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1 Introduction

Little string theories with 16 supercharges [1–5] are obtained by decoupling limits of the

type II strings nearN NS5-branes. These are non-local theories without gravity. Depending

on whether we start from type IIA or IIB NS5-branes, the system has (2, 0) or (1, 1)

super-Poincare symmetry, respectively. Since NS5-branes are one of the most difficult

nonperturbative objects to study in string theory, it would be very desirable to have better

understanding on these strings. Also, the type IIA little string theory has interesting low

energy limit given by interacting (2, 0) superconformal field theories. Little strings have

similarities with critical strings, and also differences. The fact that these models do not

contain gravity is the main difference, with far-reaching implications. However, being non-

local theories, such systems inherit from the type II strings various stringy properties, such

as the T-duality. So after circle compactification, the two little string theories are supposed

to be T-dual to each other.

Unlike critical strings, noncritical little strings are difficult to study. Some approaches

to study them are: holographic approach [3, 4], discrete lightcone quantization [1, 2, 6, 7],

the double scaling limit [8, 9], studies on the scattering amplitudes and higher derivative

terms in the effective action [10, 11]. In particular, the DLCQ approach considers the little
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string theory compactified on a small circle, in which one studies a sector with definite

momentum which is decoupled from the rest. Via T-duality, the DLCQ description can

be obtained by a large radius compactification of the T-dual strings with definite winding

number.

In this paper, we study the QFTs living on the little strings macroscopically extended

on R
1,1. They describe 2d decoupled degrees of freedom living on these strings at low energy.

Such theories are studied in detail in the literature [6, 7]. One starts from 2d N = (4, 4)

gauge theories, which flow to interacting CFTs and describe these strings. Compactifying

these strings on large circles, the ground state energy is proportional to the radius times the

winding quantum number, much larger than the energy scale of the circle momenta. So we

can consider a low energy decoupled sector with fixed winding quantum numbers. They also

have direct relevance to the study of DLCQ little strings obtained after T-duality, in which

the momentum is fixed. In this paper, we make a modest contribution to construct and

study such UV gauge theories for the little strings, on the IIA side starting from N = (0, 4)

gauge theories. The system is proposed to flow to a CFT with enhanced (4, 4) SUSY.

Compared to the (4, 4) gauge theories discussed in [7], the new description has an advantage

of manifestly having certain IR symmetries in UV, which is very crucial for computing some

protected IR observables such as the elliptic genus. The (0, 4) UV QFTs are similar to those

for the self-dual strings of the (2, 0) superconformal field theory, called ‘M-strings’ [15].

With T-duality, the spectrum of the circle compactified theories would be the same

for IIA and IIB little strings. We would like to probe this T-duality with the above gauge

theory descriptions for macroscopic strings. In general, these descriptions are valid only

when the compactification radii are large. As the T-duality exchanges the IIA and IIB

radii as RA = α′

RB
, the two gauge theory descriptions will never be simultaneously reliable.

However, one naturally expects that the protected BPS spectrum would be reliable all the

way to small radii.

In this paper, we study the T-duality of little strings in the BPS sector, from the UV

gauge theory descriptions. In particular, being able to compute the elliptic genera of the 2d

gauge theories on both IIA and IIB sides, we can directly compare their BPS spectra. More

precisely, we shall compare the full BPS partition functions of the IIA/IIB little strings on

Omega-deformed R
4 × T 2 (or supersymmetric indices of circle compactifieid theories with

nonzero chemical potentials), which are closely related to the elliptic genera of our gauge

theories. We find, in fugacity expansions to highly nontrivial orders, that the two partition

functions precisely map to each other via T-duality.1 Apart from confirming the naturally

expected T-duality, our finding is establishing a very nontrivial identity between the elliptic

genera computed from the type IIA and IIB sides, so that alternative expressions can be

used to extract various properties which would have been very difficult to see from the

other viewpoints. For instance, we explain in section 5 how one can easily understand the

SL(2,Z) × SL(2,Z) transformation properties of the partition functions, for the complex

structure and Kahler parameters of the torus, by using our T-dual expressions.

1In order to better define our spectral problem, without continua coming from the ‘throat’ regions [6, 7,

12], we turn on the Fayet-Iliopoulos (FI) term and the theta angle of the gauge theories on the worldsheet.

Also, to avoid having infrared problems with tensionless fractional strings or W-bosons, we separate the N

NS5-branes and study the massive spectra.
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The rest of this paper is organized as follows. In sections 2 and 3, we explain the 2d

gauge theory descriptions of the IIB and IIA little strings, respectively, and study their

elliptic genera. In section 4, we study the T-duality of the two Omega-deformed parti-

tion functions, as well as extended duality/triality properties. In section 5, we study the

SL(2,Z) transformation properties of the elliptic genus in various fugacities. Section 6

concludes with brief discussions.

2 IIB little strings

2.1 A brief review

We first consider the type IIB little strings, which are the type IIB fundamental strings

bound to the NS5-branes. At low energy, the world-volume description of IIB NS5-branes is

given by 6d maximally supersymmetric Yang-Mills theory, with (1, 1) supersymmetry and

U(N) gauge group. The fields consist of the gauge field Aµ=0,··· ,5, 4 scalar fields φI=1,··· ,4,

and fermions. These degrees of freedom are provided by the D-strings ending on the NS5-

branes. The bosonic symmetry of the theory is SO(1, 5)× SO(4)R. SO(1, 5) is the Lorentz

symmetry on the NS5-branes, and SO(4)R is the symmetry on their transverse directions,

which rotates φI . The Yang-Mills coupling constant is given by

g2YM =
1

TNS5(2πα′)2g2s
= (2π)3α′ . (2.1)

Fundamental strings form threshold bounds with the NS5-branes. They are identified as

the instanton strings in the 6d SYM. The instanton string tension is given by

4π2

g2YM

=
1

2πα′
= TF1 , (2.2)

agreeing with the tension of the fundamental string. The coupling constant is independent

of the 10d string coupling constant, gs. So one can take the little string theory limit, in

which we take gs → 0 with fixed α′. All the gravitational degrees of freedom are decoupled.

We shall consider k macroscopically extended little strings, extended along R
1,1 part

of R5,1. We are interested in the dynamics of the degrees of freedom supported on these

macroscopic strings, decoupled from the rest of the 6d degrees of freedom at low energy.

The system of k F1 andN NS5-branes admit a UV gauge theory description given by a U(k)

gauge theory with N = (4, 4) supersymmetry. The field theory is identical to that living on

the D1-D5 system via S-duality, and has been studied extensively in the literature, e.g. [6,

7, 12]. This 2d theory at low energy can also be regarded as the worldsheeet description

of the instanton strings of the 6d SYM theory. The gauge theory has the U(k) N =

(4, 4) vector multiplet, an adjoint hypermultiplet, and N fundamental hypermulitiplets

which rotate under U(N) global symmetry. These fields are shown in table 1, and more

details about this theory is explained in appendix A. For later convenience, we also show

the supermultiplet structure with respect to the right-chiral (0, 4) SUSY. The bosonic

symmetry preserved by the strings is SO(1, 1)×SO(4) ⊂ SO(1, 5) times SO(4)R, where the
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N = (4, 4) N = (0, 4) Fields U(k) U(N)

vector vector Aµ, λ̄
Aα̇
+ adj 1

twisted hyper ϕaA, λ̄
α̇
a− adj 1

hyper hyper aαβ̇ , λ
A
α− adj 1

Fermi λaβ+ adj 1

hyper hyper qα̇, ψ
A
− k̄ N

Fermi ψa− k̄ N

Table 1. N = (4, 4) supermultiplets for k IIB strings.

latter is inherited from the R-symmetry of the 6d theory. For SO(4) ∼ SU(2)L1 × SU(2)R1

and SO(4)R ∼ SU(2)L2 × SU(2)R2, we introduce the following doublet indices,

SU(2)L1 → α, SU(2)R1 → α̇, SU(2)L2 → a, SU(2)R2 → A . (2.3)

The fields in table 1 and appendix A are given with this convention. The 6d (1, 1) su-

percharges can be written as Qaα+, Q
A
α−, Q

α̇
a+, Q

Aα̇
− , where ± denote 6d chirality. These

supercharges satisfy the reality conditions given by

Qaα+ = −ǫαβǫab(Qbβ+)
†, QA

α− = ǫαβǫ
AB(QB

β−)
†, Qα̇

a+ = −ǫα̇β̇ǫab(Q
β̇
b+)

†, QAα̇
− = ǫα̇β̇ǫAB(QBβ̇

− )†.

(2.4)

The strings extended on R
1,1 preserveQα̇

a+ and QAα̇
− , forming 2dN = (4, 4) supersymmetry.

The ± subscripts on 2d fermions denote left/right chiralities, respectively. In table 1, the

fields aαβ̇ and qα̇ form the so-called ADHM data of k multi-instantons of U(N) gauge theory.

This is because the IR limit of this gauge theory will be describing the 6d instanton strings,

as we shall explain in more detail now.

The infrared dynamics of this (4, 4) theory has been studied in [6]. Its low energy

dynamics is described by two decoupled (4, 4) conformal field theories. One is the conformal

field theory on the Higgs branch described by a nonlinear sigma model on the Higgs branch

target space, given by k instanton moduli space. Another is the conformal field theory on

the Coulomb branch. For studying the type IIB little strings, the Higgs branch CFT is of

relevance. The Coulomb branch degrees of freedom ϕaA represent the motion of the strings

moving away from the 5-branes.

There is a peculiar singularity in the region near qα̇ = 0, aαβ̇ = 0, where the Higgs

branch classically meets the Coulomb branch [6, 7, 12]. Quantum mechanically, this region

forms a ‘throat,’ which is responsible for a continuum in the CFT spectrum. The CFT can

be deformed by turning on the SU(2)R1 triplet of Fayet-Iliopoulos term ζI (I = 1, 2, 3) and

the theta angle θ, so that such continuum disappears [6, 7, 12]. In particular, the Higgs

branch moduli space becomes regular, and the Coulomb branch is no longer connected to

the Higgs branch even classically. We shall discuss the little string spectrum with nonzero

FI term, by studying the elliptic genus [16] of the 2d (4, 4) gauge theory. (The continuum

will be completely lifted, not only by the FI-term but also by the Coulomb VEV of the 6d

SYM which removes the infrared continuum.) In particular, since the FI parameter gives
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nonzero energy to the Coulomb branch [17], the elliptic genus will acquire contribution only

from the Higgs branch CFT for the IIB little strings, and not from the Coulomb branch

CFT that we are not interested in.

2.2 The elliptic genus of IIB little strings

In this subsection we shall define and explain the elliptic genus of the gauge theory compact-

ified on circle, counting 1
4 -BPS states in the Coulomb phase of the 6d theory, which shall

be further studied in sections 4 and 5. This is a supersymmetric partition function of our

(4, 4) theory on a torus with complex structure τ . We choose a supercharge Q = QA=1,α̇=2̇

and its conjugate Q† and define its index, with q ≡ e2πiτ ,

ZIIB
inst(αi, ǫ±,m; q, w) = Tr

[

(−1)FwkqHL q̄HRe2πiαiΠie2πiǫ−(2J1L)e2πim(2J2L)e2πiǫ+(2J1R+2J2R)
]

=

∞
∑

k=0

wkZk(αi, ǫ±,m; q) , (2.5)

with Z0 ≡ 1. The elliptic genus is using only the (0, 2) subset of (4, 4) supercharges. P

is the momentum on the string compactified on the circle, and H is the energy, in the

unit of inverse-radius R−1
B of the circle. 2HL = H + P and 2HR = H − P are defined as

the leftmoving and rightmoving momentum, respectively. JL1,2 and JR1,2 are the Cartans

of SU(2)L1,2 and SU(2)R1,2. Since {Q,Q†} = 2HR and Q commutes with all the other

factors in the trace, the index counts only the BPS states annihilated by Q and Q†, and

it is independent of q̄. Πi’s are the Cartans of U(N). αi’s are the chemical potentials

for electric charges, interpreted as the background gauge field A5 = diag({αi}) along the

spatial circle, breaking U(N) to U(1)N . We also introduce the fugacity variable, w, counting

the winding number k of the little strings. For a given U(k) gauge theory, we fix k and

compute Zk. The above index is the grand partition function. We use the subscript ‘inst’

standing for ‘instantons’ in the 6d SYM interpretation.

Zk can be computed from the N = (4, 4) theory explained in section 2.1 and appendix

A, as follows. The gauge theory elliptic genus can be computed by performing a suitable

contour integral of [18–20], with the integral measure given by the contributions from the

fields listed in table 1. The integral representation for Zk is given by [21]

Zk =
1

k!

∮

[

k
∏

I=1

2πη2duI
2πi

]

Zvec(u, α, ǫ±)Zhyper(u, α, ǫ±,m) (2.6)

Zvec =

∏

I 6=J θ1(uIJ)
∏k

I,J=1 θ1(uIJ + 2ǫ+)
∏k

I=1

∏N
i=1 θ1(ǫ+ ± (uI − αi))

∏k
I,J=1 θ1(ǫ1,2 + uIJ)

Zhyper =

∏k
I=1

∏N
i=1 θ1(m± (uI − αi))

∏k
I,J=1 θ1(±m− ǫ− + uIJ)

∏k
I,J=1 θ1(±m− ǫ+ + uIJ)

.

Zvec comes from the zero modes of 6d N = 1 vector multiplet in the k instanton back-

grounds, which are the first, third, fifth lines of table 1. Zhyper comes from the zero modes

of 6d adjoint hypermultiplet (which makes the 6d N = 2 vector multiplet) in the instanton
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backgrounds, which are the second, fourth, sixth lines. The contour integral can be done by

following precisely the same steps as explained in [21], which did the Witten index calculus

for the 1d reduction of our (4, 4) theory, to count instantons in the 5d N = 1∗ theory. One

can repeat the analysis in the elliptic version. After this analysis, Zk is given by a sum of

residues which are labeled by the N -colored Young diagrams, Y = {Y1, Y2, · · · , YN} . The

sum of the numbers of the boxes
∑N

i=1 |Yi| is k. The elliptic genus is given by

Zk(αi, ǫ±,m; q) =
∑

Y :
∑

i |Yi|=k

N
∏

i,j=1

∏

s∈Yi

θ1 (q;Eij +m− ǫ−) θ1 (q;Eij −m− ǫ−)

θ1 (q;Eij − ǫ1) θ1 (q;Eij + ǫ2)
, (2.7)

where

Eij = αi − αj − ǫ1hi(s) + ǫ2vj(s). (2.8)

‘s’ denotes a box in the Young diagram Yi. hi(s) is the distance from the box ‘s’ to the

edge on the right side of Yi that one reaches by moving horizontally. vj(s) is the distance

from ‘s’ to the edge on the bottom side of Yj that one reaches by moving vertically. See

e.g. [22] for more details and illustrations. This Young diagram expression first appeared

in the instanton calculus of the 4d and 5d SYM [23, 24], and our result (2.7) is simply an

elliptic uplift of their results. Note also that the expression (2.7) at N = 1 appeared in [25].

For later use, it would be helpful to note the key steps towards the derivation of (2.7).

Firstly, the contour integral in (2.6) is a sum over the so-called Jeffrey-Kirwan residues

(JK-Res) [20]. The poles with nonzero JK-Res for (2.6) has been studied in [21]. It was

first shown in [21] that all the poles from Zhyper never give nonzero JK-Res: whenever we

pick a pole from the denominator term θ1(±m−ǫ++uIJ) according to the rules of [20, 21],

a term of the form θ1(±m − ǫ− + uIJ) in the numerator always vanishes. So we can

completely restrict our discussions to the poles from Zvec. Then the poles from Zvec with

nonzero JK-Res are completely classified, and is shown to be labeled by the N Young

diagrams that we explained above. Then, we insert the pole values of uI , labeled by Y , to

extract out the JK-Res. Within Zvec and Zhyper, there are vast cancelations between the

θ1 functions in the numerator and denominator [23, 24]. From Zvec, only bosonic terms

remain, which explain the denominator of (2.7). From Zhyper, only fermionic terms remain,

explaining the numerator of (2.7).

It is also useful to consider the full index of the type IIB little string theory, com-

pactified on a circle with large radius RB ≫ (α′)
1
2 . The index is defined in the same way

as (2.5), where the trace is taken over the whole BPS Hilbert space of the 6d theory in

the Coulomb phase. This is a BPS partition function on R
4 × T 2. Apart from (2.5), one

finds extra contribution from the 6d perturbative SYM states, decoupled from the winding

strings at low energy. The full index thus factorizes as

ZIIB(αi, ǫ±,m; q, w) = ZIIB
pert(αi, ǫ±,m; q)ZIIB

inst(αi, ǫ±,m; q, w). (2.9)

The 6d perturbative index, ZIIB
pert, counts the modes which only carry momenta along

the circle. This can be computed as follows. (See [22] for a very similar analysis of

the perturbative partition function of 5d maximal SYM.) In the Coulomb phase, both
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momentum along the circle and the electric charge preserve supercharges Qaα+ and QAα̇
− ,

and breaksQα̇
a+ andQA

α−. These are the
1
2 -BPS condition for the W-bosons. Without losing

generality, let us order the Coulomb VEVs∼ A5 = diag(αi) by 0 < α1 < α2 < · · · < αN < 1

on the circle. Then the BPS W-bosons preserving the above half supercharges will carry

the factor e2πi(αi−αj) with i > j and the momentum is zero P = 0. If P 6= 0, only the states

with P > 0 will be BPS. The states with P < 0 are anti-BPS and will not be captured by

our index. If we take q ≪ 1, electric charge factor e2πi(αi−αj) with any i, j can be assumed,

since the central charge is still kept positive by P > 0.

Now we compute the single-particle index of the perturbative sector. The Goldstino

zero modes coming from the broken SUSY generators contribute to the single particle index

with the following factor,

24 sinh
2πi(m+ ǫ+)

2
sinh

2πi(m− ǫ+)

2
sinh

2πiǫ1
2

sinh
2πiǫ2
2

, (2.10)

and the bosonic zero modes on R
4 provides the factor

1

24 sinh2 2πiǫ1
2 sinh2 2πiǫ2

2

(2.11)

where ǫ± ≡ ǫ1±ǫ2
2 . Therefore, the single particle index of the perturbative particles always

contains the following overall factor coming from the spacetime 0-modes [22],

I+(ǫ±,m) =
sinh 2πi(m+ǫ+)

2 sinh 2πi(m−ǫ+)
2

sinh 2πiǫ1
2 sinh 2πiǫ2

2

. (2.12)

Multiplying the fugacity factors for the U(N) electric charges and the momentum, the

single particle index of the 6d perturbative particles is given by

zsp = NI+(ǫ±,m) ·
∞
∑

n=1

qn + I+(ǫ±,m) ·





N
∑

i>j

e2πi(αi−αj) +
N
∑

i 6=j

∞
∑

n=1

e2πi(αi−αj)qn





= I+

N
∑

i>j

e2πi(αi−αj) + I+



N +
N
∑

i 6=j

e2πi(αi−αj)





q

1− q
. (2.13)

The first term on the first line comes from the states with P = n > 0 and Πi = 0, second

term from W-bosons at P = 0, and the last term from both electric charges and P = n > 0.

From this, ZIIB
pert is given by

ZIIB
pert(αi, ǫ±,m; q) = PE

[

zsp(αi, ǫ±,m; q)
]

= exp





∞
∑

p=1

1

p
zsp(pαi, pǫ±, pm; qp)



 . (2.14)

3 IIA little strings

Type IIA NS5-branes realize 6d IIA little string theory, with N = (2, 0) supersymmetry.

The light degrees of freedom are made of a self-dual tensor field Bµν , and 5 scalars, φI=1,2,3,4
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x01234

x11

x5

M5 M5 M5

M2 M2 M2 M2

Figure 1. M-theory brane uplift of the IIA little strings.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x11(S1
M)

N M5 × × × × × × αi

ni M2 × × (αi, αi+1)

Table 2. M-theory brane uplift of IIA little strings.

and φ, and fermions. φI=1,2,3,4 parametrize the transverse R
4 of type IIA string theory,

and φ is a compact scalar parametrizing the position of the 5-branes along the M-theory

circle. The little strings are type IIA fundamental strings bound to the NS5-branes. In

M-theory, type IIA fundamental strings uplift to M2-branes wrapping the M-theory circle.

The limit gs → 0 with a fixed α′ yields the N = (2, 0) little string theory.

The 2d gauge theories on IIA little strings at RA ≫ (α′)
1
2 has been studied in [7], in

the 6d ‘Coulomb phase’ with nonzero φ, separating all M5-branes along x11. [7] discussed it

in the context of type IIB strings on AN−1 singularity, but let us review it in the M-theory

context here. The M-theory branes are shown in figure 1, where the M-theory circle radius

is given by RM = gsℓs (where α
′ = ℓ2s). See also table 2 for coordinates. The tension of the

strings is given by ∼ RM

ℓ3P
= RM

gsℓ3s
= ℓ−2

s in the original type IIA string theory, and we are

interested in the low energy 2d theory at excitation energy E ≪ gYM, where gYM is the 2d

gauge coupling defined in (3.1). To ease the construction of this theory, we compactify x9

direction along a circle with radius R′
M . Since NS5-branes are localized at x9 = 0 and M2-

branes are attached to them, this compactification cannot be seen by the low energy CFT on

the strings, although it will be seen by the UV gauge theory we construct. Now we make a

9-11 flip, regarding x9 as the M-theory circle direction. The new type IIA theory would have

its own coupling and string scale g′s, ℓ
′
s, satisfying g′sℓ

′
s = R′

M , g′s(ℓ
′
s)

3 = ℓ3P . The tension of

the string given by the D2-branes suspended between NS5-branes is RM

g′s(ℓ
′
s)

3 = RM

ℓ3P
= ℓ−2

s ,

same as in the original type IIA picture. Now the low energy 2d theory living on the

D2-branes is easy to identify. It is a circular quiver U(k)N gauge theory with N = (4, 4)

supersymmetry [26]. Each gauge node (labeled by i = 1, · · · , N) has vector multiplet fields

A
(i)
µ , a

(i)

αβ̇
and fermions, where α, β̇ are the SO(4) = SU(2)L1 × SU(2)R1 spinor indices.
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There is a bi-fundamental hypermultiplet mode connecting adjacent gauge nodes. The

hypermultiplet fields between i’th and i + 1’th node are denoted by complex scalars Φ
(i)
A

and fermions. Compared to be previous type IIB setting, or the original type IIA setting,

in which we had SO(4) = SU(2)L2 × SU(2)R2 R-symmetry, only the diagonal SU(2)D
survives after the x9 circle compactification. So the doublet A index can be regarded as

the identification of the previous a and A indices. The (4, 4) supercharges are QA
α+, Q

A
α̇−,

subject to reality conditions. The SU(2)D UV symmetry is supposed to enhance to a

full SO(4) in the IR. This is because the 2d IR limit is equivalent to the strong coupling

limit, which in M-theory takes R3 × S1 to the large radius limit R4 with SO(4) symmetry.

However, full SO(4) is invisible in the UV gauge theory. The incapability of seeing the

second Cartan of SO(4) from this UV theory will make it impossible to study the full IR

elliptic genus. This will be a motivation to study a (0, 4) supersymmetric UV gauge theory

for the type IIA little strings, in section 3.1.

The coupling for the i’th U(k) gauge field is given by

1

g2YM,i

=
(αi+1 − αi)RMℓ′s

g′s
=

(αi+1 − αi)g
2
sℓ

4
s

(R′
M )2

, (3.1)

so the coupling becomes large in the little string decoupling limit gs → 0. We shall

study the protected elliptic genera of this system in the weak coupling limit, in the (0, 4)

supersymmetric version of the gauge theory that will be explained in section 3.1. One can

turn on three FI parameters ζ
(i)
I for each U(k)i gauge group, which is a triplet of SU(2)D

rotating 678. This corresponds to the relative position of the i+ 1’th NS5-brane from the

i’th NS5-brane along 678 directions. So one obtains the condition
∑N

i=1 ζ
(i)
I = 0, since one

should come back to the original NS5-brane after going around the quiver once.

The gauge theory has U(k)N Coulomb branch, whose scalars represent the motion of

D2-branes along 1234 directions. This would define the Coulomb branch CFT which is

relevant for studying the IIA little strings. On the other hand, the N fractional strings

suspended between different adjacent pairs of NS5-branes can combine to make a fully

winding D2-brane along x11, which may leave the NS5-brane along the 6789 directions

(among which x9 is the circle direction of the M-theory). For instance, at k = 1, the

positions of the D2-branes along 678 is parameterized by the Higgs branch scalars, breaking

U(1)N to U(1) which lives on the D2-brane separated from the NS5-branes. The U(1) gauge

field on this D2 would dualize to a compact scalar, parametrizing the x9 circle direction

probed by the D2-brane. More precisely, at k = 1, the vanishing condition of the potential

energy is given by

Φ
(i)
A a

(i)

αβ̇
− a

(i−1)

αβ̇
Φ
(i)
A = 0 , ζ

(i)
I + (σI)

A
BΦ

(i)
A Φ̄B(i) = (σI)

A
BΦ̄

B(i−1)Φ
(i−1)
A . (3.2)

In the Higgs branch, one sets all a
(i)

αβ̇
’s to be equal, so that the first equation is solved by

breaking U(1)N → U(1). There is always a nonzero solution to the second equation.

Since the Higgs branch now represents the strings leaving the NS5-branes, we are only

interested in the Coulomb branch CFT in the IR limit. However, the Higgs branch cannot

be detached from the Coulomb branch CFT by any deformation of the theory. This is in
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contrast to the 2d gauge theories for the type IIB strings, in which case the Higgs branch

CFT of our interest could be detached from the Coulomb branch CFT by turning on U(k)

FI parameters. In fact, with generic FI term ξ
(i)
I , the Coulomb branch will be all lifted as

U(1)N → U(1). Since the elliptic genus formula of [19, 20] is computing the index of CFT

with generic nonzero FI parameters, this formula will compute the unwanted Higgs branch

index, with lifted Coulomb branch. Apart from the absence of the SU(2)L2 in UV, this is an-

other reason that the above (4, 4) CFT is inconvenient for studying the little string physics.

One can also add fractional D2-branes to this construction. Namely, the number of

i’th D2-branes between i’th and i + 1’th NS5-branes can be all different, ni, forming a

circular U(n1)× · · · ×U(nN ) quiver.

3.1 N = (0, 4) gauge theory descriptions

As explained, the N = (4, 4) gauge theories for IIA little strings only see SU(2)D ⊂ SO(4)

part of the R-symmetry. Although we expect the symmetry enhancement to happen in

IR, this means that the UV gauge theory would be of limited use. Also, studying the

spectrum of the Coulomb branch CFT will be difficult with the approaches of [19, 20].

Closely following the idea of [15, 27], we shall engineer (0, 4) UV gauge theories for the IIA

string systems which resolve all these problems. We also stress that, although the main

interest of [15, 27] was studying the strings of the 6d SCFTs rather than the little strings,

figure 6 of [27] does show the (0, 4) quiver for the little strings, whose QFT details and

physics we shall explain now.

Now on top of the IIA branes explained after the x9-x11 flip, we also put one D6-brane

extended along 012345, 11 and localized at x6 = x7 = x8 = 0. See table 3. Now with a D6-

brane uplifting to the Taub-NUT space in M-theory, the SU(2) which rotates 678 directions

in weakly coupled type IIA is interpreted differently in the IR CFT in this setting. Namely,

the low energy limit of the 2d gauge theory is realized by taking the M-theory limit R′
M →

∞ (after the 9-11 flip): see (3.1). So the embedding of the UV gauge theory’s symmetries

into the infrared R-symmetry has to be understood in the R′
M → ∞ limit, where we have

R
4. The SO(3) rotating the asymptotic R3 of Taub-NUT rotates the R4 as SU(2)R2 in ‘IR.’

Also, after compactifying one more circle x5, we can turn on a background gauge field of the

D6-branes, as Ai
5 + iAi

11 ≡ mi ∼ (m, 2m, 3m, · · · , Nm) with nonzero B5,11 turned on. The

parameter m realizes the chemical potential for the Cartan of SU(2)L2 [15, 27].2 Thus, we

can turn on the full set of SO(4)R chemical potentials of the partition function after T 2 com-

pactification, in this setting. From the 2d gauge theory viewpoint, adding one D6-brane just

affects the way we connect the UV regime R3×S1 at weak-coupling with the IR regime R4 at

strong coupling. Since the IR brane configuration is identical to the original M2-M5 system,

we expect the (0, 4) gauge theory to flow to the same (4, 4) CFT on the Coulomb branch.

(However, see section 4 for discussions on irrelevant sectors within this gauge theory.)

A 2d N = (0, 4) UV gauge theory is engineered from this brane setting, with su-

percharges given by QAα̇. The fields can be characterized again by a circular quiver of

2Note that m is turned on only after compactifying the 2d gauge theory on S1 or T 2. So whenever we

address (0, 4) or (4, 4) SUSY later, it holds for the QFT on R
1,1 with m = 0. The SUSY preserved after

T 2 compactication with various chemical potentials turned on is summarized in table 1 of [15].
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x11(S1)

N NS5 × × × × × × αi

ni D2 × × (αi, αi+1)

1 D6 × × × × × × ×

Table 3. Brane construction of 2d N = (0, 4) gauge theory.

U(n
N
)

U(1)
N

U(1)
1 U(1)

2

U(1)
3

U(1)
4

U(n
2
)U(n

1
)

U(n
3
)

U(n
4
)

Figure 2. ÂN−1 quiver diagram of the 2d N = (0, 4) gauge theory for the IIA strings. Solid lines

denote the hypermultiplets, thin dashed lines denote the Fermi multiplets, and thick dashed lines

denote the twisted hyper multiplets.

Multiplet Fields U(ni) U(1)m

Vector A
(i)
µ , λ̄

(i)Aα̇
+ adji 0

Hyper q
(i)
α̇ , ψ

(i)A
− ni 0

Hyper a
(i)

αβ̇
, λ

(i)A
α− adji 0

Twisted hyper Φ
(i)
A , Ψ

(i)α̇
− (ni−1, n̄i) 1

Fermi Ψ
(i)
β+ (ni−1, n̄i) 1

Fermi ψ
(i)
+ ni 1

Fermi ψ̃
(i)
+ n̄i −1

Table 4. Fields of the N = (0, 4) quiver gauge theory.
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figure 2. See also figure 6 of [27], in which this quiver was first discovered. Each circular

node involves N = (0, 4) U(ni) gauge multipletiplet (Aµ, λ̄
Aα̇
+ ), and a N = (0, 4) adjoint

hypermultiplet (aαβ̇ , λ
A
α−), denoted by the solid lines. ni’s are the number of the D2-branes

suspended between adjacent NS5-branes. Thick dashed lines between two circular nodes

denote the bi-fundamental twisted hypermultiplets (ΦA,Ψ
α̇
−). Thin dashed lines between

two circular nodes denote the bi-fundamental fermi multiplets Ψβ+. D6-brane introduces

extra fields: fundamental hyper multiplets (qα̇, ψ
A
−) and Fermi multiplets ψ+, ψ̃+. These

fields are are summarized in table 4. As explained in the previous paragraph, and just

like [15, 27], the chemical potentials for U(1)i and U(1)i+1 are locked as mi+1 −mi = m,

so that one just has one U(1)m. Compared to the previous (4, 4) gauge theory for the

IIA strings, the (0, 4) fields on the first and third lines of table 4 are forming the (4, 4)

vector multiplet, which we decomposed as above since the system does not preserve (4, 4)

SUSY. Also, the fields on the fourth and fifth lines form the previous (4, 4) hypermultiplet.

They again make a twisted Higgs branch, which represents the degrees of freedom of fully

winding D2-branes leaving the NS5-branes. The Coulomb branch of the (4, 4) theory is

replaced here by the Higgs branch formed by the second and third lines, which is our main

interest when we study the IIA little strings.

The SUSY action of the (0, 4) gauge theory can also be easily constructed. From the

(0, 2) supersymmetric formalism, one has to determine the holomorphic potentials EΨ, JΨ
for each Fermi multiplet Ψ, ensuring the (0, 4) SUSY enhancement. For instance, see [28]

for how this can be done. Here, following [28], we simply write down these potentials for

our theory. Let us call the (0, 2) Fermi multiplet from the (0, 4) vector multiplet as Λi,

which is made of λ̄11̇ and λ̄22̇. Then one should first take

JΛi
= qiq̃i + [Bi, B̃i]− ξC , EΛi

= Φi+1Φ̃i+1 − Φ̃iΦi , (3.3)

for (0, 4) SUSY [28]. Here and below, we use the chiral superfield notation qα̇ = (q, q̃†),

a1β̇ = (B, B̃†), ΦA = (Φ, Φ̃†) for a while. We also inserted the FI parameter ξC for

later use, which corresponds to turning on worldvolume Bµν field on 1234 directions. The

above J,E should be accompanied by other J,E functions for other Fermi fields, to satisfy
∑

ΨEΨJΨ = 0 after summing over all Fermi multiplets Ψ. This is another requirement

from SUSY. To meet the last condition, one should turn on the following potentials for

other Fermi multiplet fields:

Eψ̃i
= q̃i−1Φi , Jψ̃i

= −Φ̃iqi−1 , Eψi
= Φi+1qi+1 , Jψi

= q̃i+1Φ̃i+1

EΨi
= ΦiBi −Bi−1Φi , JΨi

= B̃iΦ̃i − Φ̃iB̃i−1 ,

EΨ̃i
= B̃i−1Φi − ΦiB̃i , JΨ̃i

= BiΦ̃i − Φ̃iBi−1 . (3.4)

The bosonic potential is V = 2
∑

Ψ(|JΨ|2 + |EΨ|2) + 1
2

∑

iD
2
i with Di given by3

Di = qiq
†
i − q̃†i q̃i + [Bi, B

†
i ] + [B̃i, B̃

†
i ]− Φ†

iΦi + Φ̃iΦ̃
†
i +Φi+1Φ

†
i+1 − Φ̃†

i+1Φ̃i+1 − ξR . (3.5)

3The factor 2 in front of |JΨ|2+|EΨ|2 has to be included if we follow the convention of [28] for (3.3), (3.4).
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After some rearrangement, one obtains

V =

N
∑

i=1

[

1

2

(

qiα(σ
m)α̇

β̇
q̄
β̇
i +

1

2
(σm)α̇

β̇
[aiαα̇, a

αβ̇
i ]− ξ

m

)2

+
(

(σI)ABΦiAΦ̄
B
i − (σI)ABΦ̄

B
i−1Φi−1,A

)2

+|ΦiAqiα̇|2 + |Φ†
i+1,Aqiα̇|

2 + |ΦiAaiαβ̇ − ai−1,αβ̇ΦiA|2
]

(3.6)

where ξ3 = ξR and ξ1 + iξ2 ∼ ξC, with manifest SU(2)R1 × SU(2)R2 = SO(4)R symmetry

for the (0, 4) theory.

Note that with nonzero ξm, qiα̇ fields should be nonzero at low energy, which lift the

twisted Higgs branch of ΦiA. Namely, even if n1 = n2 = · · · = nN , they cannot combine

and leave the NS5-branes unlike the N = (4, 4) model. Also, the previous (4, 4) Coulomb

branch fields aαβ̇ form (0, 4) Higgs branch fields, together with new fields qα̇. The (0, 4)

setting will thus be computing the correct little string elliptic genus. However, the (0, 4)

elliptic genus will also capture a subtle trace of the presence of a D6-brane from the sector

with n1 = n2 = · · · = nN , in which case the D2-branes make full windings along x11. This

can be easily accounted for and factored out, after which we shall be obtaining the IIA

little string index. We shall explain this in section 4.

3.2 The elliptic genus of IIA little strings

We define the index of IIA little string theory wrapping a spatial circle along x5, as follows,

ZIIA(αi, ǫ±,m; q′, w′) = Tr
[

(−1)F q′HL q̄′HRw′ke2πiαiΠie2πiǫ−(2JL1)e2πim(2J2L)e2πiǫ+(2J1R+2J2R)
]

.

(3.7)

Πi are charges of the self-dual tensor fields, supported on each M5-brane, with the chemical

potentials, αi. q
′ are the fugacity variable for the momentum, and w′ the winding fugacity

of the IIA little strings. 2παiRM are the positions of the 5-branes along x11. ZIIA is the

BPS partition function of the little string theory on Omega-deformed R
4 × T 2.

An M2-brane suspended between the i’th interval between the M5-branes, (αi, αi+1),

carries nonzero charges Πi = 1 and Πi+1 = −1. The charges ei−ei+1 form the simple roots

of the AN−1 algebra, for i = 1, · · · , N − 1. Finally, the charge eN − e1, accompanied by an

extra winding k = 1 on the x11 circle, combines with the AN simple roots to make the simple

roots of ÂN−1. The fugacity variables corresponding to these simple roots are given by

v1 ≡ e2πiα12 , v2 ≡ e2πiα23 , · · · , vN−1 ≡ e2πiαN−1,N , vN ≡ e2πiαN,N+1 = e2πiαN,1w′ .

(3.8)

where αij = αi − αj . For convenience, we introduce αN+1, where e−2πiαN+1 = e−2πiα1w′.

For large RA, the low energy degrees of freedom living on the winding strings decouple

from the 6d degrees on the 5-branes. So the index of the IIA little string theory on R
4×T 2

factorizes as

ZIIA(αi, ǫ±,m; q′, w′) = ZIIA
mom(ǫ±,m; q′)ZIIA

string(αi, ǫ±,m; q′, w′) . (3.9)

ZIIA
mom comes from the Abelian tensor theories on N separated M5-branes wrapping a spa-

tial circle, and carries only HL charge in the index but carries k = 0. Unlike the IIB
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perturbative index ZIIB
pert which had massive W-boson contributions, the IIA 5-brane does

not have extra massive particle states in it (because it only has strings). This contribu-

tion factorizes into N single 5-brane contributions. It can be computed either from N

Abelian tensor multiplet, or equivalently from the multiple D0-brane index bound to a

single D4-brane [22]. The result is

ZIIA
mom(ǫ±,m; q′) = PE

[

NI−(ǫ1,2,m)
q′

1− q′

]

, (3.10)

where

I−(ǫ1,2,m) ≡ sinh 2πi(m+ǫ−)
2 sinh 2πi(m−ǫ−)

2

sinh 2πiǫ1
2 sinh 2πiǫ2

2

(3.11)

with ǫ± = ǫ1±ǫ2
2 [22].

The contribution ZIIA
string comes from the wrapped IIA strings. It can be computed from

the elliptic genus of the 2d (4, 4) SCFT in the Coulomb branch. Since this direct approach

is difficult, we use the elliptic genera of the (0, 4) gauge theories that we have explained in

the previous subsection. Let us call the elliptic genus of the
∏N

i=1U(ni) gauge theory as

Z
(n1,··· ,nN )
string (ǫ±,m; q′), and also define

ẐIIA
string(αi, ǫ±,m; q′, w′) ≡

∞
∑

ni=0

e2πi
∑N

i=1 niαi,i+1Z
(n1,...,nN )
string (ǫ±,m; q′)

=
∞
∑

ni=0

(v1)
n1(v2)

n2 · · · (vN )nNZ
(n1,...,nN )
string (ǫ±,m; q′). (3.12)

Naively, one would expect ZIIA
string = ẐIIA

string, but we discuss their relations in detail at the

beginning of section 4. Here, let us just explain how to compute ẐIIA
string.

Applying the contour integral formula for elliptic genus in [20], one should study

Ẑ
(n1,··· ,nN )
string =

∮





N
∏

i=1

1

ni!

ni
∏

Ii=1

2π2η2duIi

2πi





N
∏

i=1

Z
(i)
vec ·

N
∏

i=1

Z
(i,i+1)
hyper (3.13)

Z
(i)
vec =

∏

I 6=J θ1(uIJ )
∏ni

I,J=1 θ1(uIJ + 2ǫ+)
∏ni

I=1 θ1(ǫ+ ± uI)
∏ni

I,J=1 θ1(ǫ1,2 + uIJ)

Z
(i,i+1)
hyper =

∏ni

I=1 θ1(m+ uI)
∏ni+1

J=1 θ1(m− uJ)
∏ni

I=1

∏ni+1

J=1 θ1(m− ǫ− + uIJ )θ1(−m− ǫ− + uJI)
∏ni

I=1

∏ni+1

J=1 θ1(±m− ǫ+ + uIJ)
,

where i = N + 1 by definition means i = 1 (from the circular nature of the quiver).

Apparently, it may look that this contour integral is much more complicated than (2.6). But

one can use the analysis of (2.6) which led to (2.7), to get a closed form expression of (3.13).

To explain the simple structure of this contour integral, let us start by noting a 6d

interpretation of our 2d gauge theories. From the D2-D6 engineering of this system, one can

regard the D2-branes as the instanton strings of the 6d SYM theories living on D6-branes.

Namely, one starts from the 6d N = 1 gauge theory with U(1)N =
∏N

i=1U(1)i gauge

group, which form a circular quiver by having 6d bi-fundamental hypermultiplets in U(1)i×
U(1)i+1. The instanton string number in U(1)i gauge group is ni. Of course, from the

viewpoint of field theory solitons, U(1) instantons are singular but this is naturally included
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in the instanton counting, which is precisely what we mean by the U(1) instantons here.

Then our 2d (0, 4) quiver is the ADHM gauge theory for these U(1)N instanton strings.

Now comes an important observation, that our U(1)N gauge theory can be embedded

into the 6d U(N) maximal SYM, by keeping the diagonal modes in the N = 1 vector mul-

tiplet and only keeping the ‘next-to-diagonal’ modes in the N = 1 adjoint hypermultiplet.

Namely, calling the 6d hypermultiplet field Φ, given by an N ×N matrix, the modes which

are kept are

Φ =



























0 Φ1,2 · · · Φ1,N

Φ2,1 0 Φ2,3 · · ·
0 Φ3,2 0

... 0 ΦN−1,N

ΦN,1 ΦN,N−1 0



























, (3.14)

i.e. Φi,i+1 6= 0 and Φi,i−1 6= 0 with i = N + 1 ∼ 1 understood. The measures
∏N

i=1 Z
(i)
vec ·

∏N
i=1 Z

(i,i+1)
hyper in (3.13) are precisely the 1-loop determinants for the instanton zero modes

caused by the 6d modes kept in the trunctation of the 6d U(N) theory, after plugging in

αi = 0 in the integrand appearing in (2.6).

With this observation, all the simplifications that happened to get (2.7) apply to our

IIA elliptic genera as well. First of all, classifying the poles with nonzero JK-Res fol-

lowing [21], one again finds that no poles are to be kept from Z
(i,i+1)
hyper . This is a simple

consequence of the cancelation mentioned in the last paragraph of p.6, which applies com-

pletely within the modes that we keep in the truncation. Then, the poles come only from

Z
(i)
vec. Since each Z

(i)
vec is completely factorized with other vector multiplet determinants Z

(j)
vec

with j 6= i, the pole locations for uIi are simply those for the ni U(1) instanton contour

integral. So at each i, the poles with nonzero JK-Res are labeled by a Young diagram with

ni boxes, which we call Yi. So the poles of our 2d
∏N

i=1U(ni) gauge theory’s elliptic genus

are classified by N Young diagrams, {Y1, . . . , YN}, where |Yi| = ni. Now we consider the

residue at a given pole, labeled by {Yi}. The cancelation of θ1 functions in (2.6) for the

mass-deformed maximal SYM, again happens in our case with the above truncation. So

one just needs to truncate the factors in (2.7). Firstly, Z
(i)
vec factor has large cancelations,

after which only bosonic modes remain. The remaining factors can be obtained from the

denominator of (2.7), by keeping the modes with i = j only in the product
∏N

i,j=1. Simi-

larly, the measures coming from the Φi,i±1 modes in (3.14) can also be obtained by suitably

truncating the factors in the numerator of (2.7). Namely, the factor θ1(q;Eij+m−ǫ−) in the

numerator of (2.7) should be truncated to j = i+1, and the factor θ1(q;Eij−m−ǫ−) should

be truncated to j = i− 1, from (3.14). Collecting the truncated modes only, one obtains

Z
(n1,...,nN )
string (ǫ±,m; q′) =

∑

{Y1,··· ,YN};|Yi|=ni

N
∏

i=1

∏

(a,b)∈Yi

θ1(q
′;E

(a,b)
i,i+1 −m+ ǫ−)θ1(q

′;E
(a,b)
i,i−1 +m+ ǫ−)

θ1(q′;E
(a,b)
i,i + ǫ1)θ1(q′;E

(a,b)
i,i − ǫ2)

,

(3.15)
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where

E
(a,b)
ij = (Yi,a − b)ǫ1 − (Y T

j,b − a)ǫ2 , E
(a,b)
i,N+1 = E

(a,b)
i,1 . (3.16)

(a, b) denotes the position of each box in a Young diagram. Ya,i is the length of the a’th row

of the Young diagram Yi. Y
T
a,i is the length of the a’th column of Yi. Note that Yi,a − b =

hi(s) and Y T
j,b− b = vj(s) from the definitions of hi(s) and vj(s) given below (2.8). Also, at

αi = αj = 0 in (2.8), Eij reduces to −E
(a,b)
i,j used in (3.15), with E

(a,b)
ij defined by (3.16).

(Various −1 factors appearing by rewriting θ1(q
′;−z) = −θ1(q

′; z) cancel between the

numerator and denominator.) This proves that the JK-Res sum of (3.13) yields (3.15).

Naively, one might think that ẐIIA
string computed from the (0, 4) gauge theory is same

as ZIIA
string. As we emphasized earlier in this section, the contribution from the (4, 4) Higgs

branch (or the (0, 4) twisted Higgs branch) formed by Φ
(i)
A is not completely decoupled. We

shall explain at the beginning of section 4 what kind of unwanted contribution we expect

to get from this extra sector, and proceed our studies with this extra factor divided out in

the following subsections.

4 T-duality of protected little string spectra

The IIB little string theory on a circle is supposed to be T-dual to IIA little string theory

on the dual circle, with the radiii related by RA = α′

RB
. The winding IIB little strings on

S1
B is dual to the momentum on S1

A, and vice versa. Their BPS masses agree with each

other, since

mIIB winding =
2πRB

2πα′
=

RB

α′
=

1

RA
= mIIA momentum . (4.1)

The fractional momenta (i.e. U(N) electric charges) of IIB little string theory are dual to

the fractional winding numbers of IIA little strings,

mIIB KK =
αi,i+1

RB

T−dual−−−−−→ (αi,i+1)
RA

α′
= αi,i+1(2πRA)TF1 ,

where αij = αi − αj . T-duality between two little string theories is demonstrated by

figure 3.

T-duality between IIA and IIB little string theories implies

ZIIA(αi, ǫ±,m; q′, w′)|q′→w,w′→q = ZIIB(αi, ǫ±,m; q, w) . (4.2)

As we stated at the end of section 3.1, if we use an alternative 2d (0, 4) gauge theory to

compute the elliptic genera ẐIIA
string, we shall find a subtle trace of the fact that we made

a UV deformation of the gauge theory by putting an extra D6-brane. A spectrum change

will happen in a sector with full wound D2-branes along x11, namely with states carrying

the factors of fugacities w′ but not αi’s. Let us first explain this small subtlety in our IIA

calculation, clarifying how to obtain ZIIA
string from ẐIIA

string.

Before explaining the difference between ZIIA
string and ẐIIA

string, let us first comment on

how we first discovered it, which may help the readers to better understand our following

explanations. We have first compared ZIIB and ZIIA
momẐ

IIA
string (instead of ZIIA = ZIIA

momZ
IIA
string)
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Figure 3. T-duality and M-theory uplift of the IIB setting. The solid lines represent the winding

little strings. The dashed lines represent the momentum along the circle.

and found that a small discrepancy happens in a subsector at w0 order (with zero winding

of IIB strings), and also with no SU(N) charges, in the type IIB side. Namely, this is

a particular subsector of perturbative states captured by ZIIB
pert. Equivalently, on the IIA

side, this sector is in the (q′)0 order at zero momentum, with n1 = n2 · · · = nN . Since

we empirically found subtle difference only in this sector, we decided to directly count the

BPS wavefunctions in this subsector to fully derive this difference. On the IIB side, there

is no subtlety in our gauge theory description. The index in the sector with zero SU(N)

electric charges (no dependence on αi) and zero winding (w0 order) can be extracted from

ZIIB
pert factor. In particular, it comes from the N Cartan modes of the 6d U(N) SYM. Their

partition function is given by

PE

[

NI+(ǫ1,2,m)
q

1− q

]

. (4.3)

In the IIA dual language, the expected T-dual result is obtained by replacing q → w′.

Now let us consider the corresponding sector in the IIA side, at (q′)0 order, and also

with fully wound D2-branes along x11 with n1 = n2 = · · · = nN . The indices are computed

after turning on nonzero FI parameters ξm with one D6-brane, while the actual spectrum

should be studied at ξm = 0 without D6-brane whenever a subtlety arises. We study

the spectrum directly in both cases, in the subsector specified above, to find the relation

between ẐIIA
string and ZIIA

string. We first explain the qualitative reason of why the subtlety

arises, and then proceed to make a detailed calculation. At ξm = 0 in section 3.1, there is

an extra twisted Higgs branch which meets the Higgs branch of our interest. The former

sector will represent the little strings leaving NS5-branes. The two sectors would decouple

in IR, but the 2d gauge theory contains both in its Hilbert space. Now by turning on the

FI term ξm, the continuum of twisted Higgs branch will be lifted. However, after turning

on ξm, it often happens that there appear extra bound states of the continuum with the

remaining 2d strings of our interest. For instance, see [21] and references therein for many

occasions in which extra bound states occur at nonzero FI parameters. Another potential

reason for discrepancies between ZIIA
string and ẐIIA

string is that our gauge theories have one

D6-brane inserted. When the D2-branes are not leaving NS5-branes, its effect is naturally
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expected to be absent in IR, or equivalently at strong coupling when a D6-brane uplifts to

flat spacetime. However, when the branes can leave NS5-branes, the presence of a D6 at

ξm 6= 0 will leave a subtle effect as we shall see.

We first consider the case with ξm = 0, without a D6-brane. In the sector with n1 =

· · · = nN ≡ n that we are considering, the D2-branes can form n full winding branes. So the

strings have the right quantum number to leave the NS5-branes. We weight n windings by

(w′)n, and relax the constraint on fixed n. We would like to count the BPS bounds of these

strings with N NS5-branes directly, not using the elliptic genus formula of [19, 20]. For

convenience, we T-dualize along the x11 circle, and obtain many D1-branes along 05, N -

centered Taub-NUT on 678 and 11 circle. Firstly, any number n of wrapped D1-branes can

form a bound state of multiply wound single string. For each massive particle of this sort,

we study its ground state wavefunction on the N -centered Taub-NUT. This space has N

normalizable harmonic forms, so that there could be N possible bound states of the original

N NS5-branes with this particle. The index for this particle is thus NI+(ǫ1,2,m)(w′)n,

where N comes from N normalizable harmonic forms. The I+ factor appears because this

is exactly the same type of bound states as the half-BPS W-bosons in SYM, as in the IIB

setting. Summing over n and considering the multi-particle Hilbert space, one obtains

PE

[

NI+(ǫ1,2,m)
w′

1− w′

]

. (4.4)

This is (4.3), with q replaced by w′. So the direct counting derives T-duality in this

subsector.

Now we consider the same problem after placing one D6-brane at nonzero FI parameter

(Bµν background along 1234). Again, as in the previous paragraph, we work after T-

dualizing along x11, after which the extra D6-brane becomes a D5-brane along 012345.

The setting of section 3 was that D6 and N NS5-branes are placed at the same point of R3

in the 678 directions. Now T-dualizing along x11, one finds a D5-brane on top of the R4/ZN

singularity of the unresolved Taub-NUT. Now, among the N normalizable harmonic forms

of N -centered Taub-NUT, N − 1 of them are supported at the ZN singularity, where D5 is

sitting. Since the fully winding D1-branes are forced to be bound to D5 at the tip due to

the FI parameter, D1-branes stuck to D5 can still assume one of these N − 1 bound state

wavefunctions. The multi-particle index of the bounds is PE[(N − 1)I+
w′

1−w′ ]. However,

the last normalizable harmonic form of Taub-NUT is not localized at the tip, so D1-branes

confined to D5 cannot be in this bound state. (The forbidden wavefunction is in the twisted

Higgs branch.) Now, note that n D1-branes can also form threshold bounds with single

D5-brane, whose partition function is given by PE[I−
w′

1−w′ ] [22]. (This extra contribution

is also from the twisted Higgs branch, since the D2-D6 bounds still exist after displacing

D6 away from NS5’s.) This is an extra bound state caused by a D6-brane (at ξm 6= 0).

Combining them all, one obtains

PE

[

I−
w′

1− w′
+ (N − 1)I+

w′

1− w′

]

= PE

[

NI+(ǫ1,2,m)
w′

1− w′

]

· Zextra(w
′) (4.5)

in the sector we are considering, where Zextra(w
′) ≡ ∏∞

n=1
1

1−(w′)n ∼ η(w′)−1, and we used

I−−I+ = 1 to get to the right hand side. So in this sector, one finds ẐIIA
string = ZIIA

stringZextra.
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In fact, (4.5) is what one finds from the formulae of section 3 from our gauge theories.

So extending this finding to the full BPS Hilbert space, we naturally conjecture ẐIIA
string =

ZIIA
stringZextra. Then the true partition function of the IIA little string theory is

ZIIA(αi, ǫ1,2,m, q′, w′) = ZIIA
mom ·

ẐIIA
string(αi, ǫ1,2,m, q′, w′)

Zextra(w′)
= η(w′)ZIIA

momẐ
IIA
string , (4.6)

which we shall use to check the T-duality relation (4.2). We checked (4.2) using (4.6) at

N = 1, 2, 3, as summarized in the following subsections. This will nontrivially support the

T-duality of the strong-coupling little string spectra.

4.1 One NS5-brane

We start by considering the index of the U(1) IIB theory, although this should be a free

theory. The perturbative contribution is given by

ZIIB
pert(ǫ±,m; q) = PE

[

I+(ǫ±,m)
q

1− q

]

. (4.7)

The U(1) instanton string partition function is given by

ZIIB
string(ǫ±,m; q, w) =

∑

k=0

wkZk(ǫ±,m; q) , (4.8)

where

Zk =
∑

Y :|Y |=k

∏

s∈Y

θ1 (q;E(s) +m− ǫ−) θ1 (q;E(s)−m− ǫ−)

θ1 (q;E(s)− ǫ1) θ1 (q;E(s) + ǫ2)
, (4.9)

with

E(s) = −ǫ1h(s) + ǫ2v(s) . (4.10)

The full index of the U(1) theory is given by

ZIIB(ǫ±,m; q, w) = ZIIB
pert(ǫ±,m; q)ZIIB

inst(ǫ±,m; q, w) (4.11)

To further explain this index, consider the single instanton string index given by

Z1(ǫ±,m; q) =
θ1 (q;m± ǫ−)

θ1 (q; ǫ1) θ1 (q; ǫ2)
. (4.12)

where θ1(q; a± b) ≡ θ1(q; a+ b)θ1(q; a− b). In terms of Z1, we find up to high orders in w

and q expansions that the multi-instanton string index is given by the Hecke transformation

of Z1,

Zinst(ǫ±,m; q, w) = exp









∞
∑

n=1

1

n
wn

∑

ad=n

a,d∈Z

∑

b(mod d)

Z1

(

aǫ±, am;
aτ + b

d

)









(4.13)

where q = e2πiτ . So we conjecture with confidence that this relation is exact. Its physi-

cal meaning is that, for U(1) instanton strings, the moduli space is given by a symmetric
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NS5
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NS5

D5
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NS5

Figure 4. a) (p, q) fivebranes web dual to rank 1 little string theory. b) Triality between three

Kähler parameters, q̂ = qy−1, ŵ = wy−1, and y.

product of a single instanton moduli space, as elaborated in [6]. Since the Hecke transfor-

mation provides the partition function of the sigma model with symmetric product target

space [29], our finding naturally supports the analysis of [6].

The partition function given by the Hecke transformation appears, for instance, in con-

formal field theories on symmetric product target spaces. This is closely related to the fact

that the moduli-space of U(1) multi-instantons is a symmetric product of the single instan-

ton moduli space R4. More precisely, the symmetric product CFT was suggested to be the

theory at nonzero world-sheet theta angle θ = π [6, 12]. Since the elliptic genus would be in-

sensitive to the continuous parameters, away from ζI = 0, θ = 0, it is natural to have (4.13).

On the IIA side, the 2d N = (0, 4) quiver gauge theory itself has an enhanced N =

(4, 4) SUSY, and becomes precisely the same to the 2d N = (4, 4) ADHM gauge theory

for IIB strings. Therefore,

ẐIIA
string(ǫ±,m; q′, w′) = ZIIB

inst(ǫ±,m, q′, w′) . (4.14)

The extra factor ZIIA
mom on the IIA side is given by

ZIIA
mom(ǫ±,m; q′) = PE

[

I−(ǫ±,m)
q′

1− q′

]

= ZIIB
pert(ǫ±,m, q′)Zextra(q

′) . (4.15)

So the T-duality relation (4.2) is equivalent to ẐIIA(ǫ±,m; q′, w′) ≡ ZIIA
momẐ

IIA
string being

invariant under the exchange of q′ and w′. The last property is in fact true, which can be

understood as the geometric duality of the 5-brane web obtained by T-dualizing our IIA

brane setting along x5 [25], as shown in figure 4. If we write ẐIIA(ǫ±,m; q′, w′) as

ẐIIA(ǫ±,m; q′, w′) = PE
[

I−(ǫ±,m)zsp(ǫ±,m, q′, w′)
]

, (4.16)
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zsp(ǫ±,m) is given by

zsp(ǫ±,m; q′, w′) = (q′ + w′) + (q′2 + w′2) + (q′w′)

[

tu+
t

u
+

1

tu
+

u

t
− uy − y

u
− u

y
− 1

uy

]

+ q′3 + w′3 + (q′2w′ + q′w′2)

[

t2u2 +
t2

u2
+

u2

t2
+

1

t2u2
+ t2 +

1

t2
− tu2y − ty

u2
− tu2

y
− t

u2y

− y

tu2
− u2

ty
− 1

tu2y
− u2y

t
+ tu+

t

u
+

1

tu
+

u

t
− 2ty − 2t

y
− 2

ty
− 2y

t
+ 2u2 +

2

u2
− uy − y

u

−u

y
− 1

uy
+ y2 +

1

y2
+ 4

]

+ (q′4 + w′4) + (q′3w′ + q′w′3)

[

t3u3 +
t3

u3
+

u3

t3
+

1

t3u3
+ t3u+

t3

u

+
u

t3
+

1

t3u
− t2u3y − t2y

u3
− t2u3

y
− t2

u3y
− u3y

t2
− y

t2u3
− u3

t2y
− 1

t2u3y
+ t2u2 +

t2

u2
+

u2

t2

+
1

t2u2
− 2t2uy − 2t2y

u
− 2t2u

y
− 2t2

uy
− 2uy

t2
− 2y

t2u
− 2u

t2y
− 2

t2uy
+ 2t2 +

2

t2
+ 2tu3 +

2t

u3

+
2

tu3
+

2u3

t
− 2tu2y − 2ty

u2
− 2tu2

y
− 2t

u2y
− 2y

tu2
− 2u2

ty
− 2

tu2y
− 2u2y

t
+ tuy2 +

ty2

u
+

tu

y2

+
t

uy2
+

y2

tu
+

u

ty2
+

1

tuy2
+

uy2

t
+ 6tu+

6t

u
+

6

tu
+

6u

t
− 4ty − 4t

y
− 4

ty
− 4y

t
− u3y − y

u3

−u3

y
− 1

u3y
+ u2y2 +

y2

u2
+

u2

y2
+

1

u2y2
+ 4u2 +

4

u2
− 5uy − 5y

u
− 5u

y
− 5

uy
+ 2y2 +

2

y2
+ 8

]

+ (q′2w′2)

[

u4t4 + u2t4 +
t4

u2
+

t4

u4
+ t4 + u3t3 + 2ut3 − u4yt3 − 2u2yt3 − 2yt3 +

2t3

u
− 2yt3

u2

+
t3

u3
− yt3

u4
− u4t3

y
− 2u2t3

y
− 2t3

y
− 2t3

u2y
− t3

u4y
+ 2u4t2 + 7u2t2 + u2y2t2 +

y2t2

u2
+ y2t2

− 2u3yt2 − 5uyt2 − 5yt2

u
+

7t2

u2
− 2yt2

u3
+

2t2

u4
− 2u3t2

y
− 5ut2

y
− 5t2

uy
− 2t2

u3y
+

u2t2

y2
+

t2

y2

+
t2

u2y2
+ 9t2 + 5u3t+ u3y2t+ 4uy2t+

4y2t

u
+

y2t

u3
+ 15ut− u4yt− 7u2yt− 12yt+

15t

u

− 7yt

u2
+

5t

u3
− yt

u4
− u4t

y
− 7u2t

y
− 12t

y
− 7t

u2y
− t

u4y
+

u3t

y2
+

4ut

y2
+

4t

uy2
+

t

u3y2
+

2u4

t2

+
u4

t4
+ 2u4 +

u3

t3
− uy3 +

7u2

t2
+

u2

t4
+ 12u2 +

u2y2

t2
+ 2u2y2 +

y2

t2
+

4y2

tu
+

2y2

u2
+

y2

t2u2
+

y2

tu3

+ 5y2 +
2u

t3
− 4u3y − 14uy − 2u3y

t2
− 5uy

t2
+

9

t2
− u4y

t3
− 2u2y

t3
− 2y

t3
+

1

t4
− y3

u
− 14y

u
+

15

tu

− 5y

t2u
+

2

t3u
+

12

u2
− 7y

tu2
+

7

t2u2
− 2y

t3u2
+

1

t4u2
− 4y

u3
+

5

tu3
− 2y

t2u3
+

1

t3u3
+

2

u4
− y

tu4
+

2

t2u4

− y

t3u4
+

1

t4u4
− 4u3

y
− 14u

y
− u4

ty
− 7u2

ty
− 12

ty
− 2u3

t2y
− 5u

t2y
− u4

t3y
− 2u2

t3y
− 2

t3y
− 14

uy
− 5

t2uy

− 7

tu2y
− 2

t3u2y
− 4

u3y
− 2

t2u3y
− 1

tu4y
− 1

t3u4y
+

2u2

y2
+

5

y2
+

u3

ty2
+

4u

ty2
+

u2

t2y2
+

1

t2y2
+

4

tuy2

+
2

u2y2
+

1

t2u2y2
+

1

tu3y2
− u

y3
− 1

uy3
+ 22 +

5u3

t
+

u3y2

t
+

4uy2

t
+

15u

t
− u4y

t
− 7u2y

t

−12y

t

]

+ · · · . (4.17)

where t = e2πiǫ+ , u = e2πiǫ− , y = e2πim. We checked the symmetry of q′ ↔ w′ exchange up

to 5th orders in q′ and w′.
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Furthermore, defining the following variables,

q̂ = qy−1 , ŵ = wy−1 . (4.18)

triality of exchanging (q̂, ŵ, y) has been discovered in [25]. This is also a geometric duality

of figure 4. Triality is simply realized on the universal covering of the torus, as a subgroup

of Sp(4, Z) duality. To deal with (q̂, ŵ, y) in equal footing, we redefine the index, including

extra perturbative contributions at y ≪ 1, as

Z̃(ǫ±; q̂, ŵ, y) = PE [Icom(ǫ±)y] ẐIIA . (4.19)

Icom(ǫ±) is given by

Icom(ǫ±) =
1

2 sinh 2πiǫ1
2 2 sinh 2πiǫ2

2

=
t

(1− tu)(1− tu−1)
. (4.20)

Writing Z̃ as

Z̃(ǫ±; q̂, ŵ, y) = PE
[

Icomz̃sp(ǫ±; q̂, ŵ, y)
]

, (4.21)

z̃sp is given by

ẑsp(ǫ±; q̂, ŵ, y) = q̂ + ŵ + y − (u+ u−1)(q̂ŵ + q̂y + ŵy) +
(1 + u2)(t+ u+ t2u+ tu2)

tu2
q̂ŵy

+ (q̂2ŵ + q̂ŵ2 + q̂2y + q̂y2 + ŵ2y + ŵy2)− (u+ u−1)(q̂2ŵ2 + q̂2y2 + ŵ2y2)

−
(

u2 + 1
) (

t2
(

u2 + 1
)

+ 2tu+ u2 + 1
)

tu2
q̂ŵy(q̂ + ŵ + y)

+ (q̂3ŵ2 + q̂2ŵ3 + q̂3y2 + q̂2y3 + ŵ3y2 + ŵ2y3) +
(1 + u2)(t+ u+ t2u+ tu2)

tu2
q̂ŵy(q̂2 + ŵ2 + y2)

+
t4
(

u5 + u3 + u
)

+ t3
(

u6 + 4u4 + 4u2 + 1
)

t2u3
q̂ŵy(q̂ŵ + q̂y + ŵy)

+
t2
(

3u4 + 7u2 + 3
)

u+ t
(

u6 + 4u4 + 4u2 + 1
)

+ u5 + u3 + u

t2u3
q̂ŵy(q̂ŵ + q̂y + ŵy)

− (u+ u−1)(q̂3ŵ3 + q̂3y3 + ŵ3y3)

−
(

u2 + 1
) (

t4
(

u4 + u2 + 1
)

+ 3t3
(

u3 + u
))

t2u3
q̂ŵy(q̂2ŵ + q̂ŵ2 + q̂2y + q̂y2 + ŵ2y + ŵy2)

−
(

u2 + 1
) (

2t2
(

u4 + 3u2 + 1
)

+ 3t
(

u3 + u
)

+ u4 + u2 + 1
)

t2u3
q̂ŵy(q̂2ŵ + q̂ŵ2 + (cyclic))

+ · · · (4.22)

reconfirming the expected triality of [25]. It is curious to note that the triality implies the

T-duality of IIA/IIB strings.

4.2 Two NS5-branes

The index of U(2) IIB little string theory is given by

ZIIB(αi, ǫ±,m; q, w) = ZIIB
pert(αi, ǫ±,m; q)ZIIB

inst(αi, ǫ±,m; q, w) , (4.23)
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where

ZIIB
pert(αi, ǫ±,m; q)=PE

[

I+v1 +
(

2I+ + I+(v1 + v−1
1 )

) q

1− q

]

=PE

[

I+
v1 + v2 + 2v1v2

1− v1v2

]

,

(4.24)

with v1 = e2πiα12 , and v2 ≡ qv−1
1 . I+ is given by eq. (2.12). ZIIB

inst is given by

ZIIB
inst(αi, ǫ±,m; q, w) =

∞
∑

k=0

wkZk(αi, ǫ±,m; q) . (4.25)

Zk is obtained from eq. (2.7). Expanding ZIIB
inst(αi, ǫ±,m; q, w) with w, v1, v2 = qv−1

1 , one

obtains

ZIIB
inst(ǫ±,m;w, vi)

= 1− w
2t(u− y)(uy − 1)

y(t− u)(tu− 1)
+ w(v1 + v2)

(

t2 + 1
)

(t− y)(ty − 1)(y − u)(uy − 1)

ty2(t− u)(tu− 1)

+ w(v21 + v22)

(

t2 + 1
) (

t4 + 1
)

(t− y)(ty − 1)(y − u)(uy − 1)

t3y2(t− u)(tu− 1)

+ wv1v2
2(t− y)(ty − 1)(y − u)(uy − 1)

(

t2uy + t(u− y)(uy − 1) + uy
)

tuy3(t− u)(tu− 1)

+ w(v21v2 + v1v
2
2)

(

t2 + 1
)

(t− y)(ty − 1)(y − u)(uy − 1)

t3uy3(t− u)(tu− 1)

×
{

− t(t+ u)(1 + tu)(1 + y2) + (t+ u+ t2u)(1 + t(t+ u))y
}

+ · · · (4.26)

The index for the rank 2 IIA little string theory is given by

ZIIA = Zextra(q)
−1ZIIA

mom(ǫ±,m;w)ẐIIA
string(αi, ǫ±,m;w, q) (4.27)

where we inserted q′ = w, w′ = q. Zextra(q) is given by

Zextra(q) = PE

[

q

1− q

]

= PE

[

v1v2
1− v1v2

]

. (4.28)

ZIIA
mom(ǫ±,m;w) is given by

ZIIA
N=2 mom(ǫ±,m;w) = PE

[

2I−(ǫ±,m)
w

1− w

]

. (4.29)

ẐIIA
string(αi, ǫ±,m;w, q) takes the form of

ẐIIA
string(αi, ǫ±,m;w, q) =

∞
∑

n1,n2=0

(v1)
n1(v2)

n2Z
(n1,n2)
string (ǫ±,m;w) , (4.30)

Note that Z
(n1,n2)
string (ǫ±,m;w) = Z

(n2,n1)
string (ǫ±,m;w), from the symmetry of the quiver.

Z
(n1,n2)
string (ǫ±,m;w) can be easily obtained from (3.15). For instance,

Z
(1,0)
string(ǫ±,m;w) =

θ1(w,m± ǫ+)

θ1(w, ǫ1)θ1(w, ǫ2)
, Z

(1,1)
string(ǫ±,m;w) =

θ1(w,m± ǫ−)
2

θ1(w, ǫ1)2θ1(w, ǫ2)2
(4.31)
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Z
(2,0)
string(ǫ±,m;w) = Z

(1,0)
string ·

(

θ1 (w; ǫ+ + ǫ1 ±m)

θ1 (w; 2ǫ1) θ1 (w; ǫ1 − ǫ2)
− (ǫ1 ↔ ǫ2)

)

(4.32)

We write the indices of the IIA/IIB little string theories as

ZIIB(αi, ǫ±,m;w, vi) = PE



Icom(t, u)
∞
∑

i,j,k=0

F IIB
ijk (t, u, y)w

ivj1v
k
2



 , (4.33)

ZIIA(αi, ǫ±,m;w, vi) = PE



Icom(t, u)
∞
∑

i,j,k=0

F IIA
ijk (t, u, y)wivj1v

k
2



 , (4.34)

where Icom is given by eq. (4.20). The coefficients F IIB
ijk (t, u, y) are polynomials of t = e2πiǫ+ ,

u = e2πiǫ− , and y = e2πim. It is easily checked that F IIB
ijk (t, u, y) = F IIB

ikj (t, u, y).

T-duality implies that F IIA
ijk = F IIB

ijk ≡ Fijk. We check T-daulity by comparing F IIA
ijk

and F IIB
ijk . We checked the agreements for

F000 = 1 , F010 = −t− 1

t
+ y +

1

y
, F011 = −2t− 2

t
+ 2y +

2

y
(4.35)

F020 = 0 , F021 = −t− 1

t
+ y +

1

y
, F022 = −2t− 2

t
+ 2y +

2

y
(4.36)

F100 = −2u− 2

u
+ 2y +

2

y
, (4.37)

F110 = −t
2
u− t2

u
− u

t2
− 1

t2u
+ t

2
y +

t2

y
+

y

t2
+

1

t2y
+ tuy +

ty

u
+

tu

y
+

t

uy
+

y

tu
+

u

ty

+
1

tuy
+

uy

t
− ty

2 − t

y2
− 1

ty2
− y2

t
− 2t− 2

t
− 2u− 2

u
+ 2y +

2

y
(4.38)

F111 = −2t2u− 2u

t2
− 2t2

u
− 2

t2u
+ 2t2y +

2y

t2
+

2

t2y
+

2t2

y
− 2tu2 − 2u2

t
− 2t

u2
− 2

tu2
+ 6tuy

+
6uy

t
+

6ty

u
+

6y

tu
+

6u

ty
+

6t

uy
+

6

tuy
+

6tu

y
− 4ty2 − 4y2

t
− 4t

y2
− 4

ty2
− 12t− 12

t
+ 2u2

y

+
2y

u2
+

2

u2y
+

2u2

y
− 4uy2 − 4y2

u
− 4u

y2
− 4

uy2
− 12u− 12

u
+ 2y3 +

2

y3
+ 14y +

14

y
(4.39)

F120 = −t
4
u− t4

u
− u

t4
− 1

t4u
+ t

4
y +

t4

y
+

y

t4
+

1

t4y
+ t

3
uy +

t3y

u
+

t3u

y
+

t3

uy
+

uy

t3
+

y

t3u

+
u

t3y
+

1

t3uy
− t

3
y
2 − t3

y2
− y2

t3
− 1

t3y2
− 2t3 − 2

t3
− 2t2u− 2t2

u
− 2u

t2
− 2

t2u
+ 2t2y +

2t2

y

+
2y

t2
+

2

t2y
+ tuy +

ty

u
+

tu

y
+

t

uy
+

y

tu
+

u

ty
+

1

tuy
+

uy

t
− ty

2 − t

y2
− 1

ty2
− y2

t
− 2t− 2

t

− 2u− 2

u
+ 2y +

2

y
(4.40)

F121 = −t
4
u+ yt

4 − t4

u
+

t4

y
− u

2
t
3 − 2y2

t
3 + 3uyt3 +

3yt3

u
− t3

u2
+

3ut3

y
+

3t3

uy
− 2t3

y2
− 6t3

+ y
3
t
2 − 3uy2

t
2 − 11ut2 + 2u2

yt
2 +

2yt2

u2
+ 12yt2 − 3y2t2

u
− 11t2

u
+

2u2t2

y
+

12t2

y
+

2t2

u2y

− 3ut2

y2
− 3t2

uy2
+

t2

y3
+ uy

3
t+

y3t

u
− 5u2

t− u
2
y
2
t− 9y2

t+ 13uyt+
13yt

u
− y2t

u2
− 5t

u2
+

13ut

y

+
13t

uy
− u2t

y2
− 9t

y2
− t

u2y2
+

ut

y3
+

t

uy3
− 24t+

y3

t2
+

y3

tu
+ 2y3 − 6uy2 − 20u+

2u2y

t2
+ 4u2

y

+
3uy

t3
+

12y

t2
+

y

t4
+

13y

tu
+

3y

t3u
+

4y

u2
+

2y

t2u2
+ 22y − 3uy2

t2
− 11u

t2
− u2

t3
− 2y2

t3
− 6

t3
− u

t4
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− 6y2

u
− 20

u
− 3y2

t2u
− 11

t2u
− 1

t4u
− y2

tu2
− 5

tu2
− 1

t3u2
+

4u2

y
+

22

y
+

13u

ty
+

2u2

t2y
+

12

t2y
+

3u

t3y

+
1

t4y
+

13

tuy
+

3

t3uy
+

4

u2y
+

2

t2u2y
− 6u

y2
− u2

ty2
− 9

ty2
− 3u

t2y2
− 2

t3y2
− 6

uy2
− 3

t2uy2
− 1

tu2y2

+
2

y3
+

u

ty3
+

1

t2y3
+

1

tuy3
+

uy3

t
− 5u2

t
− u2y2

t
− 9y2

t
+

13uy

t
− 24

t
(4.41)

F122 = −2ut4 + 2yt4 − 2t4

u
+

2t4

y
− 2u2

t
3 − 4y2

t
3 + 6uyt3 +

6yt3

u
− 2t3

u2
+

6ut3

y
+

6t3

uy
− 4t3

y2

− 12t3 − 2u3
t
2 + 2y3

t
2 − 8uy2

t
2 − 32ut2 + 8u2

yt
2 +

8yt2

u2
+ 32yt2 − 8y2t2

u
− 32t2

u
− 2t2

u3
+

8u2t2

y

+
32t2

y
+

8t2

u2y
− 8ut2

y2
− 8t2

uy2
+

2t2

y3
+ 6uy3

t+
6y3t

u
− 24u2

t− 8u2
y
2
t− 36y2

t+ 2u3
yt+ 52uyt

+
52yt

u
+

2yt

u3
− 8y2t

u2
− 24t

u2
+

2u3t

y
+

52ut

y
+

52t

uy
+

2t

u3y
− 8u2t

y2
− 36t

y2
− 8t

u2y2
+

6ut

y3
+

6t

uy3

− 88t− 2uy4 − 4u3 + 2u2
y
3 +

2y3

t2
+

6y3

tu
+

2y3

u2
+ 14y3 − 32uy2 − 88u+

8u2y

t2
+ 24u2

y +
6uy

t3

+
32y

t2
+

2y

t4
+

52y

tu
+

6y

t3u
+

24y

u2
+

8y

t2u2
+

2y

tu3
+ 94y − 2u3

t2
− 8uy2

t2
− 32u

t2
− 2u2

t3
− 4y2

t3
− 12

t3

− 2u

t4
− 2y4

u
− 32y2

u
− 88

u
− 8y2

t2u
− 32

t2u
− 2

t4u
− 8y2

tu2
− 24

tu2
− 2

t3u2
− 4

u3
− 2

t2u3
+

24u2

y
+

94

y

+
2u3

ty
+

52u

ty
+

8u2

t2y
+

32

t2y
+

6u

t3y
+

2

t4y
+

52

tuy
+

6

t3uy
+

24

u2y
+

8

t2u2y
+

2

tu3y
− 32u

y2
− 8u2

ty2

− 36

ty2
− 8u

t2y2
− 4

t3y2
− 32

uy2
− 8

t2uy2
− 8

tu2y2
+

2u2

y3
+

14

y3
+

6u

ty3
+

2

t2y3
+

6

tuy3
+

2

u2y3
− 2u

y4

− 2

uy4
+

6uy3

t
− 24u2

t
− 8u2y2

t
− 36y2

t
+

2u3y

t
+

52uy

t
− 88

t
(4.42)

F200 = −2u− 2

u
+ 2y +

2

y
, (4.43)

F210 = −t
3
u
2 − t3

u2
− u2

t3
− 1

t3u2
+ t

3
uy +

t3y

u
+

t3u

y
+

t3

uy
+

uy

t3
+

y

t3u
+

u

t3y
+

1

t3uy
− 2t3

− 2

t3
+ t

2
u
2
y +

t2y

u2
+

t2u2

y
+

t2

u2y
+

u2y

t2
+

y

t2u2
+

u2

t2y
+

1

t2u2y
− t

2
uy

2 − t2y2

u
− t2u

y2
− t2

uy2

− uy2

t2
− y2

t2u
− u

t2y2
− 1

t2uy2
− 3t2u− 3t2

u
− 3u

t2
− 3

t2u
+ 3t2y +

3t2

y
+

3y

t2
+

3

t2y
− 2tu2 − 2t

u2

− 2

tu2
− 2u2

t
+ 4tuy +

4ty

u
+

4tu

y
+

4t

uy
+

4y

tu
+

4u

ty
+

4

tuy
+

4uy

t
− 2ty2 − 2t

y2
− 2

ty2
− 2y2

t
− 8t

− 8

t
+ u

2
y +

y

u2
+

u2

y
+

1

u2y
− 2uy2 − 2y2

u
− 2u

y2
− 2

uy2
− 6u− 6

u
+ y

3 +
1

y3
+ 7y +

7

y
(4.44)

F211 = −ty
4 − uy

4 − y4

t
− y4

u
+ 2t2y3 + 2u2

y
3 + 6tuy3 +

6uy3

t
+

2y3

t2
+

6ty3

u
+

6y3

tu
+

2y3

u2

+ 14y3 − t
3
y
2 − u

3
y
2 − 9tu2

y
2 − 33ty2 − 9t2uy2 − 33uy2 − 9u2y2

t
− 33y2

t
− 9uy2

t2
− y2

t3
− 9t2y2

u

− 33y2

u
− 9y2

t2u
− 9ty2

u2
− 9y2

tu2
− y2

u3
+ 4tu3

y +
4u3y

t
+ 28t2y + 10t2u2

y +
10u2y

t2
+ 28u2

y + 4t3uy

+ 52tuy +
52uy

t
+

4uy

t3
+

28y

t2
+

4t3y

u
+

52ty

u
+

52y

tu
+

4y

t3u
+

10t2y

u2
+

28y

u2
+

10y

t2u2
+

4ty

u3
+

4y

tu3

+ 90y − 8t3 − 3t2u3 − 8u3 − 3t3u2 − 29tu2 − 86t− 29t2u− 86u− 29u2

t
− 86

t
− 3u3

t2
− 29u

t2

− 3u2

t3
− 8

t3
− 29t2

u
− 86

u
− 29

t2u
− 3t3

u2
− 29t

u2
− 29

tu2
− 3

t3u2
− 3t2

u3
− 8

u3
− 3

t2u3
+

4u3

ty
+

52u

ty

+
10u2

t2y
+

28

t2y
+

4u

t3y
+

4t3

uy
+

52t

uy
+

52

tuy
+

4

t3uy
+

10t2

u2y
+

28

u2y
+

10

t2u2y
+

4t

u3y
+

4

tu3y
− t3

y2
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Figure 5. (p, q) fivebranes web dual to rank 2 little string theory.

− u3

y2
− 9tu2

y2
− 33t

y2
− 9t2u

y2
− 33u

y2
− 9u2

ty2
− 33

ty2
− 9u

t2y2
− 1

t3y2
− 9t2

uy2
− 33

uy2
− 9

t2uy2
− 9t

u2y2

− 9

tu2y2
− 1

u3y2
+

2t2

y3
+

2u2

y3
+

6tu

y3
+

14

y3
+

6u

ty3
+

2

t2y3
+

6t

uy3
+

6

tuy3
+

2

u2y3
− t

y4
− u

y4
− 1

ty4

− 1

uy4
+

4tu3

y
+

28t2

y
+

10t2u2

y
+

28u2

y
+

4t3u

y
+

52tu

y
+

90

y
, (4.45)

and further up to F444(t, u, y).

Let us define the following variables,

ŵ = wy−1 , v̂1 = v1y
−1 , v̂2 = v2y

−1 (4.46)

We can check ŵ ↔ y exchange symmetry of the index. This is an analog of the triality

exchanging (q̂, ŵ, y) at N = 1. It can be understood as a geometric duality of the dual

(p, q)-fivebrane web diagram figure 5 of the rank 2 little string theory. Namely, let us define

the index

Z̃ = PE[2Icomy]ẐIIA . (4.47)

We find that Z̃ is invariant under the ŵ ↔ y exchange, to some high orders in fugacities.

4.3 Three NS5-branes

The index of U(3) IIB little string theory is given by

ZIIB(αi, ǫ±,m; q, w) = ZIIB
pert(αi, ǫ±,m; q)ZIIB

inst(αi, ǫ±,m; q, w) (4.48)

with

ZIIB
pert = PE

[

I+(v1 + v2 + v1v2) + 3I+
q

1− q

]

× PE

[

I+
(

v1 + v−1
1 + v2 + v−1

2 + v1v2 + v−1
1 v−1

2

) q

1− q

]
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= PE

[

I+
v1 + v2 + v3 + v1v2 + v1v2 + v2v3 + 3v1v2v3

1− v1v2v3

]

. (4.49)

where v1 = e2πiα12 , v2 = e2πiα23 , and v3 = qv−1
1 v−1

2 . Zk’s appearing in ZIIB
inst are obtained

from eq. (2.7).

The index of the rank 3 IIA little string theory is given by

ZIIA = Zextra(q)
−1ZIIA

mom(ǫ±,m;w)ẐIIA
string(αi, ǫ±,m;w, q)

= Zextra(q)
−1ZIIA

mom(ǫ±,m;w)
∞
∑

ni=0

vn1
1 vn2

2 vn3
3 Z

(n1,n2,n3)
string (ǫ±,m;w) (4.50)

Zextra(q) is given by

Zextra = PE

[

q

1− q

]

= PE

[

v1v2v3
1− v1v2v3

]

(4.51)

ZIIA
mom(ǫ±,m;w) is given by

ZIIA
mom(ǫ±,m;w) = PE

[

3I−(ǫ±,m)
w

1− w

]

. (4.52)

Note that Z
(n1,n2,n3)
string is invariant under the permutation of n1, n2 and n3, from the sym-

metry of the quiver. The elliptic genera of the IIA fractional little strings, Z
(n1,n2,n3)
string , are

obtained from eq. (3.15). For example,

Z
(1,0,0)
string (ǫ±,m;w) =

θ1(w,m± ǫ+)

θ1(w, ǫ1)θ1(w, ǫ2)
, Z

(1,1,0)
string (ǫ±,m;w) =

θ1 (w;m± ǫ−) θ1 (w;m± ǫ+)

θ1 (w; ǫ1) 2θ1 (w; ǫ2) 2

(4.53)

Z
(2,0,0)
string (ǫ±,m;w) = Z

(1,0,0)
string ·

(

θ1 (w; ǫ+ + ǫ1 ±m)

θ1 (w; 2ǫ1) θ1 (w; ǫ1 − ǫ2)
− (ǫ1 ↔ ǫ2)

)

(4.54)

Z
(1,1,1)
string (ǫ±,m;w) =

θ1(w,m± ǫ−)
3

θ1(w, ǫ1)3θ1(w, ǫ2)3
(4.55)

We write the IIB/IIA indices as

ZIIB(αi, ǫ±,m;w, vi) = PE



Icom(t, u)
∞
∑

i,j,k,l=0

F IIB
ijkl(t, u, y)w

ivj1v
k
2v

l
3



 , (4.56)

ZIIA(αi, ǫ±,m;w, vi) = PE



Icom(t, u)
∞
∑

i,j,k,l=0

F IIA
ijkl(t, u, y)w

ivj1v
k
2v

l
3



 , (4.57)

where Icom is given by eq. (4.20). The coefficients Fijkl(t, u, y) are polynomials of t, u, and

y, satisfying Fijkl = Fi(jkl).

T-duality implies that F IIA
ijkl = F IIB

ijkl ≡ Fijkl. We checked this for higher orders of the

fugacity variables. Fijkl are given by

F0100 = −t− 1

t
+ y +

1

y
, F0200 = 0 , F0110 = −t− 1

t
+ y +

1

y
, F0210 = 0 (4.58)
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F0111 = −3t− 3

t
+ 3y +

3

y
, F0220 = 0 , F0211 = −t− 1

t
+ y +

1

y
(4.59)

F0221 = −t− 1

t
+ y +

1

y
, F0222 = −3t− 3

t
+ 3y +

3

y
, F1000 = −3u− 3

u
+ 3y +

3

y
(4.60)

F1100 = −t
2
u− t2

u
− u

t2
− 1

t2u
+ t

2
y +

t2

y
+

y

t2
+

1

t2y
+ tuy +

ty

u
+

tu

y
+

t

uy
+

y

tu
+

u

ty
+

1

tuy

+
uy

t
− ty

2 − t

y2
− 1

ty2
− y2

t
− 2t− 2

t
− 2u− 2

u
+ 2y +

2

y
(4.61)

F1200 = −t
4
u− t4

u
− u

t4
− 1

t4u
+ t

4
y +

t4

y
+

y

t4
+

1

t4y
+ t

3
uy +

t3y

u
+

t3u

y
+

t3

uy
+

uy

t3
+

y

t3u

+
u

t3y
+

1

t3uy
− t

3
y
2 − t3

y2
− y2

t3
− 1

t3y2
− 2t3 − 2

t3
− 2t2u− 2t2

u
− 2u

t2
− 2

t2u
+ 2t2y

+
2t2

y
+

2y

t2
+

2

t2y
+ tuy +

ty

u
+

tu

y
+

t

uy
+

y

tu
+

u

ty
+

1

tuy
+

uy

t
− ty

2 − t

y2
− 1

ty2

− y2

t
− 2t− 2

t
− 2u− 2

u
+ 2y +

2

y
(4.62)

F1110 = −2t2u− 2u

t2
− 2t2

u
− 2

t2u
+ 2t2y +

2y

t2
+

2

t2y
+

2t2

y
+ 3tuy +

3uy

t
+

3ty

u
+

3y

tu
+

3u

ty

+
3t

uy
+

3

tuy
+

3tu

y
− 3ty2 − 3y2

t
− 3t

y2
− 3

ty2
− 6t− 6

t
− uy

2 − y2

u
− u

y2
− 1

uy2
− 6u

− 6

u
+ y

3 +
1

y3
+ 7y +

7

y
(4.63)

F1210 = −t
4
u− t4

u
− u

t4
− 1

t4u
+ t

4
y +

t4

y
+

y

t4
+

1

t4y
+ 2t3uy +

2t3y

u
+

2t3u

y
+

2t3

uy
+

2uy

t3
+

2y

t3u

+
2u

t3y
+

2

t3uy
− 2t3y2 − 2t3

y2
− 2y2

t3
− 2

t3y2
− 4t3 − 4

t3
− t

2
uy

2 − t2y2

u
− t2u

y2
− t2

uy2
− uy2

t2

− y2

t2u
− u

t2y2
− 1

t2uy2
− 5t2u− 5t2

u
− 5u

t2
− 5

t2u
+ t

2
y
3 +

t2

y3
+

y3

t2
+

1

t2y3
+ 6t2y +

6t2

y

+
6y

t2
+

6

t2y
+ 4tuy +

4ty

u
+

4tu

y
+

4t

uy
+

4y

tu
+

4u

ty
+

4

tuy
+

4uy

t
− 4ty2 − 4t

y2
− 4

ty2
− 4y2

t

− 8t− 8

t
− uy

2 − y2

u
− u

y2
− 1

uy2
− 6u− 6

u
+ y

3 +
1

y3
+ 7y +

7

y
(4.64)

F1111 = −6t2u− 6u

t2
− 6t2

u
− 6

t2u
+ 6t2y +

6y

t2
+

6

t2y
+

6t2

y
− 3tu2 − 3u2

t
− 3t

u2
− 3

tu2
+ 15tuy

+
15uy

t
+

15ty

u
+

15y

tu
+

15u

ty
+

15t

uy
+

15

tuy
+

15tu

y
− 12ty2 − 12y2

t
− 12t

y2
− 12

ty2
− 30t

− 30

t
+ 3u2

y +
3y

u2
+

3

u2y
+

3u2

y
− 9uy2 − 9y2

u
− 9u

y2
− 9

uy2
− 30u− 30

u
+ 6y3 +

6

y3

+ 36y +
36

y
(4.65)

F1220 = −2t4u− 2t4

u
− 2u

t4
− 2

t4u
+ 2t4y +

2t4

y
+

2y

t4
+

2

t4y
+ 3t3uy +

3t3y

u
+

3t3u

y
+

3t3

uy
+

3uy

t3

+
3y

t3u
+

3u

t3y
+

3

t3uy
− 3t3y2 − 3t3

y2
− 3y2

t3
− 3

t3y2
− 6t3 − 6

t3
− t

2
uy

2 − t2y2

u
− t2u

y2
− t2

uy2

− uy2

t2
− y2

t2u
− u

t2y2
− 1

t2uy2
− 8t2u− 8t2

u
− 8u

t2
− 8

t2u
+ t

2
y
3 +

t2

y3
+

y3

t2
+

1

t2y3
+ 9t2y

+
9t2

y
+

9y

t2
+

9

t2y
+ 7tuy +

7ty

u
+

7tu

y
+

7t

uy
+

7y

tu
+

7u

ty
+

7

tuy
+

7uy

t
− 7ty2 − 7t

y2
− 7

ty2

− 7y2

t
− 14t− 14

t
− 2uy2 − 2y2

u
− 2u

y2
− 2

uy2
− 12u− 12

u
+ 2y3 +

2

y3
+ 14y +

14

y
(4.66)
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F1211 = −2ut4 + 2yt4 − 2t4

u
+

2t4

y
− u

2
t
3 − 5y2

t
3 + 6uyt3 +

6yt3

u
− t3

u2
+

6ut3

y
+

6t3

uy
− 5t3

y2

− 12t3 + 4y3
t
2 − 6uy2

t
2 − 22ut2 + 2u2

yt
2 +

2yt2

u2
+ 26yt2 − 6y2t2

u
− 22t2

u
+

2u2t2

y
+

26t2

y

+
2t2

u2y
− 6ut2

y2
− 6t2

uy2
+

4t2

y3
− y

4
t+ 2uy3

t+
2y3t

u
− 5u2

t− u
2
y
2
t− 24y2

t+ 27uyt+
27yt

u

− y2t

u2
− 5t

u2
+

27ut

y
+

27t

uy
− u2t

y2
− 24t

y2
− t

u2y2
+

2ut

y3
+

2t

uy3
− t

y4
− 52t+

4y3

t2
+

2y3

tu

+ 9y3 − 13uy2 − 42u+
2u2y

t2
+ 4u2

y +
6uy

t3
+

26y

t2
+

2y

t4
+

27y

tu
+

6y

t3u
+

4y

u2
+

2y

t2u2
+ 51y

− 6uy2

t2
− 22u

t2
− u2

t3
− 5y2

t3
− 12

t3
− 2u

t4
− 13y2

u
− 42

u
− 6y2

t2u
− 22

t2u
− 2

t4u
− y2

tu2
− 5

tu2

− 1

t3u2
+

4u2

y
+

51

y
+

27u

ty
+

2u2

t2y
+

26

t2y
+

6u

t3y
+

2

t4y
+

27

tuy
+

6

t3uy
+

4

u2y
+

2

t2u2y
− 13u

y2

− u2

ty2
− 24

ty2
− 6u

t2y2
− 5

t3y2
− 13

uy2
− 6

t2uy2
− 1

tu2y2
+

9

y3
+

2u

ty3
+

4

t2y3
+

2

tuy3
− 1

ty4

− y4

t
+

2uy3

t
− 5u2

t
− u2y2

t
− 24y2

t
+

27uy

t
− 52

t
(4.67)

F2000 = −3u− 3

u
+ 3y +

3

y
(4.68)

F2100 = −t
3
u
2 − t3

u2
− u2

t3
− 1

t3u2
+ t

3
uy +

t3y

u
+

t3u

y
+

t3

uy
+

uy

t3
+

y

t3u
+

u

t3y
+

1

t3uy
− 2t3

− 2

t3
+ t

2
u
2
y +

t2y

u2
+

t2u2

y
+

t2

u2y
+

u2y

t2
+

y

t2u2
+

u2

t2y
+

1

t2u2y
− t

2
uy

2 − t2y2

u
− t2u

y2

− t2

uy2
− uy2

t2
− y2

t2u
− u

t2y2
− 1

t2uy2
− 3t2u− 3t2

u
− 3u

t2
− 3

t2u
+ 3t2y +

3t2

y
+

3y

t2
+

3

t2y

− 2tu2 − 2t

u2
− 2

tu2
− 2u2

t
+ 4tuy +

4ty

u
+

4tu

y
+

4t

uy
+

4y

tu
+

4u

ty
+

4

tuy
+

4uy

t
− 2ty2 − 2t

y2

− 2

ty2
− 2y2

t
− 8t− 8

t
+ u

2
y +

y

u2
+

u2

y
+

1

u2y
− 2uy2 − 2y2

u
− 2u

y2
− 2

uy2
− 6u− 6

u

+ y
3 +

1

y3
+ 7y +

7

y
(4.69)

F2110 = −ty
4 − y4

t
+ 2t2y3 + 3tuy3 +

3uy3

t
+

2y3

t2
+

3ty3

u
+

3y3

tu
+ 7y3 − t

3
y
2 − 2tu2

y
2 − 17ty2

− 7t2uy2 − 16uy2 − 2u2y2

t
− 17y2

t
− 7uy2

t2
− y2

t3
− 7t2y2

u
− 16y2

u
− 7y2

t2u
− 2ty2

u2
− 2y2

tu2

+ 19t2y + 5t2u2
y +

5u2y

t2
+ 9u2

y + 4t3uy + 26tuy +
26uy

t
+

4uy

t3
+

19y

t2
+

4t3y

u
+

26ty

u

+
26y

tu
+

4y

t3u
+

5t2y

u2
+

9y

u2
+

5y

t2u2
+ 45y − 8t3 − 3t3u2 − 12tu2 − 48t− 17t2u− 38u− 12u2

t

− 48

t
− 17u

t2
− 3u2

t3
− 8

t3
− 17t2

u
− 38

u
− 17

t2u
− 3t3

u2
− 12t

u2
− 12

tu2
− 3

t3u2
+

26u

ty
+

5u2

t2y
+

19

t2y

+
4u

t3y
+

4t3

uy
+

26t

uy
+

26

tuy
+

4

t3uy
+

5t2

u2y
+

9

u2y
+

5

t2u2y
− t3

y2
− 2tu2

y2
− 17t

y2
− 7t2u

y2
− 16u

y2

− 2u2

ty2
− 17

ty2
− 7u

t2y2
− 1

t3y2
− 7t2

uy2
− 16

uy2
− 7

t2uy2
− 2t

u2y2
− 2

tu2y2
+

2t2

y3
+

3tu

y3
+

7

y3
+

3u

ty3

+
2

t2y3
+

3t

uy3
+

3

tuy3
− t

y4
− 1

ty4
+

19t2

y
+

5t2u2

y
+

9u2

y
+

4t3u

y
+

26tu

y
+

45

y
(4.70)

and so on.

For the rank 3 indices, we can also check the duality of exchanging ŵ = wy−1 and y.
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5 SL(2, Z) transformations of the elliptic genus

The index of the winding IIB little strings is given by

ZIIB
inst(αi, ǫ±,m; q, w) =

∞
∑

k=1

wk
∑

Y :
∑

i |Yi|=k

N
∏

i,j=1

∏

s∈Yi

θ1 (q;Eij +m− ǫ−) θ1 (q;Eij −m− ǫ−)

θ1 (q;Eij − ǫ1) θ1 (q;Eij + ǫ2)

(5.1)

where

Eij = αi − αj − ǫ1hi(s) + ǫ2vj(s) . (5.2)

q and w are given by

q = e2πiτ , w = e2πiρ , (5.3)

where τ = i
Rβ

RIIB
is the complex structure on the torus, α′ρ = iRβRIIB is the Kähler

parameter of it, and Rβ is the radius of the temporal circle.

The modular transformation of the Jacobi’s theta function is given by

θ1

(

−1

τ
;
z

τ

)

= −i(−iτ
1
2 ) exp

(

iπz2

τ

)

θ1(τ ; z) (5.4)

Using this property, the S-duality transformation of ZIIB
inst in τ is given by

∞
∑

k=1

wk exp

(

−2πi
m2 − ǫ2+

τ
kN

)

∑

Y :
∑

i
|Yi|=k

N
∏

i,j=1

∏

s∈Yi

θ1

(

− 1
τ
;
Eij+m−ǫ−

τ

)

θ1

(

− 1
τ
;
Eij−m−ǫ−

τ

)

θ1

(

− 1
τ
;
Eij−ǫ1

τ

)

θ1

(

− 1
τ
;
Eij+ǫ2

τ

) .

(5.5)

Transforming the fugacity variable for the winding number, w by

w → w̃ = e−2πi
m2−ǫ2+

τ
Nw , (5.6)

ZIIB
inst is invariant under the following transformation,

q = e2πiτ → q̃ = e−
2πi
τ , w → w̃ = e−2πi

m2−ǫ2+
τ

Nw . (5.7)

The elliptic genus of the IIA strings is given by

ẐIIA
string(αi, ǫ±,m; q′, w′) =

∞
∑

ni=0

e2πi
∑N

i=1 niαi,i+1Z
(n1,...,nN )
string (ǫ±,m; q′) (5.8)

=
∞
∑

ni=0

(v1)
n1 · · · (vN )nNZ

(n1,...,nN )
string (ǫ±,m; q′)

=
∞
∑

ni=0

(v1)
n1−nN · · · (vN−1)

nN−1−nN (w′)nNZ
(n1,...,nN )
string (ǫ±,m; q′)

where vi = e2πi(αi,i+1) and e−2πi(αN+1) = e−2πiα1w′. Z
(n1,...,nN )
string is given by

Z
(n1,...,nN )
string (ǫ±,m; q′) =

∑

{Y1,··· ,YN};|Yi|=ni

N
∏

i=1

∏

(a,b)∈Yi

θ1(q
′;E

(a,b)
i,i+1 −m+ ǫ−)θ1(q

′;E
(a,b)
i,i−1 +m+ ǫ−)

θ1(q′;E
(a,b)
i,i + ǫ1)θ1(q′;E

(a,b)
i,i − ǫ2)

,

(5.9)
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where

E
(a,b)
ij = (Yi,a − b)ǫ1 − (Y T

j,b − a)ǫ2 . (5.10)

Upon T-duality transformation, the complex structure and the Kähler parameter are ex-

changed. The modular transformation of Z
(n1,...,nN )
string in ρ ≡ τ ′ is given by

Z
(n1,··· ,nN )
string (ǫ±,m; ρ) (5.11)

= exp

[

−πi

ρ

(

ǫ1ǫ2

N
∑

a=1

(na − na+1)
2 + 2(m2 − ǫ2+)

N
∑

a=1

na

)]

· Z(n1,··· ,nN )
string

(

ǫ±
ρ
,
m

ρ
;−1

ρ

)

.

where nN+1 = n1. Via T-duality relation, this would imply a definite S-duality transforma-

tion of ZIIB in ρ, which would have been difficult to obtain directly without knowing the

T-dual expression. Note that the above S-duality transformation becomes paraticularly

simpler when n1 = n2 = · · · = nN :

Z
(n,··· ,n)
string (ǫ±,m; ρ) = exp

[

−2πi

ρ
(m2 − ǫ2+)Nn

]

· Z(n1,··· ,nN )
string

(

ǫ±
ρ
,
m

ρ
;−1

ρ

)

. (5.12)

The prefactor can be absorbed into a scaling of w′ = q fugacity, conjugate to n. This

expression might be useful to understand the DLCQ of type IIB little strings, in which

U(n)N gauge theory description was used [7].

6 Concluding remarks

In this paper, we explored the 2 dimensional N = (4, 4) and N = (0, 4) gauge theory

descriptions of macroscopic IIA/IIB little strings. In particular, we proposed a new (0, 4)

gauge theory which enables the computation of the IIA strings’ elliptic genera. We used

these elliptic genera to study the little string T-duality.

The elliptic genus is enjoying SL(2,Z)× SL(2,Z) symmetry on the complex structure

τ and Kahler parameter ρ of the torus. Interesting extended dualities were studied in [25]

for 6d maximal SYM theory compactified on T 2, from its Seiberg-Witten curve. It will be

interesting to see whether a larger duality than what we explored here is realized in the

elliptic genera.

It will also be interesting to see if one can study the T-duality of elliptic genera for the

heterotic little string theories, living on the heterotic 5-branes in the SO(32) and E8 × E8

theories. Just like our IIA strings are closely related to the ‘M-strings’ of 6d (2, 0) CFT,

the E8×E8 little strings would be closely related to the so-called E-strings of the 6d (1, 0)

CFT, with E8 global symmetry [30, 31]. The E-string elliptic genera have been recently

studied in [32], from 2d (0, 4) gauge theories.

Finally, the self-dual string elliptic genera in 6d SCFTs turn out to be related to other

interesting observables, such as the superconformal indices [33–38]. It will be interesting

to see if the elliptic genera for little strings also find similar interesting applications.
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A N = (4, 4) gauge theory of IIB strings

The Lagrangian of the 2d N = (4, 4) gauge theory for IIB strings is given by

L = L1 + L2 . (A.1)

L1 is given by

L1 =
1

g2QM

Tr

[

−1

4
(Fµν)

2 − 1

2
(DµϕaA)(D

µ
ϕ

Aa)− 1

2
(Dµaαβ̇)(D

µ
a
β̇α) +

1

2
[aαβ̇ , ϕaA]

2

+
i

2
(λ̄α̇

a )
†(Dt +Ds)λ̄

α̇
a +

i

2
(λ̄Aα̇)†(Dt −Ds)λ̄

Aα̇ +
i

2
(λA

α )
†(Dt +Ds)λ

A
α +

i

2
(λaα)

†(Dt −Ds)λaα

+
1

2
D

I
D

I −D
I
(

q̄
α̇
qβ̇(τ

I)α̇β̇ +
1

2
(τ I)α̇β̇ [a

β̇α
, aαα̇]− ζ

I
)

+
1

2
D

I′
D

I′ −D
I′
(1

2
(τ I′)AB [ϕ

Ba
, ϕaA]

)

− i√
2
(λaα)

†[aαβ̇ , λ̄
β̇
a ]−

i√
2
(λA

α )
†[aαβ̇ , λ̄

Aβ̇ ] +
i√
2
(λ̄Aα̇)†[aα̇β

, λ
A
β ] +

i√
2
(λ̄α̇

a )
†[aα̇β

, λaβ ]

+
i√
2
(λ̄α̇

a )
†[ϕaA, λ̄

Aα̇] +
i√
2
(λ̄Aα̇)†[ϕAa

, λ̄
α̇
a ]−

i√
2
(λaα)

†[ϕaA, λ
A
α ]−

i√
2
(λA

α )
†[ϕAa

, λaα]

]

. (A.2)

L2 is given by,

L2 = Tr
[

−Dµq̄
α̇Dµqα̇ − ϕaAq̄

α̇qα̇ϕ
Aa + i(ψa)

†(Dt −Ds)ψa + i(ψA)†(Dt +Ds)ψ
A

+
√
2(ψa)

†(ψAϕaA) +
√
2(ψA)†(ψaϕ

Aa) + i
√
2(λα̇

a )
†q̄α̇ψa + i

√
2(λ̄Aα̇)†q̄α̇ψA

−i
√
2(ψa)

†qα̇λ̄
α̇
a − i

√
2(ψA)†qα̇λ̄

Aα̇
)]

. (A.3)

In the Higgs branch, the theory describes IIB strings bound to the NS5-branes, whose

target space is the k instanton moduli space.

The reality condition of the scalar fields is given by

aαα̇ =
1√
2
(σm)αα̇am , aα̇α =

1√
2
(σ̄m)α̇αam , aα̇α = ǫαβǫα̇β̇aββ̇ = (aαα̇)

† , (A.4)

ϕaA =
1√
2
(σI)aAϕI , ϕAa =

1√
2
(σ̄I)AaϕI , ϕAa = ǫabǫABϕbB = (ϕbB)

† , (A.5)

with m = 1, 2, 3, 4 and I = 1, 2, 3, 4. The fermions satisfy the following reality conditions,

λaα = −ǫαβǫab(λbβ)
† , λA

α = ǫαβǫ
AB(λB

β )
† , (A.6)

λ̄α̇
a = −ǫα̇β̇ǫab(λ̄

β̇
b )

† , λ̄Aα̇ = ǫα̇β̇ǫAB(λBβ̇)† . (A.7)
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