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1 Introduction

Stationary asymptotically flat black holes have only spherical horizon topology in four

dimensions by the Hawking’s topology theorem [1]. This situation changes drastically in

higher dimensions, and higher dimensional black hole has various horizon topology. As

one concrete example of this fact, Emparan and Reall found the five dimensional black

hole solution, black ring, whose horizon topology is S1 × S2 [2]. This is the first asymp-

totically flat black hole solution which has a non-spherical horizon topology. After this

discovery many new five dimensional black hole solutions with multiple horizons have been

constructed by the solution generating technique such as the inverse scattering method (

e.g., see [3] for a review). In these solutions the topology of each horizon is S3 or S1 × S2.

We expect that black hole solutions can have much more various and non-trivial horizon

topology in higher dimensions than five. To study this variety it would be the first step
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to extend the Emparan-Reall’s discovery to higher dimensions, that is, the construction of

the black ring in higher dimensions. However the solution generating technique cannot be

applied to the asymptotically flat solution in higher dimensions than five. Then there are

some efforts to construct the black ring in higher dimensions by numerical methods [4, 5]

and by analytical approximation methods such as the blackfold method [6, 7].1

In this paper we consider the construction of the D dimensional black ring solution

by using another analytical approximation method, the large D expansion method [10, 11].

Recently this large D expansion method was extended to construct the stationary [12, 13]

and time-dependent black hole solutions [14, 15]. So it is interesting to see if we can obtain

the black ring solution by the large D expansion method. The paper [13] discussed the

effective theory and gave the effective equation for the large D stationary rotating black

holes. This stationary solution was assumed to have the O(1) horizon angular velocity at

the large D limit. On the other hand the analysis by the blackfold method [6] found that

the horizon angular velocity of the D dimensional thin black ring becomes

ΩH =
1√

D − 3

1

R
, (1.1)

where R is a ring radius. This means that the horizon angular velocity of the thin black

ring is O(1/
√
D), not O(1) at the large D limit. Thus the effective equation in [13] cannot

be straightforwardly applied to the (thin) black ring. Hence, to construct the black ring

solution by the large D expansion method, we should study the effective theory of the black

hole with O(1/
√
D) horizon angular velocity anew. The purposes of this paper are to give

the effective theory of black holes with O(1/
√
D) horizon angular velocity by including

time-dependence and to construct the large D black ring solution by solving the effective

equations. We call a black hole with O(1/
√
D) horizon angular velocity slowly rotating

large D black hole in this paper. We expect that there is no black ring with O(1) horizon

angular velocity. The horizon angular velocity of the black ring is determined by the balance

condition between the string tension and centrifugal force by the boost, which is the horizon

angular velocity. At large D the tension of a black string becomes small compared to its

mass by O(D−1) [11]. As a result the horizon angular velocity should be also small at large

D. Hence, generically, there is no black ring with O(1) horizon angular velocity at large

D. This is why we do not use the word “slowly rotating black ring” in our analysis.

The large D effective theory for dynamical black holes has been considered in [14, 15],

where it was shown that the large D expansion method gives simple effective equations

for the dynamical black holes. The equations for dynamical black branes obtained in [15]

can be solved very easily, and the numerical solution of the equations capture the non-

linear evolution and endpoint of the Gregory-Laflamme instability of the black brane [16]

in higher dimensions than the critical dimension [17]. We will study the large D effective

equation for slowly rotating large D black holes in the similar manner with [15]. Then we

will see that the largeD black ring is found as an analytic stationary solution of the effective

equations. Furthermore, by perturbing effective equations, we can obtain a quasinormal

1The blackfold method has achieved a great success along this direction. In fact black holes with various

horizon topology, including expected and unexpected ones, has been found [8, 9].
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mode condition of the black ring. As found numerically in [18], the quasinormal mode

says that the thin black ring is unstable against non-axisymmetric perturbations, and

relatively fat black ring is stable. Our large D effective equations describe the non-linear

evolution of such non-axisymmetric instabilities of the black ring. We can also include the

1/D corrections to the effective equations. We find that the 1/D corrections give striking

features to the instability modes of the black ring.

This paper is organized as following. In section 2 we give the effective theory of slowly

rotating large D black holes by the effective equations. We also discuss some general

properties of the stationary solution of the equations and give formula for thermodynamic

quantities such as the mass and angular momentum of the solution with 1/D corrections. In

section 3 we construct the black ring solution analytically by solving the effective equations.

Some physical properties such as quasinormal modes and phase diagram of the black ring

will be also discussed there. We close this paper by giving discussion and outlook of this

work in section 4. The appendices contain technical details and some useful byproducts of

the main results in this paper. Especially the slowly rotating Myers-Perry black hole and

slowly boosted black string will be rediscovered with their quasinormal mode frequencies

analytically in appendix A.

Note that we perform the large D expansion of the Einstein equation to find D dimen-

sional black hole solutions. In the expansion, defining n by

D = n+ 4, (1.2)

we use 1/n as the expansion parameter instead of 1/D in this paper. This definition of n

is same with one of [6, 7] for black rings.

2 Effective equations

We consider the large D effective theory for slowly rotating large D black holes. The

effective equations will be given as equations for the energy and momentum density of

a dynamical black hole. In this section we study general properties of solutions of the

effective equations without specifying an embedding of solutions.

2.1 Setup

The effective equations describe non-linear dynamical deformations of black holes. To

obtain them, it is natural to use the ingoing Eddington-Finkelstein coordinate for the

metric ansatz as

ds2 = −Adv2 − 2(uvdv + uadX
a)dr

+r2GabdX
adXb − 2CadvdX

a + r2H2dΩ2
n, (2.1)

where Xa = (z,Φ). A, uv, Gab, Ca are functions of (v, r,Xa). ua and H are functions of

(v,Xa). In this paper we use v as a time coordinate in this system and the effective theory

obtained below, while t was used for it in [15]. This metric ansatz partially fixes the gauge

of the radial coordinate r. The residual gauge can be fixed in solving the Einstein equations.

Xa = (z,Φ) are inhomogeneous spatial directions of black holes, and we take Φ as the rota-

tional direction. We give large D scalings and boundary conditions of the metric functions.
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Large D scalings. To solve the Einstein equation by 1/n expansion, we should specify

behaviors of each metric functions at large D. In the analysis of the blackfold [6] they found

that the horizon angular velocity of the D = n+ 4 dimensional thin black ring is given by

ΩH =
1√
n+ 1

1

R
+O(R−2), (2.2)

where R is a ring radius. This result implies that the metric function CΦ in eq. (2.1)

becomes O(1/
√
n) at large D. From this observation we define the slowly rotating large

D black hole by CΦ = O(1/
√
n).2 One may think that this assumption is restrictive for a

black ring and describes the dynamics only of a thin black ring solution. However this is

not correct. As we will see, solutions obtained in this paper cover wider range than one by

the blackfold because we do not require the much larger ring radius than the ring thickness.

In our analysis ring radius and thickness can be comparable, and our large D solution can

describe the dynamics also of not-thin black ring.

In our setting ∂Φ is not a Killing vector. Thus the metric functions have Φ-dependences

in general. Then, to have consistent 1/n expansions of the Einstein equations, we should

assume ∂Φ = O(
√
n).3 If we take ∂Φ = O(1), the Einstein equations have not only 1/n

series but also 1/
√
n series, and the analysis becomes a bit involved. To treat the scaling

∂Φ = O(
√
n) it is useful to introduce new coordinate φ defined by

Φ =
φ√
n
. (2.3)

Then ∂Φ = O(
√
n) is equivalent to ∂φ = O(1). Summarizing, our metric ansatz for the

slowly rotating large D black holes is

ds2 = −Adv2 − 2(uvdv + uadx
a)dr

+r2Gabdx
adxb − 2Cadvdx

a + r2H2dΩ2
n, (2.4)

where xa = (z, φ). Each metric functions have following large D expansions

A =
∑

k≥0

A(k)(v, r, xa)

nk
, Cz =

∑

k≥0

C
(k)
z (v, r, xa)

nk+1
, Cφ =

∑

k≥0

C
(k)
φ (v, r, xa)

nk+1
, (2.5)

uv =
∑

k≥0

u
(k)
v (v, r, xa)

nk
, uz =

∑

k≥0

u
(k)
z (v, xa)

nk+1
, uφ =

∑

k≥0

u
(k)
φ (v, xa)

nk+1
, (2.6)

Gzz = 1 +
∑

k≥0

G
(k)
zz (v, r, xa)

nk+1
, Gzφ =

∑

k≥0

G
(k)
zφ (v, r, x

a)

nk+2
, (2.7)

and

Gφφ =
G(z)2

n



1 +
∑

k≥0

G
(k)
φφ (v, r, x

a)

nk+1



 , H = H(z) (2.8)

2The stationary solution considered in [13] was assumed to have CΦ = O(1).
3We consider the decoupled mode excitation [19]. So we assume ∂v = O(1) and ∂r = O(D).
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Under these scaling assumptions, the Einstein equation can be consistently expanded in

1/n. φ is the rotational direction of the black hole, and we assume ∂v and ∂φ become the

Killing vectors in a background geometry. This assumption implies that the asymptotic

metric at far from the horizon does not have v and φ dependences. So the metric function

H(z) and the leading order of Gφφ has only z dependences as seen in eq. (2.8). Finally we

introduce new radial coordinate R to realize ∂r = O(n) defined by

R =

(

r

r0

)n

, (2.9)

where a constant r0 is a fiducial horizon size, and we set to r0 = 1.

Boundary conditions. We give boundary conditions for metric functions. In this paper

we consider non-linear dynamics of the decoupled mode excitations [19]. The decoupled

mode condition demands following boundary conditions in the asymptotic region R ≫ 1

A = 1 +O(R−1), Ca = O(R−1) , Gzφ = O(R−1). (2.10)

The dynamical solutions have the horizon-like surface where A vanishes at the leading order

in 1/n expansion.4 We regard the surface as a horizon of the dynamical black hole. The

boundary condition on the horizon is the regularity condition of the each metric functions.

2.2 Effective equations

We solve the Einstein equation by the large D expansion. The leading order equations of

the Einstein equations contain only R-derivatives, so we can integrate them easily. Then,

the leading order solutions after imposing the boundary conditions are obtained as

A(0) = 1− pv(v, x
a)

R
, C(0)

a =
pa(v, x

a)

R
, u(0)v = − H(z)

√

1−H ′(z)2
, (2.11)

u(0)a = u(0)a (z), G(0)
zz = 0, G

(0)
zφ =

pzpφ
pv

1

R
, (2.12)

and

G
(0)
φφ = −

(

2 +
2H(z)G′(z)H ′(z)
G(z)(1−H ′(z)2)

)

logR+
p2φ

G(z)2pv

1

R
. (2.13)

pv(v, x
a) and pa(v, x

a) are mass and momentum density of the solution. They are intro-

duced as integration functions of R-integrations of the Einstein equations. We can see that

the horizon position of this dynamical solution is at R = pv(v, x
a). Furthermore we found

that the function H(z) should satisfy the following condition

1−H ′(z)2 +H(z)H ′′(z) = 0, (2.14)

from the boundary condition of G
(0)
zφ at asymptotic region R ≫ 1. In eq. (2.12) we already

imposed the condition (2.14). This condition is equivalent to the constant condition of the

4In this paper we consider the slowly rotating black holes. Thus the horizon position is determined

mainly by guu = −A.
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mean curvature of r = const. surface in the asymptotic region for static solutions [12].5 In

this paper we consider small rotation ΩH = O(1/
√
n), so the leading order solution has no

effects of rotations and gives same equations with static solutions. The condition (2.14) is

integrated as
√

1−H ′(z)2

H(z)
= 2κ̂, (2.15)

where κ̂ is a constant related with the surface gravity of the horizon as we will see later.

So we call κ̂ a reduced surface gravity. At the leading order the integration functions pv
and pa are arbitrary functions of (v, xa), and there is no constraint among them. u

(0)
a is

also arbitrary function of z at the leading order. At higher order in 1/n, constraints for

u
(0)
a appear, and we can determine their explicit forms.

Solving the next-to leading order Einstein equations we obtain non-trivial conditions

which pv(v, x
a) and pa(v, x

a) should satisfy. The non-trivial conditions can be obtained

also from the momentum constraints on R = const. surface. These conditions give effective

equations for the slowly rotating large D black holes. Their forms are

∂vpv −
H ′(z)
2κ̂H(z)

∂zpv −
∂2
φpv

2κ̂G(z)2
+

∂φpφ
G(z)2

+
H ′(z)
H(z)

pz = 0, (2.16)

∂vpφ − H ′(z)
2κ̂H(z)

∂zpφ −
∂2
φpφ

2κ̂G(z)2
+

1

G(z)2
∂φ

[

p2φ
pv

]

−4κ̂2G(z)H(z)2 + 2G′(z)H(z)H ′(z)
4κ̂2G(z)H(z)2

∂φpv

+
H ′(z)
H(z)

pzpφ
pv

+
G′(z)H ′(z)
κ̂G(z)H(z)

pφ = 0, (2.17)

and

∂vpz −
H ′(z)
2κ̂H(z)

∂zpz −
∂2
φpz

2κ̂G(z)2
+ ∂zpv +

1

G(z)2
∂φ

[

pφpz
pv

]

+
H ′(z)
H(z)

p2z
pv

− G′(z)
G(z)3

p2φ
pv

+
G′(z)
κ̂G(z)3

∂φpφ

+
H(z)G′(z)2H ′(z) +G(z)(G′(z)−H(z)H ′(z)G′′(z))

4κ̂2G(z)2H(z)2
pv

−1− 2H ′(z)2

2κ̂H(z)2
pz = 0. (2.18)

These equations describe dynamical non-linear deformations of mass and momentum den-

sity of the dynamical black hole. To solve these equations we should specify the embedding

functions G(z) and H(z). Before doing that, we study some general properties of solutions

of these effective equations. Note that the effective equations for dynamical black strings

obtained in [15] can be reproduced from eqs. (2.16), (2.17) and (2.18) as one example.

5If we perform (D− 1) + 1 decomposition of the Einstein equation on R = const. surface, this condition

is obtained from the momentum constraint as shown in [12].
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As one simple solution of the effective equations, we consider a stationary solution

pv = pv(z), pa = pa(z). (2.19)

This solution has two Killing vectors ∂v and ∂φ. The effective equations can be solved

under this ansatz. Eqs. (2.16) and (2.17) give

pz =
p′v(z)
2κ̂

, pφ(z) = Ω̂HG(z)2pv(z). (2.20)

Ω̂H is an integration constant of z-integration of eq. (2.17). To see the physical meaning

of Ω̂H , we rewrite the (v, φ) part of the leading order metric of this stationary solution as

ds2(v,φ) = −
(

1− pv(z)

R

)

dv2 +
G(z)2

n

(

dφ− Ω̂H
pv(z)

R
dv

)2

+O(1/n). (2.21)

From this expression we can see that ΩH = Ω̂H/
√
n gives the horizon angular velocity.

Actually horizon generating Killing vector ξ is

ξ =
∂

∂v
+ Ω̂H

∂

∂φ
=

∂

∂v
+ΩH

∂

∂Φ
. (2.22)

The Killing vector ξ becomes null at the horizon R = pv(z). Furthermore we can calculate

the surface gravity κ of the black hole by using ξ as

κ = −∂r(ξµξ
µ)

2ξr

∣

∣

∣

R=pv(z)

= n

√

1−H ′(z)2

2H(z)

= nκ̂, (2.23)

where xµ = (v, xa). Here we omit O(1/n) terms for simplification. Thus the integration

constant κ̂ represents the surface gravity of the black hole at the leading order in 1/n

expansions. Finally, substituting the solutions (2.20) into eq. (2.18), we obtain an equation

for pv(z) = eP (z) as

P ′′(z)− H ′(z)
H(z)

P (z)

−
[

G′(z)2

G(z)2
− G′′(z)

G(z)
+

G′(z)
G(z)H(z)H ′(z)

− Ω̂2
H

G(z)G′(z)(1−H ′(z)2)
H(z)H ′(z)

]

= 0. (2.24)

To solve this equation for P (z) we should specify the functions G(z) and H(z). The

functions can be determined by embedding the solution into a background geometry. In

next section we will embed the leading order solution into a flat background in the ring

coordinate. Such solution describes dynamical black rings. In appendix A we show other

solutions such as the Myers-Perry black hole and boosted black strings by considering the

embeddings into other backgrounds.
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2.3 Effective energy-momentum tensor

Next we study physical quantities of the solution. The mass and angular momentum of

dynamical black holes can be evaluated by the effective energy-momentum tensor. The

effective energy momentum tensor, Tµν , is defined by6

Tµν = − 1

8πGD

([

Kµν

]

Σ
− ḡµν

[

K
]

Σ

)

, (2.25)

where xµ = (v, xa) in eq. (2.4). Σ is a r = const. surface in the asymptotic region R ≫ 1.

GD is the gravitational constant in D dimensions. Kµν is the extrinsic curvature of r =

const. surface. The square bracket represents the background subtraction at Σ. ḡµν is the

background induced metric on Σ. The background metric ḡµν in the asymptotic region

R ≫ 1 is obtained from the leading order solution as

ḡµνdx
µdxν = −dv2 + r2dz2

+
G(z)2

n

(

1− 2H(z)H ′(z)G′(z) logR
nG(z)(1−H ′(z)2)

+O(n−2)

)

dφ2. (2.26)

The background extrinsic curvature, say K̄µν , is calculated as

K̄vv = O(1/n), K̄zz = 2κ̂+O(1/n), K̄φφ = −G(z)G′(z)H ′(z)
2κ̂H(z)

+O(1/n), (2.27)

in our gauge choice for the radial coordinate r. The trace part of the background extrinsic

curvature, K̄, contains contributions from K̄IJ where xI is a coordinate on Sn in eq. (2.4).

It is obtained as

K̄ = n

[

2κ̂+
1

n

(

2κ̂− G′(z)H ′(z)
2κ̂G(z)H(z)

− 2κ̂ logR

)

+O(n−2)

]

. (2.28)

By definition, the background extrinsic curvature K̄µν satisfies

Kµν − K̄µν = O(1/R), K − K̄ = O(1/R). (2.29)

Then we can compute the effective energy-momentum tensor Tµν . The results are

Tvv =
nκ̂pv
8πGDR

(

1 +O(n−1,R−1)
)

, Tva =
2κ̂pa − ∂apv
16πGDR

(

1 +O(n−1,R−1)
)

, (2.30)

and

Tzz = −G(z)2(H ′(z)pz +H(z)∂zpv) +H(z)∂φpφ
16πGDG(z)2H(z)R

(

1 +O(n−1,R−1)
)

,

Tzφ = − 1

n

G(z)(2κ̂pzpφ − pv(∂zpφ + ∂φpz)) + 2G′(z)pφpv
16πGDG(z)pvR

(

1 +O(n−1,R−1)
)

,

6The effective energy momentum tensor is originally defined on r = const. surface. Thus its component

runs over (v, xa, xI) where xI is a coordinate on Sn in eq. (2.4). However the metric components of gIJ
have been taken as non-dynamical ones by the gauge choice. So we consider only xµ = (v, xa) components

of the effective energy momentum tensor.
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Tφφ =
1

n

1

32πGDκ̂H(z)pvR

[

2κ̂H(z)(2κ̂p2φ + pv(∂φpφ +G(z)2(∂vpv − 2κ̂pv)))

−G(z)H ′(z)pv(G
′(z)pv − 2κ̂G(z)pz)

]

(

1 +O(n−1,R−1)
)

. (2.31)

Then we can define the mass M and angular momentum JΦ of a dynamical black hole

from this Tµν as

M =
nκ̂Ωn

8πGD

∫

dz
dφ√
n

G(z)H(z)npv(v, x
a), (2.32)

JΦ =
√
n

κ̂Ωn

8πGD

∫

dz
dφ√
n

G(z)H(z)npφ(v, x
a), (2.33)

where H(z)n term comes from the volume factor on Sn. Ωn is the volume of unit Sn. The√
n factor in JΦ comes from the relation between φ and Φ in eq. (2.3). For stationary

solutions we can define the mass and angular momentum of the black hole by the Komar

integral of each Killing vector. It can be shown easily that their definitions are equivalent.

The horizon area of the solution, AH, becomes

AH = Ωn

∫

dz
dφ√
n

G(z)H(z)npv(v, x
a), (2.34)

where we used the fact that the horizon is at R = pv. Then we find that the stationary

solution satisfies the Smarr formula given by

n+ 1

n+ 2
M =

κ

8πGD
A+ΩHJΦ, (2.35)

at the leading order in 1/n expansions. Note that since ΩH = O(1/
√
n) and κ = O(n),

ΩHJΦ term does not contribute to the Smarr formula at the leading order. The mass

and area of the solution can be calculated also for non-stationary solutions pv = pv(v, x
a).

For this non-stationary solution, we can see that the Smarr formula (2.35) holds at the

leading order in 1/n expansion. But this formula does not hold at the higher order for

non-stationary solutions.

2.4 1/D corrections

Solving the next-to-next-to leading order of the Einstein equations, we can obtain 1/n

corrections to the effective equations (2.16), (2.17) and (2.18). The explicit forms of the

1/n corrections to the effective equations are not simple, so we show them in appendix C.

Here we show only physical effects by 1/n corrections to the solution.

At first we define the mass and momentum density, pv and pa, up to 1/n corrections.

The mass and momentum density are introduced as integration functions of R−integrations

of the Einstein equations. Thus we should specify the normalization of the integration

functions. Expanding A and Ca up to 1/n corrections we define the mass and momentum

density, pv and pa, by coefficients of 1/R as

A = 1− pv(v, x
a)

R
+O(n−2,R−2), Ca =

pa(v, x
a)

R
+O(n−2,R−2). (2.36)
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This definition normalizes the integration functions up to O(1/n) by the asymptotic be-

havior of the metric functions. Using this definition and the next-to-next-to leading order

stationary solutions, the surface gravity up to 1/n correction is obtained as

κ

n
= κ̂− 1

n

[

G′(z)H ′(z)
4κ̂G(z)H(z)

+ κ̂ log pv +
H ′(z)
2H(z)

pz
pv

+
κ̂

2G(z)2
p2φ
p2v

]

+O(n−2). (2.37)

One may think that this expression is strange since the surface gravity κ seems not to be

constant when the solution is stationary where pv = pv(z) and pa = pa(z). However we

can show that

d

dz

[

G′(z)H ′(z)
4κ̂G(z)H(z)

+ κ̂ log pv +
H ′(z)
2H(z)

pz
pv

+
κ̂

2G(z)2
p2φ
p2v

]

= 0, (2.38)

by using the effective equations (2.16), (2.17) and (2.18) for the stationary solution. Hence

the surface gravity becomes constant for the stationary solution as expected. The horizon

angular velocity ΩH = Ω̂H/
√
n is also obtained as

Ω̂H =
pφ

G(z)2pv
+

1

n

G′(z)H ′(z)
2κ̂2G(z)3H(z)

pφ log pv
pv

+O(n−2). (2.39)

The first term in r.h.s. is equivalent to Ω̂H at the leading order as seen in eq. (2.20). But,

at higher order in 1/n expansion, they are different. We can show that, when the solution

is stationary, the horizon angular velocity is constant up to 1/n correction by using the

effective equations with 1/n corrections given in appendix C.

We can calculate the mass, angular momentum and area of the solution up to O(1/n).

The results are complicate, so we show the results only for the stationary solutions pv =

pv(z) and pa = pa(z). The mass and angular momentum formula up to O(1/n) become

M =
nκ̂Ωn

8πGD

∫

dz
dφ√
n

G(z)H(z)nM(z), (2.40)

JΦ =
√
n

κ̂Ωn

8πGD

∫

dz
dφ√
n

G(z)H(z)nJφ(z), (2.41)

where

M(z) = pv +
1

n

[

pv −
pz
2κ̂

H ′(z)
H(z)

− pv
4κ̂2

G′(z)H ′(z)
G(z)H(z)

]

, (2.42)

Jφ(z) = pφ − 1

n

[

pzpφ
2κ̂pv

H ′(z)
H(z)

+
pφ
4κ̂2

G′(z)H ′(z)
G(z)H(z)

]

. (2.43)

The mass and angular momentum can be obtained from the Komar integral for the sta-

tionary solution or from the effective energy momentum tensor for general time-dependent

solution. These definitions coincide for the stationary solution. The formula of the horizon

area also has the 1/n correction as

AH = Ωn

∫

dz
dφ√
n

G(z)H(z)nAH(v, x
a) (2.44)

– 10 –



J
H
E
P
0
2
(
2
0
1
6
)
1
5
1

where

AH = pv +
1

n

[

pv log pv −
1

2G(z)2
p2φ
pv

]

. (2.45)

Then we can see that the Smarr formula,

n+ 1

n+ 2
M =

κ

8πGD
AH +ΩHJΦ, (2.46)

can be satisfied up to 1/n corrections.

3 Black ring and its physical properties

Next we solve the effective equations in an explicit embedding. Especially we consider an

embedding into a flat background in the ring coordinate and find a stationary solution,

that is, the black ring solution analytically.

3.1 Ring coordinate embedding

The leading order metric has the following asymptotic form at R ≫ 1

ds2|R≫1 = −dv2 + 2

(

H(z)
√

1−H ′(z)2
dv − u(0)a (z)

dxa

n

)

dr

+ r2dz2 + r2G(z)2dΦ2 + r2H(z)2dΩ2
n. (3.1)

We embed this leading order metric into a flat background in the ring coordinate. The

D = n+ 4 dimensional flat metric in the ring coordinate is [20]7

ds2 = −dt2 +
R2

(R+ r cos θ)2

[

R2dr2

R2 − r2
+ (R2 − r2)dΦ2 + r2(dθ2 + sin2 θdΩ2

n)

]

, (3.2)

where 0 ≤ r ≤ R, 0 ≤ θ ≤ π and 0 ≤ Φ ≤ 2π. R is a ring radius. r = 0 is the origin

of the ring coordinate. The asymptotic infinity and the axis of Φ-rotation are at r = R.

In this ring coordinate r = const. surface has a topology of S1 × Sn+1. θ = 0 is an inner

equatorial plane, and θ = π is an outer equatorial plane. Remembering the definition of

R = (r/r0)
n, we can embed the leading order induced metric on R = const. surface into the

flat background in this ring coordinate by r = r0 where r0 is a constant. As done in the

previous section we set to r0 = 1. Then, comparing eqs. (3.1) and (3.2) on r = 1 surface,

we find that the embedding gives following identifications

H(z) =
R sin θ

R+ cos θ
, G(z) =

R
√
R2 − 1

R+ cos θ
,

dθ

dz
=

R+ cos θ

R
. (3.3)

It is easy to confirm that this identification actually satisfies eq. (2.14). We can calculate

the surface gravity, κ = nκ̂, by these identifications as

κ̂ =

√

1−H ′(z)2

2H(z)
=

√
R2 − 1

2R
. (3.4)

7In this note we use the ring coordinate by (r, θ) in [20]. Of course the following analysis can be done

also by using (x, y) coordinate in [20].
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The embedded solution is the black ring solution because the horizon topology is now

S1 × Sn+1. From R ≥ r, the ring radius should be larger than unity R ≥ 1. R ≃ 1

corresponds to the fat black ring, and thin black ring is described by R ≫ 1.

Using identifications (3.3) and the surface gravity (3.4), we obtain the leading order

effective equations for the black ring from eqs. (2.16), (2.17) and (2.18) as

∂vpv +
(R+ y)(1 +Ry)

R
√
R2 − 1

∂ypv −
(R+ y)2

R(R2 − 1)3/2
∂2
φpv

+
(R+ y)2

R2(R2 − 1)
∂φpφ +

1 +Ry

R
√

1− y2
pz = 0, (3.5)

∂vpφ +
(R+ y)(1 +Ry)

R
√
R2 − 1

∂ypφ − (R+ y)2

R(R2 − 1)3/2
∂2
φpφ

+
(R+ y)2

R2(R2 − 1)
∂φ

[

p2φ
pv

]

− 1 + 2Ry +R2

R2 − 1
∂φpv

+
1 +Ry

R
√

1− y2

pzpφ
pv

+
2(1 +Ry)

R
√
R2 − 1

pφ = 0 (3.6)

and

∂vpz +
(R+ y)(1 +Ry)

R
√
R2 − 1

∂ypz −
(R+ y)2

R(R2 − 1)3/2
∂2
φpz

−(R+ y)
√

1− y2

R
∂ypv +

(R+ y)2

R2(R2 − 1)
∂φ

[

pzpφ
pv

]

+
1 +Ry

R
√

1− y2
p2z
pv

−(R+ y)2
√

1− y2

R3(R2 − 1)

p2φ
pv

+
2(R+ y)2

√

1− y2

R2(R2 − 1)3/2
∂φpφ +

(R+ y)
√

1− y2

R2 − 1
pv

+
2 + 2Ry − y2 +R2(2y2 − 1)

R
√
R2 − 1(1− y2)

pz = 0. (3.7)

Here we introduced a coordinate y defined by

y = cos θ. (3.8)

Our effective equations (3.5), (3.6) and (3.7) describe non-linear dynamical deformations

of the black ring from thin R ≫ 1 to not-thin R > 1 region.

3.2 Black ring solution

The black ring solution is obtained as the stationary solution of the effective equa-

tions (3.5), (3.6) and (3.7). The stationary solution is given by

pv = eP (y), pa = pa(y). (3.9)

As done in eq. (2.20), we find from eqs. (3.5) and (3.6)

pz(y) = −(R+ y)
√

1− y2√
R2 − 1

p′v(y), pφ = Ω̂H
R2(R2 − 1)

(R+ y)2
pv(y). (3.10)
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Furthermore eq. (3.7) gives an equation for pv = eP (y) as eq. (2.24)

P ′′(y) +
2

R+ y
P ′(y)− R

(R+ y)(1 +Ry)
+ Ω̂2

H

R2(R2 − 1)2

(R+ y)4(1 +Ry)
= 0. (3.11)

This equation contains a pole at y = −1/R in the source term. The solution can have a

singular behavior by the source term at y = −1/R, too. To obtain a regular solution at

y = −1/R, Ω̂H should be

Ω̂H =

√
R2 − 1

R2
. (3.12)

If Ω̂H does not take this value, the function P (y) has a logarithmic divergence at y = −1/R.

Thus, as seen in five dimensional black ring [2] and higher dimensional black ring by the

blackfold [6, 7], the regularity condition determines the horizon angular velocity of the

black ring. The solution of eq. (3.11) under the condition (3.12) is obtained analytically as

P (y) = p0 +
d0

R+ y
+

(1 +Ry)(1 +Ry + 2R(R+ y) log (R+ y))

2R2(R+ y)2
, (3.13)

where p0 and d0 are integration constants. They are degree of freedom associated with

trivial deformations and do not affect physical properties of black rings. p0 is the 1/n

redefinition of r0, and d0 comes from the redefinition of φ coordinate of the ring coordinate

as discussed in appendix B. Summarizing above results, we found the black ring solution

at the leading order of large D expansion by the metric

ds2 = −
(

1− pv(z)

R

)

dv2 + 2

(

dv

2κ̂
− u(0)a (z)

dxa

n

)

dr

− 2

(

R+ y

2κ̂R

p′v(z)
R

dz

n
+ Ω̂H

R2(R2 − 1)

(R+ cos θ)2
pv(z)

R

dφ

n

)

dv

+ r2dz2 + Ω̂H
8κ̂2R

R+ cos θ

p′v(z)
R

dzdφ

n2

+ r2
R2(R2 − 1)

(R+ cos θ)2

(

1− 2R(R+ cos θ)

R2 − 1

logR

n
+ Ω̂2

H

R2(R2 − 1)

(R+ cos θ)2
pv(z)

nR

)

dφ2

n

+
r2R2 sin2 θ

(R+ cos θ)2
dΩ2

n, (3.14)

where R = (r/r0)
n with r0 = 1. The coordinates z and θ are related by eq. (3.3). κ̂

and Ω̂H are given in eqs. (3.4) and (3.12). The function pv = eP (y) is the solution of the

equation (3.11), and it is obtained in eq. (3.13) with y = cos θ. Our black ring solution

breaks down at R = 1, and the very fat black ring cannot be captured by our large D

solution.8 However, the black ring with not so large ring radius can be described by

eq. (3.14). So we can study the properties of not only the thin black ring but also not-thin

black ring R > 1 by using our solution (3.14).

8A very fat black ring means the solution with R = 1 +O(n−1).
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3.3 Quasinormal modes

We investigate quasinormal modes of the black ring solution. The quasinormal modes are

obtained by perturbation analysis of the effective equations around the black ring solution.

The perturbation ansatz is

pv(v, y, φ) = eP (y)
(

1 + ǫe−iωveimφFv(y)
)

, (3.15)

pz(v, y, φ) = −(R+ y)
√

1− y2

2κ̂R
p′v(y)

(

1 + ǫe−iωveimφFz(y)
)

, (3.16)

pφ(v, y, φ) =
R(R2 − 1)3/2

(R+ y)2
pv(y)

(

1 + ǫe−iωveimφFφ(y)
)

, (3.17)

where we used eq. (3.12). There is one remark on the quantum number m associated with

∂φ. In the ring coordinate (3.2) the coordinate Φ has the range of 0 ≤ Φ ≤ 2π. Thus the

quantum number mΦ associated with ∂Φ is quantized as mΦ = 0,±1,±2, . . .. From the

relation (2.3), these quantum numbers are related by

m =
mΦ√
n
. (3.18)

So m in the perturbations can take non-integer values in general.

Perturbing the effective equations (3.5), (3.6) and (3.7) with respect to ǫ, we obtain

perturbation equations for Fv(y), Fz(y) and Fφ(y). The perturbation equations have a

pole at y = −1/R again. To solve the perturbation equations we should impose regularity

conditions. If we specify the behavior of the perturbation fields at the pole y = −1/R as

the regularity condition by

Fv(y) ∝ (1 +Ry)ℓ (1 +O(1 +Ry)) , (3.19)

where ℓ is a non-negative integer, we get one non-trivial condition for the frequency ω as

1√
R2 − 1(m2 + imR+ ℓR2)− iR3ω

[

R9ω3 + iR6
√

R2 − 1
(

3m2 + 3imR

+ (3ℓ− 2)R2
)

ω2 −R3(R2 − 1)
(

3m4 + 6im3R+ 2(3ℓ− 4)m2R2

+ 2i(3ℓ− 2)mR3 + 3(ℓ− 1)ℓR4
)

ω − i(R2 − 1)3/2
(

m6 + 3im5R+ 3(ℓ− 2)m4R2

+ 6i(ℓ− 1)m3R3 − (4− 7ℓ+ 3ℓ2)m2R4 + 3iℓ(ℓ− 1)mR5 + ℓ2(ℓ− 1)R6
)]

= 0. (3.20)

This is the quasinormal mode condition for the black ring. One may feel strange about this

derivation since we derive the quasinormal mode condition from the local condition (3.19)

at y = −1/R. If the condition (3.20) is satisfied, the perturbation actually becomes regular

at y = −1/R, but its global structure, e.g., of Fv(y), is still unknown. Furthermore the

quantum number ℓ associated with the harmonics in the ring coordinate should be given

by the global solution of Fv(y). But the quantum number is introduced by the local condi-

tion (3.19) in our derivation at the large D limit. This localization of the quantum number
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Figure 1. Plots of the leading order quasinormal modes with ℓ = 0 and m = 2, ω
(ℓ=0)
± , of the black

ring. The left panel shows the real part of the frequency normalized by the reduced surface gravity

κ̂. The right panel shows the imaginary part. The black and gray line represent ω
(ℓ=0)
+ and ω

(ℓ=0)
−

respectively. The real part of ω
(ℓ=0)
+ and ω

(ℓ=0)
− are same. ω

(ℓ=0)
+ is unstable for R > 2.

associated with the harmonics at the large D limit has been observed in the spherical

harmonics and spheroidal harmonics in [13]. So we expect that the same feature would

appear in the harmonics in the ring coordinate. It is interesting to investigate this property

in detail, although we do not pursue this structure in this paper. In the following we give

results derived from eq. (3.20) for non-axisymmetric and axisymmetric modes separately.

Non-axisymmetric modes (m 6= 0). The quasinormal mode condition (3.20) can be

solved in a simple form for ℓ = 0 by

ω
(ℓ=0)
± =

√
R2 − 1

R

[

m̂± im̂(1∓ m̂)
]

, ω
(ℓ=0)
0 =

√
R2 − 1

R

[

m̂− i(m̂2 − 2)
]

, (3.21)

where m̂ = m/R. ω
(ℓ=0)
+ is an instability mode when R > m. ω

(ℓ=0)
± can be understood as

the quasinormal mode of the boosted black string as we will see below. We regard ω
(ℓ=0)
0

in eq. (3.21) as a gauge mode in this paper.9 At large radius limit R ≫ 1 the quasinormal

modes should reproduce the quasinormal modes of the boosted black string. Although

ω
(ℓ=0)
± has corresponding modes, ω

(ℓ=0)
0 does not have. So it might be natural to consider

that ω
(ℓ=0)
0 is a gauge mode. In figure 1 we show plots of the quasinormal mode ω

(ℓ=0)
±

with m = 2. ω
(ℓ=0)
+ becomes stable in relatively fat region R < m. This plot reproduces

the behavior of the numerical results in [18].10 We could not find any instabilities for ℓ 6= 0

and m 6= 0 mode perturbations.

9We have not still studied residual gauge of (v, z, φ) coordinate in detail. The gauge of r-coordinate

was fixed in eq. (2.1). So we should check the gauge transformation of perturbations to check which modes

are physical. Actually there are residual gauge. In appendix B we study stationary one of them. It is a

bit involved task to eliminate whole gauge modes. So instead we use another simple method to identify

physical modes here.
10The perturbation considered in [18] is the mode with mΦ = 2, not m = 2 as seen in eq. (3.18). Thus

our result for m = 2 does not exactly correspond to the mode in [18]. However, in D = 5 (n = 1), we can

expect that mΦ = 2 and m = 2 are not different so much.
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Note that the instability mode ω
(ℓ=0)
+ always saturates the superradiant condition11

Re
[

ω
(ℓ=0)
+ −mΩ̂H

]

= 0. (3.22)

The nature of this saturation at the large D limit is unclear. The dynamically unstable

mode of the Myers-Perry black hole also shows the peculiar relation with the superradiant

condition at the large D limit [13, 21]. For equally spin Myers-Perry black hole, the

coincidence of the onset of the superradiant and dynamically unstable regime was confirmed

up to 1/D corrections [21], and it is consistent with the numerical result [22]. For singly

rotating Myers-Perry black hole the coincidence was also found at the large D limit [13].

However it is known numerically that their onsets are at different rotation parameters

for the singly rotating Myers-Perry black hole in finite dimensions [23, 24]. Thus the

coincidence of the onsets of superradiant and dynamically unstable regime is only the

feature at the large D limit for the singly rotating Myers-Perry black hole. As we will

see below, the saturation of the superradiant condition of the black ring does not always

hold at higher order in 1/n expansion, and we find that onsets of the superradiant and

dynamically unstable regime are same also for the black ring at the large D limit.

Endpoints of instability? We found non-axisymmetric instabilities of the black ring

solution. One may ask what its endpoint is. In [25] they discussed that the instability of the

five dimensional thin black ring leads to the fragmentation into black holes by following two

reasons. One is that the dynamical timescale to release the inhomogeneity by gravitational

wave radiations is much longer than the timescale of the black ring instability. Thus

the inhomogeneity by the instability of the thin black ring will grow in time. Another

reason is that the fragmenting solution can be more entropic than the black ring. This

can be understood by the fact that the non-uniform black string is less entropic than

localized black holes in five dimensions. Then we expect that going to the fragmenting

solution is preferable as the endpoint of the instability than going back to the (fatter)

stable black ring. So the growth of the inhomogeneity of the black ring would not stop,

and the fragmentation occurs. In our case this second reason of the discussion cannot hold.

The non-uniform black string can be the endpoint of the Gregory-Laflamme instability as

seen in [15] since the non-uniform black string becomes more entropic solution in higher

dimensions than the critical dimension [17]. Then, also for the black ring instability, we can

say same thing. In enough higher dimensions the non-uniform solution is more entropic

than the fragmenting solutions. So we expect that the black ring would not go to the

fragmentation by the instability. On the other hand the first reason can be applied to our

case. Actually the inhomogeneity by the black ring instability and its rotation give time-

dependent quadrupole moments to gravitational fields. Then the timescale of gravitational

wave radiations by time-dependent quadrupole moments, tGW, is estimated as done in [25]

11The quantum numbers m and mΦ has the relation (3.18). Then the superradiant factor is

Re
[

ω −mΦΩH

]

= Re
[

ω −mΩ̂H

]

.
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by

tGW ∼ 1

ΩH

Rn+1

GDM
∼ Rn+2

GDM
∼ en/2R

(

R

r0

)n

, (3.23)

where the exponential factor en/2 comes from Ωn in GDM as seen in eq. (2.32). We restored

the black ring thickness r0 for usefulness. The timescale of the black ring instability, tBR,

is estimated by the quasinormal mode frequency as

tBR =
(

Im
[

ω
(ℓ=0)
+

])−1
∼ r0. (3.24)

So tBR is O(1) quantity in 1/n expansion. Then, remembering that our large D black ring

solution satisfies R > r0, the ratio of timescales is exponentially small in n at large D

tBR

tGW
∼ e−n/2

(

R

r0

)−n−1

≪ O(1). (3.25)

This implies that inhomogeneity by the black ring instability cannot be dissipated by the

gravitational wave radiation to the infinity in 1/n expansion. But the inhomogeneous black

ring solution would not fragment into small black holes unlike in five dimensions as discussed

above. Thus the inhomogeneity would stop at some point like the non-uniform black string

observed in [15]. Then we reach the conclusion for the endpoint of the black ring instability

that the black ring evolves to a non-uniform black ring, NUBR, as a metastable solution at

large D.12 The metastable solution at large D means that the solution is stationary in 1/n

expansion, but it is not stationary in O(e−n/2) by the gravitational wave emissions. The

stationary solution with inhomogeneities along rotating direction is prohibited by the rigid-

ity theorem [1, 26]. Our statement for the endpoint of the black ring instability is consistent

with the rigidity theorem since NUBR is not stationary in O(e−n/2). Such exponentially

suppressed evolutions cannot be described by our effective equations (3.5), (3.6) and (3.7)

by 1/n expansions. It is interesting to investigate this possibility by solving the effective

equations for the black ring (3.5), (3.6) and (3.7) directly as the investigation of the end-

point of the Gregory-Laflamme instability in [15]. If there is a metastable solution such as

NUBR, we can find a stationary and non-axisymmetric solution of the effective equations.

This statement for the endpoint of the black ring instability is only for the leading

order result in 1/n expansion. If we include 1/n corrections to the effective equations,

the results show the dimensional dependences, and we can observe the critical dimension

in which the stability of NUBR would change. Actually we have investigated the critical

dimension of the non-uniform black string by considering 1/n corrections [29]. So our

conjecture that the endpoint of the black ring instability is a stable NUBR is valid only at

the leading order in 1/n expansion.

Axisymmetric modes (m = 0). For m = 0 modes, we can also solve eq. (3.20) in a

simple form as

ω
(m=0)
± = ±

√
ℓ− 1− i(ℓ− 1). (3.26)

12The author thanks Roberto Emparan for the suggestion of this possibility.
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Note that the numerator of eq. (3.20) is a cubic algebraic equation of ω, but one solution

of the numerator equation is canceled with the denominator of eq. (3.20) for m = 0 modes.

So there are only two modes as eq. (3.26). The quasinormal mode frequencies (3.26)

are same with one of the Schwarzschild black hole at large D [19]. This is because we

consider the decoupled mode excitations. In the decoupled mode excitation, the dynamics

of perturbations is determined almost locally on the horizon. For m = 0 modes, the

perturbation does not have interactions along φ direction. Thus the perturbation feels the

horizon as one of the D − 1 dimensional Schwarzschild black hole, and its quasinormal

mode becomes one of the Schwarzschild black hole.

The axisymmetric perturbation does not have any instabilities at the leading order

of 1/n expansion. Thus the instability found in [25, 27] for the fat black ring against

axisymmetric perturbations is not contained in our setup. Such instability occurs due to

interactions between horizons of the black ring, so it may be non-decoupled mode insta-

bility. However, by including 1/n corrections, we find a suggestion for the axisymmetric

instabilities of the black ring as we will see later.

3.4 Black string limit

As one useful observation let us see the large ring radius limit R ≫ 1 of the black ring

solution found above. This limit gives the expression of the black ring as a boosted black

string [6]. At the large radius limit we can set the behavior of P (y) in eq. (3.13) to

P (y) = O(1/R), (3.27)

by p0 = 0 and d0 = 0. Then we get the large radius limit of the black ring solution as

ds2 = −
(

1− 1

R

)

dv2 + 2dvdr − 1√
nR

dvdx+

(

1− 1

nR

)

dx2 + r2dΩ2
n, (3.28)

where we defined the black string direction dx by dx = Rdφ/
√
n = RdΦ. This large radius

limit solution is actually regarded as the large D limit metric of the boosted string with

the boost velocity

sinhα =
1√
n
, (3.29)

as found in [6]. Using this boost relation we can reproduce the large radius limit of the

quasinormal modes, ω
(ℓ=0)
± , of the black ring from the quasinormal modes of the black

string. The quasinormal modes of the black string, ωBS
± was obtained in [11] by large D

expansion. For the perturbation ∼ e−iωveikx, the leading order result is

ωBS
± = ±ik̂(1∓ k̂), (3.30)

where k̂ = k/
√
n. Now the boost transformation on the black string is acting by

dv → coshαdv − sinhαdx, dx → coshαdx− sinhαdv. (3.31)

This transformation on ωBS
± gives quasinormal modes of the boosted black string, ωbBS

± , as

ωBS
± → ωbBS

± = k sinhα+ ωBS
± coshα. (3.32)
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Using eq. (3.29) and k̂ = k/
√
n, we obtain the quasinormal modes of the boosted black

string with the boost velocity (3.29) as

ωbBS
± = k̂ ± ik̂(1∓ k̂). (3.33)

This quasinormal modes precisely reproduce the large radius limit of quasinormal modes

of the black ring by identifying k̂ = m̂.13 In appendix A we give the direct derivation of

the quasinormal modes of the boosted black string from the effective equations.

3.5 1/D corrections

We can obtain 1/n corrections to results obtained above by solving the effective equations

up to O(1/n). In the following we set to p0 = 0 and d0 = 0 for P (y) in eq. (3.13). pv(z)

and pφ(z) for the stationary solution are

pv(y) = eP (y)

[

1 +
P (1)(y)

n

]

, (3.34)

pφ(y) =
R(R2 − 1)3/2

(R+ y)2
eP (y)

×
[

1 +
1

n

(

P (1)(y)− 2(1 +Ry)

R2 − 1
P (y) +

log (R−R−1)

R2

)

]

, (3.35)

where P (1)(y) is given by

P (1)(y) = p1 +
d1

R+ y
+

(R2 − 1)2

R4(R+ y)2
log (R−R−1)

− 2(1 +Ry)

R3(R+ y)
Li2

(

1 +Ry

R2 − 1

)

+
(R2 − 1)(y −R(1− 2y2))

2R3(R+ y)2
(log (R+ y))2

− 1

4R4(R2 − 1)(R+ y)4

[

3 + 12Ry + 2y2 + 2R8(4− 3y2) + 2R7y(5− 4y2)

−R2(5− 6y2)− 12R5y(1 + y2)−R6(12− 8y2 + 5y4)− 2R3y(10 + y4)

+R4(4− 30y2 − 5y4)
]

+
log (R+ y)

R3(R2 − 1)(R+ y)3

[

−2 +R7y − y2 + 3R2(1− 2y2) +R6(2 + y2)

+ 3R3y(2 + y2)− 2Ry(3 + y2) + 3R5y(1 + y2)−R4(2− 12y2 + y4)

+ 2(1 +Ry)(R2 − 1)(R+ y)2 log (R−R−1)
]

. (3.36)

p1 and d1 are integration constants of 1/n corrections. Li2(x) is the polylogarithm function.

This solution has the surface gravity

κ = n

√
R2 − 1

2R

[

1− 1

2n
+O(n−2)

]

, (3.37)

13The boost transformation is one by the exact symmetry of the black string. Thus we can obtain the

quasinormal mode of the boosted black string from the black string. As for the singly rotting Myers-

Perry black hole, the boost transformation comes from an approximation symmetry appearing only at the

leading order of large D limit. Thus quasinormal modes of the Myers-Perry black hole do not follow boost

transformation rules.
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and the horizon angular velocity

ΩH =
1√
n

√
R2 − 1

R2

[

1− 1

n

R2 − 2 log (R−R−1)

2R2
+O(n−2)

]

. (3.38)

The horizon angular velocity up to O(1/n) can be obtained by imposing the regularity of

pv(z) at the pole y = −1/R up to O(1/n). We can see that this horizon angular velocity

reproduces eq. (2.2) by the blackfold method at the large radius limit up to O(1/n). The

surface gravity has the following large radius limit

lim
R→∞

κ =
n

2

[

1− 1

2n
+O(n−2)

]

=
n

2 coshα

(

1 +O(n−2)
)

, (3.39)

Then this expression implies that the surface gravity is reproduced by the boosted black

string with the boost velocity (3.29) up to 1/n corrections. We can also compare the 1/n

corrections of our results with the 1/R2 corrections by the blackfold method [7] to the

horizon angular velocity. However, in this comparison, there are some subtle things such

as a definition of R, so the comparison is not clear. The fact that 1/n corrections do not

contain 1/R contribution to ΩH is consistent with the result in [6].

Finally we give 1/n corrections to quasinormal modes of the black ring. ω
(ℓ=0)
± up to

1/n corrections is

ω
(ℓ=0)
± =

√
R2 − 1

R

[

m̂± im̂(1∓ m̂) +
δω̂

(ℓ=0)
±
n

]

, (3.40)

where

δω̂
(ℓ=0)
± =

1

2m̂R2

[

m̂2(R2 − 4 + 4R2m̂2) + im̂(2 + (R2 + 16)m̂2 + 8m̂4)

+ 2m̂2(1− 2im̂) log (R−R−1)∓
(

2m̂(2 + (3R2 − 4)m̂2)

+ i(2 + (3R2 + 1)m̂2 − 2(R2 − 10)m̂4 − 2m̂2 log (R−R−1))
)]

. (3.41)

At the large radius limit R → ∞ with fixed m̂, this quasinormal mode reduces to one of the

boosted black string with the boost parameter given in eq. (3.29) as seen in appendix A.

Thus we could confirm that the blackfold analysis by [6] is correct up to 1/n corrections.

From this 1/n correction of ω
(ℓ=0)
+ , we find that the black ring becomes unstable against

non-axisymmetric perturbations for R > RD where

RD = m

[

1− 1

n

3− 2 log (m−m−1)

2m2
+O(n−2)

]

. (3.42)

At the large radius limit this threshold ring radius RD gives the marginally stable “wave

number m̂D” as

m̂D ≡ m

RD
= 1 +O(n−2, R−2). (3.43)
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Figure 2. Plots of the quasinormal mode ω
(ℓ=0)
+ with ℓ = 0 and m = 2 in n = 10 of the black ring

up to O(1/n) corrections. The left panel shows the real part of the frequency normalized by the

reduced surface gravity. The right panel shows the imaginary part. The dashed line represents the

leading order result. The thick line is the result with O(1/n) corrections.

This corresponds to the Gregory-Laflamme mode of the boosted black string with the boost

velocity (3.29) as seen in appendix A. In figure 2 we show the plots of the quasinormal mode

frequency ω
(ℓ=0)
+ with m = 2 in n = 10 up to the 1/n corrections. The plots in figure 2

show that the results become much closer to numerical results [18] by 1/n corrections. At

R = 1 our quasinormal mode formula breaks down due to the term log (R−R−1). Thus

the quasinormal mode frequency behavior around R = 1 is not reliable.

One interesting observation on 1/n corrections to quasinormal modes is the relation of

the superradiant and dynamically unstable regime. At the leading order the real part of

the quasinormal mode frequency ω
(ℓ=0)
+ is marginal in the superradiant condition

Re
[

ω
(ℓ=0)
+ −mΩ̂H

]

= O(n−1). (3.44)

By including the 1/n corrections, we see that the real part of the quasinormal mode fre-

quency ω
(ℓ=0)
+ deviates from the superradiant condition. Actually the real part of the

frequency does not always satisfy the superradiant condition

Re
[

ω
(ℓ=0)
+ −mΩ̂H

]

=
2κ̂

n

(m̂− 1)(2− (R2 − 4)m̂+ 2R2m̂2)

R2
+O(n−2). (3.45)

In figure 3 we show the plot of eq. (3.45) for n = 10 and m = 2. The superradiant regime

can be seen in the dynamically unstable regime R > m. But there is also the dynamically

unstable mode which does not satisfy the superradiant condition at R > RS > m,

RS =
m2 + 1 +

√
1 + 6m2 +m4

m
. (3.46)

Thus the black ring has dynamically unstable modes which satisfy the superradiant con-

dition for RS > R > m, and the superradiant condition becomes not to be satisfied by

unstable modes at R > RS . This behavior of the dynamically unstable modes is the strik-

ing property of the black ring also seen in numerical results [18]. In fact the all known

dynamically unstable modes of black holes such as one of the Myers-Perry black holes

always satisfy the superradiant condition. The physics behind this feature is not still clear.

– 21 –



J
H
E
P
0
2
(
2
0
1
6
)
1
5
1

Figure 3. The plot of the superradiant factor is shown for the dynamically unstable mode ω
(ℓ=0)
+

with m = 2 and n = 10. The superradiant factor can be negative and positive in dynamically

unstable regime R > m, while it is always positive in stable regime.

We can also obtain 1/n corrections to the quasinormal modes with m = 0 in a simple

form. The result is

ω
(m=0)
± =

√
R2 − 1

R

[

±
√
ℓ− 1− i(ℓ− 1) +

δω̂
(m=0)
±
n

]

, (3.47)

where

δω̂
(m=0)
± = ±R2

√
ℓ− 1

2(R2 − 1)

[

3ℓ− 5− 7ℓ2 − ℓ− 10

2R2(ℓ− 1)
+

2(4ℓ− 5)

R4(ℓ− 1)

]

− i
R2(ℓ− 1)

2(R2 − 1)

[

2ℓ− 5− 4ℓ2 − 7ℓ− 10

2R2(ℓ− 1)
+

2(2ℓ− 5)

R4(ℓ− 1)

]

. (3.48)

At the large radius limit R → ∞ the quasinormal mode frequency ω
(m=0)
± deviates from one

of Schwarzschild black hole [19] in 1/n corrections. This deviation can be understood as a

boost effect of the black string as discussed in appendix A. Around R = 1 the imaginary

part of the 1/n correction δω̂
(m=0)
± becomes positive. This might mean that the axisym-

metric perturbation becomes also unstable around R = 1. Actually we find that there is a

marginally stable mode at R = Rf as

ω
(m=0)
±

∣

∣

∣

R=Rf

= −ℓ
√
ℓ− 1 +O(n−1), (3.49)

where Rf is the marginal radius for the apparent axisymmetric instability of the black ring

given by

Rf = 1− 1

n

ℓ

8(ℓ− 1)
+O(n−2). (3.50)

The imaginary part becomes positive at 1 > R > Rf , and the axisymmetric perturbation

may be unstable there. As mentioned above our formula of the quasinormal mode breaks

down around R = 1. Thus we cannot say immediately that the axisymmetric instability

mode of the black ring is found from our quasinormal mode formula. However Rf < 1

might suggest that the unstable region for the axisymmetric perturbations exists around

R = 1. This may be related with the instability of the fat black ring [25, 27].
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3.6 Phase diagram

Let us draw the phase diagram of the black ring solution obtained by the large D expan-

sion method above. To do it we collect the formula for thermodynamic quantities of the

black ring. The mass M and the angular momentum JΦ formula are given in eqs. (2.32)

and (2.33). For the black ring, using the ring coordinate embedding by eq. (3.3) and the

leading order stationary solution (3.14), these formula become

M =
nΩn

8GD
M̂, JΦ =

√
n

Ωn

8GD
ĴΦ, (3.51)

where

M̂ =

∫

dy
(R2 − 1)eP (y)

R
√

1− y2

(

R
√

1− y2

R+ y

)n

, (3.52)

and

ĴΦ =

∫

dy
(R2 − 1)5/2eP (y)

R(R+ y)2
√

1− y2

(

R
√

1− y2

R+ y

)n

. (3.53)

Note that y = cos θ in the ring coordinate (3.2). The formula (2.34) gives the area of the

black ring as

AH = 2πΩnÂH, (3.54)

where

ÂH =

∫

dy

√
R2 − 1eP (y)

√

1− y2

(

R
√

1− y2

R+ y

)n

. (3.55)

P (y) is given in eq. (3.13). We set to p0 = d0 = 0 in eq. (3.13).14 In these formula the black

ring thickness r0 is set to unity. Here we consider only the leading order contributions to

the mass, angular momentum and area. This is because it seems to be difficult to track

the effect of 1/n corrections precisely in M, JΦ and AH due to a term in integrands

with a power of n. At large n the integrations of such terms can be very large, and it

is not clear how to control the size of such integrations in 1/n expansion. In this paper,

we take into account only the leading order contributions to observe general feature, not

detail numerical values, of the phase diagram of the large D black ring. Hence the phase

diagrams for the large D black ring shown below have O(1/n) errors. On the other hand

the temperature and horizon angular velocity do not have such troublesome terms in their

definitions, so we include 1/n corrections. The temperature TH of the black ring is

TH ≡ κ

2π
=

n

4π

√
R2 − 1

R

[

1− 1

2n

]

. (3.56)

The horizon angular velocity of the black ring is

ΩH =
Ω̂H√
n
=

1√
n

√
R2 − 1

R2

[

1− 1

n

R2 − 2 log (R−R−1)

2R2

]

. (3.57)

14These values of p0 and d0 are chosen so that the solution becomes P (y) = O(1/R) at the large radius

limit R ≫ 1. These choices do not affect the essential feature of the phase diagram.
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To draw the phase diagram we define reduced quantities by the mass as following

jn+1
Φ = cj

J n+1
Φ

GDMn+2
, an+1

H = ca
An+1

H

(GDM)n+2
, (3.58)

and

tH = cTTH(GDM)1/(n+1), ωH = cωΩH(GDM)1/(n+1). (3.59)

The normalization numerical coefficients are taken from [6] as

cj =
Ωn+1

2n+5

(n+ 2)n+2

(n+ 1)(n+1)/2
, ca =

Ωn+1

2(16π)n+1

n(n+1)/2(n+ 2)n+2

(n+ 1)(n+1)/2
, (3.60)

and

ct =
4π

√
n+ 1√
n

(

(n+ 2)Ωn+1

2

)−1/(n+1)

, cω =
√
n+ 1

(

(n+ 2)Ωn+1

16

)−1/(n+1)

. (3.61)

Then we obtain

jn+1
Φ =

1

2n+5

Ωn+1

Ωn

(

1 +
2

n

)n+2(

1 +
1

n

)−(n+1)/2 Ĵ n+1
Φ

M̂n+2
, (3.62)

an+1
H =

1

2n
Ωn+1

Ωn

(

1 +
2

n

)n+2(

1 +
1

n

)−(n+1)/2 Ân+1
H

M̂n+2
, (3.63)

tH = 2n/(n+1)

(

1 +
1

n

)1/2( Ωn

Ωn+1

)1/(n+1)(

1 +
2

n

)−1/(n+1)

κM̂1/(n+1), (3.64)

and

ωH = 22/(n+1)

(

1 +
1

n

)1/2( Ωn

Ωn+1

)1/(n+1)(

1 +
2

n

)−1/(n+1)

Ω̂HM̂1/(n+1). (3.65)

We evaluate jΦ, aH, tH and ωH numerically for the large D black ring solution by using

eqs. (3.52) and (3.53) with P (y) given in eq. (3.13). As mentioned above, we set to

p0 = d0 = 0. Figure 4 shows the phase diagram of (jΦ, aH) for the black ring solution

by the blackfold and large D expansion method from R/r0 = 1.1 to R/r0 = 20 in n = 10.

R and r0 are a ring radius and ring thickness of the black ring. The curve by black dots

is the result by numerical evaluations of eqs. (3.62) and (3.63) for our large D black ring

solution. The gray dashed line is the leading order result by the blackfold method [6]. The

thick gray line is O(1/R2) correction of the blackfold [7]. As expected we can see that

these results show similar behavior at the large radius region R ≫ 1. Two results by the

blackfold and large D expansion method seems to have a difference by the constant offset

at R ≫ 1. This difference can be understood as O(1/n) errors in the large D expansion

method. By taking the large radius limit R ≫ 1, from P (y) = O(1/R), we find that

M =
nΩn+1

8GD
Rrn0

(

1 +O(n−1, R−1)
)

, JΦ =

√
nΩn+1

8GD
R2rn0

(

1 +O(n−1, R−1)
)

, (3.66)

and

AH = 2πΩn+1Rrn+1
0

(

1 +O(n−1, R−1)
)

, (3.67)
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Figure 4. The (jΦ, aH) phase diagram of the black ring in n = 10 is shown. The curve by black dots

is the numerical evaluation of the black ring solution obtained by the large D expansion method.

The gray dashed line is the leading order result by the blackfold method. The thick gray line is the

result with O(1/R2) corrections by [7]. The left panel shows the phase diagram in not-thin region,

and right panel is for the thin region R ≫ r0. At the large radius R ≫ r0 these results show similar

behavior as expected. The difference of values are within O(1/n) errors in thin region.

where we restored the black ring thickness r0. On the other hand the leading order results

by the blackfold [6] gives

M =
(n+ 2)Ωn+1

8GD
Rrn0

(

1 +O(R−1)
)

, JΦ =

√
n+ 1Ωn+1

8GD
R2rn0

(

1 +O(R−1)
)

, (3.68)

and

AH = 2π

√

n+ 1

n
Ωn+1Rrn+1

0

(

1 +O(R−1)
)

. (3.69)

These results coincide at the leading order in 1/n expansion. 1/n corrections in eqs. (3.68)

and (3.69) gives smaller aH and jΦ than the leading order results in 1/n expansion. So 1/n

correction would reduce the difference seen in figure 4. This O(1/n) error would give the

difference of the onset at R ≫ 1 seen in figure 4. It might be difficult to observe O(1/R2)

corrections in the results by the large D expansion method. This is because the definitions

of thermodynamic quantities contain the y-integrations of Rn/(R+ y)n. The blackfold by

the 1/R expansion and the large D expansion method by 1/n expansion do not give same

results for such integrations in higher order corrections of O(n−1, R−2).

Figure 5 are plots of the phase diagram of (jΦ, tH) and (jΦ, ωH) for the black ring

by the blackfold (gray dashed and thick lines) and the large D expansion method (curve

by black dots). In these diagrams we see that results by the blackfold and the large D

expansion method show similar values and behaviors at the large radius region R ≫ 1.

These results show different behavior in not-thin region jΦ ∼ 1. This might be because

our results contain O(1/n) errors which become larger at fat ring region, and the blackfold

method also has not-small errors there.15

15In not so much higher dimension, it was observed that the blackfold method has a good accuracy even

in not thin region jΦ ∼ 1 if we include higher order corrections [7].
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Figure 5. The (jΦ, tH) (left) and (jΦ, ωH) (right) phase diagram in n = 10 are shown. The gray

dashed and thick line corresponds to the leading order and O(1/R2) corrected results of the blackfold

method. The curve by black dots is the numerical evaluations for the large D black ring solution.

4 Summary

We constructed the effective theory for the slowly rotating large D black holes. The slow

rotation is defined by O(1/
√
D) horizon angular velocity at large D. This solution class

of large D black holes contains the slowly rotating Myers-Perry black hole, slowly boosted

black string and black ring solution. The black ring should be slowly rotating at large D

since the tension effect which determines the horizon angular velocity is small. So our anal-

ysis of the black ring in this paper by the large D effective theory is not restricted one. We

solved the effective equations and found the black ring solution analytically. Furthermore,

by perturbation analysis, the quasinormal mode condition of the black ring was obtained.

The quasinormal mode says that the thin black ring has the Gregory-Laflamme type insta-

bility in the non-axisymmetric perturbations as found numerically. The black ring solution

obtained in this paper describes not only thin black ring, but also not-thin black ring. For

not-thin black ring, we found that the black ring becomes stable against non-axisymmetric

perturbations. We gave some discussions on the endpoint of the non-axisymmetric instabili-

ties of the black ring. At largeD the gravitational wave emission becomes much less efficient

by O(e−D/2) than the dynamical instability, and the instability would not lead to the frag-

mentation of the horizon in enough higher dimensions. This fact suggests the existence of

a metastable solution, non-uniform black ring, as the endpoint of the black ring instability

at large D. We also studied 1/D corrections to the quasinormal modes and phase diagram.

In this paper we considered the construction of the black ring solution by the large D

expansion method as the first step to reveal the variety of higher dimensional black holes.

So we have some natural extensions of our current work. One is to consider the O(1) horizon

angular velocity solution. In [13] the effective theory for the stationary solution with O(1)

horizon angular velocity was constructed, but they did not include the time dependent

deformations. It is possible to include the time dependent deformations in the work [13] by

the same way in this paper. The non-liner dynamical deformations of the singly rotating

Myers-Perry black hole can be described by such framework. The singly rotating Myers-

Perry black hole is known to have the unstable modes, and it is interesting to study the

instability mode and stationary deformed solution associated with the zero mode, so called
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bumpy black hole, as the endpoint of the instability by the large D effective theory. The

second possible extension is to investigate the non-linear evolution of the instability of the

black ring. The effective equations obtained in this paper describe such evolutions. It is

interesting to solve the effective equations numerically and study the endpoint of the black

ring instability. Our effective equations have much simpler form than original Einstein

equations, and they are expected to be much more tractable numerically. In that analysis

our conjecture for the existence of the non-uniform black ring can be also studied. The

third is to include further angular momentum to the effective equations. The effective

equations in this paper describe the dynamical black hole with essentially only one angular

momentum. By adding further number of angular momenta to the effective equations, we

can describe much richer dynamics of the black holes, and it will be found that the variety

of the black hole horizon becomes much richer than one of the singly rotating black hole.

These work would give new interesting insights to the higher dimensional black hole physics.
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A Other solutions

In this appendix we study other embeddings of the solution. In the asymptotic region

R ≫ 1 the leading order metric on R = const. surface has the following form

ds2|R=const. = −dv2 + r2
(

dz2 +G(z)2dΦ2 +H(z)2dΩ2
n

)

+O(R−1). (A.1)

H(z) should satisfy the equation given by

1−H ′(z)2 +H(z)H ′′(z) = 0. (A.2)

In the following this metric is embedded into a flat background in spherical coordinates.

Such solutions describes the slowly rotating Myers-Perry black hole and slowly boosted

black string solution.

A.1 Slowly rotating Myers-Perry black hole

The first spherical coordinate is the spherical coordinate of D = n + 4 dimensional flat

spacetime. The metric in the spherical coordinate is

ds2 = −dt2 + dr2 + r2(dz2 + sin2 z dΦ2 + cos2 z dΩ2
n). (A.3)

The embedding of the leading order metric is given by r = r0 in this flat background metric.

Then the embedding says that H(z) and G(z) are identified by

H(z) = cos z, G(z) = sin z. (A.4)
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Note that this H(z) actually satisfies eq. (A.2). The surface gravity of this spherical

coordinate embedding is

κ = nκ̂ =
n

2
. (A.5)

r = const. surfaces in the metric (A.3) have the topology of Sn+2. So the topology of the

black hole horizon is Sn+2 in this embedding.

Effective equations. The effective equations (2.16), (2.17) and (2.18) in the spherical

coordinate embedding are

∂vpv + ∂zpv tan z −
∂2
φpv

sin2 z
+

∂φpφ

sin2 z
− pz tan z = 0, (A.6)

∂vpφ + ∂zpφ tan z −
∂2
φpφ

sin2 z
+ ∂φpv +

1

sin2 z
∂φ

[

p2φ
pv

]

− 2pφ − pφpz
pv

tan z = 0, (A.7)

and

∂vpz + ∂zpz tan z −
∂2
φpz

sin2 z
+ ∂zpv +

1

sin2 z
∂z

[

pzpφ
pv

]

−
p2φ cot z + p2z tan z sin

2 z

pv sin
2 z

+
2 cot z

sin2 z
∂φpφ − cos 2z

cos2 z
pz = 0. (A.8)

Stationary solution. We solve eqs. (A.6), (A.7) and (A.8) for the stationary solution.

The stationary solution ansatz assumes that ∂v and ∂φ are the Killing vectors. Thus we

assume

pv = eP (z), pφ = pφ(z), pz = pz(z). (A.9)

pa(z) are given by pv(z) as derived in eq. (2.20) with the integration constant Ω̂H. The

equation for P (z) given in eq. (2.24) in the spherical coordinate embedding is

P ′′(z) + P ′(z) tan z − â2 cos2 z = 0. (A.10)

Here we rename Ω̂H in eq. (2.24) by â just for usefulness. The solution of this equation is

P (z) = p0 + d0 sin z −
1

2
â2 cos2 z. (A.11)

Integration constants, p0 and d0, describe trivial deformations of the solution, so we set to

p0 = d0 = 0. Then, using eq. (2.20), we find that the stationary solutions of eqs. (A.6), (A.7)

and (A.8) are

pv(z) = e−â2 cos2 z/2, pφ(z) = âpv(z) sin
2 z, pz(z) = p′v(z). (A.12)

This stationary solution describes the D = n+ 4 dimensional slowly rotating Myers-Perry

black hole [28] with a = â/
√
n. This can be confirmed directly by performing a coordinate

transformation from the Myers-Perry black hole. As we can see below, quasinormal modes

of the stationary solution also coincide to one of the Myers-Perry black hole obtained found

in [13].
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Quasinormal modes. By perturbing the equations (A.6), (A.7) and (A.8) around the

stationary solution, we obtain quasinormal mode frequencies. The perturbations are

pv(v, z, φ) = e−a2 cos2 z/2
(

1 + ǫFv(z)e
−iωveimφ

)

,

pφ(v, z, φ) = a sin2 ze−a2 cos2 z/2
(

1 + ǫFφ(z)e
−iωveimφ

)

,

pz(v, z, φ) = a2 cos z sin ze−a2 cos2 z/2
(

1 + ǫFz(z)e
−iωveimφ

)

. (A.13)

We impose the boundary condition on the perturbations at z = 0 as16

Fv(z) ∝ zℓ (1 +O(z)) . (A.14)

Then the frequency is discretized by quantum numbers, ℓ and m. In the following we

assume m = O(n−1). This assumption can be understood by observing the spherical

harmonics. At large D the spherical harmonics on Sn+1, YjℓmΦ
(z), in the metric (A.3) is

reduced to [13]

YjℓmΦ
(z) ∝ eimΦΦ (sin z)|mΦ|+2kS cosj z (A.15)

where j is the quantum number on Sn. kS is the quantum number along z-direction.

Comparing eqs. (A.14) and (A.15), we see that ℓ is given by

ℓ = |mΦ|+ 2kS . (A.16)

In this paper we do not consider the excitation on Sn, so our boundary condition corre-

sponds to one of j = 0 in [13]. Note that, since we rescaled φ coordinate by eq. (2.3), the

quantum number mΦ associated with ∂Φ is related with the quantum number m of ∂φ by

mΦ =
√
nm. Thus the spherical harmonics has

√
nm dependence, not m dependence. If

we assume m = O(1), the spherical harmonics is dominated by the quantum number m as

YjℓmΦ
(z) ∝ (sin z)

√
nm. (A.17)

The analysis of this function becomes involved since the z-derivative can be very large and

diverging in n. To avoid this complexity we assume m = O(1/n). Then the perturbations

can satisfy the boundary condition (A.14) without diverging terms in n. Thus, in the

perturbation (A.13), we introduce new O(1) quantity m̄ by

m =
m̄

n
. (A.18)

Then the quasinormal mode frequencies are written by ℓ, m̄ and â. We can extend the all

calculations up to O(1/n) by including 1/n corrections. The obtained quasinormal modes

up to O(1/n) is

ω± = ω
(0)
± +

ω
(1)
±
n

+O(n−2), (A.19)

where

ω
(0)
± = ±

√
ℓ− 1− i(ℓ− 1) (A.20)

16This boundary condition was also used in [13].
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and

ω
(1)
± = ±

(√
ℓ− 1(3ℓ− 4)

2
− â2(2ℓ2 − 9ℓ+ 8)

2ℓ
√
ℓ− 1

+
iâm̄

√
ℓ− 1

ℓ

)

−
(

i(ℓ− 1)(ℓ− 2)− iâ2(ℓ2 − 5ℓ+ 8)

2ℓ
− âm̄(ℓ− 1)

ℓ

)

. (A.21)

Actually this quasinormal mode reproduces the quasinormal mode of the Schwarzschild

black hole up to 1/n corrections for â = 0 [19] and one of Myers-Perry black hole [13] with

a = â/
√
n and m = m̄/

√
n.

A.2 Slowly boosted black string

We consider the embedding in another spherical coordinate, which is the coordinate of the

spacetime with one compact direction. The D = n + 4 dimensional spacetime with one

compact direction has the following metric in the spherical coordinate

ds2 = −dt2 + dΦ2 + dr2 + r2
(

dz2 + sin2 z dΩ2
n

)

. (A.22)

Φ is a coordinate of the compact direction. The embedding r = r0 of the leading order

metric (A.1) into eq. (A.22) gives following identifications

G(z) = 1, H(z) = sin z, (A.23)

where we set to r0 = 1. The embedded solution has S1 × Sn+1 horizon topology in the

spacetime with one compact dimension. So the solution of the effective equations describe

non-linear dynamical deformations of the black string.

Effective equations. The effective equations in this embedding become

∂vpv − cot z ∂zpv − ∂2
φpv + ∂φpφ + pz cot z = 0, (A.24)

∂vpφ − cot z ∂zpφ − ∂2
φpφ − ∂φpv + ∂φ

[

p2φ
pv

]

− cot z
pzpφ
pv

= 0, (A.25)

and

∂vpz − cot z ∂zpz − ∂2
φpz + ∂zpv + ∂z

[

pzpφ
pv

]

− cot z
p2z
pv

− cos 2z

sin2 z
pz = 0. (A.26)

Stationary solutions. We have two stationary solutions of the effective equations. One

is the boosted black string. The ansatz for the boosted black string is

pv(z) = eP (z), pφ = pφ(z), pz = pz(z). (A.27)

Then the effective equations give the solution

pv(z) = ep0+d0 cos z, pφ = σ̂pv(z), pz = p′v(z). (A.28)
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σ̂ is an integration constant, and it describes the boost parameter of the boosted black

string with the boost parameter

sinhα =
σ̂√
n
, (A.29)

where the boost transformation of the black string and definition of α are given in eq. (3.28).

The integration constants p0 and d0 are horizon size and position of the black string origin

respectively. Thus we can set to p0 = 0 and d0 = 0.

Another stationary solution is the non-uniform black string. This solution is inhomo-

geneous along Φ direction. So ∂Φ is not the Killing vector. The ansatz for the non-uniform

black string is

pv = pv(φ), pφ = pφ(φ), pz = 0. (A.30)

The condition pz = 0 reflects the fact that the Gregory-Laflamme mode of the black string

exists only in the S-wave sector. This ansatz gives the equation for the non-uniform black

string at large D [29] as

pφ = ∂φpv + Pφ (A.31)

and

∂3
φpv + ∂φpv −

2∂φpv∂
2
φpv

pv
+

(∂φpv)
3

p2v
= 0. (A.32)

Pφ is an integration constant describing the momentum along φ direction, and we set to

Pφ = 0 in eq. (A.32). To solve this equation we need the numerical treatment. In this

paper we consider only the boosted black string solution.

Quasinormal modes. Considering the perturbations around the stationary solu-

tion (A.28)

pv(v, z, φ) = 1 + ǫFv(z)e
−iωveik̂φ,

pφ(v, z, φ) = σ̂
(

1 + ǫFφ(z)e
−iωveik̂φ

)

,

pz(v, z, φ) = ǫFz(z)e
−iωveik̂φ, (A.33)

and boundary conditions at cos z = 0 given by

Fv(z) ∝ (cos z)ℓ (1 +O(cos z)) , (A.34)

we obtain the quasinormal mode condition as

1

k̂ + σ̂2k̂ + σ̂(iℓ+ ik̂2 + ω)

[

ω3 + (−2i+ 3iℓ+ 3σ̂k̂ + 3ik̂2)ω2

+ (−3ℓ2 + ℓ(3 + 6iσ̂k̂ − 6k̂2) + k̂(5k̂ + 3σ̂2k̂ − 3k̂2 + 2iσ̂(3k̂2 − 2)))ω

− i(ℓ3 + ℓ2(−1− 3iσ̂k̂ + 3k̂2) + kℓ(3iσ̂ − 4k̂ − 3σ̂2k̂ − 6iσ̂k̂ + 3k̂2)

+ k̂2(2 + iσ̂3k̂ − 3k̂2 + k̂4 + σ̂2(2− 3k̂2)− iσ̂k̂(3k̂2 − 5))
]

= 0. (A.35)

This condition can be solved for ℓ = 0 mode in a simple form by

ω
(ℓ=0)
± = σ̂k̂ ± ik̂(1∓ k̂). (A.36)
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This is the quasinormal modes of the S-wave sector of the scalar type gravitational pertur-

bation of the boosted black string. ω
(ℓ=0)
+ shows the Gregory-Laflamme instability [16] for

k̂ < 1. For k̂ = 0 mode the quasinormal mode condition gives

ω
(k̂=0)
± = ±

√
ℓ− 1− i(ℓ− 1). (A.37)

Although, for general modes ℓ 6= 0 and k̂ 6= 0, we cannot obtain a simple solution of

eq. (A.35), it can be seen that the instability mode exists only in the S-wave (ℓ = 0) sector.

This is consistent with the result in [30] that the black string is unstable only for the S-wave

sector.

We can also find 1/n corrections to the quasinormal modes. For the S-wave sector, the

quasinormal modes are

ω
(ℓ=0)
± = σ̂k̂ ± ik̂(1∓ k̂)

+
k̂

2n

[

i(∓1− 2k̂ ± 2k̂2)− 2σ̂(1∓ 3k̂ + 2k̂2) + iσ̂2(∓2 + 3k̂)
]

+O(n−2). (A.38)

If we take σ̂ = 0, the result reproduces the quasinormal modes of the black string obtained

in [11, 31]. The relation of the boosted black string and black ring become clear by observing

eq. (A.38). Actually, if we take the large radius limit of the quasinormal modes ω
(ℓ=0)
± of

the black ring in eq. (3.41), we obtain

ω
(ℓ=0)
± = m̂± im̂(1∓ m̂)

+
m̂

2n

[

1∓ 6m̂+ 4m̂2 + i(∓3 + m̂± 2m̂2)
]

. (A.39)

Comparing eqs. (A.38) and (A.39) by identifying k̂ = m̂, we can see that the large radius

limit of the black ring corresponds to the boosted black string with the boost parameter

sinhα =
σ̂√
n

=
1√
n+ 1

, (A.40)

up to O(1/n). This boost parameter corresponds to eq. (3.29), and this is consistent with

the result in [6].17 The Gregory-Laflamme mode k̂GL of the boosted black string, for which

the imaginary part of ω
(ℓ=0)
+ vanishes, is obtained as

k̂GL = 1− 1− σ̂2

2n
+O(n−2). (A.41)

This Gregory-Laflamme mode of σ̂ = 1 reproduces the threshold wave number (3.43) for

the black ring.

For k̂ = 0 modes, the quasinormal modes up to 1/n corrections are

ω
(k̂=0)
± = ±

√
ℓ− 1− i(ℓ− 1)

+
1

2n

[

±(3ℓ− 4− σ̂2)
√
ℓ− 1− i(ℓ− 1)(2ℓ− 4− σ̂2)

]

+O(n−2). (A.42)

17In [6] they did not use 1/n expansion, so the relation (3.29) obtained in [6] should be valid at all order

in 1/n at the large radius limit.
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Using eq. (A.40), the quasinormal mode (A.42) reproduces eq. (3.48) at the large radius

limit R = ∞.

B Trivial perturbations in ring coordinate

In this appendix we study trivial perturbations in theD = n+4 dimensional ring coordinate

given by

ds2 = −dt2 +
R2

(R+ r cos θ)2

[

R2dr2

R2 − r2
+ (R2 − r2)dΦ2 + r2(dθ2 + sin2 θdΩ2

n)

]

. (B.1)

There are two trivial perturbations, axisymmetric and non-axisymmetric trivial perturba-

tions.

Axisymmetric trivial perturbation. The axisymmetric trivial perturbation is the re-

definition of the ring radius R. The perturbations

R → R+ δR, (B.2)

and

r → r + δR

(

r

R
+

R2 − r2

R2
cos θ

)

, θ → θ − δR
sin θ

r
(B.3)

do not change the form of the metric (B.1) up to O(δR).

As another trivial axisymmetric perturbation, there is a perturbation which becomes

trivial at the large D limit. If we consider the perturbation,

Φ → Φ+ δΦ (B.4)

and

r → r + δΦ
(R2 − r2)(r +R cos θ)

R(R+ r cos θ)
, θ → θ − δΦ

(R2 − r2) sin θ

r(R+ r cos θ)
, (B.5)

the metric does change its form by

δ(ds2) = −δΦ
2R2

(R2 − r2)(R+ r cos θ)4

(

R2 cos θdr + r(Rdr − (R2 − r2) sin θdθ)
)2

. (B.6)

Thus this transformation is not a trivial perturbation. However, if we consider the large D

limit, this transformation becomes trivial. Taking δΦ = δ̂Φ/n and using R = (r/r0)
n, the

metric deformation (B.6) becomes

δ(ds2) =
δ̂Φ

n

2R2(R2 − 1)

(R+ cos θ)4
dθ2 +O(n−2), (B.7)

where we set to r0 = 1, and we neglect dr2 and drdz terms since dr ≃ dR/(nR) is higher

order in 1/n. The deformation (B.7) can be absorbed into the 1/n redefinition of θ. So the

transformation (B.5) becomes trivial at the large D limit. We can see that R = (r/r0)
n

changes its form by the transformation (B.5) to

R → R exp

[

δ̂Φ

(

R2 − 1− (R2 − 1)2

R(R+ cos θ)

)

]

. (B.8)
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So, observing the solution eq. (3.13), we find that the integration constants p0 and d0 in

eq. (3.13) represent the transformation (B.5) and the O(1/n) redefinition of r0. So p0 and

d0 in eq. (3.13) do not have physical degree of freedom.

Non-axisymmetric trivial perturbations. Let us consider the perturbation given by

r → r + ǫeimΦΦ

√
R2 − r2

R
(r +R cos θ), z → z + ǫeimΦΦ

√
R2 − r2

r
sin θ. (B.9)

FormΦ = 1, the metric does not change the form under this non-axisymmetric perturbation

up to O(ǫ). So the stationary deformation of the black ring with mΦ = 1 is just a trivial

deformation. Thus it might be reasonable to regard that the perturbations with mΦ = 1

and ℓ = 0 does not have physical degree of freedom.

C 1/D corrections of effective equations

In this appendix we show 1/n corrections to the effective equations (2.16), (2.17) and (2.18).

The effective equations up to O(1/n) are

∂vpv −
H ′(z)
2κ̂H(z)

∂zpv −
∂2
φpv

2κ̂G(z)2
+

∂φpφ
G(z)2

+
H ′(z)
H(z)

pz +
∆v

n
= 0, (C.1)

∂vpφ − H ′(z)
2κ̂H(z)

∂zpφ −
∂2
φpφ

2κ̂G(z)2
+

1

G(z)2
∂φ

[

p2φ
pv

]

−4κ̂2G(z)H(z)2 + 2G′(z)H(z)H ′(z)
4κ̂2G(z)H(z)2

∂φpv

+
H ′(z)
H(z)

pzpφ
pv

+
G′(z)H ′(z)
κ̂G(z)H(z)

pφ +
∆φ

n
= 0, (C.2)

and

∂vpz −
H ′(z)
2κ̂H(z)

∂zpz −
∂2
φpz

2κ̂G(z)2
+ ∂zpv +

1

G(z)2
∂φ

[

pφpz
pv

]

+
H ′(z)
H(z)

p2z
pv

− G′(z)
G(z)3

p2φ
pv

+
G′(z)
κ̂G(z)3

∂φpφ

+
H(z)G′(z)2H ′(z) +G(z)(G′(z)−H(z)H ′(z)G′′(z))

4κ̂2G(z)2H(z)2
pv

−1− 2H ′(z)2

2κ̂H(z)2
pz +

∆z

n
= 0. (C.3)

The corrections terms ∆v, ∆φ and ∆z are given by

∆v = −
∂2
φpv

(

5G′H ′ + 4κ̂2GH
)

8κ̂3G3H
− ∂zpv

(

G′ − 12κ̂2GHH ′
)

8κ̂3GH2
(C.4)

+
1

pv

(

−
G′H ′p2φ
κ̂G3H

+ pφ

(

H ′∂zpφ
2κ̂G2H

+
H ′∂φpz
κ̂G2H

+
3∂2

φpφ

2κ̂G4

)

+
H ′∂φpφpz
κ̂G2H
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+
3(∂φpφ)

2

2κ̂G4
+

(

1

2κ̂H2
− 2κ̂

)

p2z

)

+
∂φpφ

(

2G′H′

κ̂2H
−G

)

G3

+pz

(

G′

G
+

(

1
κ̂2 − 10H2

)

H ′

2H3

)

− H ′∂z∂φpφ
2κ̂2G2H

−
H ′∂2

φpz

2κ̂2G2H
+

3(∂φpv)
2p2φ

2κ̂G4p3v

+
−H′∂φpvpφpz

κ̂G2H
+ p2φ

(

−H′∂zpv

4κ̂G2H
− 3∂2

φpv

4κ̂G4

)

− 3∂φpv∂φpφpφ

κ̂G4

p2v
+

(

3− 1

2κ̂2H2

)

∂zpz

−
κ̂G4∂2

zpv + ∂3
φpφ

2κ̂2G4
+

H ′pv
(

H(G′)2H ′ +G (G′ −HG′′H ′)
)

4κ̂3G2H3
, (C.5)

∆φ =
G′′

κ̂G
pφ − 4GHG′H ′κ̂2 + 8GH2G′′κ̂2 − 3

(

4κ̂2H2 − 1
)

(G′)2

16κ̂4G2H2
∂φpv

−12κ̂2
(

(G′)2 −GG′′
)

H3 + 8κ̂2GG′H ′H2 − 3
(

(G′)2 −GG′′
)

H − 3GG′H ′

8κ̂3G2H3
pφ log pv

+
3p3φ log pv(∂φpv)

2

κ̂G4p4v
−

p3φ(∂φpv)
2

κ̂G4p4v
+

3p2φ log pv(∂φpv)
3

2κ̂2G4p4v
+

p2φ(∂φpv)
3

4κ̂2G4p4v
+

(

H′

H
− 2G′

G

)

∂φpz

2κ̂

−
(

2GHκ̂2 +G′H ′
)

∂2
φpφ

4κ̂3G3H
+

G′∂zpφ
2κ̂G

− ∂2
zpφ
2κ̂

− 3G′H ′∂vpφ
4κ̂2GH

+ log pv

(

(

4κ̂2
(

(G′)2 −GG′′
)

H3 +
(

GG′′ − (G′)2
)

H −GG′H ′
)

∂φpv

8κ̂4G2H3

+

((

4κ̂2H2 − 1
)

G′ − 2κ̂2GHH ′
)

∂φpz

4κ̂3GH2
−

(

2GHκ̂2 +G′H ′
)

∂2
φpφ

2κ̂3G3H
+

H ′∂zpφ
2κ̂H

)

+
∆

(3)
φ

p3v
+

∆
(2)
φ

p2v
+

∆
(1)
φ

pv
, (C.6)

and

∆z =

(

2− G′H ′

4κ̂2GH

)

∂vpz −
∂2
zpz
2κ̂

+ pz

(

−G2 +H2G′′G+H2(G′)2

2κ̂G2H2

+
log pv

(

−4κ̂2H(H ′)2G2 +
(

G′H ′ −H(H ′)2G′′
)

G+H(H ′)2(G′)2
)

4κ̂3G2H3

)

+pv

(

log pvG
′
(

−4κ̂2
(

(G′)2 −GG′′
)

H3 +
(

(G′)2 −GG′′
)

H +GG′H ′
)

8κ̂4G3H3

+
−2κ̂2

(

2(G′)3 − 3GG′′G′ +G2G(3)(z)
)

H3 +
(

(G′)3 −GG′G′′
)

H +G(G′)2H ′

8κ̂4G3H3

)

+

(

3HH ′(G′)2 +G
((

4κ̂2H2 + 1
)

G′ −HH ′G′′
))

∂φpφ

4κ̂3G4H2
+

(GH ′ −HG′) ∂zpz
2κ̂GH

+

(

4GHG′H ′κ̂2 − 8GH2G′′κ̂2 +
(

4κ̂2H2 − 1
)

(G′)2
)

∂zpv

16κ̂4G2H2
−

(

2GHκ̂2 +G′H ′
)

∂z∂φpφ

4κ̂3G3H

+ log pv

(

(

7HH ′(G′)2 + 3G (G′ −HH ′G′′)
)

∂φpφ

8κ̂3G4H2
−

(

2GHκ̂2 +G′H ′
)

∂2
φpz

4κ̂3G3H

+
H ′∂zpz
κ̂H

+
∂z∂φpφ
2κ̂G2

)

+
∆

(4)
z

p4v
+

∆
(3)
z

p3v
+

∆
(2)
z

p2v
+

∆
(1)
z

pv
. (C.7)
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The coefficients ∆
(1,2,3)
φ and ∆

(1,2,3,4)
z have messy forms as

∆
(3)
φ =

(

−
log pv∂

2
φpv

κ̂G4
−

H ′∂zpv
2κ̂G2H

)

p3φ +

(

∂φpv

(

3∂φpφ
2κ̂G4

−
∂2
φpv

2κ̂2G4

)

−
2∂φpv∂vpv

κ̂G2

+ log pv

(

∂φpv

(

−
6∂φpφ
κ̂G4

−
3∂2

φpv

2κ̂2G4

)

−
H ′∂φpv∂zpv
2κ̂2G2H

+
∂φpv∂vpv

κ̂G2

))

p2φ

+ pz

(

p2φ

(

2H ′∂φpv
κ̂G2H

−
2 log pvH

′∂φpv
κ̂G2H

)

−
log pvpφH

′(∂φpv)
2

2κ̂2G2H

)

+

(

−
3 log pv∂φpφ(∂φpv)

2

κ̂2G4
−

∂φpφ(∂φpv)
2

2κ̂2G4

)

pφ, (C.8)

∆
(2)
φ =

(

−
log pvG

′H ′

2κ̂G3H
−

G′H ′

2κ̂G3H

)

p3φ +

(

(

3G′H′

κ̂2H
− 4G

)

∂φpv

4G3
−

3H ′∂φpz
4κ̂G2H

+
∂3
φpv

8κ̂2G4

+
3H ′∂zpφ
4κ̂G2H

+
H ′∂z∂φpv
8κ̂2G2H

+
3∂v∂φpv
4κ̂G2

+ log pv

(

−
3G′H ′∂φpv
2κ̂2G3H

+
H ′∂φpz
κ̂G2H

+
3∂2

φpφ

2κ̂G4

+
∂3
φpv

4κ̂2G4
+

H ′∂z∂φpv
4κ̂2G2H

−
∂v∂φpv
2κ̂G2

))

p2φ +

(

2κ̂+

(

1

2κ̂H2
− 2κ̂

)

log pv −
1

2H2κ̂

)

p2zpφ

+

(

3∂φpφ∂
2
φpv

4κ̂2G4
+

∂φpv∂
2
φpφ

4κ̂2G4
+

H ′∂φpφ∂zpv
4κ̂2G2H

−
H ′∂φpv∂zpφ
4κ̂2G2H

+
3∂φpφ∂vpv

2κ̂G2
+

5∂φpv∂vpφ
2κ̂G2

+ log pv

(

3(∂φpφ)
2

κ̂G4
+

3∂2
φpv∂φpφ

2κ̂2G4
+

H ′∂zpv∂φpφ
2κ̂2G2H

(

H ′∂φpz
2κ̂2G2H

+
3∂2

φpφ

2κ̂2G4

)

−
∂vpv∂φpφ

κ̂G2
+ ∂φpv +

H ′∂φpv∂zpφ
2κ̂2G2H

−
∂φpv∂vpφ

κ̂G2

))

pφ +
3 log pv∂φpv(∂φpφ)

2

2κ̂2G4

+
∂φpv(∂φpφ)

2

4κ̂2G4
+ pz

(

log pvH
′∂φpv∂φpφ

2κ̂2G2H
+ pφ

(

−
3H ′∂φpφ
2κ̂G2H

− ∂zpv +
H ′∂vpv
κ̂H

+ log pv

(

2H ′∂φpφ
κ̂G2H

+
H ′∂2

φpv

4κ̂2G2H
+

(

1

4κ̂2H2
− 1

)

∂zpv −
H ′∂vpv
2κ̂H

)))

, (C.9)

∆
(1)
φ = −

(

2GHκ̂2 +G′H ′
)

∂φpv∂φpφ

2κ̂3G3H
−

3∂2
φpφ∂φpφ

4κ̂2G4
−

H ′∂zpφ∂φpφ
4κ̂2G2H

−
3∂vpφ∂φpφ

2κ̂G2

+ log pv

(

∂φpφ

(

−
H ′∂φpz
2κ̂2G2H

−
3∂2

φpφ

2κ̂2G4

)

−
H ′∂φpφ∂zpφ
2κ̂2G2H

+
∂φpφ∂vpφ

κ̂G2

)

+pz

(

pφ

(

(

16κ̂2H2 − 3
)

G′

4κ̂2GH2
+

log pv
(

−8κ̂2G′H3 − 8κ̂2GH ′H2 + 2G′H +GH ′
)

4κ̂2GH3

)

+∂zpφ −
H ′∂vpφ
κ̂H

+ log pv

(

−
H ′∂2

φpφ

4κ̂2G2H
+

(

1−
1

4κ̂2H2

)

∂zpφ +
H ′∂vpφ
2κ̂H

))

+pφ

(

(

4G+ G′H′

κ̂2H

)

∂φpφ

2G3
−

∂3
φpφ

4κ̂2G4
+ ∂zpz −

H ′∂z∂φpφ
4κ̂2G2H

−
H ′∂vpz
κ̂H

−
3∂v∂φpφ
2κ̂G2

+ log pv

(

3G′H ′∂φpφ
κ̂2G3H

−
H ′∂2

φpz

4κ̂2G2H
−

∂3
φpφ

2κ̂2G4
+

(

1−
1

4κ̂2H2

)

∂zpz

−
H ′∂z∂φpφ
2κ̂2G2H

+
H ′∂vpz
2κ̂H

+
∂v∂φpφ
κ̂G2

))

, (C.10)

∆(4)
z =

3∂φpv∂zpvp
3
φ

2κ̂G4
+

3∂φp
2
v∂zpvp

2
φ

4κ̂2G4

+pz

((

3 log pv(∂φpv)
2

κ̂G4
−

5∂φp
2
v

2κ̂G4

)

p2φ +

(

3 log pv(∂φpv)
3

2κ̂2G4
−

(∂φpv)
3

2κ̂2G4

)

pφ

)

, (C.11)
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∆(3)
z =

(

2 log pvG
′∂φpv

κ̂G5
+

G′∂φpv
2κ̂G5

−
∂z∂φpv
2κ̂G4

)

p3φ +

(

G′∂φp
2
v

2κ̂2G5
−

3∂zpφ∂φpv
2κ̂G4

+

(

3∂φpz
2κ̂G4

−
∂z∂φpv
2κ̂2G4

)

∂φpv −
H ′∂zp

2
v

4κ̂2G2H
+ log pv

(

3G′(∂φpv)
2

2κ̂2G5
−

2∂φpv∂φpz
κ̂G4

)

+

(

−
3∂φpφ
2κ̂G4

−
∂2
φpv

4κ̂2G4

)

∂zpv +
∂zpv∂vpv
2κ̂G2

)

p2φ +

(

−
3 log pv∂φpz(∂φpv)

2

2κ̂2G4
+

∂φpz(∂φpv)
2

2κ̂2G4

−
∂zpφ∂φp

2
v

2κ̂2G4
−

∂φpφ∂zpv∂φpv
κ̂2G4

)

pφ

+p2z

(

pφ

(

5H ′∂φpv
2κ̂G2H

−
2 log pvH

′∂φpv
κ̂G2H

)

−
log pvH

′(∂φpv)
2

2κ̂2G2H

)

+pz

((

−
log pv∂

2
φpv

κ̂G4
+

∂2
φpv

2κ̂G4
−

H ′∂zpv
κ̂G2H

)

p2φ +

(

∂φpv

(

3∂φpφ
κ̂G4

+
∂2
φpv

4κ̂2G4

)

+
H ′∂φpv∂zpv
4κ̂2G2H

−
5∂φpv∂vpv

2κ̂G2
+ log pv

(

∂φpv

(

−
4∂φpφ
κ̂G4

−
3∂2

φpv

2κ̂2G4

)

−
H ′∂φpv∂zpv
2κ̂2G2H

+
∂φpv∂vpv

κ̂G2

))

pφ

−
3 log(pv)(∂φpv)

2∂φpφ
2κ̂2G4

+
∂φp

2
v∂φpφ

2κ̂2G4

)

, (C.12)

∆(2)
z =

(

2κ̂+

(

1

2κ̂H2
− 2κ̂

)

log pv −
1

2H2κ̂

)

p3z +

(

−
H ′∂φpφ
κ̂G2H

− ∂zpv +
H ′∂vpv
κ̂H

+ log pv

(

H ′∂φpφ
κ̂G2H

+
H ′∂2

φpv

4κ̂2G2H
+

(

1

4κ̂2H2
− 1

)

∂zpv −
H ′∂vpv
2κ̂H

))

p2z

+

((

G
(

4κ̂2H2 − 1
)

+HG′H ′

2κ̂G3H2
−

3 log pvG
′H ′

2κ̂G3H

)

p2φ +
3∂φpv∂vpφ

2κ̂G2

+

(

(

−16κ̂2GH2 + 3G′H ′H +G
)

∂φpv

4κ̂2G3H2
−

2H ′∂φpz
κ̂G2H

−
∂2
φpφ

2κ̂G4
+

H ′∂zpφ
κ̂G2H

+
∂v∂φpv
κ̂G2

+ log pv

(

−

(

−8κ̂2GH2 + 6G′H ′H +G
)

∂φpv

4κ̂2G3H2
+

2H ′∂φpz
κ̂G2H

+
∂2
φpφ

κ̂G4
+

∂3
φpv

4κ̂2G4

+
H ′∂z∂φpv
4κ̂2G2H

−
∂v∂φpv
2κ̂G2

))

pφ −
(∂φpφ)

2

2κ̂G4
−

∂φpv∂
2
φpφ

4κ̂2G4
−

H ′∂φpv∂zpφ
4κ̂2G2H

+
∂φpφ∂vpv

κ̂G2

+ log pv

(

(∂φpφ)
2

κ̂G4
+

3∂2
φpv∂φpφ

4κ̂2G4
+

H ′∂zpv∂φpφ
4κ̂2G2H

−
∂vpv∂φpφ
2κ̂G2

+ ∂φpv

(

H ′∂φpz
κ̂2G2H

+
3∂2

φpφ

4κ̂2G4

)

+
H ′∂φpv∂zpφ
4κ̂2G2H

−
∂φpv∂vpφ
2κ̂G2

))

pz +
3 log pv∂φpv∂φpφ∂φpz

2κ̂2G4
−

∂φpv∂φpφ∂φpz
2κ̂2G4

+
(∂φpφ)

2∂zpv
4κ̂2G4

+
∂φpv∂φpφ∂zpφ

2κ̂2G4
+ pφ

((

3∂φpφ
2κ̂G4

+
∂2
φpv

4κ̂2G4

)

∂zpφ + ∂zpv

(

∂2
φpφ

4κ̂2G4
+

H ′∂zpφ
2κ̂2G2H

)

−
H ′∂φpv∂zpz
4κ̂2G2H

+ ∂φpφ

(

∂z∂φpv
2κ̂2G4

−
∂φpz
κ̂G4

)

+ ∂φpv

(

−
G′∂φpφ
κ̂2G5

−
∂2
φpz

4κ̂2G4
+

∂z∂φpφ
2κ̂2G4

)

+

(

∂φpz
κ̂G2

−
∂zpφ
2κ̂G2

)

∂vpv −
∂zpv∂vpφ
2κ̂G2

+
3∂φpv∂vpz

2κ̂G2
+ log pv

(

2∂φpφ∂φpz
κ̂G4

+
3∂2

φpv∂φpz

4κ̂2G4

+
H ′∂zpv∂φpz
4κ̂2G2H

−
∂vpv∂φpz
2κ̂G2

+ ∂φpv

(

3∂2
φpz

4κ̂2G4
−

3G′∂φpφ
κ̂2G5

)

+
H ′∂φpv∂zpz
4κ̂2G2H

−
∂φpv∂vpz
2κ̂G2

))

+p2φ

(

−
3G′∂φpφ
2κ̂G5

−
G′∂2

φpv

2κ̂2G5
−

∂2
φpz

4κ̂G4
+

(

G
(

H ′4 + 6κ̂2H2 − 1
)

− 12κ̂2H3G′H ′
)

∂zpv

16κ̂4G3H4
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+
3∂z∂φpφ
4κ̂G4

+
H ′∂2

zpvG
2 +Hm(0,1,2)(u, z, x)

8κ̂2G4H
−

G′∂vpv
2κ̂G3

+ log pv

(

−
3G′∂φpφ
κ̂G5

−
3G′∂2

φpv

4κ̂2G5
+

∂2
φpz

2κ̂G4
−

G′H ′∂zpv
4κ̂2G3H

+
G′∂vpv
2κ̂G3

)

−
∂v∂zpv
4κ̂G2

)

, (C.13)

∆(1)
z =

(

4G
((

2κ̂2H2 − 1
)

G′ +HH ′G′′
)

− 5H(G′)2H ′

4κ̂2G4H2

+
log pv

(

G
((

4κ̂2H2 − 1
)

G′ +HH ′G′′
)

− 3H(G′)2H ′
)

2κ̂2G4H2

)

p2φ

+

(

(

3HH ′(G′)2 +G
((

3− 8κ̂2H2
)

G′ − 3HH ′G′′
))

∂φpv

8κ̂3G4H2
+

(

8G− G′H′

κ̂2H

)

∂φpz

4G3

+
G′∂2

φpφ

κ̂2G5
+

(

−8κ̂2GH2 + 6G′H ′H +G
)

∂zpφ

4κ̂2G3H2
−

H ′∂2
zpφG

2 +H∂z∂
2
φpφ

4κ̂2G4H
+

G′∂vpφ
κ̂G3

−
∂v∂φpz
κ̂G2

+ log pv

(

(

−8κ̂2GH2 + 6G′H ′H +G
)

∂φpz

4κ̂2G3H2
+

3G′∂2
φpφ

2κ̂2G5
−

∂3
φpz

4κ̂2G4
+

G′H ′∂zpφ
2κ̂2G3H

−
H ′∂z∂φpz
4κ̂2G2H

−
G′∂vpφ
κ̂G3

+
∂v∂φpz
2κ̂G2

)

+
∂v∂zpφ
2κ̂G2

)

pφ +
G′(∂φpφ)

2

κ̂2G5
−

H ′(∂zpφ)
2

4κ̂2G2H

+p2z

(

(

8− 1
κ̂2H2

)

G′

4G
−

(

8κ̂2H2 − 1
)

log pvH
′

2κ̂2H3
+

2H ′

H

)

−

(

2GHκ̂2 +G′H ′
)

∂φpv∂φpz

4κ̂3G3H

+

(

∂φpv
2κ̂G2

−
∂2
φpφ

4κ̂2G4

)

∂zpφ −
∂φpφ∂z∂φpφ

2κ̂2G4
+

(

∂zpφ
2κ̂G2

−
∂φpz
κ̂G2

)

∂vpφ −
∂φpφ∂vpz

κ̂G2

+ log pv

(

3G′(∂φpφ)
2

2κ̂2G5
−

3∂2
φpz∂φpφ

4κ̂2G4
−

H ′∂zpz∂φpφ
4κ̂2G2H

+
∂vpz∂φpφ
2κ̂G2

−
H ′(∂φpz)

2

2κ̂2G2H
−

3∂φpz∂
2
φpφ

4κ̂2G4

−
H ′∂φpz∂zpφ
4κ̂2G2H

+
∂φpz∂vpφ
2κ̂G2

)

+ pz

(

(

8G− G′H′

κ̂2H

)

∂φpφ

4G3
+ 2∂zpz −

2H ′∂vpz
κ̂H

−
∂v∂φpφ
κ̂G2

+ log pv

(

(

−8κ̂2GH2 + 6G′H ′H +G
)

∂φpφ

4κ̂2G3H2
−

H ′∂2
φpz

2κ̂2G2H
−

∂3
φpφ

4κ̂2G4
+

(

2−
1

2κ̂2H2

)

∂zpz

−
H ′∂z∂φpφ
4κ̂2G2H

+
H ′∂vpz
κ̂H

+
∂v∂φpφ
2κ̂G2

))
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