z2 +X2

i ). (C.3)

We define the generators of SO(n+ 1, 1) to satisfy the commutation relations

[Mµν ,Mαβ ] = −ηµαMνβ + ηµβMνα + ηναMµβ − ηνβMµα. (C.4)

Two representations are particularly useful, the vector representation(
MV
µν

)
α
β = ηµαδ

β
ν − ηναδβµ , (C.5)

and the spinor representation

MS
µν =

1

4
[γµ, γν ]. (C.6)

Throughout the paper we try to use final expressions that are independent of the repre-

sentation and rely only on the commutations relations.
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