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1 Introduction

Soon after the discovery of the self-dual (instanton) solution to the 4D Euclidean Yang-

Mills theory [1], the self-dual solution to 4D Euclidean Gravity has been obtained [2, 3]

(see also [4–7]). But the space-time boundary as r −→ ∞ is S3/Z2 and not S3 in the case

of Eguchi-Hanson gravitational instanton, in contrast to the Yang-Mills one. Otherwise, a

“cone-tipe” singularity (effective delta-function in the curvature at the instanton centre for

r = a) would be necessary. This means that the space-time topology of the gravitational

instanton solution differs crucially from the topology of a real space-time. Therefore,

though the action of the Eguchi-Hanson solution is zeroth, the physical meaning of the

solution is not clear.

I construct here the analogue of the Eguchi-Hanson self-dual solution to the 4D Eu-

clidean lattice Gravity with zeroth action. The solution transforms locally into the Eguchi-

Hanson solution as r −→ ∞. The reason is that the considered lattice theory transforms

into Einstein theory for a long-wavelength limit. The remarkable fact is the discrete gravity

self-dual solution wipes out a “cone-tipe” singularity at the center of instanton for the case

the space-time boundary as r −→ ∞ is S3. Thus, then the gravitational instantons would

exist if the real space-time exhibits the granularity property at super small scales.

A preliminary version of the work has been published in [8].

2 Eguchi-Hanson self-dual solution

First of all it is necessary to describe shortly the Eguchi-Hanson self-dual solution to

continuous Euclidean Gravity. Let γa, γaγb + γbγa = 2δab, a = 1, 2, 3, 4 be the Hermitian
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Dirac matrices 4× 4 in spinor representation (σα, α = 1, 2, 3 are Pauli matrices):

γα =

(

0 iσα

−iσα 0

)

, γ4 =

(

0 1

1 0

)

,

γ5 ≡ γ1γ2γ3γ4 =

(

−1 0

0 1

)

, σab =
1

4
[γa, γb] ,

σα4 =
i

2

(

σα 0

0 −σα

)

, σαβ =
iεαβγ
2

(

σγ 0

0 σγ

)

. (2.1)

Let’s consider the pure 4D Euclidean Gravity action in the Palatini form (the independent

variables are tetrad and connection):

A = −
1

l2P

∫

tr γ5R ∧ e ∧ e = −
1

l2P

∫

{

Rα
(+) ∧ E

α
(+) −Rα

(−) ∧ E
α
(−)

}

,

R ≡ 2(dω + ω ∧ ω) =
iσα

2

(

Rα
(+) 0

0 Rα
(−)

)

,

ω ≡
1

2
σabωab

µ dx
µ =

iσα

2

(

ωα
(+)µ 0

0 ωα
(−)µ

)

dx
µ,

ωα
(±) ≡

{

± ωα4
µ +

1

2
εαβγω

βγ
µ

}

dx
µ,

Rα
(±) = 2dω

α
(±) − εαβγω

β
(±) ∧ ω

γ
(±) ,

e ≡ γaeaµ dx
µ,

Eα
(±) ≡

{

± (eαλe
4
ρ − e4λe

α
ρ ) + εαβγe

β
λe

γ
ρ

}

dx
λ ∧ dx

ρ. (2.2)

One can take six 1-forms ωα
(±) as independent variables instead of six 1-forms ωab. Obvi-

ously, the representation (2.2) is consistent with the representation of the group Spin(4) ≈

Spin(4)(+) ⊗ Spin(4)(−) ≈ SU(2)(+) ⊗ SU(2)(−).

The following equations are equivalent

ω = ±γ5ω ←→ ωab = ∓
1

2
εabcdω

cd ←→ ωα
(±) = 0 . (2.3)

Eqs. (2.3) imply the following one:

R = ±γ5R←→ Rab = ∓
1

2
εabcdR

cd ←→ Rα
(±) = 0 . (2.4)

The action stationarity condition relative to the connection gives the equation

δA /δω
ab
µ = 0 −→ d e

a + ωab ∧ eb = 0 , (2.5)

which determines uniquely the connection forms for fixed forms ea. Additionally, eq. (2.5)

imply the algebraic Bianchi identity for Riemannian tensor, the combination of which with

eq. (2.4) leads to the Einstein’s equation

Rab ≡ Rc
acb = 0 . (2.6)
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On the other hand, Einstein’s equation is equivalent to the action stationarity condition

relative to the forms eaµ:

Rab = 0 ←→ δA /δe
a
µ = 0 . (2.7)

The question arises: why the additional eq. (2.3) does not come into conflict with eqs. (2.5)

and (2.7)? To answer this question let’s consider the case with the lower sign in eq. (2.3)

when

ωα
(−)µ = 0 . (2.8)

The combination of the part of eqs. (2.5) δA /δωα
(−)µ = 0 and eq. (2.8) gives the following

12 equations:

εµνλρ∂νE
α
(−)λρ = 0 . (2.9)

Now we must solve the system of equations (2.7), (2.8), (2.9) and

δA /δω
α
(+)µ = 0 . (2.10)

Note that eqs. (2.5) and (2.7) do not fix the variables ωab
µ , eaµ completely but up to the

gauge (orthogonal) transformations. Here the gauge group leaves 6 unfixed functions.

Eqs. (2.9) do not fix the quantities Eα
(−)λρ completely but up to summands of the forme

(

∂λΨ
α
(−)ρ−∂ρΨ

α
(−)λ

)

where Ψα
(−)λ are 3 arbitrary vector fields (12 functions altogether). But

each of three vector fields Ψα
(−)λ contains only 3 independent functions due to invariance

of the expression
(

∂λΨ
α
(−)ρ − ∂ρΨ

α
(−)λ

)

relative to the changes Ψα
(−)λ −→ Ψα

(−)λ + ∂λφ
α
(−).

As a result, eqs. (2.9) fix no more than additional 12 − 3 × 3 = 3 functions. This means

that the gauge subgroup Spin(4)(−) is broken by eq. (2.8). So we see that the system of

equations (2.7)–(2.10) is consistent, though it fixes the gauge subgroup Spin(4)(−). The

Eguchi-Hanson solution is the simplest solution of the system. Let’s write out this solu-

tion [2, 3].

Let xi = (r, θ, ϕ, ψ), where (θ, ϕ, ψ) be the Euler angles. The cartesian coordinates

xµ in R
4 are connected with the coordinates xi as follows:

z1 ≡ x1 + ix2 = r cos
θ

2
exp

[

i

2
(ψ + ϕ)

]

,

z2 ≡ x3 + ix4 = r sin
θ

2
exp

[

i

2
(ψ − ϕ)

]

. (2.11)

There is a one-to-one correspondence between these two coordinate systems if the Euler

angles vary in the ranges

0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π , 0 ≤ ψ ≤ 4π . (2.12)

The Eguchi-Hanson solution for the metrics d s2 ≡ (eaµ dx
µ)2 has the form

eaµ dx
µ =











r
2(sinψ d θ − sin θ cosψ dϕ)
r
2(cosψ d θ + sin θ sinψ dϕ)

− r
2g(r)(cos θ dϕ+ dψ)

g(r)−1 d r











,

g(r) =

√

1−
a4

r4
, r ≥ a . (2.13)
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For a = 0, the metrics (2.13) transforms to the 4D Euclidean metrics in Euler angles on

the S3 with ranges (2.12). But 0 ≤ ψ ≤ 2π for the Eguchi-Hanson solution (when a 6= 0)

since the points with coordinates ψ and (ψ + 2π) and the same (r, θ, ϕ) are identified.

Otherwise, in order for the Chern-Gauss-Bonnet theorem to be satisfied in the case (2.12),

a “cone-tipe” singularity (effective delta-function in the curvature at the instanton centre

for r = a) would be necessary (see [3]).

The connection 1-forms are given by eqs. (2.8) and:

ω1
(+) =

2g

r
e1 = g(sinψ d θ − sin θ cosψ dϕ) ,

ω2
(+) =

2g

r
e2 = g(cosψ d θ + sin θ sinψ dϕ) ,

ω3
(+) = 2

(

2

rg
−
g

r

)

e3 = −

(

1 +
a4

r4

)

(cos θ dϕ+ dψ) . (2.14)

We have
∫

r=Const→∞

(

1

2
ω1
(+)

)

∧

(

1

2
ω2
(+)

)

∧

(

1

2
ω3
(+)

)

= −π2 (2.15)

and
∫

r−→a+0

(

1

2
ω1
(+)

)

∧

(

1

2
ω2
(+)

)

∧

(

1

2
ω3
(+)

)

= 0 (2.16)

for the range 0 ≤ ψ ≤ 2π and orientation θ, ϕ, ψ, r. The integral (2.15) would be equal to

(−π2) for any 0 < r = Const < ∞ in the case a = 0 (the Euclidean metrics in Euler an-

gles). Thus, the boundary conditions (2.15)–(2.16) determine the instanton Eguchi-Hanson

solution with the same integration constant a as in the relation (2.16). This means that

the system of equations (2.7)–(2.10) together with the boundary conditions (2.15)–(2.16)

possess unique solution (2.13) for the centrally symmetrical metrics anzats with the same

integration constant a as in the relation (2.16).

Note that
iσα

2
ωα
(+) = U−1

dU as r −→ ∞ , (2.17)

where

U = exp

(

−
iσ3

2
ϕ

)

exp

(

iσ2

2
θ

)

exp

(

−
iσ3

2
ψ

)

. (2.18)

According to the eq. (2.17)

1

12
tr(U−1

dU)∧ (U−1
dU)∧ (U−1

dU) =

(

1

2
ω1
(+)

)

∧

(

1

2
ω2
(+)

)

∧

(

1

2
ω3
(+)

)

as r −→ ∞ .

(2.19)

Taking into account eqs. (2.15) and (2.19), we obtain for the angle ranges (2.12):

1

12
tr

∫

(U−1
dU) ∧ (U−1

dU) ∧ (U−1
dU) = −2π2. (2.20)

This equality means that eq. (2.18) gives the smooth mapping of the space-time hypersur-

face S3 prescribed by the Euler angles (see eqs. (2.11) with a fixed parameter r) into the

SU(2) group space, and the degree of the mapping is equal to (−1).
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Write out also the Riemannian curvature 2-form:

Rα
(−) = 0 ,

R1
(+) = −

8a4

r6
(e1 ∧ e4 + e2 ∧ e3) ,

R2
(+) =

8a4

r6
(e1 ∧ e3 − e2 ∧ e4) ,

R3
(+) =

16a4

r6
(e1 ∧ e2 + e3 ∧ e4) . (2.21)

3 The lattice gravity model

The next step is to adumbrate the model of lattice gravity which is used here. A detailed

description of the model is given in [9–11].

The orientable 4-dimensional simplicial complex and its vertices are designated as K

and aV , the indices V = 1, 2, . . . , N → ∞ and W enumerate the vertices and 4-simplices,

correspondingly. It is necessary to use the local enumeration of the vertices aV attached

to a given 4-simplex: the all five vertices of a 4-simplex with index W are enumerated

as aWi, i = 1, 2, 3, 4, 5. The later notations with extra index W indicate that the cor-

responding quantities belong to the 4-simplex with index W. The Levi-Civita symbol

with in pairs different indexes εWijklm = ±1 depending on whether the order of vertices

s4W = aWiaWjaWkaWlaWm defines the positive or negative orientation of 4-simplex s4W .

An element of the group Spin(4) and an element of the Clifford algebra

ΩWij = Ω−1
Wji = exp(ωWij) , ωWij ≡

1

2
σabωab

Wij ,

êWij = ê†Wij ≡ eaWijγ
a ≡ −ΩWij êWjiΩ

−1
Wij (3.1)

are assigned for each oriented 1-simplex aWiaWj . The lattice analog of the action (2.2) has

the form

A =
1

5× 24

∑

W

∑

i,j,k,l,m

εWijklm tr γ5
{

−
1

2 l2P
ΩWmiΩWijΩWjmêWmkêWml

}

. (3.2)

This action is invariant relative to the gauge transformations

Ω̃Wij = SWiΩWijS
−1
Wj , ẽWij = SWi eWij S

−1
Wi , SWi ∈ Spin(4) . (3.3)

It is natural to interpret the quantity

l2Wij ≡
1

4
tr(êWij)

2 =
4

∑

a=1

(eaWij)
2 ∼ l2P (3.4)

as the square of the length of the edge aWiaWj , and the parameter lP is of the order of

the lattice spacing. Thus, the geometric properties of a simplicial complex prove to be

completely defined.
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Now, let us show in the limit of slowly varying fields, that the action (3.2) reduces to

the continuous gravity action (2.2).

Consider a certain 4D sub-complex of complex K with the trivial topology of four-

dimensional disk. Realize geometrically this sub-complex in R
4. Suppose that the geo-

metric realization is an almost smooth four-dimensional surface.1 Thus each vertex of the

sub-complex acquires the coordinates xµ which are the coordinates of the vertex image

in R
4:

xµWi = xµV ≡ xµ(aWi) ≡ xµ(aV) , µ = 1, 2, 3, 4 (3.5)

We stress that these coordinates are defined only by their vertices rather than by the higher

dimension simplices to which these vertices belong; moreover, the correspondence between

the vertices from the considered subset and the coordinates (3.5) is one-to-one.

We have

|xµWi − xµWj | ∼ lP . (3.6)

It is evident that the four vectors

dx
µ
Wji ≡ xµWi − xµWj , i = 1, 2, 3, 4 (3.7)

are linearly independent and

∣

∣

∣

∣

∣

∣

∣

dx1Wm1 dx2Wm1 . . . dx4Wm1

. . . . . . . . . . . .

dx1Wm4 dx2Wm4 . . . dx4Wm4

∣

∣

∣

∣

∣

∣

∣

≷ 0 , (3.8)

depending on whethe the frame (XW
m 1, . . . , X

W
m 4) is positively or negatively oriented. Here,

the differentials of coordinates (3.7) correspond to one-dimensional simplices aWjaWi, so

that, if the vertex aWj has coordinates xµWj , then the vertex aWi has the coordinates

xµWj + dx
µ
Wji.

In the continuous limit, the holonomy group elements (3.1) are close to the identity

element, so that the quantities ωab
ij tend to zero being of the order of O(dxµ). Thus one

can consider the following system of equation for ωWmµ

ωWmµ dx
µ
Wmi = ωWmi , i = 1, 2, 3, 4 . (3.9)

In this system of linear equation, the indices W and m are fixed, the summation is carried

out over the index µ, and index runs over all its values. Since the determinant (3.8) is

nonzero, the quantities ωWmµ are defined uniquely. Suppose that a one-dimensional simplex

XW
mi belongs to four-dimensional simplices with indices W1, W2, . . . , Wr. Introduce the

quantity

ωµ

(

1

2
(xWm + xWi)

)

≡
1

r
{ωW1mµ + . . . + ωWrmµ} , (3.10)

1Here, by an almost smooth surface, we mean a piecewise smooth surface consisting of flat four-

dimensional simplices, such that the angles between adjacent 4-simplices tend to zero and the sizes of

these simplices are commensurable.
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which is assumed to be related to the midpoint of the segment [xµWm, x
µ
Wi ]. Recall that

the coordinates xµWi as well as the differentials (3.7) depend only on vertices but not on the

higher dimensional simplices to which these vertices belong. According to the definition,

we have the following chain of equalities

ωW1 mi = ωW2 mi = . . . = ωWr mi . (3.11)

It follows from (3.7) and (3.9)–(3.11) that

ωµ

(

xWm +
1

2
dxWmi

)

dx
µ
Wmi = ωWmi . (3.12)

The value of the field element ωµ in (3.12) is uniquely defined by the corresponding one-

dimensional simplex.

Next, we assume that the fields ωµ smoothly depend on the points belonging to the

geometric realization of each four-dimensional simplex. In this case, the following formula

is valid up to O
(

(dx)2
)

inclusive

ΩWmiΩWij ΩWjm = exp

[

1

2
Rµν(xWm) dx

µ
Wmi dx

ν
Wmj

]

, (3.13)

where

Rµν = ∂µων − ∂νωµ + [ωµ, ων ] . (3.14)

When deriving formula (3.13), we used the Hausdorff formula.

In exact analogy with (3.9), let us write out the following relations for a tetrad field

without explanations

êWmµ dx
µ
Wmi = êWmi . (3.15)

Applying formulas (3.13)–(3.15) to the discrete action (3.2) and changing the sum-

mation to integration we find that in the long-wavelength limit the lattice action (3.2)

transforms into continuous action (2.2) and any information about lattice is forgotten in

the main approximation.

4 The self-dual solutions to lattice gravity

Now let us consider the self-dual solution to lattice gravity. We have the lattice analogue

of eqs. (2.5) and (2.7):

δA /δω
α
(±)Wmi = 0 , (4.1)

δA /δe
a
Wmi = 0 . (4.2)

Because of the action (3.2) is a homogeneous quadratic function of the variables {e}, so

2A =
∑

{e}

eaWmi(δA /δe
a
Wmi) = 0 (4.3)

– 7 –
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on the mass shell according to Euler theorem. Let’s impose the additional conditions

(compare with eqs. (2.8))

ωα
(−)Wmi = 0 . (4.4)

Combining eqs. (4.1) with index (−) and (4.4) we obtain:

δA

δωα
(−)Wmi

∣

∣

∣

∣

ωα

(−)
=0

= −
2

l2P

∑

W ′

∑

j,k,l

εW ′mijkl

{

Eα
(−)W ′[jkl]

+
1

6

[(

Eα
(−)W ′m[kl] + Eα

(−)W ′m[lj] + Eα
(−)W ′m[jk]

)

+ (m↔ i)
]

}

= 0 ,

Eα
∗[mkl] ≡

1

3

(

Eα
∗m[kl] + Eα

∗k[lm] + Eα
∗l[mk]

)

,

Eα
(±)∗m[kl] ≡ ∓(eα∗mke

4
∗ml − e4∗mke

α
∗ml) + εαβγe

β
∗mke

γ
∗ml . (4.5)

The index W ′ in (4.5) enumerates all 4-simplices which contain a marked 1-simplex

aWmaWi. As in continuous case, the system of equations (4.1), (4.2) and (4.4) is equivalent

to the system of equations (4.1) with index (+), (4.2), (4.4) and (4.5). It will be shown

that the square brackets give null equation under the sum (4.5). Therefore only the first

term in the parentheses in eq. (4.5) is significant.

Equations (4.5) do not fix the quantity Eα
(−)W ′[jkl] completely but up to summands of

the kind

Eα
(−)W ′[jkl] −→ Eα

(−)W ′[jkl] +
(

Ψα
(−)Wjk +Ψα

(−)Wkl +Ψα
(−)Wlj

)

, (4.6)

and the lattice 1-form Ψα
(−)Wmk = −Ψα

(−)Wkm can be varied according to

Ψα
(−)Wmk −→ Ψα

(−)Wmk +
(

φα(−)Wk − φα(−)Wm

)

. (4.7)

It follows from here that eqs. (4.5) fix no more than 3 additional real-valued parameters at

each vertex of complex, leading to the fixation of gauge subgroup Spin(4)(−).

Let’s prove the given statements. For this end one must check that the equation

∑

W ′

{

∑

j,k,l

εW ′mijkl

(

Ψα
(−)W ′jk +Ψα

(−)W ′kl +Ψα
(−)W ′lj

)

}

= 0 (4.8)

is satisfied identically. It is evident that the braces in eq. (4.8) vanishes identically at each

fixed value of index W ′ if Ψα
(−)W ′mk =

(

φα(−)W ′k − φα(−)W ′m

)

.

Consider two adjacent positively oriented 4-simplices

s4W = aWmaWiaWjaWkaWl ,

s4W ′ = aW ′maW ′iaW ′kaW ′jaW ′l′ ,

aWm = aW ′m , aWi = aW ′i , aWj = aW ′j ,

aWk = aW ′k , aWl 6= aW ′l′ , (4.9)

so that

εWmijkl = εW ′mikjl′ = 1 . (4.10)

– 8 –
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Select from the sum (4.8) two summands corresponding to the 4-simplices (4.9):

∑

j,k,l

εWmijkl

(

Ψα
(−)Wjk +Ψα

(−)Wkl +Ψα
(−)Wlj

)

+
∑

j,k,l′

εW ′mikjl′
(

Ψα
(−)W ′kj +Ψα

(−)W ′jl′ +Ψα
(−)W ′l′k

)

. (4.11)

We see that the quantities Ψα
(−)Wmk belonging to the common 3-simplices of the adjacent 4-

simplices cancel on in (4.11) as a consequence of eqs. (4.10) and
(

Ψα
(−)Wjk+Ψα

(−)W ′kj

)

= 0.

Note that each quantity Ψα
(−)W ′jk in parentheses in (4.8) belongs to the 3-simplex which

is common to two adjacent 4-simplices. If not, the cavities and boundaries would be in

the simplicial complex, but such complexes are not considered here. Thus, the sum (4.8)

is equal to zero identically.2 This means that the system of equations (4.1) with index

(+), (4.2), (4.4) and (4.5) is self-consistent and it fixes in part the gauge as well as in

continuous case. According to the eqs. (4.2) and (4.3) the action of any solution of this

system of equations is equal to zero.

5 Lattice analogue of the Eguchi-Hanson solution

Now proceed to study the lattice analog of the Eguchi-Hanson solution. But it is impossible

to give the irregular lattice solution in an explicit form in contrast to the continuous case.

Thus, the problem reduces to the solution existence proof and finding of its asymptotics.

Suppose that the complex K can be considered as a triangulation of R4.

Let’s introduce the following notations: k ⊂ K means a finite sub-complex containing

the centre of instanton with the boundary ∂ k = S ≈ S3; S∞ means the boundary of

extra-large sub-complex of complex K containing the centre of instanton, so that in a wide

vicinity of S∞ the long-wavelength limit is valid and the continuous solution (2.13), (2.14)

approximates correctly the exact lattice solution and the hypersurface S∞ is given by the

eq. r = R = Const −→ ∞. Evidently, the Euler characteristics χ(k) = χ(K) = 1. We have

the exact lattice equivalents of the instanton boundary conditions (2.15) and (2.16):

1

12 · 4!

∑

S(S∞)

∑

ijkm

εSijkm tr
(

Ω−1
(+)SjmΩ(+)Sji

)(

Ω−1
(+)SkmΩ(+)Skj

)(

Ω−1
(+)SimΩ(+)Sik

)

= −2π2,

(5.1)
∑

S(S)

∑

ijkm

εSijkm tr
(

Ω−1
(+)SjmΩ(+)Sji

)(

Ω−1
(+)SkmΩ(+)Skj

)(

Ω−1
(+)SimΩ(+)Sik

)

= 0 .

(5.2)

Here the indices S(S∞) and S(S) enumerate 3-simplices on the boundaries S∞ and S,

correspondingly, and the Levi-Civita symbol εSijkm = ±1 depending on whether the order

of vertices s3S = aSiaSjaSkaSm defines the positive or negative orientation of this 3-simplex.

2Hence the statement that the square brackets give null equation under the sum (4.5) is proved.
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Since the long-wavelength limit is valid as r −→ ∞, one can use the instanton solution

for the dynamic variables (2.13)–(2.14) in this region:

Ω(+)Wmi ≈ 1 +
iσα

2
ωα
(+)µ dx

µ
Wmi .

Therefore the sum in (5.1) transforms into integral (2.15) with the only difference that now

the angle ψ varies in the interval (2.12), and so the boundary condition (5.1) is just.

To implement the boundary condition (5.2) we suggest the following solutions on the

sub-complex k.

Consider the following solutions of eqs. (4.1), (4.2) and (4.4) on k:

Ω(+)Wij = −1 , Ω(−)Wij = 1 , s4W ∈ k . (5.3)

From here it follows that

Ω(+)WmiΩ(+)WijΩ(+)Wjm = −1 on k . (5.4)

The equalities (5.4) hold true if we perform a gauge transformation (see (3.3)) with

S(+)Wi = ±1, S(−)Wi = 1. The boundary condition (5.2) is true for each configuration

obtained in such a way.

Obviously, 1-form êWij can be considered as a 1-cochain on complex, and the quantity

Eab
Wm[kl] =

(

Eα
(+)Wm[kl],

(

Eα
(−)Wm[kl]

)

= εabcde
c
Wmke

d
Wml , (5.5)

is a 2-cochain which is the superposition of the exterior products of 1-cochains eaWij .

It may be verified (compare with (4.5)) that the left hand side of eq. (4.1) is nothing but

the exterior lattice derivative of a 2-cochain (5.5), and eq. (4.1) implies that the derivative

is equal to zero in the case of (5.4), i.e. the quantity (5.5) is a cocycle:3

∑

W ′

∑

j,k,l

εW ′mijklE
ab
W ′[jkl] = 0 ,

aWmaWi ∈ s4W ′ , aWmaWi ∈ k , aWmaWi /∈ ∂ k . (5.6)

Evidently, eqs. (5.6) are satisfied for

eaV1V2
= φaV2

− φaV1
, aV1aV2 ∈ k , aV1aV2 /∈ ∂ k , (5.7)

where φaV is any scalar field on k. This statement is checked easily by a direct calculation

and it follows from the fact that the cochain (5.5) is the superposition of the exterior

products of exact 1-forms in the case (5.7).

Since the second cohomology group H2(k) = 0, so the cocycle (5.5) is a lattice co-

boundary:

Eab
Wm[kl] =

(

Ψab
Wmk −Ψab

Wml

)

,

Ψab
Wmk = −Ψab

Wkm . (5.8)

3It was proved to be the case for the quantity E
α

(−)W[mkl] (see (4.5)). The corresponding provement for

the quantity E
α

(+)W[mkl] is the same.
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Eqs. (5.6) fix no more than 6 real numbers at each vertex of the sub-complex k for the reason

that the lattice 1-form Ψab
Wmk is determined up to the lattice gradient (φabWk − φabWm). So

it follows from eqs. (5.3) (just like as in the case of (4.4)) that now not only the gauge

sub-group Spin(4)(−) is broken but also the gauge group Spin(4) is broken to on k \∂ k
almost wholly except for the center of the sub-group SU(2)(+) (see eqs. (4.6)–(4.11)).

From here and throughout the following discussions the pairs of indices (V1V2) enu-

merate 1-simplexes aV1aV2 ∈ K.

The action (3.2) is equal to zero identically for the configuration (5.4) for any values

of eaV1V2
, where 1-simplex aV1aV2 ∈ k, aV1aV2 /∈ ∂ k. Therefore, eqs. (4.2) are satisfied

automatically in this case, they do not give any constraint onto the corresponding 1-forms

eaV1V2
in addition to eqs. (5.8):

δA /δe
a
V1V2

≡ 0 , aV1aV2 ∈ k , aV1aV2 /∈ ∂ k . (5.9)

Now let us prove that the lattice configuration of the variables
{

ωab
V1V2(inst)

, eaV1V2(inst)

}

satisfying the system of equations and constraints (4.1), (4.2), (4.4), (5.1) and (5.2) does

exist. The configuration is the lattice analogue of the Eguchi-Hanson continuous instanton.

Recall that the sets of equations (4.2) with the sign (−) and (4.4) are equivalent to

the set of equations (see eqs. (4.5))

Φα
(V1V2)

≡ −
l2P
2

δA

δωα
(−)V1V2

∣

∣

∣

∣

ω(−)=0

=
∑

W ′

∑

j,k,l

εW ′mijklE
α
(−)W ′[jkl] = 0 (5.10)

and eqs. (4.4). Here 1-simplexes aWmaWi are renamed as aV1aV2 . Further the set of

equations (5.10) is considered as the set of constraints.

At the first stage we shall solve the problem for finite complex K with extra-large

(though finite) number of vertices N and the boundary ∂ K = S∞. There is the estimation

l2PN ∼ R4. (5.11)

The constraint (5.2) is realized evidently by taking the variables Ω(+)V1V2
on the sub-

complex k as in (5.3). We believe also that the relations (5.7) are valid. The constraint (5.1)

also is realized evidently by taking

Ω(+)Smi = exp

{

iσα

2
ωα
(+)µ dx

µ
Smi

}

≈ 1 +
iσα

2
ωα
(+)µ dx

µ
Smi (5.12)

on the boundary S∞, where the field ωα
(+)µ is given by eq. (2.17).

So, the problem is equivalent to the searching for the stationary point of the Lagrange

function

L = A−
∑

α, (V1V2), aV1
aV2

/∈k \∂ k

λα(V1V2)
Φα
(V1V2)

(5.13)

relative to the variables
{

ωα
(+)(V1V2)

, ea(V1V2)
, λα(V1V2)

}

,

assuming that the conditions (4.4), (5.3) and (5.12) take place.
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According to (3.1) each of the elements Ω(+)V1V2
for fixed 1-simplex aV1aV2 is a smooth

matrix function on the unit 3D sphere S3
(V1V2)

(ωα
(+)V1V2

are the coordinates on S3
(V1V2)

which

are convenient for the long-wavelength transition). Denote also by SH the hypersphere

which is determined by the equation

∑

(V1V2), aV1
aV2

/∈k \∂ k

{

(eaV1V2
)2 +

(

λα(V1V2)

)2}
= l2PN . (5.14)

Let’s search for a stationary point for the Lagrange function (5.13) on the compact

smooth manifold without boundary:

C = SH
⋃

(

⋃

(V1V2), aV1
aV2

/∈k,S∞

S3
(V1V2)

)

,

∂C = ∅ . (5.15)

Since the Lagrange function (5.13) is a smooth function defined on the compact metric

space (5.15), so it is a bounded function and it has the local maximum(s) and minimum(s)

at some points pξ ∈ C. Moreover, since the space C is without boundary, so the total

differential of the Lagrange function at the points pξ is equal to zero.

It will be appreciated that the Lagrange function variables are constrained due to

eq. (5.14). Let’s express the only one variable e1VN−1VN
for some aVN−1aVN

∈ S∞ in terms

of the rest variables involved in the constraint (5.14):

e1VN−1VN
= ±fN(. . .) ,

fN(. . .) =

√

l2PN−
∑

(V1V2), aV1
aV2

/∈k \∂ k

{

(eaV1V2
)2 + . . .

}

. (5.16)

As stated before (see sections 2 and 4), the set of constraints (5.10) fixes at most three

real number at each vertex which is equivalent to the gauge fixing. Evidently, in the limit

ωα
(−)V1V2

−→ 0 the Lagrange function (5.13) is obtained from the action (3.2) by replacing

ωα
(−)V1V2

−→ (l2P /2)λ
α
V1V2

. Therefore, the set of Lagrange multipliers {λα(V1V2)
} contains

only tree significant real-valued parameters per each vertex. Since the infinitesimal gauge

transformations act on the set of Lagrange multipliers according to the rule

δλαV1V2
= ψV2 − ψV1 , ψV −→ 0 ,

so one may put

λαV1V2

∣

∣

p
= 0 (5.17)

at the stationary points. The last equations fix the gauge subgroup Spin(4)(−). Due to

eqs. (5.17) we have

∂e1VN−1VN

∂λαV1V2

∣

∣

∣

∣

p

= 0 . (5.18)
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Let’s scrutinize equations following from the condition dL|p = 0.

Note firstly that the summand with the sign (−) in the action (3.2) is equal to zero

identically for Ω(−) = 1 and any values of the variables ea:

A(−) |Ω(−)=1 ≡ 0 ,
∂ A(−)

∂ea

∣

∣

∣

∣

Ω(−)=1

≡ 0 .

It is seen from here that eqs. (5.17) do not contradict to the equations cited below.

The conditions
∂L

∂ωα
(+)(V1V2)

= 0

give the set of eqs. (4.1) with the sign “+”.

We have also the set of eqs. (4.4) supplemented by the conditions

∂L

∂λαV1V2

= −Φα
(V1V2)

+
∂L

∂e1VN−1VN

·
∂e1VN−1VN

∂λαV1V2

∣

∣

∣

∣

p

= −Φα
(V1V2)

= 0 . (5.19)

Here eqs. (5.18) are taken into account. Eqs. (4.4) and (5.19) are equivalent to eqs. (4.4)

and (4.1) with the sign “−”.

The last set of equations is (due to eqs. (5.17)) as follows:

∂L

∂eaV1V2

=
∂A(+)

∂eaV1V2

±
∂A(+)

∂e1VN−1VN

·
∂fN
∂eaV1V2

= 0 . (5.20)

It follows from here that (see (4.3), (5.13) and (5.19))

2A = 2L|p = ∓
∑

(V1V2)

eaV1V2

∂A(+)

∂e1VN−1VN

·
∂fN
∂eaV1V2

6= 0 . (5.21)

The quantity ∂A(+)/∂e
1
VN−1VN

is proportional to the curvature R(+)µν (see (3.13)) in the

neighbourhood of the boundary S∞. Due to eqs. (2.21) and (5.11) there is the chain of

estimations:

∂A

∂e1VN−1VN

∼ R−6 ∼ N
−3/2,

∑

(V1V2)

eaV1V2

∂A

∂e1VN−1VN

·
∂fN
∂eaV1V2

∼ N
−1/2 ∼ R−2. (5.22)

According to the eqs. (5.20), (5.21) and estimations (5.22) we obtaine the final result

∂A

∂eaV1V2

−→ 0 , A −→ 0 as R −→ ∞ . (5.23)

The result can be explained once again as follows.

Let the set of variables {ΩV1V2(inst)(e)} be such that the boundary conditions (5.4)

and (5.12) as well as eqs. (4.1) are fulfilled for any values of variables {e}. This is possible

since the action (3.2) is a smooth real function of the variables {ΩV1V2} (for fixed set of
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values {e}), i.e. the action (3.2) is a smooth real function on a compact manifold without

boundary. Now let’s impose the constraints Ω(−)V1V2(inst)(e) = 0 which are equivalent to the

constraints (5.10), and resolve the constraints relative to the a subset of variables {eaV1V2
}′.

As a result each variable from the subset becomes a homogeneous function of degree 1 of

the rest set {eaV1V2
}′′ mutually independent variables. As a result the action (3.2) becomes

the function of the variables {eaV1V2
}′′ such that eqs. (4.1) are satisfied and, hence

2A =
∑

{e}′′

eaV1V2
(δA /δe

a
V1V2

) . (5.24)

Now let’s bound the function A on the hypersphere SH′′ determined by the relation

∑

{e}′′

(eaV1V2
)2 = l2PN .

The subsequent consideration and conclusion are identical to those which has been

given with the help of eqs. (5.16), (5.20)–(5.23): there is a stationary point of the ac-

tion (3.2) relative to its variables with the additional equations (4.4) and boundary condi-

tions (5.4), (5.12); the action is equal to zero at the stationary point at the limit R −→ ∞.

6 Conclusion

Aforesaid means that the lattice analogue of the Eguchi-Hanson self-dual solution to con-

tinuous Euclidean Gravity does exist for the complex K ≈ R
4.

It is crucially important that the problem of possible singularities for the curvature

tensor does not exist on the lattice gravity. In continuous gravity for the ψ range (2.12),

the manifold would have “cone-tip” singularities at r = a; this implies the necessity of

delta-functions in the curvature at r = a (see [2, 3]). But delta-functions transforms into

Kronecker symbol which is of the order of unity in discrete mathematics. The same is true

with respect to the lattice analogue of the curvature tensor ΩWmiΩWijΩWjm ∼ ±1. This

is the reason why one can take the range of angles (2.12) in a lattice gravity. Moreover, all

lattice equations are satisfied and the action for the instanton solution is equal to zero.

Thus, the setting of the problem for finding a self-dual solution to lattice Euclidean

gravity is as follows: one must solve (in anti-instanton case) the difference lattice system

of equations (4.1) with indices (+), (4.2), (4.4), the constraints (5.10), and the boundary

conditions (5.4), (5.12).

Here some questions are not enough clear or remain unclear.

1. Is the offered solution with χ(K) = 1 stable or it can be contracted smoothly into the

trivial one?

The answer to this question seems to be as follows.

Let’s consider a smooth path in the configuration space

ΩV1V2(t) , eaV1V2
(t) , 0 ≤ t ≤ 1 ,
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such that

ΩV1V2(0) = ΩV1V2(inst) , eaV1V2
(0) = eaV1V2(inst)

,

ΩV1V2(1) = 1 , eaV1V2
(1) = φaV2

− φaV1
. (6.1)

Here the lower index (inst) designates the discussed self-dual solution. The field

configuration
{

ΩV1V2(1), e
a
V1V2

(1)
}

is a trivial solution of eqs. (4.1), (4.2). Evidently,

the global continuous description of this trivial solution is possible. Nevertheless, the

considered instanton contraction scenario seems to be unsatisfactory since to do this,

one must contract topologically non-trivial connection elements (see (5.1) and (5.12))

into unit in the infinite space-time.

Another instanton contraction scenario which is described in continual limit by limit

process a −→ 0 and in the lattice case by reducing the sub-complex k up to its

disappearance also seems to be unsatisfactory. Indeed, in this case we would have

resulted in the failure of the Chern-Gauss-Bonnet theorem in R
4. So, this scenario is

also impossible, it can be considered as a decreasing of the instanton scale a up to a

lattice scale.

Therefore, the considered instanton solution for the case χ(K) = 1 seems to be stable.

2. The case χ(k) = (2k + 1), k = 1, 2, . . . and ∂k = S ≈ S3 is interesting, but it is not

considered here. So, the question remains unanswered: for what values of χ(K) the

lattice self-dual solution does exist and it would be stable?
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