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1 Introduction

The moduli space of supergravity theories with high enough supersymmetry has the struc-

ture of a coset manifold (or of a product thereof), typically denoted by G/H. The numer-

ator denotes the U-duality group of the theory, whose discrete version GZ gives rise to an

exact symmetry (in fact, a superselection rule) after quantization, whereas the denomina-

tor (the maximal compact subgroup of G) is regarded as a gauge symmetry of the theory.

In particular, the supersymmetry variations of all fermionic fields, which are inert under

G, involve the gauge composite connection corresponding to H. The content of physical

particles of the theory is usually identified by fixing the gauge, thereby eliminating the re-

dundant bosonic degrees of freedom associated to H. In some cases, however, H contains

a U(1) factor, which may couple to fermions in a chiral fashion, a priori giving rise to a

chiral anomaly.

When the local symmetry is gauge fixed, the U-duality becomes non-linearly realized.

Moreover, the fermionic fields now transform under G. This transformation may still be
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realized as a phase shift. Therefore, the gauge fixing translates the U(1) anomaly into a

GZ one, making the theory ill-defined [1]. This anomaly can be canceled by the addition

of a local counterterm with appropriate GZ-modular properties.

The easiest instance of such a phenomenon appears in maximal eight-dimensional (8D)

supergravity. The relevant part of the coset is given by SL(2,R)/U(1). The ensuing local

counterterm involves a modular function in the complex scalar parametrizing the coset and

provides a higher-derivative (∼ α′3) correction to the action. Similar behaviour is displayed

by 8D theories with 16 supercharges which have a more complicated coset structure.

The pure ten-dimensional (10D) type IIB supergravity does not have an anomaly in

spite of having SL(2,R)/U(1) coset. However the presence of seven-branes generates an

SL(2,Z) anomaly [2]. The fact that the anomaly is generated by seven-branes makes

one wonder if the counterterm is related to higher-curvature couplings on the seven-brane

worldvolume.

In this paper we try to address the above question in the type IIB context. Moreover,

we examine this type of anomalies in various supergravity theories in eight dimensions,

with both maximal and minimal supersymmetry and with several choices of gauge group.

The aim is to compare the higher-derivative terms fixed by anomaly cancelation to the

effective couplings derived from the relevant string amplitudes. In some cases we find a

perfect agreement of the higher-derivative structure. In 8D, this happens for the maximal

supergravity and for the minimal one with SO(32) and E8 × E8 gauge groups. For other

gauge groups in 8D there appear additional higher-derivative structures in the amplitude-

induced effective couplings. For the cases of 8D non-Abelian symmetry of rank 16, we

give an interpretation of such new structures in terms of massive states arising from the

breaking of SO(32) or of E8 × E8. The details of such amplitude computations, crucial

for this comparison, will appear separately in [3], which fills some gaps in the existing

literature on the one-loop five-point amplitudes.

Compactifications on Kähler manifolds of positive curvature and the role of composite

connections is another aspect explored in this paper. In fact, tadpole cancellation relates

the curvature of the composite connection to the curvature of the compactification space.

Hence the global properties of the former impact the consistency of lower-dimensional

theories. In particular, we note the importance of the massive states for the anomaly

cancellation in six-dimensional (6D) theories obtained from an S2 reduction of 8D minimal

theories.

The outline of the paper is as follows. In section 2, we review the SL(2,Z) anomaly

in 10D type IIB theory with seven-branes, and investigate its possible relation to brane

couplings. Section 3 is devoted to the study of the SL(2,Z) anomaly in maximal 8D

supergravity. Section 4 does the same for minimally supersymmetric 8D theories with gauge

groups SO(32), E8 × E8, SO(16)2 and SO(8)4, and contains a detailed comparison with

string amplitude results. Global constraints on the composite connections are discussed

in section 5. The concluding section 6 outlines some implications for the consistency of

compactifications to lower-dimensional theories. Conventions and some technical details

are collected in three appendices.
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2 The SL(2,Z) anomaly in type IIB supergravity

A very interesting instance of composite U(1) anomaly in supergravity theories arises al-

ready in the 10D type IIB theory [2]. The purpose of this section is to briefly review

its cancellation mechanism, which will be common to all the anomalies discussed in this

paper. Furthermore, we will speculate on some suggestive implications this particular 10D

anomaly appears to have, especially concerning higher-derivative couplings on D7-brane

worldvolumes.

2.1 The Green-Gaberdiel counterterm

The 10D type IIB theory has a global SL(2,R) symmetry. The SL(2,R) group manifold

can be parametrized by a complex scalar τ = τ1 + iτ2 (identified with the axio-dilaton

field) taking values in the upper half plane, and a real (angular) scalar 0 ≤ φ ≤ 2π,

which is a pure-gauge degree of freedom charged under the local symmetry group U(1) ⊂
SL(2,R). The scalar manifold of the theory, i.e. the coset space SL(2,R)/U(1), is then

usually described by the following vielbein

V a
i =

1√
−2iτ2

(
τ̄ e−iφ τeiφ

e−iφ eiφ

)
. (2.1)

Under a general SL(2,R)×U(1) transformation, the vielbein V a
i transforms as

V ′ai = AabV
b
j u

j
i , (2.2)

where A is the SL(2,R) matrix

A =

(
a b

c d

)
, a, b, c, d ∈ R, ad− bc = 1, (2.3)

and u is

u =

(
e−iΣ 0

0 eiΣ

)
, 0 ≤ Σ ≤ 2π , (2.4)

which thus shifts φ as φ→ φ+ Σ. The composite U(1) connection is locally the SL(2,R)-

invariant combination

Qµ = ∂µφ−
∂µτ1

2τ2
, (2.5)

so that its U(1) field strength takes the local form

F = dQ =
dτ ∧ dτ̄

4iτ2
2

. (2.6)

The two gravitini form a complex conjugate pair which carry charges ±1
2 under U(1), and

the two dilatini form a complex conjugate pair of opposite chirality and of charges ±3
2 .

Due to these chiral couplings, the theory may suffer from an anomaly for the U(1) gauge

symmetry. At the perturbative level, this anomaly can be detected from one-loop hexagon

diagrams containing at least one composite gauge field (2.5). Alternatively, it can be seen
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to descent from a 12-form anomaly polynomial, which, according to the rules summarized

in appendix A, takes the form:

P12 =
F 2

2π

[
2X−8 (R) +

p1(R)

48

(
F

2π

)2

− 1

32

(
F

2π

)4
]
, (2.7)

where we defined

X±8 (R) =
1

192(2π)4

(
trR4 ± 1

4
(trR2)2

)
, (2.8)

in terms of the 10D Einstein-frame curvature two-form R, and p1(R) = −1
2 trR

2/(2π)2 is

the first Pontryagin class. The absence of an F 0-term in the expression (2.7) is clearly due

to the well-known freedom of the type IIB theory from pure local gravitational anomalies.

Moreover, the absence of a linear term in F implies that the new U(1) anomaly vanishes

for a pure supergravity theory (i.e. without brane sources). Indeed, if no 7-brane is present,

F is an exact form and, because of its composite structure (2.6), it squares to zero. On

the contrary, when 7-branes are there, the expression (2.6) is only valid away from them,

because the background value of τ undergoes monodromies around such sources.

From the anomaly polynomial (2.7) one deduces the anomalous phase variation of the

partition function

∆ = −
∫

Σ

[
2X−8 (R) +

p1(R)

48

(
F

2π

)2

− 1

32

(
F

2π

)4
]
F

2π
, (2.9)

which can clearly be cancelled by the addition of the following counterterm in the 10D

action:1

Sφ =

∫
φ

[
2X−8 (R) +

p1(R)

48

(
F

2π

)2

− 1

32

(
F

2π

)4
]
F

2π
. (2.10)

This formalism is notoriously redundant. However, upon fixing the gauge (say by setting

φ ≡ 0), symmetries will be realized non-linearly. Nevertheless, one can still describe the

transformation properties of all fermion fields as local phase shifts, by specifying their

charge under the U(1) gauge symmetry. This is achieved simply by exploiting the property

of the vielbein (2.1) to convert SL(2,R) indices into U(1) indices. The result is that, in the

gauge fixed theory, any field Ψ with charge q under the local U(1) will have the following

transformation under SL(2,R):

SL(2,R) 3

(
a b

c d

)
: Ψ −→ eiqΣ(τ)Ψ with Σ(τ) = −arg(cτ + d) . (2.11)

Therefore, in a gauge fixed formulation, one needs to add to the 10D action an ap-

propriate counterterm compensating for the non-trivial transformation of the fermion path

1Note that, contrary to [2], higher powers of F appear in Sφ. The assertion of [2] that F 2 = 0 is only

true in the absence of 7-branes. Only in this case the expression (2.6) is well defined. Otherwise F 2 is a

form which localizes on the 7-brane worldvolume. As we will reiterate later, in the absence of 7-branes the

anomaly is absent.
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integral measure under (2.11). The quantum theory is expected to be symmetric only un-

der the discrete subgroup SL(2,Z) ⊂ SL(2,R),2 and hence anomaly cancellation requires a

Chern-Simons-like counterterm with suitable modular properties,3 such as

S(10) ⊃ i

∫
ln

(
η(τ) j̄1/12(τ̄)

η̄(τ̄) j1/12(τ)

)[
2X−8 (R) +

p1(R)

48

(
F

2π

)2

− 1

32

(
F

2π

)4
]
F

2π
. (2.12)

In the absence of 7-branes there is no anomaly and the above coupling is completely

inert under SL(2,Z): indeed F = dQ globally and the integrand of (2.9) can be easily seen

to reduce to a total derivative.

In the presence of 7-branes, instead, F represents a non-trivial cohomology class. The

equations of motion for the background link this quantity to the metric of space-time as

F = − i
2
trR , (2.13)

so that the non-trivial vacuum profile for the axio-dilaton induces a non-trivial Ricci cur-

vature. The F 5-term in (2.12) would only contribute if we allow 〈τ〉 to vary over the whole

10D space. In the language of F-theory such a situation would mean compactifying on

an elliptically fibred Calabi-Yau sixfold. While there is no reason to believe that this is

inconsistent, we would soon run into trouble due to the lack of a fundamental definition of

F-theory. The cubic and linear terms of (2.12), instead, are both present for instance in a

compactification to 4D, and it is an interesting question to find their F/M-theory lift. This

lift should be written solely in terms of gravitational invariants of the elliptic Calabi-Yau

fourfold (in the same spirit of [5]). Our present goal, however, is more modest. We restrict

our attention to space-times of the formM10 =M8×S2, where 〈τ〉 is only allowed to vary

on the 2-sphere, and study the consequences of the F -linear part of the coupling (2.12),

which is the only one that survives in this case.

2.2 F-theory on K3 and 7-brane couplings

As is well known, F-theory compactifications on K3 are a class of type IIB vacua preserv-

ing minimal supersymmetry in 8D and involving exactly 24 vortex-like sources (7-branes)

localized on the 2-sphere. It is also well known that not all of these 7-branes are mobile,

due to certain global obstructions which leave only at most 18 of them free to move around.

It is amusing to realize that the structure of the Green-Gaberdiel anomaly, reviewed in the

previous section, “knows” about these gravitational constraints, in a sense that we are now

going to explain.

By a suitable choice of SL(2,Z) frame, one can choose the 18 dynamical sources to

be ordinary D7-branes which in a generic region of the moduli space give rise to a U(1)18

gauge group. The resulting 8D theory is an N = 1 supergravity coupled to 18 Maxwell

2Taking into account the action on fermions, the group SL(2,Z) should be replaced by a non-trivial Z2

extension thereof [4]. However, we will ignore this subtlety here, as our focus is on local gauge anomalies

and hence on loops which are not able to detect any global sign ambiguities.
3As explained in [2], anomaly cancellation is not enough to completely fix the modular function of the

counterterm. Here we adopt the choice proven in [2] to be consistent with compactications of the 8D theory.
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supermultiplets. The moduli space of this theory includes the coset SO(2,18)
SO(2)×SO(18) , and the

couplings of the various fermions to the SO(2) are chiral [6]. The theory therefore suffers

from a local U(1) anomaly [1] whose cancellation mechanism is very much analogous to

the 10D one previously reviewed. There is however a crucial difference with respect to

the Green-Gaberdiel anomaly: the 8D anomaly is not related to sources of monodromy

for the moduli fields, but it is there even in their absence. The reason is that the 8D

anomaly polynomial is a 10-form including a term linear in the composite field strength

(and quartic in the Riemann tensor), which need not vanish. We will have much more to

say about this class of anomalies in section 4, where we will analyze them for a variety of

vacuum configurations with non-Abelian gauge groups. We will assume absence of branch

cuts for the 8D moduli, with the exception of a few remarks in sections 5 and 6.

We leave the general discussion to section 4, where we list the fermionic fields of these

theories, together with their U(1) charges and chiralities. Here we just state the result for

the case at hand: taking into account the contributions of the gravitino, the dilatino and

the 18 gaugini, the ensuing anomaly is cancelled by adding the following counterterm to

the 8D effective action

S(8) ⊃
∫
f(z, z̄)

1

32(2π)4

[
11

15
trR4 − 1

12
(trR2)2

]
, (2.14)

where f(z, z̄) is a function of the moduli, collectively denoted by z, with the appropriate

modular properties to counterbalance the anomalous phase variation in the path integral.

Remarkably, the quartic polynomial in the 8D Riemann tensor appearing in (2.14) is exactly

reproduced by adding the contribution of 24 punctures to the polynomial (2.9) fixed by

the 10D anomaly cancelation. More precisely, one first brings the 10D anomalous phase

variation down to 8D, by using the fact that F/2π integrates to −2 on the 2-sphere, and that

all its higher powers vanish. This is due to the relation (2.13), which means that −F/2π
represents the first Chern class of the tangent bundle of the string internal manifold [7].

Then one adds a term due to the 24 punctures, as if each of them would contribute a

dynamical gaugino of charge 1/2. All in all one obtains:

4X−8 (R) + 24× 1

2
Â(M8)|8−form =

1

32(2π)4

[
11

15
trR4 − 1

12
(trR2)2

]
, (2.15)

where Â(M8) is the so-called A-roof genus, quoted in (A.2).

We would now like to point out another intriguing implication of the 10D SL(2,Z)

anomaly cancellation. We will indeed argue that the Green-Gaberdiel counterterm (2.12)

codifies the structure of higher-derivative R4 couplings on D7-brane worldvolumes in the

regime of strong string coupling.4 The story is analogous to the one of R2 couplings on

D3-branes [10], whose expression for any value of the string coupling is dictated by the

cancelation of an SL(2,Z) anomaly of the N = 4 Maxwell theory living on the D3-brane.

Here, however, things are more involved, as D7-branes are not singlets under SL(2,Z).

But F-theory teaches us how to handle this problem: as long as gravitational effects are

4Note that R2 couplings on the D7-brane trivially extend to strong gs, as they induce D3-brane charge

which is S-duality invariant. See [8, 9] for their F/M-theory origin.
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concerned, at strong coupling the physics of D7-branes is completely codified by a non-

Ricci-flat 10D bulk geometry together with a non-trivial axio-dilaton profile. Therefore

from this perspective it is very reasonable to look at 10D SL(2,Z) anomaly cancelation

to seek for the strong coupling completion of R4 terms on D7-branes. In the following we

provide strong evidence that the counterterm (2.12) plays the role of such a completion.

To this end, we first take a weak string coupling limit gs = 〈τ2〉−1 → 0 of (2.12) and

bring the coupling down to 8D by using, as before,
∫
S2 F/2π = −2 (all higher F -powers

being zero). We thus obtain:

2π

∫
τ1X

−
8 (R) , (2.16)

where we have used that in this limit ln
(
η(τ) j̄1/12(τ̄)

η̄(τ̄) j1/12(τ)

)
→ iπτ1

2 .

Let us now compare (2.16) with the weak coupling expectation of the higher-derivative

couplings to the Ramond-Ramond axion τ1. To do that we have to compute the total D(-1)-

brane charge induced by the brane content of the theory. In a regime of weak coupling the

24 7-branes arrange themselves in 4 O7−-planes and 16 D7-branes plus 16 D7-images [11]

(see also [12]). Since an integral (mobile) D(-1)-brane charge is made up of a pair D(-

1)/image-D(-1) brane, we must compute it on the orientifold double cover of the 2-sphere.

We use the well known formulae for the induced brane charges [13–15], which for a single

Dp-brane (with trivial normal and gauge bundle) read ΓDp
−1 = 2π

√
Â(M8) and for a single

O7−-plane (with trivial normal bundle) read5 ΓO7
−1 = −16π

√
L̂(M8/4) (see appendix A for

the relevant definitions). In addition to that, there is a density of D3-brane charge which

(if part of M8 is compactified) needs to be added to cancel the one induced by the 24

7-branes. This amounts to p1(R)/2. Of course these D3-branes also induce D(-1)-brane

charge and, if we take into account that too, we obtain the following axion coupling:∫
τ1

(
32× ΓD7

−1 + 4× ΓO7
−1 +

p1(R)

2
× ΓD3

−1

)
(2.17)

=
2π

192(2π)4

∫
τ1

(
32× 1

32×15

[
8trR4+5(trR2)2

]
−4× 1

16×15

[
5(trR2)2 − 28trR4

]
− (trR2)2

2

)
=

2π

192(2π)4

∫
τ1

(
trR4 +

1

4
(trR2)2 − (trR2)2

2

)
= 2π

∫
τ1X

−
8 (R) ,

i.e. exactly what is predicted by the 10D SL(2,Z) anomaly cancelation.

This remarkable match comes with an annoying puzzle which remains to be explained:

why should the F-theory coupling (2.12) “know” about D3-branes, which do not backreact

on the axio-dilaton. Notice that the D3-brane contribution, i.e. the last piece in the l.h.s.

of (2.17), just flips the sign of (trR2)2 in (2.8) from + to −. The sign flip could presumably

5The symbol M8/4 means taking 1/4 of R, the curvature of the tangent bundle [16, 17].
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be explained in an alternative way, by a suitable redefinition of the Ramond-Ramond four-

form potential C4. Such a redefinition, at any value of the string coupling, should look like

C4 −→ C4 +
i α′2

192(2π)
ln

(
j(τ)

j̄(τ̄)

)
trR2

(2π)2
, (2.18)

which respect the SL(2,Z) invariance of C4. Operating this redefinition adds an additional

contribution to the induced D(-1)-brane charge on D7-branes and explains the sign flip

from − to + when going to weak coupling, without relying on explicitly added D3-branes.

We hope to clarify this issue in the future.

3 The SL(2,Z) anomaly in D=8, N=2 supergravity

We now turn to the case of N = 2 supergravity in 8D, which is obtained, for instance, by

a T 2 compactification of the type IIB theory. We will discuss the structure of the anomaly

counterterm and match it with the higher-curvature terms inferred from string amplitudes.

Let U = U1 + iU2 be the complex structure and T = B89 + iVT 2 be the (complexified)

Kähler structure of T 2 respectively. The moduli space of the theory is

SL(2,R)

U(1)
× SL(3,R)

SO(3)
, (3.1)

where the first factor is parametrized by U .

The field content of this 8D theory is given by a graviton supermultiplet compris-

ing [6, 18]: 1 graviton, 2 gravitini (doublet under Spin(3) = SU(2)), 6 vectors, 2+4 dilatini

(doublet + quadruplet under Spin(3) = SU(2)), 7 real scalars, 3 2-forms and 1 3-form. The

U(1) charges of the gravitini, of the doublet of dilatini and of the quadruplet of dilatini are

respectively (they are all positive chiral): 1
2 , 3

2 and −1
2 . Finally, the 4-form field strength

can be split in self-dual and anti-self-dual part, carryiing charges 1 and −1 respectively un-

der U(1) [1, 18, 19]. Hence, using the index formulae in appendix A, the 10-form anomaly

polynomial is given by [19]

P10 =
F

2π

[
2× 1

2
Id=8

3/2 − 4× 1

2
I1/2 + 2× 3

2
I1/2 + 2× Iform

]
8−form

, (3.2)

where, in analogy to (2.6), F is the composite field strength built out of U . By the descent

method we thus deduce the following anomalous phase variation of the path integral

∆ = −12

∫
Σ X−8 (R) , (3.3)

where X−8 (R) is defined in (2.8). As in section 2, gauge fixing translates the U(1) anomaly

into an SL(2,Z) anomaly, which we can cancel by introducing in the 8D action a countert-

erm of the form6

S
(8)
IIB ⊃ 12i

∫
ln

(
η(U)

η̄(Ū)

)
X−8 (R) . (3.4)

6Throughout this paper we neglect possible, subtle moduli-independent shifts of the counterterms, like

those considered in [2].
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In the case of type IIA compactified on T 2 we get by T-duality (T ↔ U)

S
(8)
IIA ⊃ 12i

∫
ln

(
η(T )

η̄(T̄ )

)
X−8 (R) . (3.5)

The above terms (3.4) and (3.5) are consistent with string amplitude results. Indeed, if we

extract the CP-odd part of the 8D effective action from the string amplitude computations

of [20], we get exactly the higher-derivative structure of (3.4) and (3.5).

As a final remark, note that the terms (3.4) and (3.5) also have the correct properties

in the decompactification limit, in which we send the volume of T 2 to infinity. Indeed,

while the coupling (3.4) vanishes in this limit (see appendix C for the details), the one

in (3.5) gives rise to the well-known higher-curvature terms in type IIA/M theory [21, 22].7

4 The SL(2,Z) anomaly in D=8, N=1 supergravity

Let us now turn our attention to minimal supergravity in 8D and its possible anomaly

counterterms. We obtain this type of theories by compactifying the Heterotic theories

(either SO(32) or E8 × E8) down to 8D on a T 2. We will focus in particular on com-

pactifications where the gauge group, left unbroken, does not contain U(1) factors. For the

various cases, we will first compute the SL(2,Z) counterterm needed to cancel the anomaly;

then, by computing the relevant 5-point string amplitudes, we will be able to show that

their leading harmonic CP-odd part exactly reproduces the higher-derivative structure of

the counterterm. For compactifications which break the original SO(32) or E8 ×E8 gauge

group to G, additional higher-derivative structures arise from the amplitude, due to the

contribution from the massive vector-multiplets: we will show that such new structures fit

nicely with the group theory decomposition under SO(32) → G or E8 × E8 → G.

4.1 Generalities

Generically, T 2 compactifications of the Heterotic theories have in their spectrum a gravity

multiplet comprising 1 graviton, 1 antisymmetric 2-form, 1 gravitino, 2 graviphotons, 1

dilatino, 1 real scalar, and n vector multiplets comprising n photons, n gaugini and 2n

real scalars parametrizing the coset SO(2,n)
SO(2)×SO(n) . For specific values of the Wilson lines,

the unbroken gauge group does not contain U(1) factors, and correspondingly we get only

n = 2 abelian vector multiplets. Their complex scalars T, U are identified with Kähler and

complex structure of T 2 respectively, and parametrize the coset SO(2,2)
U(1)×U(1) .

The fermions of the theory have chiral couplings to one of the U(1)’s of the coset [23].

Since in this type of compactifications there is an exchange symmetry8 between T and U ,

7In fact, taking a radius of a single circle to infinity, one finds a nine-dimensional coupling A1X
−
8 (R),

where in IIA frame A1 = Bµ9dx
µ, and in IIB, A1 = α′

R2
9
gµ9dx

µ, where R is the radius of the remaining circle.

In IIB, the coupling is subsequently suppressed in the ten-dimensional limit. In IIA/M-theory it eventually

lifts to B2X
−
8 (R) / C3X

−
8 (R), unifying the composite U(1) anomaly in 8D and M5-brane anomaly.

8More precisely, these theories are invariant under the descrete group O(2, 2,Z) = SL(2,Z)T×SL(2,Z)Uo
Z2 to all orders in string perturbation theory [24] (see also [25]). In this paper we will not care about the T-

duality properties of the various couplings we discuss, but will only pay attention at their higher-derivative

structure.
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we can discuss the ensuing SL(2,Z) anomaly in terms of either of these two moduli, and

there will be a corresponding counterterm involving the other modulus as well. The U(1)

charges of the gravitino (positive chirality), the dilatino (negative chirality) and the gaugini

(positive chirality) are all 1
2 (we are working with Weyl representations).

Using the index formulae in appendix A, we find the following anomalous phase vari-

ation of the path integral9

∆G =−
∫

Σ

32(2π)4

[
(248 + dimG)

[
trR4

360
+

(trR2)2

288

]
− (trR2)2 +

1

6
trR2TrF 2 +

2

3
TrF 4

]
.

(4.1)

As in all previous cases, gauge fixing induces an SL(2,Z) anomaly, which is canceled

by a coupling in the 8D effective action of the type

S(8) ⊃
∫
f(z, z̄)Y G

8 , (4.2)

where z is either T or U , f is a function with the appropriate modular properties required

by anomaly cancelation10, and we have defined

Y G
8 =

1

32(2π)4

[
(248 + dimG)

[
trR4

360
+

(trR2)2

288

]
− (trR2)2 +

1

6
trR2TrF 2 +

2

3
TrF 4

]
.

(4.3)

By explicit calculation, we will show that the term (4.2) is reproduced in the CP-odd sector

of 5-point one-loop string amplitudes with 1 modulus and either 4 gravitons, or 4 gauge

bosons, or 2 gravitons and 2 gauge bosons. Because of this relationship to anomalies, this

term does not receive any further renormalization from higher string loops. We remark

that these counterterms do not lift to 10D in the decompactification limit, because the

massless particles responsible for the anomaly are different in the two theories.

In the following subsections we will explore the anomaly structure for the theories with

G = SO(32), E8 × E8, SO(16)2 and SO(8)4.

4.2 SO(32) and E8 × E8

In the cases of G = SO(32) and G = E8×E8 the 8-form polynomial in (4.3) takes the form

Y
SO(32)

8 =
1

32(2π)4

(
31

15
trR4 +

19

12
(trR2)2 + 5trR2trF 2 + 2(trF 2)2 + 16trF 4

)
, (4.4a)

Y E8×E8
8 =

1

32(2π)4

(
31

15
trR4 +

19

12
(trR2)2 + 5trR2

2∑
i=1

trF 2
i + 6

2∑
i=1

(trF 2
i )2

)
, (4.4b)

where we have converted the traces in the adjoint into traces in the fundamental represen-

tation (indicated by the lower-case symbol tr), using the formulae in (B.1).

9All traces Tr with a capital T are in the adjoint representation of the group G.
10As in [2], anomaly cancellation does not uniquely fix the function f . A possible form of this function may

be given by f(z, z̄) = log η
24(z)

η̄24(z̄)
+ log j(z)

j̄(z̄)
so that it cancels the SL(2,Z) variation and does not decompactify

to 10D as this anomaly term is local to 8D theory.
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Let us now compare the higher-derivative structures (4.4a), (4.4b) with the SO(32)

and the E8×E8 5-point string amplitudes which have been calculated in [27, 28]. Here we

just give the results. For the details we refer to [3, 27, 28].

For the case G = SO(32), the amplitude gives rise to the following α′3 corrections in
the 8D effective action11

SSO(32)
amp =

1

192(2π)3

∫
B89

(
trR4 +

1

4
(trR2)2 + trR2trF 2 + 8trF 4

)
︸ ︷︷ ︸

GS

+
1

4× 192(2π)4

∫ [
ln

(
η24(U)

η̄24(Ū)

)]
×

(
31

15
trR4 +

19

12
(trR2)2 + 5trR2trF 2 + 2(trF 2)2 + 16trF 4

)
︸ ︷︷ ︸

anomaly term for U

+
1

4× 192(2π)4

∫ [
ln

(
η24(T )

η̄24(T̄ )

)
− 4iπT1

]

×
(

31

15
trR4 +

19

12
(trR2)2 + 5trR2trF 2 + 2(trF 2)2 + 16trF 4

)
︸ ︷︷ ︸

anomaly term for T

. (4.5)

In the above, the term in the first line, comes from the trivial orbit part of the Γ2,2

lattice in the partition function of the Heterotic string compactified on T 2 (for the orbit

decomposition and related details of string 5-point amplitude, we refer to [3, 27]) and is in

fact the T 2 reduction of the Green-Schwarz term of the 10D SO(32) Heterotic theory [26]

SGS =
1

192(2π)5α′

∫
B2 ∧

(
trR4 +

1

4
(trR2)2 + trR2trF 2 + 8trF 4

)
. (4.6)

Remarkably, the remaining two terms in (4.5) involve an 8-form polynomial which

exactly matches the one in (4.4a) predicted by anomaly cancelation. As expected from

T-duality, one is the counterterm for the U modulus and the other is the counterterm for

the T modulus. Notice moreover, as already mentioned, that both this terms disappear in

the decompactification limit to 10D VT 2 → 0 (see appendix C for some details). This match

is due to the fact that the low-energy limit of the 5-point 1-loop string amplitude is the

1-loop amplitude in supergravity, and that the IR divergence in the string loop amplitude

manifests itself in the quantum anomaly of the low-energy effective theory, detected from

the UV divergence of the supergravity 5-point 1 loop amplitude [29].

11Note that T = B89 + iVT2 .
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Similarly, for the case G = E8 × E8 we find

SE8×E8
amp =

1

192(2π)3

∫
B89

(
trR4+

1

4
(trR2)2+ trR2

2∑
i=1

trF 2
i − 2trF 2

1 trF
2
2 + 2

2∑
i=1

(trF 2
i )2

)
︸ ︷︷ ︸

GS term = Trivial orbit amplitude

+
1

4× 192(2π)4

∫ [
ln

(
η24(U)

η̄24(Ū)

)]
×(

31

15
trR4 +

19

12
(trR2)2 + 5trR2

2∑
i=1

trF 2
i + 6

2∑
i=1

(trF 2
i )2

)
︸ ︷︷ ︸

anomaly term for U

+
1

4× 192(2π)4

∫ [
ln

(
η24(T )

η̄24(T̄ )

)
− 4iπT1

]
×

(
31

15
trR4 +

19

12
(trR2)2 + 5trR2

2∑
i=1

trF 2
i + 6

2∑
i=1

(trF 2
i )2

)
︸ ︷︷ ︸

anomaly term for T

. (4.7)

Also in this case the trivial orbit part matches the T 2 reduction of the 10D E8 × E8

Green-Schwarz term [26]

SGS =
1

192(2π)5α′

∫
B2

(
trR4 +

1

4
(trR2)2 + trR2

2∑
i=1

trF 2
i − 2trF 2

1 trF
2
2 + 2

2∑
i=1

(trF 2
i )2

)
,

(4.8)

whereas the other two pieces reproduce the anomaly polynomial (4.4b) expected from

anomaly cancelation.

4.3 SO(16)2

We now consider 10D E8×E8 Heterotic string theory compactified on T 2 with the following

Wilson line configuration

Y 1
i = (04,

1

2

4

, 04,
1

2

4

), Y 2
i = (08, 08), i = 1, · · · , 16, (4.9)

so that the gauge group is broken to SO(16)× SO(16) in 8D. One can of course rearrange

the 8 non-zero values of the Wilson lines so that one can start from the SO(32) gauge group

in 10D and again obtain SO(16) × SO(16) in 8D.

Adapting formula (4.3) to the adjoint representation (120,1) ⊕ (1,120) of SO(16)2

and using the trace-conversion formulae (B.1) we can write the 8-form polynomial for the

case G = SO(16)2 as follows

Y
SO(16)2

8 =
1

32(2π)4

(
488

360
trR4 +

200

288
(trR2)2 +

7

3
trR2

2∑
i=1

trF 2
i

+
16

3

2∑
i=1

trF 4
i + 2

2∑
i=1

(trF 2
i )2

)
. (4.10)
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We will now compare this supergravity result with the string amplitude [3, 30]. To

this end it is convenient to decompose the string partition function in three SL(2,Z) orbits:

trivial, degenerate and non-degenerate (see [3] for the details). The final result is recorded

here for reader’s convenience

Atrivial = T1

(
trR4 +

1

4
(trR2)2 + trR2

2∑
i=1

trF 2
i − 2trF 2

1 trF
2
2 + 2

2∑
i=1

(trF 2
i )2

)
, (4.11)

Adeg. =
1

96(2π)4
ln

(
η24(U)

η̄24(Ū)

)(
488

360
trR4 +

200

288
(trR2)2 +

7

3
trR2

2∑
i=1

trF 2
i

+
16

3

2∑
i=1

trF 4
i + 2

2∑
i=1

(trF 2
i )2

)
, (4.12)

Anon-deg. =
1

96(2π)4

[
8iπT1 − ln

(
η24(2T )

η̄24(2T̄ )

)](
488

360
trR4 +

200

288
(trR2)2 +

7

3
trR2

2∑
i=1

trF 2
i

+
16

3

2∑
i=1

trF 4
i + 2

2∑
i=1

(trF 2
i )2

)
+ (4.13a)

+
1

192(2π)4

[
−4iπT1 + ln

(
η24(2T )

η̄24(2T̄ )

)
− ln

(
η24(T )

η̄24(T̄ )

)]
×

×

[
256

(
trR4

360
+

(trR2)2

288

)
+

8

3
trR2

2∑
i=1

trF 2
i −

16

3

2∑
i=1

trF 4
i + 4

2∑
i=1

(trF 2
i )2

]
.

(4.13b)

The above expressions translate into the following α′3 corrections to the 8D effective

action

SSO(16)
amp =

∫
[N1Atrivial +N2Adeg. +N3Anon-deg.] , (4.14)

with appropriate normalization factors N1, N2, N3. As usual, the trivial orbit term (4.11)

is the same as the T 2 reduction of the Heterotic Green-Schwarz term, as can be most

easily seen by starting from the E8 × E8 one in (4.8). The degenerate orbit term (4.12)

and the first piece of the non-degenerate orbit term (4.13a) involve exactly the same 8-

form polynomial dictated by anomaly cancelation (4.10).12 Finally, the second piece of the

non-degenerate orbit term (4.13b) is the contribution from the massive vector multiplets

in the (128,1) ⊕ (1,128) representation of SO(16)2, as can be verified using the trace

formulae (B.3a), (B.3b).

One can of course make a totally analogous analysis starting from SO(32), and using

the branching rules (B.4) and the trace formulae (B.5).

12Note that the modular coefficients in front do not appear to have the correct modular properties to

cancel the corresponding anomalous SL(2,Z) phase variations, but this is only an artefact of having split

the amplitude in three different orbits and of having adopted appropriate renormalization schemes [27].
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4.4 SO(8)4

The last case we analyze is the 8D N=1 theory with G = SO(8)4, which can again be

obtained from either Heterotic string theory compactified on T 2 with appropriate Wilson

lines along the two 1-cycles of the torus. Adapting formula (4.3) to the adjoint represen-

tation of SO(8)4 and using the trace-conversion formulae (B.1), the 8-form polynomial for

the case G = SO(8)8 gets the relatively simple form

Y
SO(8)4

8 =
1

32(2π)4

(
trR4 +

1

4
(trR2)2 + trR2

4∑
i=1

trF 2
i + 2

4∑
i=1

(trF 2
i )2

)
. (4.15)

Before moving to the string amplitude, we note that the expression (4.15) has a very

interesting rewriting

Y
SO(8)4

8 =
1

32(2π)4

[(
trR4 − 1

4
(trR2)2

)
+

1

2

4∑
i=1

(
1

2
trR2 + 2trF 2

i

)2
]
. (4.16)

In (4.16) we recognize the first piece as (proportional to) the M5-brane anomaly polynomial

X−8 (R), that we already met in the type IIB context in section 2 (see (2.8)). The second

piece of (4.16), on the other hand, being a sum of squares, strongly suggests that an Hořava-

Witten-like mechanism is at work here [35]. We hope to come back to this intriguing

observation in the future.
Let us now compare our supergravity result with the string amplitude computa-

tion [3, 31, 34]. To this end we again decompose the string partition function in three
SL(2,Z) orbits: trivial, degenerate and non-degenerate (details can be found in [3, 31])
with the final result:

Atrivial = T1

(
trR4 +

1

4
(trR2)2 + trR2

4∑
i=1

trF 2
i − 2trF 2

1 trF
2
3 − 2trF 2

1 trF
2
4 (4.17a)

−2trF 2
2 trF

2
4 − 2trF 2

2 trF
2
3 + 4trF 2

1 trF
2
2 + 4trF 2

3 trF
2
4 + 2

4∑
i=1

(trF 2
i )2

)
,

Adegenerate +Anon-degenerate = (4.17b)

1

96(2π)4

[
8iπT1−ln

(
η(2T )

η̄(2T̄ )

)
+ln

(
η24(U)

η̄24(Ū)

)][
trR4+

1

4
(trR2)2 + trR2

4∑
i=1

trF 2
i +2

4∑
i=1

(trF 2
i )2

]
︸ ︷︷ ︸

T and U anomaly terms

+
1

96(2π)4

[
8iπT1 − ln

(
η(2T )

η̄(2T̄ )

)
+ ln

(
η24(U)

η̄24(Ū)

)]
× (4.17c)[

128

(
trR4

360
+

(trR2)2

288

)
+

4

3
trR2

4∑
i=1

trF 2
i +

4

3

(
4

4∑
i=1

trF 4
i + 3trF 2

1 trF
2
2 + 3trF 2

3 trF
2
4

)]
︸ ︷︷ ︸

(8,8,1,1)⊕(1,1,8,8)

+
1

192(2π)4

[
8iπT1 − ln

(
η(4T )

η̄(4T̄ )

)
+

(
η(2T )

η̄(2T̄ )

)
+ ln

(
η24(U)

η̄24(Ū)

)]
× (4.17d)[

128

(
trR4

360
+

(trR2)2

288

)
+

4

3
trR2

4∑
i=1

trF 2
i +

4

3

(
−4

4∑
i=1

trF 4
i +3

4∑
i=1

(trF 2
i )2+6trF 2

1 trF
2
2 +6trF 2

3 trF
2
4

)]
︸ ︷︷ ︸

(8,8,1,1)′⊕(1,1,8,8)′
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+
1

192(2π)4

[
8iπT1 − ln

(
η(4T )

η̄(4T̄ )

)
+

(
η(2T )

η̄(2T̄ )

)
+ ln

(
η24(U)

η̄24(Ū)

)]
× (4.17e)[

128

(
trR4

360
+

(trR2)2

288

)
+

4

3
trR2

4∑
i=1

trF 2
i +

4

3

(
−4

4∑
i=1

trF 4
i +3

4∑
i=1

(trF 2
i )2+6trF 2

1 trF
2
2 +6trF 2

3 trF
2
4

)]
︸ ︷︷ ︸

(8,8,1,1)′′⊕(1,1,8,8)′′

+
1

24(2π)4

[
8iπT1 − ln

(
η(2T )

η̄(2T̄ )

)
+ ln

(
η24(U)

η̄24(Ū)

)]
× trF 2

1 trF
2
2 + trF 2

3 trF
2
4︸ ︷︷ ︸

orbifold shifts

(4.17f)

+
1

24(2π)4

[
8iπT1 − ln

(
η(4T )

η̄(4T̄ )

)
+

(
η(2T )

η̄(2T̄ )

)
+ ln

(
η24(U)

η̄24(Ū)

)]
× trF 2

1 trF
2
3 + trF 2

2 trF
2
4︸ ︷︷ ︸

orbifold shifts

(4.17g)

+
1

24(2π)4

[
ln

(
η(4T )

η̄(4T̄ )

)
− 2

(
η(2T )

η̄(2T̄ )

)
+ ln

(
η24(U)

η̄24(Ū)

)]
× trF 2

1 trF
2
4 + trF 2

2 trF
2
3︸ ︷︷ ︸

orbifold shifts

. (4.17h)

The trivial orbit term (4.17a) is the same as the T 2 reduction of the Heterotic Green-

Schwarz term, as can be most easily seen by starting from the E8 × E8 one in (4.8).

The higher-derivative structure (4.15) dictated by anomaly cancelation shows up in the

term (4.17b). The next three terms (4.17c), (4.17d), (4.17e) are respectively the con-

tributions from massive vector-multiplets in the representations (8, 8, 1, 1) ⊕ (1, 1, 8, 8),

(8, 8, 1, 1)′⊕(1, 1, 8, 8)′ and (8, 8, 1, 1)′′⊕(1, 1, 8, 8)′′ of SO(8)4 (see appendix B for the nota-

tion). This can again be verified most easily starting from E8×E8, and using the branching

rule (B.7) and the trace formulae (B.9). Finally, the last three terms (4.17f), (4.17g), (4.17h)

are due to orbifold shifts, which are generated in the elliptic genus due to the particular

combination of Wilson lines.

5 Global constraints

In the remainder of this paper, we will mostly be interested in studying compactifications

of the previously discussed 8D theories on a complex (Kähler in fact) manifold X, generally

with non-vanishing first Chern class. Regardless of supersymmetry, these theories have a

composite U(1) connection. As for 10D type IIB, the field strength of the latter will be re-

lated to the curvature of the spacetime via an equation analogous to (2.13). This equation,

together with the fact that the spacetime fermions are charged under the U(1) in ques-

tion, leads to global constraints and interesting possibilities for possible compactification

manifolds.

For the N=2 theory, ironically the general case is simpler: when the duality group is the

full SL(2,R)× SL(3,R) there is an unambiguous choice of the composite U(1) connection

and the whole story closely follows that of 10D IIB theory.13 However, one may choose to

focus on the T-duality subgroup only,14 i.e. on SL(2,R)×SL(2,R). Following section 3, we

will be thinking of the 8D theory as arising form torus reduction of type IIB theory, and

13One may of course think abut the geometrisation of the SL(3,R)/SO(3) and the ensuing U-folds, but

this is outside of the scope of our discussion.
14We choose the perturbative SL(2,R) subgroup of SL(3,R) just for concreteness, but the same discussion

should apply to other choices of SL(2,R) subgroups.
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take U to be the complex structure modulus and T the complexified Kähler modulus. At

this point, one may use this accidental second composite U(1), and formulate the global

constraints in terms of their sum.15 Notably the tadpole condition analogous to the 7-brane

one in type IIB theory becomes

c1(TX) + [F (U, Ū)] + [F (T, T̄ )] = 0 , (5.2)

which is just the direct generalization of the equation (2.13) written in cohomology. Note

that when looking at possible compactifications on manifolds with nontrivial c1, requiring

that either F (U, Ū) or F (T, T̄ ) (or both) are non-trivial in cohomology is a matter of choice.

Different choices are a priori consistent and correspond to different backgrounds. We will

return to these in section 6.

Let us now turn to N=1 theories. Let the 8D gauge group be U(1)n ×G, where G is

a product of semisimple groups (with rank(G) = 18 − n). The coset in question is now

SO(2, n,R)/SO(n) × U(1), and we denote the curvature of the composite connection by

FQ = F (zi, z̄i), with zi (i = 1, . . . , n) being the complex moduli of the n abelian vector

multiplets. The general expression for FQ is complicated and, contrary to the N = 2 case,

it does not split into a sum of individual terms of the schematic form dzi ∧ dz̄i/(Im(zi))
2.

This remains true even in the absence of Wilson lines (i.e. n = 2), and is related to the

fact that in N = 1 the coset does not split as opposed to the higher-supersymmetric case.

We will still use U and T for complex stricture and complexified Kähler moduli of

T 2 respectively. The main difference from N=2 comes for the fact that there are two

different tadpole conditions relating F (U, Ū) and F (T, T̄ ) to c1(TX). These conditions

can be derived just by thinking about 10D Heterotic strings on elliptically fibered Calabi-

Yau manifolds. The first comes from restricting the Calabi-Yau condition of triviality of

the canonical bundle to the base via the adjunction formula. The second can most easily

be seen as a restriction of the Heterotic Bianchi Identity to the base. Denoting the 10D

spacetime (an elliptically fibered space) as M , the base of the fibration as X and the gauge

bundle as E, the Bianchi Identity can be written as

1

2
p1(TM)− c2(E)− η(NS5) = 0 , (5.3)

where η(NS5) is the class of the full NS5-brane content. The two conditions on X are then

12c1(TX) + c1(Ẽ) + 12[F (T, T̄ )] = 0 , (5.4a)

c1(TX) + [F (U, Ū)] = 0 , (5.4b)

15It is instructive to look at eight-dimensional supersymmetry transformations of the fermions. For

example, the gravitino variation is given by

δψµ =

[
∇µ −

i

4

∂µU1

U2
γ9 +

1

4
Qabµ T

ab

]
ε , (5.1)

where T ab are SO(3) generators, and the explicit form of the composite connection Qabµ as obtained by a

reduction from type IIB theory, can be found in [36]. It is not hard to see that breaking SO(3) to U(1) will

make the fermionic derivatives symmetric in the two composite connections. There is however an important

difference: only one of the two U(1) connections comes with γ9, i.e. a chiral (anomalous) coupling. The

other fermionic variations display similar features.
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where Ẽ is the Abelian part of the 8D gauge group, and, analogously to 7-branes in

type IIB, we have defined [F (T, T̄ )] = η(NS5)/12. As we will see shortly, the interplay

of (5.4a) and (5.4b) imposes constraints on the choices of allowed backgrounds. For non-

geometric backgrounds one may replace [F (U, Ū)] in (5.4b) by another two-form. However

this condition is generally different from (5.4a), and omitting it leads to anomalous (1,0)

theories when compactified on P1.

This situation appears to be somewhat different form the previous cases where one

could relate c1(TX) directly to the full composite field strength FQ. But this is indeed

true also here. We recall that Kähler manifolds with non-vanishing c1 may be non-spin.

As complex manifolds these however always admit a Spinc structure. As can be seen e.g.

from (5.1), the spinors are “charged” with respect to the composite U(1), that makes them

well defined.16 In our normalisations this translates into the statement that the phase

picked by the spinor upon parallel transport along a closed path is integer, i.e.

1

2

(
c1(TX) + [FQ]

)
= α ∈ H2(X,Z) . (5.5)

In theories with 32 supercharges in 10D and in 8D the two classes are just equal and α = 0,

yielding respectively (2.13) and (5.2). Here, however, since we are mostly concerned with

the two-moduli case in the 8D N=1 theory, equations (5.4b) and (5.4a) should suffice for

the purposes of our next section.

6 Discussion and outlook

The interest in studying eight-dimensional theories is due to the fact that they allow con-

struction and better understanding of more general lower-dimensional string (generally

speaking, non-geometrical) backgrounds. For example, the torsional heterotic backgrounds

realized as principal torus fibrations over K3 do not have good 10D large volume limits,

whereas such limit exist in eight dimensions. “Geometric constructions of non-geometric

strings” à la [37] are another example of how advantageous the 8D descriptions can be.

N=2 theory. Here two equally nice ways of putting the theory on a manifold with

c1(TX) 6= 0 correspond to taking respectively F (T, T̄ ) = 0 or F (U, Ū) = 0 in (5.2).

Consider the simplest choice of a Kähler manifold, X = P1, yielding six-dimensional back-

grounds. The tadpole condition (5.2) becomes
∫
X F (U, Ū) = −2 or

∫
X F (T, T̄ ) = −2 for

these respective choices. From the point of view of the IIB theory, the first choice appears

to be “geometric”, and it is in fact just a K3 compactification of the type IIB strings, while

the second is not. The second choice is however geometric for IIA, and corresponds to K3

compactification of type IIA strings; conversely the non-trivial F (U, Ū) is not geometrically

realized in type IIA theory. Indeed, one would not be getting 6D (0, 2) and (1, 1) theories

from IIA and IIB respectively by means of (geometric) compactification on any manifold.

An immediate way of seeing why, in spite of the symmetry of (5.2), the two choices result

in so markedly different theories in six dimensions is to track the SL(2,R)U and SL(2,R)T

16Note that in the 8D N=2 case, restricting the SO(3) composite connection to U(1) also produces

well-defined spinors. In this sense the roles of T and U are symmetric.
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charges of different fields in the N=2 supergravity. The symmetry between the two is very

much broken here.17 The bosonic field content is given by

g, B2, φ, (AT2 , A
T
0 ), ((A+

3 )U , AU1 ), AU,T1 , U, T ,

where the U and T superscripts indicate with respect to which SL(2,R) the given field

transforms (as a doublet). When F (T, T̄ ) = 0 or F (U, Ū) = 0, the p-form ATp or AUp
respectively is treated as a pair of neutral p-forms. When F (U, Ū) = 0, the doublet of

self-dual three-forms simply becomes a single unconstrained three-form field.

In fact both of these choices can be seen as a 8D theory with 24 five-branes (just as

F-theory can be thought of as IIB with seven-branes). For non-trivial T modulus these

five-branes are the branes of type IIB, i.e. they carry vector multiplets, while for non-trivial

U these are the IIA five-branes carrying (2, 0) tensor multiplets.

Let us first look at the F (U, Ū) = 0 case. In the F-theory context, the mechanism

explaining how 24 branes yield only twenty lower dimensional vectors transforming under

SO(2, 18) is explained in [38]. Here the rôle of NS and RR two-forms is played by AT2 .

Four more 6D fields come from two neutral vector fields of the 8D N=2 theory and A3

(a vector and a three-form which has as many degrees of freedom). These four fields

transform under O(2, 2) and complete the six-dimensional vectors, giving rise to an (1, 1)

theory with 20 vector multiplets and symmetry group SO(4, 20). One can verify that each

of the 20 vectors in the vector multiplets is accompanied by a quartet of scalars as required

by supersymmetry.

For the F (T, T̄ ) = 0 case, the key field is (A+
3 )U . The mechanism of [38] applies with

a shift by one in the rank of the fields. Instead of vectors, one finds SO(2, 18) tensors.

To complete the picture for the non-trivial U modulus, we recall that in eight dimensions

there are three neutral two-form tensor fields AT2 , B2, which give rise to three pairs of

self-dual and anti-self-dual tensors in six. The resulting (0, 2) theory has indeed 21 tensor

multiplets and a symmetry group SO(5, 21). Once more, one may verify that as required

by supersymmetry, each of the 21 anti-self-dual tensors comes with five scalars.

Further examples are beyond the scope of our paper. However, it would be interesting

to develop a similar picture for both non-trivial moduli on X = P1 with
∫
X F (U, Ū) +

F (T, T̄ ) = −2, or for higher-dimensional manifolds X.

N=1 theory. The one-sentence summary of the results of our paper is that the eight-

dimensional string amplitudes can be represented as conterterms to the composite U(1)

anomaly plus contributions from massive states. We will now point out the crucial impor-

tance of this massive sector for the consistency of the lower-dimensional backgrounds. In

fact, we will argue that the failure to account for these states properly, i.e. as instructed

by string theory, lands the generic 8D N=1 theories in the swampland.

17The quantum properties of the two SL(2,R) are also very different, resulting in different quantum

properties of the 6D (1, 1) and (0, 2) theories. The former requires Green-Schwarz-like terms to cancel

via inflow chiral string anomalies. The latter is instead completely anomaly free, and has no anomalous

higher-derivative couplings.
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Let us take for the moment the supergravity point of view. Given the eight-dimensional

gauge group in the form U(1)n × G, where G is a product of semisimple groups (with

rank(G) = 18−n), one would be just coupling this matter to the supergravity in the adjoint.

The supergravity will be anomalous under the composite U(1) but a local counterterm can

be devised to cancel this anomaly. As we have seen in section 4, for any choice of G

other than E8×E8 or SO(32) this conterterm will be different with respect to the effective

coupling computed from string amplitudes. In fact, by adding some massive states and

integrating these out, one can generate different corrections to the counterterms. The

question is if these different (a priori infinitely many) choices are allowed. Ostensibly, all

these eight-dimensional theories with proper counterterms are consistent. If however one

demands that the theory is consistent on any admissible 8D background, the vast majority

of these will be ruled out. By taking the eight-dimensional spacetime to be M6 × P1, one

can show in a large number of cases that all massive completions of D=8 N=1 supergravity

with U(1)n × G matter except for those obtained from string theory turn out to give rise

to anomalous (0, 1) theories in six dimensions.

All our eight-dimensional examples have matter in U(1)2 × G, with rank(G) = 16,

so these will be our main focus here. However we can make some general statements on

constraints imposed by (5.4a) and (5.4b) on string backgrounds.

For n = 2, the Abelian factor Ẽ is missing. Hence, only compactification with

c1(TX) = 0 or non-geometric compactifications are possible.18 Equation (5.4b) allows

to build a K3 space over X = P1, whereas equation (5.4a) tells that only NS5-branes

participate in cancelling the curvature contribution in the Bianchi Identity. In fact there

are 24 of them.

In order to have a geometric Heterotic realisation of D=8 N=1 theory on X = P1, i.e. a

K3 compactification, n ≥ 3 is required. Indeed taking [F (T, T̄ )] = 0, one needs nontrivial

Ẽ in order to satisfy (5.4a). The geometric compactification then should correspond to

only [F (U, Ū)] 6= 0. Other choices are possible, and these will again lead to non-geometric

compactifications. We hope to return to other cases in a forthcoming publication.19

Returning to the n = 2 case, we can check that for E8×E8, the choice
∫
X F (T, T̄ ) = −2

leads to an anomaly free (0, 1) theory in six-dimensions. Indeed, each five-brane carries a

tensor and a hypermultiplet [43], and the six-dimensional anomaly factorization condition

244 = N(NS5)(29 + 1)− dim(G) + 20 (6.1)

is satisfied for dim(G) = 496 andN(NS5) = 24. The 20 on the r.h.s. is the contribution from

20 neutral hypermultiplets. Note that we have chosen to write the standard factorization

condition in terms of the number of five-branes N(NS5) rather than of tensor multiplets

(there are 25 of these). The complete anomaly polynomial is in fact given by

I ∝ 2(trR2)2 + 5trR2(trF 2
1 + trF 2

2 ) + 6((F 2
1 )2 + (F 2

2 )2) , (6.2)

18We will call a background geometric, if it can be realized as a compactification on an internal mani-

fold X with non-trivial instanton configurations, but without any extra objects. In particular, Heterotic

compactifications with NS5-branes are labeled here as non-geometric.
19Different aspects of non-geometric backgrounds using this set-up for low n have been discussed recently

in [39–42].
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which can be easily rewritten as a sum of 25 factorized terms (as required by [44]). For

SO(32), each five-brane brings along an USp(2) factor with a hyper in bi-fundamental [45],

resulting in a factorization condition

244 = N(NS5)(32− 2)− dim(G) + 20 . (6.3)

It can also be checked that trF 4
SO(32) cancels out and the anomaly polynomial factorises.

For G = SO(16)2 and G = SO(8)4 again N(NS5) = 24 is required, and there are

20 neutral hypermultiples arising form K3, so the formula (6.1) should formally work.

It does however only if vectors in bi-fundamental representations exactly in the form as

they appear in section 4 are included. Hence we see that the correct, i.e. string theoretic,

massive completion in eight dimensions, is necessary in order to obtain an anomaly free

six-dimensional compactification. In fact we have checked that this applies also for theories

with n ≥ 3, which are outside the scope of this paper.20 Massive states that appear in T 2

compactifications to eight-dimensions, must become massless when the torus degenerates

to yield an elliptically fibered K3. It is worthwhile to understand how this works in detail.

It appears that G = SO(16)2 and G = SO(8)4 should admit a double realization, either

with 25 tensor multiplets or with 24 USp(2) gauge fields and hypers in bi-fundamentals.

Of course the two versions match once these theories are put on a circle. To the best of

our knowledge the six-dimensional theories with G = SO(16)2 or G = SO(8)4 gauge groups

have not been much discussed in the literature.

Let us end by a comment about the six-dimensional Green-Schwarz term. One can see

it arising form integrating the ten-dimensional one on K3 (using the constraints imposed

by the Bianchi Identity) as in [46]. The contribution comes only from terms that nicely

factorise into internal and external parts as

B ∧XGS
8 → B ∧

[
(atrR2

0 + btrF 2
0 ) ∧ trR2 + (ctrR2

0 + dtrF 2
0 ) ∧ trF 2

]
. (6.4)

Here R0 and F0 are the internal Riemann and gauge field strengths, and a, b, c, d are

numerical coefficients. This form is suggestive of non-vanishing four-point amplitudes in

eight dimensions involving e.g. the B-field, a composite U(1) factor and two gravitons.

Once more the correct massive sector is important in getting the low-energy contribution

matching the six-dimensional Green-Schwarz coupling.

Eight-dimensional N=1 theories hold keys to large classes of interesting string back-

grounds, most of which cannot be seen as ordinary compactifications of ten-dimensional

string theories. We have argued here, that the study of composite connections and their

anomalies may provide useful insights and constraints in constructing these backgrounds.
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rison, B. Pioline, A. Sen, S. Theisen, A. Uranga and P. Vanhove for helpful discussions

20Here one also gets hypermultiples charged under the six-dimensional gauge group, equally crucial for

the anomaly cancellation mechanism to work.

– 20 –



J
H
E
P
0
2
(
2
0
1
7
)
0
2
5

Quantities of gauge group G Anti-hermitian convention [48] Hermitian convention Relation

Generators Ta ta iTa = ta

Transformation of field φ

in a rep. of G δvφ = −vφ δεφ = iεφ iv = ε; va = εa

Gauge connection A′ = AaT
a A = Aat

a iA′ = A;Aa = Aa

Gauge connection variation δA′ = dA′ + [A′, v] δA = dε− i[A, ε]
Gauge field-strength F ′ = FaT

a F = Fat
a iF ′ = F ;Fa = Fa

Gauge field-strength F ′ = dA′ +A′ ∧A′ F = dA− iA ∧A
F variation δF ′ = [F ′, v] δF = −i[F, ε]

Covariant derivative D = d+A′ D = d− iA

Table 1. Gauge theory dictionary.
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A Index polynomials

In this appendix, we list the anomaly polynomials used throughout this article, along with

some Chern-Simons forms and their gauge variation forms which come into play during the

process of descent [47, 48]. All the polynomials are defined on a manifoldMd of d = 2r real

dimensions and the rank of the anomaly polynomial is d+ 2, so that we get the anomalous

phase variation as an integral over a 2r-form. But first we give the formalism for the gauge

theory: this is important because the reference we are following [48] uses the anti-hermitian

generators for the gauge group, while to compute the U(1) anomalies it is useful to work

with hermitian generators, as this makes the charges real.

If ∆ is the anomalous phase variation and I2r+2 the anomaly polynomial, the descent

equations are given by:

∆ = δΓM = −
∫
Q1

2r,

I2r+2 = dI2r+1,

δI2r+1 = dQ1
2r.

The following anomaly polynomials are used throughout the paper:

1. Spin-1/2 fermion anomaly polynomial:

I1/2 = (2π)× [Â(Md)]× [ch(−iF )] , (A.1)
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where

Â(Md) = 1 +
1

12 (4π)2
trR2 +

1

(4π)4

[
1

360
trR4 +

1

288
(trR2)2

]
+

1

(4π)6

[
1

5670
trR6 +

1

4320
trR4 trR2 +

1

10368
(trR2)3

]
+ . . . (A.2)

and

ch(−iF ) =
∑
k=0

1

k!(2π)k
TrF k. (A.3)

2. Gravitino (Spin-3/2) anomaly polynomial:

Id3/2 = (2π)× [Â(M)][Tr(e
iR
2π )− 1]× [ch(−iF )]

= (2π)× [ch(−iF )]

×
[
(d− 1) +

d− 25

12 (4π)2
trR2 +

1

(4π)4

(
d+ 239

360
trR4 +

d− 49

288
(trR2)2

)
+

1

(4π)6

(
d− 505

5670
trR6 +

d+ 215

4320
trR4 trR2 +

d− 73

10368
(trR2)3

)
+ . . .

]
. (A.4)

3. Self-dual form:

Iform = (2π)× [L̂(Md)]× [−x
4

] , (A.5)

where

x =

{
1 if the base fermions are Weil or Majorana,

1/2 if the base fermions are Majorana-Weil
(A.6)

and

L̂(Md) = 1− 1

6 (2π)2
trR2 +

1

(2π)4

(
− 7

180
trR4 +

1

72
(trR2)2

)
+

1

(2π)6

(
− 31

2835
trR6 +

7

1080
trR4 trR2 − 1

1296
(trR2)3

)
+ . . . (A.7)

Finally, the Chern-Simons forms and descents are:

1. TrF = dQ1, Q1 = TrA, δQ1 = TrdΣ(x), Q1
2 = TrΣ(x).

2. TrF 2 = dQ3, Q3 = Tr(A ∧ F − i1
3A

3), δQ3 = TrdΣ(x)(dA), Q1
4 = TrΣ(x)(dA).

3. TrF 3 = dQ5, Q5 = Tr
(
A ∧ F 2 − 1

2A
3F + 1

10A
5
)
, δQ5 = TrdΣ(x)

(
dAdA− i1

2dA
3
)
,

Q1
6 = TrΣ(x)

(
dAdA− i1

2dA
3
)
.
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B Trace formulae and branching rules

In this appendix, we record the conversion rules of the adjoint traces Tr to fundamental

traces tr, according to the standard convention of [49, 50]:

TrF 2
SO(N) = (N − 2) trF 2

SO(N) , (B.1a)

TrF 2
E8

= 30 trF 2
E8
, (B.1b)

TrF 4
SO(N) = (N − 8) trF 4

SO(N) + 3 (trF 2
SO(N))

2 , (B.1c)

TrF 4
E8

=
1

100
(TrF 2

E8
)2 = 9 (trF 2

E8
)2 . (B.1d)

As E8 does not have a vector representation, it is standard to define its trace trF 2
E8

in

“fundamental” by using that of the group SO(32) so that they have uniform expressions

in the Green-Schwarz term of both 10D Heterotic theories [26].

We also mention here the group theory branching rule of the adjoint representation,

which is useful to interpret the various effective couplings arising from the amplitudes. For

the breaking E8 × E8 → SO(16)2 we have

248 ⊕ 248 = (120,1) ⊕ (1,120)︸ ︷︷ ︸
adjoint rep. of SO(16)2

⊕ (128,1) ⊕ (1,128)︸ ︷︷ ︸
spinor rep. of SO(16)2

. (B.2)

For the (128,1) ⊕ (1,128) representation, the trace-conversion formulae are

tr128F
2
1 + tr128F

2
2 = 16trF 2

1 + 16trF 2
2 , (B.3a)

tr128F
4
1 + tr128F

4
2 = 6(trF 2

1 )2 + 6(trF 2
2 )2 − 8trF 4

1 − 8trF 4
2 . (B.3b)

For the breaking SO(32)→ SO(16)2 we have

496 = (120,1) ⊕ (1,120)︸ ︷︷ ︸
adjoint rep. of SO(16)2

⊕ (16,16)︸ ︷︷ ︸
cospinor rep. of SO(16)2

. (B.4)

For the (16,16) representation, the trace-conversion formulae are

tr(16,16)F
2 = 16trF 2

1 + 16trF 2
2 , (B.5a)

tr(16,16)F
4 = 16trF 4

1 + 16trF 4
2 + 6trF 2

1 trF
2
2 . (B.5b)

For the breaking E8 → SO(8)2 we have

248 = (28,1) ⊕ (1,28)︸ ︷︷ ︸
adjoint rep. of SO(8)2

⊕ (8,8)︸ ︷︷ ︸
bifundamental rep. of SO(8)2

⊕ (8,8)′︸ ︷︷ ︸
spinor rep. of SO(8)2

⊕ (8,8)′′︸ ︷︷ ︸
cospinor rep. of SO(8)2

. (B.6)
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Thus the complete decomposition E
(1)
8 → SO(8)(1) × SO(8)(2) plus E

(2)
8 → SO(8)(3) ×

SO(8)(4) gives

248⊕ 248 =(28,1,1,1)⊕ (1,28,1,1)⊕ (1,1,28,1)⊕ (1,1,1,28) (B.7)

⊕ (8,8,1,1)⊕ (1,1,8,8)

⊕ (8,8,1,1)′ ⊕ (1,1,8,8)′

⊕ (8,8,1,1)′′ ⊕ (1,1,8,8)′′.

The breaking SO(32)→ SO(8)(1) × SO(8)(2) × SO(8)(3) × SO(8)(4) gives instead:

496 =(28,1,1,1)⊕ (1,28,1,1)⊕ (1,1,28,1)⊕ (1,1,1,28)

⊕ (8,8,1,1)⊕ (1,1,8,8)

⊕ (8,1,8,1)⊕ (1,8,1,8)

⊕ (1,8,8,1)⊕ (8,1,1,8). (B.8)

From the decomposition (B.7) we see that E
(1)
8 → SO(8)(1) × SO(8)(2) plus E

(2)
8 →

SO(8)(3) × SO(8)(4) has a preferred trF 2
1 trF

2
2 and trF 2

3 trF
2
4 mixing. T-duality exchanges

the spinor and co-spinor representation with the bi-fundamental representations and this

fact appears in the string 1-loop elliptic genus as orbifold shifts [32], which gives mixed cou-

plings of the type trF 2
1 trF

2
3 and trF 2

1 trF
2
4 etc., even if one starts with the decomposition

E
(1)
8 → SO(8)(1) × SO(8)(2) and E

(2)
8 → SO(8)(3) × SO(8)(4).

Finally, the trace-conversion formulae for the various representations involved in the

breaking to SO(8)4 are summarized as:

tr(8,8)F
2 = 8trF 2

1 + 8trF 2
2 , (B.9a)

tr(8,8)F
4 = 8trF 4

1 + 8trF 4
2 + 6trF 2

1 trF
2
2 , (B.9b)

tr(8,8)′F
2 = tr(8,8)′′F

2 = 8trF 2
1 + 8trF 2

2 , (B.9c)

tr(8,8)′F
4 = tr(8,8)′′F

4 = 3(trF 2
1 )2 + 3(trF 2

2 )2 + 6trF 2
1 trF

2
2 − 4trF 4

1 − 4trF 4
2 . (B.9d)

C Modular functions and decompactification limit

In this appendix, we gather the necessary definitions of the modular functions which have

been used in the article:

The Dedekind Eta function:

η(τ) = q1/24
∞∏
n=1

(1− qn), (C.1)

satisfying

η(−1/τ) =
√
−iτη(τ). (C.2)

The Leech j-function:

j =
E3

4

η24
=

1

q
+ 744 + · · · , (C.3)
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where E4 is the 4-th Eisenstein series defined by

E4 =
1

2

4∑
a=2

θ8
a = 1 + 240

∞∑
n=1

n3qn

1− qn
. (C.4)

The following modular properties are used in fixing the SL(2,Z) anomalous phase variation

in the anomaly counter-terms:

log η(τ + 1) = log η(τ) + i
π

12
, (C.5)

log η(−1

τ
) = log η(τ)− iπ

4
+
log τ

2
(C.6)

j(τ + 1)

j̄(τ̄ + 1)
= e−4iπ j(τ)

j̄(τ̄)
, (C.7)(

j(−1/τ)

j̄(−1/τ̄)

)1/12

= −
(
j(τ)

j̄(τ̄)

)1/12

. (C.8)

We now briefly discuss the large volume and decompactification limits. The large

volume limit in case of a T 2 compactification means taking the torus volume VT 2 → ∞.

However the complex structure U = U1 + iU2 remains fixed. We recall that the compact

space-time torus is formed by compactifying the 8th and 9th space dimensions for which

we have the following metric

Gij = ( g88 g89
g89 g99 ) =

V

U2

(
1 U1

U1 |U |2
)
. (C.9)

In the decompactification limit, we will take VT 2 →∞ and moreover impose orthonormality

of the 8th and the 9th directions, i.e.

U2 =
V

g88
→ 1 , U1 =

g89

g88
→ 0 . (C.10)

A useful summary of the q-expansion and the relevant limits of the different modular

functions of T and U that have been used in expressions for the higher-derivative couplings:

log|η(T )|2 = −πT2

6
− [θ(T ) + θ̄(T̄ )], (C.11)

θ(τ) = q +
3q2

2
+ · · · , q = e2iπτ , (C.12)

lim
τ→i∞

θ(τ) = 0, lim
V→∞

log|η(T )|2 = −πT2

6
, (C.13)

log
η(T )

η̄(T̄ )
=
iπT1

6
− [θ(T )− θ̄(T̄ )], (C.14)

lim
V→∞

(
log

η(T )

η̄(T̄ )
− iπT1

6

)
= 0. (C.15)

U = U1 + iU2 → i, q(U)→ e−2π, (C.16)

log|η(U)|2 → const, (C.17)

log
η(U)

η̄(Ū)
=

iπU1

6
→ 0. (C.18)
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