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1 Introduction

1.1 Universality in simple Lie algebras and gauge theories

Representation theory is in the basis of our understanding of symmetries of physical the-

ories and plays an increasingly important role with revealing of new hidden symmetries,

sometime quite involved, which govern the structure of states and dynamics of string theory

and its field theory reductions.

Representation theory looks different for different simple Lie algebras, however, it

seems that this is only because representations are classified by weights, not by roots. The

sub-sector of representation theory associated with roots now shows significant signs of

universality : many group-invariant quantities can be represented as values of analytical

functions, defined over entire Vogel’s plane (see the definition below), at a special points

from Vogel’s table (2.35), (2.36).

This sector is formed by the adjoint representation and representations appearing in

decomposition of its tensor powers. That is the reason to nickname it a E8-sector of repre-

sentation theory, because for the maximal exceptional algebra E8, where the fundamental

representation coincides with the adjoint one, it provides a complete description.

This picture is not established yet. There are arguments and conjectures pro and

contra, and the picture itself should be further clarified. However, the perspective of

unification of all simple Lie algebras (or at least some sectors of their representation theory)

is so attractive, that it certainly deserves a detailed study. The present paper presents a new

arguments in favor of universality, by universalization of some types of knot polynomials.

The term “universality” refers to the notion of the ”Universal Lie algebra” introduced

by Vogel in [1], see also [2–6], which, roughly speaking, was intended to be a model for

all simple Lie algebras. That idea was based on his study of (his introduced) algebra Λ of

three-leg Jacobi diagrams [7], acting on different spaces of diagram and aimed finally to

construction of finite Vassiliev’s invariants of knots. These works present first impressive

examples of universal quantities, such as e.g. dimensions of adjoint and its descendant

representations, and provide a motivation for subsequent developments. Latter particularly

includes the whole series of universal dimension formulae in simple Lie algebras [8], and

proof of of universality of many quantities in Chern-Simons gauge theory [9]. Despite some

problems with [1], found later in [7], it remains reasonable and even more challenging to

study when and what universal formulas can exist.

An additional support to the universality comes from the geometric engineering [10–12]:

there gauge groups are secondary entities emerging from particular singularities of Calabi-

Yau spaces, and it is unnatural for algebras of different series to appear in a different way,

they should rather possess a common, i.e. universal description. Note that in connected to

this field Kostant’s paper [13] the ADE part of Vogel’s table appears already at 1984.

There are a lot of open questions in this field, e.g. its relations to the Langlands

theory [14–21]. Particularly important is problem of existence of a universal form of cor-

responding duality, which is a basis of our understanding of S-duality in string theories.
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1.2 Universal knot polynomials

As shown in [9, 22], in the Chern-Simons gauge theory [23] on the 3d sphere universal are

such quantities as central charge, perturbative and non-perturbative partition functions,

etc., and particularly unknotted Wilson average in adjoint representation. In the present

paper we discuss the problem of universality of adjoint Wilson averages for some knotted

curves. It is well-known [24], that they are connected with knot polynomials [25–32].

Knot polynomials are usually defined with the help of concrete types of simple Lie al-

gebras: best known are the HOMFLY and Kauffman polynomials, associated respectively

with SU(N)(SL(N)) and SO(N). The definition of these polynomials already implies an

analytical continuation from positive integer to generic values of N , and the universal-

ity is a far-going generalization, which can unify some of the HOMFLY and Kauffman

polynomials (those which are colored by representations from the set of adjoint descen-

dants) into a single quantity. It is worth mentioning that finite Vassiliev’s invariants [33],

which were among initial aims of Vogel’s study [7], arise in perturbative expansions of knot

polynomials [34–41].

Given these expectations, it is a natural task to lift entire knot polynomials to the

universal level, i.e. to define them as functions of the above mentioned parameters in such

a way, that (at least) the known HOMFLY and Kauffman polynomials arise for their corre-

sponding values, and, moreover, at other special values one gets polynomials for Sp(N) and

for the exceptional groups. The purpose of this paper is to demonstrate that for the adjoint-

colored polynomials this is indeed possible, at least for some classes of knots. Namely, we

find universal knot polynomials for 2− and 3-strand torus knots, when Rosso-Jones for-

mula [42–46] is available for any representation of any simple Lie algebra, moreover, in this

case the Rosso-Jones formula itself can be made universal. We also do so for the figure eight

knot 41, where this provides a new set of colored HOMFLY polynomials and continuation

to exceptional groups is a new result of its own value. Remarkably, the universal formu-

las inherit distinguished properties of ordinary knot polynomials like evolution [47, 48],

factorization of special polynomials [47, 49–51] and differential expansion [52–54].

Actual development proceeded as follows.

First, for any given link/knot L we introduced the “uniform adjoint HOMFLY”

HLAdj(q|A), which are still polynomials in A = qN despite the appearance of N in

parametrization of its Young diagram:

HLAdj(q|A = qN ) = HL
[21N−2]

(q|A = qN ) (1.1)

This new polynomial in all calculated cases is remarkably simple and possesses wonderful

properties.

Second, we consider the adjoint Kauffman polynomial

KLAdj(q|A) = KL[11](q|A) (1.2)

(note that A = qN−1 for SO(N) and Sp(−N)). It is known for a limited (classes of) knots,

however wide enough to establish universality in cases we interested in.

– 3 –
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Third, for a few small knots we found a universal polynomial ULAdj(u, v, w), which is a

symmetric Laurent polynomial of three variables u = qα, v = qβ and w = qγ (α, β and γ are

the conventional Vogel’s parameters [7]), and interpolates between the uniform HOMFLY

and Kauffman polynomials, when specialized to SU and SO lines of table (2.35):1

ULAdj(u = q−2, v = q2, w = A) = HLAdj(q|A),

ULAdj(u = q−2, v = q4, w = q−3A) = KLAdj(q|A)
(1.3)

It is a highly non-trivial fact that such an interpolation exists at all: the corresponding

system of equations on coefficients of the mentioned Laurent polynomial is highly overde-

termined, but appears to have a solution. To understand a non-triviality of this fact,

one can try to represent in such a way the simplest fundamental HOMFLY polynomial

H41
[1] = 1 + A2 + A−2 − q2 − q−2, nothing to say, to interpolate it to the fundamental

Kauffman polynomial K41
[1] = (q− q−1)A5− (q2− 1 + q−2)A4− (q− q−1)A3 + (q2 + q−2)A2.

One of the sources of problem is that any Kauffman polynomial is an invariant of non-

oriented links only, while the fundamental HOMFLY polynomial is an invariant of oriented

links. However, the HOMFLY polynomial in the adjoint representation also does not differ

between differently oriented links, since the adjoint representation is self-conjugated.

On the other hand, (1.3) defines the universal polynomial (if it exists) ambiguously:

only modulo a symmetric polynomial

(uv − 1)(uw − 1)(vw − 1)(u2v − 1)(uv2 − 1)(u2w − 1)(uw2 − 1)(v2w − 1)(vw2 − 1) (1.4)

of a relatively high degree 24. For very small knots one can fix this ambiguity by require-

ment of having polynomial of minimal degree, but for bigger knots with knot polynomials

of higher degree this doesn’t work.

Forth, we lifted formulas for small knots to those for the entire 1-parametric 2− and

3-strand torus families. This lifting helps us to tame/reduce the ambiguity for at least the

knots of this type.

Fifth, finally we found a way to directly derive universal expressions for the 2- and 3-

strand knots from the general Rosso-Jones formula, valid for any group. As original Rosso-

Jones expression, it is valid (and hence prove universality) for corresponding links, also.

Below we concentrate mainly on the universal Rosso-Jones formula, omitting most

details of our original calculation.

However, original methods, and universality statement/hypothesis are actually appli-

cable/suggested to an arbitrary knots, if sufficiently much is known about their colored

HOMFLY and Kauffman polynomials. As an illustration, we present the answer for the

universal adjoint polynomial of the figure-eight knot 41. We stress again that this answer

should be used with a certain care, because the ambiguity issue is not fully resolved. The

real resolution would come from lifting to the Vogel universal level of the full Rosso-Jones

formula and, more generally, of the modern version of the Reshetikhin-Turaev formal-

ism [56]–[78].2

Finally, some properties of universal polynomials are discussed in the last section.

1For a different relation between colored Kauffman and HOMFLY polynomials see [55].
2See also an extensive list of references as well as of data on colored knot polynomials at

http://knotebook.org.
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2 Adjoint polynomials

Adjoint is a distinguished representation from many points of view, both in physics and

in mathematics. Closer to our purposes in this paper, universal Vogel’s [7] and Landsberg

and Manivel’s [8] formulas (see also [2–6]) deal with (some) irreducible representations

in an arbitrary powers of adjoint representation of Lie algebra, while its extension to all

representations, including fundamental, is problematic. In this section we collect just some

of the relevant technical details.

2.1 Rosso-Jones formula

The original expression for invariants of torus knots/links, derived by Rosso and Jones

in [42], looks as

P
[m,n]
R = qmnκR

DR(q)

∑
Y

∑
Q q
− n

m
κ
QϕY (σ̄[m,n])DQ(q) (2.1)

Here Y runs over all Young diagrams with m boxes, Q runs over all irreducible rep-

resentations, with multiplicities, of the gauge group (i.e. the group, of which R is the

representation) in one of the subspaces of R⊗m with symmetry Y , ϕY (σ̄[m,n]) is the charac-

ter of Y representation of symmetric group Sm evaluated on the element (σ1 . . . σm−1)n of

braid group Bm, considered as an element of Sm, κQ is the second Casimir of Q, DQ(q) are

the usual quantum dimensions, see below. Elements σ1, . . . , σm−1 are usual generators of

the braid group Bm, interchanging two neighboring strands, so their product reduced to the

symmetric group Sm is just a cyclic permutation (1, 2, . . .m). Obviously, its m-th power

will be an identity element. If m,n are mutually prime, this is a knot invariant, otherwise

it is the invariant of the corresponding l-component link, where l is the greatest common

divisor of m and n. The Rosso-Jones formula is given here in the topological framing.

The Rosso-Jones formula can be rewritten in a more inspiring form [43–46]

P
[m,n]
R (q) = qmnκR

D
R

(q)

∑
Q∈R⊗m cRQ · q

− n
m
κ
Q ·DQ(q) (2.2)

It also has far going generalizations to arbitrary knot polynomials in braid realiza-

tions [65–78].

This formula treats differently the number m of strands in the braid and its length

(evolution parameter) n: the m←→ n symmetry of the answer, P
[m,n]
R = P

[n,m]
R , necessary

for its topological invariance, is technically a non-trivial fact. The sum in this formula

goes over all irreducible representations Q, belonging to the m-th power of the original

representation R,

κQ = (ΛQ,ΛQ + 2ρ) (2.3)

is the corresponding eigenvalue of the Casimir operator and

DQ =
∏
α∈∆+

[(ΛQ+ρ,α)]

[(ρ,α)]
(2.4)

is its quantum dimension. Here ΛQ is the highest weight of the representation Q, ρ is

the Weyl vector, equal to the half sum of positive roots, and square bracket denotes the

quantum number:

[x] = qx−q−x

q−q−1 = {qx}
{q} , {x} = x− x−1 (2.5)

The coefficients cRQ are integers.

– 5 –
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They are explicitly given by a somewhat sophisticated formula [42]:

cRQ = ϕWQ
(σ̄[m,n]) (2.6)

i.e. cRQ is the corresponding value of symmetric group character ϕ, in representation WQ

of Sm, which describes the multiplicity of representation Q in decomposition

R⊗m = ⊕Q WQ ⊗Q (2.7)

A more elegant version is to define cRQ through characters of the original algebra,

extended to the space of time-variables (this is a well known procedure for SU(N), but

requires a more detailed explanation in the case of exceptional algebras). Then one can

apply the Adams plethysm rule: for knots

ÂdmχR(pk) ≡ χR(pmk) =
∑

Q∈R⊗m cRQχQ(pk) (2.8)

and ∏l
i=1 Âdm/l

χRi
=
∑

Q c~RQ
χQ(pk) (2.9)

for the l component link in representation ~R = ⊗li=1Ri. The quantum dimensions are

restrictions of time-dependent characters to the “topological locus”:

DQ = trQq
ρ = χQ(p∗k), p∗k = tr�q

kρ (2.10)

where the last trace is taken in the fundamental representation. Clearly, these definitions

imply an extension of the r.h.s. of (2.2) to the entire space of time variables [64], however

such H
[m,n]
R (q|pk) does not possess the m ←→ n symmetry, i.e. is not fully topologically

invariant (depends also on the braid representation). If one prefers to work entirely on the

topological locus, one should use the original (2.6).

For SU(N) the knot polynomial P is called HOMFLY-PT polynomial, and we denote it

by H. Usually HOMFLY is defined as a polynomial of two variables q and A, specialization

to particular SU(N) is provided by putting A = qN .

For SO(N) it is called Kauffman polynomial, denoted by K and specialization is A =

qN−1. The Sp(N) case can be obtained from the SO(N) one by the substitution N −→
−N , transposition of Young diagrams and renormalization of scalar product in algebra

(or, equivalently, on the language of Chern-Simons theory, by renormalization of coupling

constant), see [9, 91, 92] for gauge theories’ side of this equivalence, and [47, 49] for that in

knots theory. Some extra modifications are needed in the case of superpolynomials, see [47]

and [79–83].

Isomorphisms between different small groups imply relations between HOMFLY and

Kauffman polynomials (for the purposes of this paper we restrict formulas to adjoint rep-

resentation, Adj
SO

= [11], Adj
Sp

= [11]tr = [2]). With appropriate choice of normalization

– 6 –
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of scalar products one has:

SO(3) ∼= SU(2)/Z2 =⇒ KAdj(q
2|A = q4) = HAdj(q|A = q2)

SO(4) ∼= SU(2)2/Z2 =⇒ KAdj(q|A = q3) = HAdj(q|A = q2)

SO(6) ∼= SU(4)/Z2 =⇒ KAdj(q|A = q5) = HAdj(q|A = q4)

SU(2) ∼= Sp(2) =⇒ HAdj(q
2|A = q4) = KAdj(q

−1|A = q3)

SO(5) ∼= Sp(4)/Z2 =⇒ KAdj(q
2|A = q8) = KAdj(q

−1|A = q5)

(2.11)

As a corollary,

KAdj(q
2|A = q6) = KAdj(q

4|A = q8) = KAdj(q
−1|A = q3) (2.12)

Twist knots can be described by a very similar evolution formula [48, 84], only in this

case m = 2, but Q ∈ R⊗R̄, where R̄ is a conjugate representation, and cRQ are substituted

by more complicated expressions, requiring separate tedious calculations.

2.2 SU(N) series

For SU(N) the parameter A = qN captures all the dependence on N , provided the quantum

dimensions DQ(q|A) are also expressed through it, see below. For arbitrary representation

R in this case, the second Casimir is equal to

κR = 2κR − |R|
2

N + |R|N (2.13)

with κR =
∑

ri,j∈R(j− i), where the sum goes over the boxes of the Young diagram R and

κR is the corresponding eigenvalue of the cut-and-join operator [85, 86],

Ŵ2χQ = κQχQ (2.14)

Note that the shift of κR in (2.13) is essential in order to guarantee that κ[1N ] = 0, since

representation [1N ] is equivalent to the singlet.

For SU(N), the adjoint representation is associated with the N -dependent self-

conjugate hook diagram

Adj = [21N−2] for SU(N) (2.15)

As usual, conjugate is the diagram, which after rotation by π can be “added” to the original

diagram to form a full rectangular of the length/height N .

What also distinguishes adjoint representation of SU(N) is the slow growth of its

dimension dadj = [N + 1][N − 1] for large N , which signals about strong cancelations in

the hook formula

DR =
∏

(i,j)∈R
[N+i−j]

[hooklength(i,j)]
(2.16)

(normally dimension of an M -box diagram would grow as NM , but since the denominator

can also grow as fast as M !, compensation is possible for M ∼ N , and it indeed takes place

– 7 –
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for the adjoint representation). This also implies that the powers of adjoint representation

decompose into a relatively small number of irreducibles, just seven:

Adj⊗2 = [21N−2]⊗ [21N−2] = [42N−2]⊕
(

[42N−312] = [31N−3]
)
⊕ [332N−3]⊕ (2.17)

⊕
(

[332N−412] = [221N−4]
)
⊕ (2− δN,2) ·

(
[32N−21] = [21N−2]

)
⊕
(

[2N ] = [0]
)

where [0] denotes one-dimensional singlet representation.

Technically this works as follows: say, for SU(4) adjoint representation is [211], and

from the decomposition

[211]⊗2 = [422]⊕
(

[4211]
N=4−→ [31]

)
⊕ [41111]⊕ [332]⊕

(
[3311]

N=4−→ [22]
)
⊕

⊕ 2 ·
(

[3221]
N=4−→ [211]

)
⊕ 2 · [32111]⊕ [311111]⊕

(
[2222]

N=4−→ [0]
)

+

+ [22211] + [221111] (2.18)

only the six underlined Young diagrams (one with multiplicity two) have no more than

N = 4 lines and survive for SU(4), moreover, the double-underlined diagrams with exactly

N = 4 lines are further simplified.

Note also that the adjoint representation is self-conjugate, and so are the five represen-

tations in its square, the remaining two are conjugate of each other, [31N−3] = [332N−3].

However, if we extend SU(N) group by automorphysms of its Dynkin diagram, then the

sum of two last representations becomes one irreducible representation of extended group.

It also deserves mentioning that quantum dimensions of symmetric and antisymmetric

squares of the representation R are equal to

D2
R±Âd2(DR)

2 ≡ DR(q|A)2±DR(q2|A2)
2

(2.19)

In particular, for SU(N), i.e. at A = qN one has, say,

D2(q)2+D2(q2)
2 = D4(q|A) +D22(q|A) (2.20)

and

DAdj(q)
2 +DAdj(q

2)

2
= D[42N−2](q) +D[221N−4](q) +DAdj(q) + 1

DAdj(q)
2 −DAdj(q

2)

2
= D[332N−3](q) +D[31N−3](q) +DAdj(q)

(2.21)

where the dimensions are:

D[42N−2](q) =
{A}2{Aq3}{A/q}
{q2}2{q}2

, D[221N−4](q) =
{Aq}{A}2{A/q3}
{q2}{q}2

, (2.22)

DAdj =
{Aq}{A/q}
{q}2

, D[332N−3](q) = D[31N−3](q) =
{Aq2}{Aq}{A/q2}{A/q}

{q2}{q}2

The 2-Adams plethysm decomposition is even smaller than the square of the ad-

joint (2.17): it does not contain the item with multiplicity two (one symmetric and one

– 8 –
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anti-symmetric: they hence drop out of the alternated sum):

Âd2(Adj) = [21N−2]⊗ [21N−2] = [42N−2]	
(

[42N−312] = [31N−3]
)
	 [332N−3]⊕

⊕
(

[332N−412] = [221N−4]
)
	 δN,2

(
[31] = [2]

)
⊕
(

[2N ] = [0]
) (2.23)

so that the Rosso-Jones formula for the adjoint-colored HOMFLY polynomials of the 2-

strand torus knots states:

H[2,n]
Adj (q|A)=

1

DAdj

[(
A

q

)2n

D[42N−2]+(Aq)2nD[221N−4]−A2n
(
D[31N−3]+D[332N−3]

)
+A4n

]
(2.24)

2.3 SO/Sp series

Similarly to the SU(N) case, representations of SO(N) are also labeled by Young diagrams,

besides spinor ones. The quantum dimensions dR for various representations of SO(N) are

very similar to DR of SU(N), if expressed through the parameter A, but with a notable

change: one has to parameterize A = qN−1 in dR for SO(N), instead of A = qN in DR

for SU(N). These dimensions can be calculated using formula (2.4) or [87, (4.9)] for the

representation given by the Young diagram R with the lines {ri}, i = 1, . . . , l(R):

dR =
∏

1≤i<j≤l(R)

{qri−rj+j−i}{Aqri+rj+1−i−j}
{qj−i}{Aq1−i−j}

×
l(R)∏
k=1

(
{(A1/2qrk−k+ 1

2 }
{A1/2q−k+ 1

2 }

rk∏
s=1

{Aqrk+1−k−s−l(R)}
{qs−k+l(R)}

) (2.25)

A table of the first dimensions and their product rules can be found in the appendix A.

The Adams plethysm relations look like

Âd2

(
d[1]

)
= d[2] − d[11] + 1,

Âd3

(
d[1]

)
= d[3] − d[21] + d[111],

Âd2

(
d[2]

)
= d[4] − d[31] + d[22] + d[2] − d[11] + 1

Âd2

(
d[11]

)
= d[22] − d[211] + d[1111] + d[2] − d[11] + 1

. . .

(2.26)

The adjoint representation of SO(N) is independent of N and is just the first antisym-

metric representation:

Adj = [11] for SO(N) (2.27)

Its symmetric and antisymmetric squares are decomposed as follows:

S2(Adj) = S2([11]) = [22] + [1111] + [2] + [0],

Λ2(Adj) = Λ2([11]) = [211] + [11] = [211] + Adj
(2.28)
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and, accordingly,

d2
[11](q) + d11(q2)

2
= d22(q) + d1111(q) + d2(q) + 1,

d2
[11](q)− d11(q2)

2
= d[211](q) + d[11](q)

(2.29)

Also note that unlike the SU(N) case there are now only two irreducible representations

in the antisymmetric square, but one of them is still adjoint. However, there is no longer

an adjoint in the symmetric square.

Since the Young diagram of the adjoint representation for SO(N) is the same for all

N , calculation of the adjoint Kauffman polynomial is much simpler. According to [88], for

the two-strand torus knots [2, n] one has:

K[2,n]
Adj = K

[2,n]
[11] =

q−4nA4n

d[11]

(
A−2nd[22] − q2nA−2nd[211] + q6nA−2nd[1111]+

+ q−nA−nd[2] − qnA−nd[11] + 1
) (2.30)

The fundamental and symmetric reduced Kauffman polynomials are respectively

K
[2,n]
[1] =

A2n

(
q−nA−nd[2]−qnA−nd[11]+1

)
d[1]

(2.31)

and

K
[2,n]
[2] =

q4nA4n

d[2]

(
q−6nA−2nd[4]−q−2nA−2nd[31]+A

−2nd[22]+q
−nA−nd[2]−qnA−nd[11] + 1

)
(2.32)

For comparison with the fundamental Kauffman polynomials in tables in [89, 90] one should

substitute there A −→ −iA and z = i{q}.

2.4 Exceptional algebras

It is possible to calculate, in a similar fashion, quantum dimensions (see appendix B) and

knots polynomials for some knots (e.g. two-strand knots) for exceptional algebras. However,

this is more time-consuming, and, more important, as we shall see in the next section,

actually exceptional algebras have some similarity with classical series in a sense that they

all are located on the line in Vogel’s plane. So we present below polynomial for trefoil

on that line, i.e. simultaneously for all exceptional algebras, as is done above for SU and

SO/Sp lines. Answer for particular algebras appear at special values of parameter N , given

(as well as definitions of Vogel’s plane, exceptional line, etc) in next section, (2.35), (2.36).
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Adjoint knot polynomial for the trefoil 31 = [2, 3] = [3, 2] on the exceptional line is:

P
[23]
Adj,Exc(q|A) (2.33)

= A12

(
(1 + q−4+A+(q3 + q−3)(qA2−q−1A5)+q2A3−q−2A15 − 1−q2+2q4

q4
A6−

− 1+q2−q4+q6

q2
A7 − 1−q2+q4+q6

q2
(A8−q−2A11)− (q2+q−1)(q2−q−1)

q2
A12+

+
1−q4+q6

q2
A13+{q}

(
q−1A4−[2]A9+qA14−qA16−q−1A17+qA18

)
+{q}2A10

)
where A = qN+2. The primary differential expansion in these variables is

P
[23]
Adj,Exc(q|A) − 1

... A2(A2 + 1 +A−2)(A− 1)2(A+ 1) (2.34)

2.5 Universal description

Above formulas are fairly complicated, and the best way to look at them is from the uni-

versal point of view. In fact, most of them can be obtained by substitution into some

universal expressions of the particular values of three (projective, universal, Vogel’s) pa-

rameters α, β, γ, relevant up to rescaling and permutations, according to the following

Vogel’s table [1]:

algebra α β γ

SU(N) −2 2 N

SO(N) −2 4 N − 4

Sp(N) −2 1 1
2N + 2

Exc(N) −2 N + 4 2N + 4

(2.35)

where all exceptional simple Lie algebras belong to the Exc line at special values of pa-

rameter:

N −1 −2/3 0 1 2 4 8

Exc(N) A2 G2 D4 F4 E6 E7 E8

(2.36)

Tables (2.36) and (2.35) are derived from the following main observation of Vogel.

Consider simple Lie algebra (extended by the automorphisms of its Dynkin diagram) with

second Casimir’s eigenvalue 2t, in some arbitrary normalization . Then symmetric square

of adjoint decomposes in a uniform way, for all algebras:

S2Adj = 1 + Y2(α) + Y2(β) + Y2(γ) (2.37)

where Y2(α), Y2(β), Y2(γ) have eigenvalues of the same Casimir operator 4t − 2α, 4t −
2β, 4t − 2γ, respectively. One can show that t = α + β + γ. Actually this is definition of

these parameters, which evidently fix them up to common multiplier and permutations.

Correspondingly they span the so-called Vogel’s plane, which is factor of projective plane

over symmetric group, P 2/S3, [8].
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Vogel [1, 7] gave a universal expressions for dimension of algebra:

dim Adj = (α−2t)(β−2t)(γ−2t)
αβγ

(2.38)

and for Y2(.) representations:

dimY2(α) = − (3α−2 t) (β−2 t) (γ−2 t) t (β+t) (γ+t)
α2 (α−β)β (α−γ) γ (2.39)

These expressions for dimensions are universal in a sense that they are given by smooth (ra-

tional, in this case) functions of parameters, which at values from Vogel’s table (2.35), (2.36)

give dimensions for corresponding simple Lie algebra. One can easily check that dimensions

of two sides of (2.37) coincide at an arbitrary values of parameters.

Vogel [1, 7] and Landsberg and Manivel [8] have found a lot of universal formulas for

dimensions of irreps of simple Lie algebras, belonging to powers of adjoint representation.

Quantization of most of them is already carried on. The universal character of adjoint

representation (i.e. character of adjoint, restricted on Weyl line, or, in other words, quantum

version of (2.38)) is given in [9]:

χAdj(xρ) ≡ f(x) = r +
∑
µ∈∆

ex(µ,ρ) =
∏
µ∈∆+

e
x
2

(θ+ρ,µ) − e−
x
2

(θ+ρ,µ)

e
x
2

(ρ,µ) − e−
x
2

(ρ,µ)

f(x) =
sinh(xα−2t

4 )

sinh(xα4 )

sinh(xβ−2t
4 )

sinh(xβ4 )

sinh(xγ−2t
4 )

sinh(xγ4 )

(2.40)

where r is the rank of the algebra, ∆(∆+) is the set of all (all positive) roots, θ = ΛAdj is

the highest root.

Introducing, in agreement with (2.4),

q = e
x
2 (2.41)

we get finally in the convenient form:

DAdj = f(x) = −{
√
uvw}{

√
vuw}{

√
wuv}

{
√
u}{
√
v}{
√
w} (2.42)

Note that for Chern-Simons theory this is Wilson average for unknot provided we

take x = 2π/δ, q = exp(π/δ), δ = κ + t, where κ is coupling constant in front of Chern-

Simons action. Note also that now theory is invariant w.r.t. the simultaneous rescaling

of all 4 parameters α, β, γ, κ, and quantization of coupling κ means that it should be (an

arbitrary) integer in the so-called minimal normalization, given in table (2.35), (2.36).

Quantum dimensions of Y2(.) are given in [93]:

DY2(α) = {uvw}{u
√
vw}{uv

√
w}{v

√
uw}{w

√
uv}{vw/

√
u}

{
√
u}{u}{

√
v}{
√
w}{
√
u/v}{

√
u/w} (2.43)

One can check that quantum dimensions of both sides of (2.37) coincide [93]:

S2DAdj =
D2

Adj(q)+DAdj(q
2)

2 = 1 +DY2(α) +DY2(β) +DY2(γ) (2.44)
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It is a hypothesis of Deligne [94] (or universal characters’ hypothesis), completely

checked for SL line [94] that quantum dimensions satisfy this and other standard char-

acters’ relations not only for points of Lie algebras, but also on the entire Vogel’s plane.

For the remaining antisymmetric subspace of square of adjoint the decomposition and

dimensions are

Λ2Adj = Adj +X2 (2.45)

dim(X2) =
(2t− α)(2t− β)(2t− γ)(t+ α)(t+ β)(t+ γ)

α2β2γ2
(2.46)

and quantum dimensions satisfy

Λ2DAdj = DAdj +
D2

Adj(q)−DAdj(q
2)−2DAdj(q)

2 = DAdj +DX2
(2.47)

with [94]

DX2 = DAdj ·
{u
√
vw}{v

√
uw}{w

√
uv}

{u}{v}{w}

(√
uv +

1√
uv

)(√
vw +

1√
vw

)(√
uw +

1√
uw

)
(2.48)

The (q-powers of the half of the) corresponding universal expressions for the quadratic

Casimir operators are [7]:

λAdj = qt = uvw, λY2(α) = q2t−α = uv2w2, λX2 = q2t = (uvw)2 (2.49)

We use here the notation from [1] for particular descendants of the adjoint representation.

Formulas for Y2(β) and Y2(γ) are obtained from Y2(α) by cyclic permutations of u, v, w.

In the next section we shall present similar formulas for decomposition of the cube of

adjoint representation.

3 The universal form of Rosso-Jones formula for 2 and 3 strands

Our aim in this section is to rewrite Rosso-Jones expressions (2.1), (2.2) for invariants of the

torus knots/links in the universal form. Its only group-depending elements are eigenvalues

of second Casimir and quantum dimensions of representations Q, so we need universal

expressions for them.

3.1 2-strand knots and links

In this case m = 2 and both Casimirs and quantum dimensions of irreps in decomposition of

the square of adjoint are universal, as recalled in previous sections. There are two diagrams

Y with two boxes, symmetric square — i.e. a row of two boxes, and antisymmetric, a

column of two boxes. For n odd corresponding characters ϕY (σ̄[2,n]), evaluated on the only

non-trivial element of S2, are 1 and −1, respectively.

This allows one to rewrite (2.1), (2.2) in the universal form for the 2-strand torus knots,

i.e. n = 2k + 1:

U [2,n=2k+1]
Adj =

(uvw)4n

DAdj

(
1 + λY2(α)−nDY2(α) + λY2(β)−nDY2(β)+

+ λY2(γ)−nDY2(γ)− λ−nAdjDAdj − λ−nX2
DX2

) (3.1)
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or

U [2,n]
Adj =

(uvw)2n

DAdj
·
(

(uvw)2n−DX2 +unDY2(α) +vnDY2(β) +wnDY2(γ)− (uvw)nDAdj

)
(3.2)

For n = 1, i.e. for the unknot, U [2,1]
Adj = 1, for general odd positive n this is a polynomial

in positive powers of u, v, w, proportional to (uvw)2n−2.

It is almost evident that this expression reproduces the 2-strand adjoint Kauffman

polynomials at the SO(N) line u = q−2, v = q4, w = A/q3, as long as dimensions and

eigenvalues are reproduced by above universal expressions.

One may ask what it means at the SU(N) line u = q−2, v = q2, w = A, where the

three non-unit dimensions in the symmetric square are

DY2(α) =
{A}2{Aq3}{A/q}

[2]2{q}4
, DY2(β) =

{A}{Aq}{A/q3}
[2]2{q}4

, DY2(γ) =
{Aq}{A/q}
{q}2

= DAdj

(3.3)

and the coinciding dimensions of two mutually-conjugate non-adjoint representations

([31N−3] and [332N−3], which form X2 in the SU(N) case, see (2.24)) in the antisymmetric

square are

1

2
DX2 =

{Aq2}{Aq}{A/q}{A/q2}
[2]2{q}4

(3.4)

Clearly, (3.1) in this case is the uniform HOMFLY polynomial HAdj from (1.1), (2.24).

To universally describe the 2-strand torus links, i.e. for n = 2k, one has to change signs

in front of the two last items from minus to plus, since now we are evaluating characters of

one-dimensional representations on the identity element of S2, so they both are equal to 1:

U [2,n=2k]
Adj =

(uvw)4n

DAdj

(
1 + λY2(α)−nDY2(α) + λY2(β)−nDY2(β)+

+ λY2(γ)−nDY2(γ) + λ−nAdjDAdj + λ−nX2
DX2

) (3.5)

The Rosso-Jones expression and its universalization closely resembles Okubo’s for-

mula [95] for eigenvalues of higher order Casimirs, used in [96] to obtain universal expression

for generating function of eigenvalues of higher Casimir operators.

3.2 3-strand knots and links

The universalization of general Rosso-Jones formula (2.1), (2.2) for 3-strand knots/links is

also possible. The cube of adjoint representation is decomposed as follows:

Adj⊗3 = S3(Adj) + 2S[21](Adj) + Λ3(Adj) (3.6)

where the three terms in the sum correspond to the three components of the cube with

different Young diagram symmetries, according to notations. First and third terms are

1-dimensional representations of the symmetric group S3, second term is two-dimensional
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standards representation of S3. Decompositions of these terms into universal irreps are,

according to Theorem 3.8 of [1]:

S3(Adj) = 2X1 ⊕X2 ⊕B(α)⊕B(β)⊕B(γ)⊕ Y3(α)⊕ Y3(β)⊕ Y3(γ)

Λ3(Adj) = X0 ⊕X2 ⊕ Y2(α)⊕ Y2(β)⊕ Y2(γ)⊕X3(α)⊕X3(β)⊕X3(γ)
(3.7)

S[21](Adj) = 2X1⊕2X2⊕Y2(α)⊕Y2(β)⊕Y2(γ)⊕B(α)⊕B(β)⊕B(γ)⊕C(α)⊕C(β)⊕C(γ)

(3.8)

X0 is a singlet with unit dimension and eigenvalue, X1 = Adj, representations X2 and

Y2 are the same as appeared in the square of adjoint in section 2.5, their dimensions and

associated eigenvalues are given in (2.48) and (2.49).

The plethysm (Adams rule) together with Deligne hypothesis gives the quantum di-

mensions of the three sectors:

DS3(Adj)(q) =
DAdj(q)

3 + 3DAdj(q
2)DAdj(q) + 2DAdj(q

3)

6
,

DΛ3(Adj)(q) =
DAdj(q)

3 − 3DAdj(q
2)DAdj(q) + 2DAdj(q

3)

6
,

DS[21](Adj)(q) =
DAdj(q)

3 −DAdj(q
3)

3

(3.9)

where the plethystic replace q → qn in the universal terms means u→ un, v → vn, w → wn.

To get the universal Rosso-Jones formula for 3-strand knots we note that characters’

multipliers ϕY (σ̄[3,n=3k±1]) for fully symmetric and antisymmetric representations of S3 are

1, and that for [21] contribution (standard two-dimensional representation of S3) is (-1),

see, e.g. [97]. These values also follows from the Adams rule (plethysm):

3-Adams = S3(Adj)− S[21](Adj) + Λ3(Adj) (3.10)

So:

U [3,n]
Adj = (uvw)6n

DAdj

∑
I ±λ

−2n/3
I DI (3.11)

where the sign is plus for representations from the 3 and 111 sectors in Adj⊗3, and minus

for those from the (one) 21 sector.

This means that there are numerous cancellations and contributing to the sum over I

in (3.11) are actually 10 representations: seven

X0 ⊕X3(α)⊕X3(β)⊕X3(γ)⊕ Y3(α)⊕ Y3(β)⊕ Y3(γ) (3.12)

with the sign plus and three

C(α)⊕ C(β)⊕ C(γ) (3.13)

with the sign minus.

According to Theorem 3.8 in [1] the corresponding Casimir’s eigenvalues lead to

λXi = (uvw)i, i = 0, 1, 2, 3, λY2(α) = uv2w2, λY3(α) = v3w3,

λB(α) = u3v2w2, λC(α) = u3/2v3w3
(3.14)
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Note that contributing to (3.11) are only representations, whose eigenvalues are cubic in

parameters u, v, w, so that λ
2/3
I are integer powers.

Starting from the cube of adjoint, the quantum dimensions are rarely known in the

universal form. A part of the problem is that even at the classical level some of them

are not just rational functions of parameters α, β, γ, but belong to certain extensions of

this field (cubic in the case of Adj⊗3), as shown in [1]. However, it is very interesting and

important that the Rosso-Jones formula appears insensitive to this complication!

This is important also from the point of view of the following complication of the above

picture.3 As shown in [7], the algebra Λ has zero divisors (actually insertion of self-energy

diagram is one of such divisors). This violate a conjecture, on the basis of which theorem 3.8

was proved in [1]. This puts doubts in e.g. expressions for dimensions of separate modules

X3(.) in [1]. However, the possibility to find the sum X3(α) + X3(β) + X3(γ) - and even

its quantum dimension, which we actually need - is not affected by these difficulties. It

can be derived from Deligne’s hypothesis of universal characters, e.g. from the (3.7), since

dimensions of all other terms in that expression are known. Note that the 3-strand formulas

obtained in this way, finally appear to satisfy topological invariance check [23]=[32], see

below, at all points of Vogel’s plane.4

The classical dimensions for all components of Adj⊗3 are provided in the same theorem

3.8, and quantization for some of them (for those, belonging to the symmetric cube) is

suggested in [93]. The classical dimension of X3 is expressed through the parameters α, β

and γ by algebraic functions: it involves roots of a cubic equation with coefficients made

from these parameters, which make problem for explicit quantization. However, as just

mentioned, since all the three X3 has coincident eigenvalues, only the sum of all the three

enters (3.11), i.e. the character hypothesis eliminates this problem.

More exactly, the sum can be obtained by subtraction of known dimensions from that

of the antisymmetric cube:

DX3 ≡ DX3(α) +DX3(β) +DX3(γ) = DΛ3(Adj) − 1−DX2 −DY2(α) −DY2(β) −DY2(γ) (3.15)

The resulting explicit formula is long and not very informative, therefore we do not present

it here.

The essentially new quantum dimensions at the cube level are [93]

DY3(α) =−{uvw}{v
√
w}{w

√
v}{v

√
uw}{w

√
uv}{uv

√
w}{uw

√
v}{vw/u

√
u}{vw

√
u}

{
√
u}{
√
v}{
√
w}{u}{u

√
u}{
√
v/u}{

√
w/u}{

√
u/v}{

√
u/w}

DB(α) =−{uvw}{v
√
uw}{w

√
uv}{uv

√
w}{uw

√
v}{vw

√
u}{u

√
v}{u

√
w}{uv/

√
w}{uw/

√
v}

{
√
u}{u}{

√
v}2{
√
w}2{

√
v/w}{

√
w/v}{

√
v/u}{

√
w/u}

(3.16)

and, finally, applying characters’ hypothesis to relation from Theorem 3.8:

Adj⊗ Y2(α) = Adj +X2 + Y2(α) + Y3(α) +B(β) +B(γ) + C(α) (3.17)

3We are indebted to the referee for pointing this out and for important additional remarks.
4After publication of this paper, some of our results were confirmed in [101]. Even more important,

a very recent [102] provided many more examples of universal polynomials for not-only-torus knots, thus

strongly enhancing evidence in support of their topological invariance.
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we get quantum dimension of C(α):

DC(α) = −{uvw}{vw}{v
√
w}{w

√
v}{u

√
vw}{uv

√
w}{uw

√
v}{v

√
uw}{w

√
uv}

{
√
u}2{u3/2}{

√
v}{
√
w}{

√
u/v}{

√
u/w}{

√
u/v}{

√
u/w}

·

·
(√

uv +
1√
uv

)(√
uw +

1√
uw

)(√
u

vw
+

√
vw

u

) (3.18)

It is easy to check that together with (2.48) and (3.9) these expressions are consistent with

decompositions (3.6).

Substituting all this into (3.11), we extend (3.1) to

U [3,n=3k±1]
Adj =

(uvw)4n

DAdj
·
(

(uvw)2n +DX3 + u2nDY3(α) + v2nDY3(β)+

+ w2nDY3(γ) − unDC(α) − vnDC(β) − wnDC(γ)

) (3.19)

One can directly check that U [3,2]
Adj = U [2,3]

Adj , which is implied by the topological invariance

of the knot polynomials.

On the SO(N) line u = q−2, v = q4, w = q−3A this reproduces the answer of [88] for

Kauffman polynomial,

K[3,n]
Adj = K

[3,n]
[11] =

q−6nA6n

d[11]

(
q−2nA−2nd[333]−A−2nd[321] + q2nA−2nd[3111]+q

2nA−2nd[222]−

− q6nA−2nd[21111] + q10nA−2nd111111 + 1
)

(3.20)

with
DX3 = d[222] + d[3111],

DY3(α) = d[333], DY3(β) = d[111111], DY3(γ) = 0,

DC(α) = d[321], DC(β) = d[211], DC(γ) = 0

(3.21)

Dimensions Y3(γ) and C(γ) vanish for SO(N) already at the classical level, since they are

proportional to 2α+ β
SO(N)

= 0.

One the SU(N) line u = q−2, v = q2, w = A, one reproduces the uniform HOMFLY

provided

DY3(α) =
{Aq5}{Aq}2{A}2{A/q}
{q3}2{q2}2{q}2

=D[63N−2], DY3(β) =
{A/q5}{A/q}2{A}2{Aq}

{q3}2{q2}2{q}2
=D[2221N−6],

DY3(γ) =1 = D[0], DC(α) = 2× {Aq
4}{Aq2}{A}2{A/q}{A/q2}
{q3}2{q2}{q}3

= D[52N−31]+D[543N−3],

DC(β) =2× {A/q
4}{A/q2}{A}2{Aq}{Aq2}
{q3}2{q2}{q}3

= D[321N−5]+D[3332N−51], DC(γ) = 0 (3.22)

and

DX3 =
{Aq3}{Aq}{A/q}{A/q3}

{q3}2{q2}2{q}2
·
(

(q2 +4+q−2)(A2 +A−2)−(3q4 +2q2 +2+2q−2 +3q−4)
)

(3.23)
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Again, for SU(N) already the classical dimension DC(γ) ∼ α+β
SU(N)

= 0. We remind that

X3 is actually a sum of three representations, namely, for SU(N)

DX3 = DX3(α) +DX3(β) +DX3(γ) = 2× {Aq
3}{Aq2}{Aq}{A/q}{A/q2}{A/q3}

{q3}2{q2}2{q}2
+

+
{Aq3}{Aq}2{A/q}2{A/q3}

{q3}2{q}4
=

= D[432N−41] +D[41N−4] +D[4443N−4] (3.24)

in excellent accordance with (3.15). The three dimensions from Adj⊗3, which do not

contribute to the Rosso-Jones formula (3.19), for SU(N) are:

DB(α) =
{Aq}{A}2{A/q3}
{q}2{q2}2

= D[221N−4], DB(β) =
{Aq3}{A}2{A/q}
{q}2{q2}2

= D[42N−2],

DB(γ) =
{Aq3}{Aq}2{A/q}2{A/q3}

{q}4{q3}2
= D[432N−41] (3.25)

The extension of the formula (3.19) to the case of 3-strand links is immediate but looks

much longer. In this case all the terms in the expansion (3.6) contribute, since now we

evaluate characters, ϕY (σ̄[3,n=3k]), on identity element of group, which gives dimensions of

representations, i.e. 1,1,2 for symmetric, antisymmetric and [21] cases, respectively.

So, for links we get

U [3,n=3k]
Adj (3.26)

=
(uvw)12k

DAdj
·
(

(uvw)6k + 6(uvw)4kDX1 + 6(uvw)2kDX2 +DX3 + 3u2k(uvw)2kDY2(α)+

+ 3v2k(uvw)2kDY2(β) + 3w2k(uvw)2kDY2(γ) + 3(vw)2kDB(α) + 3(uw)2kDB(β)+

+ 3(uv)2kDB(γ)+2u3kDC(α)+2v3kDC(β)+2w3kDC(γ)+u6kDY3(α)+v6kDY3(β)+w6kDY3(γ)

)
An extension to four and more strands is more difficult, because much less is known

about universal formulas for dimensions (even classical) in higher powers of adjoint rep-

resentation. However, as we discover above in the 3-strand example, the most difficult

questions like quantization of individual dimensions DX3(α), which even classically are al-

gebraic functions of the universal parameters, can be irrelevant for knot theory, at least for

the torus knots, so one can hope that similar phenomena can happen in higher powers, also.

Non-torus knots is another challenge. As we will now demonstrate with the example of

the simplest non-torus 41, their knot polynomials can also be lifted to the universal level,

though a systematic way to do so still needs to be developed.

4 Universal knot polynomial for the figure-eight knot 41

The uniform adjoint HOMFLY is equal to

H41
Adj(q|A) = 1 +

(
q2 + q−2 + {q2}2

)
· q

3 + q−3

q + q−1
· {A}2 +

(
q3 + q−3

q + q−1
· {A}2

)2

, (4.1)
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while the adjoint Kauffman polynomial for 41 was found in [98]:

K41
Adj =K41

[11] =A4
(

1− q−2 + 2q−6 − q−8 − q−10 + q−12
)

+

+A3
(
− q3 + 2q − 4q−3 + 3q−5 + 2q−7 − 3q−9 + q−13

)
+

+A2
(
q6 − 3q4 + 6− 6q−2 − 4q−4 + 7q−6 − q−8 − 3q−10 + q−12

)
+

+A
(

2q7 − q5 − 6q3 + 7q + 4q−1 − 10q−3 + 2q−5 + 5q−7 − 2q−9 − q−11
)
−

−
(
q10 − q8 − 5q6 + 7q4 + 3q2 − 13 + 3q−2 + 7q−4 − 5q−6 − q−8 + q−10

)
+

+A−1
(
− q11 − 2q9 + 5q7 + 2q5 − 10q3 + 4q + 7q−1 − 6q−3 − q−5 + 2q−7

)
+

+A−2
(
q12 − 3q10 − q8 + 7q6 − 4q4 − 6q2 + 6− 3q−4 + q−6

)
+

+A−3
(
q13 − 3q9 + 2q7 + 3q5 − 4q3 + 2q−1 − q−3

)
+

+A−4
(
q12 − q10 − q8 + 2q6 − q2 + 1

)
The universal knot polynomial is given by

U41
Adj = ((444))− ((443)) + ((442)) + ((433)) − ((432))− 2((333)) + ((322))− 2((321))+

+ ((320))+2((311))−6((222))+6((221)−2((220))−4((211))+((210))+((200))+

+ 2((111))+2((110))−6((100))+11−((2, 0,−1))+2((1, 0,−1))−2((1, 1,−1)) (4.2)

Since 41 is fully amphicheiral, the polynomial is symmetric under the change

(u, v, w) −→ (u−1, v−1, w−1) (4.3)

because of this in (4.2) we use the notation

((444)) = (uvw)4 + (uvw)−4,

((300)) = u3 + v3 + w3 + u−3 + v−3 + w−3,

((321)) = u3v2w + u−3v−2w−1 + 5 permutations,

((2, 0,−1)) = u2/v + v/u2 + u2/w + w/u2 + v2/u+ u/v2+

+ v2/w + w/v2 + w2/u+ u/w2 + w2/v + v/w2,

((1, 0,−1)) = u/v + u/w + v/w + v/u+ w/u+ w/v,

. . . (4.4)

(note non-trivial multiplicities). Expression (4.2) reproduces the uniform HOMFLY and

Kauffman polynomials at the SU(N) and SO(N) lines uv = 1 and u2v = 1. The ambiguity

left by comparison with uniform HOMFLY and Kauffman polynomials is proportional to

(uv−1)(vw−1)(uw−1)(u2v−1)(uv2−1)(vw2−1)(v2w−1)(uw2−1)(u2w−1)

(uvw)4
(4.5)

times a rational function, which is odd under (4.3). Adding such polynomials would increase

the power of (4.2).

At the exceptional line w = u2v2

U41
Adj−1 ∼ (uv)−12(1−uv)

(
1−(uv)2

)(
1+(uv)2+(uv)4

)(
1−u−v+3uv+. . .+ (uv)17

)
(4.6)
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5 On properties of the universal polynomials

As mentioned in the Introduction, our actual calculation started from the uniform HOM-

FLY and attempts to unify them with the Kauffman polynomials into a universal expres-

sion. It is instructive to present some more details about these polynomials and their

properties, which has a natural extension to the universal level.

Let us first list the properties that we are going to check for the universal polynomials

of the concrete knots.

i) The special polynomial property:

UKAdj(u = 1, v = 1, w) =
[
σK�(w)

]2
(5.1)

where σK�(w) is a universal special polynomial in the fundamental representation (this

implies that the universality is preserved even in the fundamental representation for

the special polynomial).

ii) The “Alexander” property:

UKAdj(u, v, w)
∣∣∣
uvw=1

= 1 (5.2)

The condition uvw = 1 reduces to trivial Abelian factors for the concrete groups and

is equivalent to N = 0 in the SU(N) case, hence, the name Alexander.

iii) The differential expansion (related to the Alexander property above):

UKAdj(u, v, w)− 1
... (uvw − 1)(uvw + 1) (5.3)

The remainder of this division can be further refined and depends on the knot.

Below we consider examples of concrete knots, manifest expressions for their polyno-

mials and check properties (i)-(iii).

5.1 Trefoil

5.1.1 The uniform HOMFLY polynomial

For the trefoil the uniform HOMFLY (1.1) is given by a remarkably simple expression:

H[2,3]
Adj = A8 ·

(
A−2(q2 + q−2)− q2 + 1− q−2

)2
+ A8 · (q − q−1)2 · (A2 −A−2) (5.4)

Here A = qN . This formula certainly coincides with (2.24) for n = 3 and with (3.1) at the

SU(N) line u = q−2, v = q2, w = A. Expressions (5.4) and (4.1) are also in accord with

that in [99, p.25].
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We immediately check that:

ii) Its special polynomial is a square of the fundamental one:

H[2,3]
Adj (q = 1|A) =

(
(2−A2) ·A2

)2
=
(
H [2,3]

�
(q = 1|A)

)2
(5.5)

This is instead of

H
[2,3]
Adj(N)(q = 1|A) =

(
(2−A2) ·A2

)N
=
(
H [2,3]

�
(q = 1|A)

)N
(5.6)

for the usual adjoint colored HOMFLY at fixed N .

ii) Its “Alexander” polynomial is just unity:

H[2,3]
Adj (q|A = 1) = 1 (5.7)

iii) Its differential expansion starts from {A}2:

H[2,3]
Adj − 1

... (A−A−1)2 (5.8)

5.1.2 The adjoint Kauffman polynomial

The Kauffman polynomial for the trefoil K[2,3]
Adj (q, A) can be read off from (2.30) for n = 3.

i) The special polynomials at q = 1 are the same for SU(N) and SO(N), provided both are

expressed in terms of A (which originally were identified respectively with qN and qN−1):

KR(q = 1) = K
|R|
[1] (q = 1) = H

|R|
[1] (q = 1) = HR(q = 1) (5.9)

We already saw in (5.5) that the uniform adjoint HOMFLY HAdj at q = 1 is also a square

of the fundamental special polynomial, and now we see the reason: this is exactly the

property of the adjoint Kauffman polynomial K[11],

K[11](q = 1) = H2
[1](q = 1) (5.10)

and if there is the universality, the same should be true for the uniform HOMFLY.

ii) Also

K[2,3]
Adj (q|A = ±q) = 1, (5.11)

and

iii)

K[2,3]
Adj (q|A) − 1

... (Aq + 1){A/q} (5.12)
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5.1.3 The universal polynomial

It is not a surprise now that the universal polynomial, which for the trefoil is explicitly

equal to

U [2,3]
adj

= 1 +
(

1− (uvw)2
)2
·
(
− 2S666 + 3S665 − S555 − S444 + 3S442 − S222 − 1

)
+

+
(

1− (uvw)2
)

(1− uv)(1− uw)(1− vw) ·
(
S666+S555 − 3S544 − S444+3S433+3S332+S222

)
=

= (uvw)4
(
−u6v6w6+(u6v6w5+v6w6u5+w6u6v5)−(u6v5w5+v6w5u5+w6u5v5)−

−(u5v4w4+v5w4u4+w5u4v4)+(u5v4w3+v5w4u3+w5u4v3+u5w4v3+v5u4w3+w5v4u3)+

+3u4v4w4−(u4v4w3+v4w4u3+w4u4v3)+(u4v3w3+v4w3u3+w4u3v3)−
−(u4v2w2+v4w2u2+w4u2v2)−(u3v3w2+v3w3u2+w3u3v2)+(u3v2w2+v3w2u2+w3u2v2)−
−(u3v2w+v3w2u+w3u2v+u3w2v+v3u2w+w3v2u)−

− 2u2v2w2 + (u2 + v2 + w2) + (uv + vw + wu) + 1
)

(5.13)

i) satisfies the generalized factorization property at u = v = 1

U [2,3]
Adj (u = v = 1, w) =

(
w2(w2 − 2)

)2
(5.14)

ii) it satisfies the Alexander identity

U [2,3]
Adj (u, v, w)

∣∣∣
uvw=1

= 1 (5.15)

and

iii) there is a differential expansion:

U [2,3]
Adj (u, v, w)− 1 = (uvw − 1)(uvw + 1)

(
− S888 + 3S887 − 3S877 − 3S766 + 6S765+

+ 2S666 − 3S644 − 3S554 + S222 + 1
)

(5.16)

In these formulas Sabc are the elementary symmetric polynomials,

Sabc = 1
6

(
uavbwc + 5 permutations

)
(5.17)

Note that Saaa = (uvw)a, but uavawb + vawaub + wauavb = 3Saab.

There is also a couple of weaker properties: at w = 1

U [2,3]
Adj (w = 1, u, v)− 1 = −(uv − 1)2(uv + 1)

(
u6v6 − u4v4(u2 + v2 + u+ v)+

+ u4v4 + 2u3v3 + 2u2v2 + uv + 1
)

(5.18)

and also at w = −1

U [2,3]
Adj (w = 1, u, v)− 1 = −(uv − 1)2(uv + 1)

(
2u7v7 + 3u6v6−

− u4v4(2u3v2 + 2v3u2 + u2 − u+ v2 − v)+

+ u4v4 + 2u3v3 + 2u2v2 + uv + 1
) (5.19)
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5.1.4 Exceptional groups

iii) For exceptional groups we get an additional factorization in differential expansions:
U [2,3]
Adj −1

(uvw)2−1
is divisible by

(1− q2)(1 + q2/3) for G2

(1− q2)(1 + q4)(1 + q + q2) for F4

(1− q6)(1 + q2) for E6

(1− q6)(1 + q2)(1 + q4) for E7

(1− q6)(1 + q2)(1 + q2 + q4 + q6) + q8) = (1− q10)(1 + q2)(1 + q2 + q4) for E8

(5.20)

In general on the exceptional line w = u2v2 and from (5.13) one gets:

U [2,3]
Adj (w = u2v2, u, v)−1 = −(uv−1)

(
(uv)6−1

)
·
(

(uv)23− (uv)22(u+v)+ . . .+1
)

(5.21)

To compare, on the SU and SO/Sp lines v = u−1 and v = u−2 one respectively has

U [2,3]
Adj (v = u−1, u, w)−1 =

(w2 − 1)2

u2

(
·(u3−2u2+u)w6+(u4−u2+1)w4−2u2w2−u2

)
(5.22)

and

U [2,3]
Adj (v = u−2, u, w)− 1 =

(w2 − u2)(w + u2)

u11

(
(u− 1)(u2 − 1)w7 + . . .+ u7

)
(5.23)

5.1.5 Examples of exceptional knot polynomials for the trefoil

We list here first adjoint exceptional knot polynomials, since they have never been calcu-
lated so far. We added for comparison the cases of small classical groups.

P
[31]
Adj,A1

(q)=J
[31]

[2] =q4
(

1+q6−q10+q12−q14−q16+q18
)

P
[31]
Adj,A2

(q)=H
[31]

[21] (q|A=q3)=q8
(

1+2q4−2q6+2q8−2q10+2q12−4q14+3q16−2q18+2q20−2q22+q24
)

P
[31]
Adj,A3

(q)=H
[31]

[211](q|A=q4)=q12
(

1+2q4−q8+q10−2q12+q14−q16−2q18+3q20−2q22+q24+q26−2q28+q30
)

P
[31]
Adj,A4

(q)=H
[31]

[2111](q|A=q5)=q16
(

1+2q4+q8−2q10+q12−2q14+q16−2q18+q20−

−2q22+3q24−2q26+q28+q32−2q34+q36
)

. . .

P
[31]
Adj,D1

(q)=K
[31]

[11] (q|A=q)=1

P
[31]
Adj,D2

(q)=K
[31]

[11] (q|A=q3)=q4
(

1+q6−q10+q12−q14−q16+q18
)

=P
[31]
Adj,A1

(q)

P
[31]
Adj,D3

(q)=K
[31]

[11] (q|A=q5)=q12
(

1+2q4−q8+q10−2q12+q14−q16−2q18+

+3q20−2q22+q24+q26−2q28+q30
)

=P
[31]
Adj,A3

(q)

P
[31]
Adj,D4

(q)=K
[31]

[11] (q|A=q7)=q20
(

1+q4+2q6−2q10+2q12+q14−4q16−2q18+3q20−5q24+q26+

+5q28−q30−3q32+2q34+2q36−2q38−q40+q42
)

P
[31]
Adj,D5

(q)=K
[31]

[11] (q|A=q9)=q28
(

1+q4+q6+q8−2q20−2q22+q26−q28−q30−q32+q34+3q36−q40−

−q42+q44+q46−q50−q52+q54
)

. . .
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P
[31]
Adj,G2

(q)=q12
(

1+q4+q14/3+q16/3−q20/3−q22/3−q8+q28/3+2q10+q32/3−q34/3−2q12−

−2q38/3−q40/3+q14+2q44/3+2q46/3−2q50/3−3q52/3−2q18+2q58/3+3q20+q62/3−2q22−

−q68/3−q70/3+2q74/3+2q76/3−q80/3−q82/3−q28+q30
)

P
[31]
Adj,F4

(q)=q32
(

1+q4+q7+q8+q16−q18+q20−q21−2q22−q23−

−q25−q26+q27+q28−q30−2q34−q35+q36+q37−q38+q39+3q40+q41−

−q42−q45−q46+q48+q52+q53−q54−q55−q58+q60
)

P
[31]
Adj,E6

(q)=q44
(

1+q4+q8+q10+q16−q24−2q28−q30−q32−

−q40−q44+q48+3q52−q58+q68−q72−q76+q78
)

P
[31]
Adj,E7

(q)=q68
(

1+q4+q10+q14+q20+q24−q26+q28−q30−2q36+

+q38−2q40−q44−q46+q48−2q50+q52−q54−q60+q62−2q64+2q66−q68+

+q70+q72−q74+3q76−q78+q80−q84+q86−q88+q90−q92+q100−q102+q104−q106−q112+q114
)

P
[31]
Adj,E8

(q)=q116
(

1+q4+q14+q22+q28+q36−q42+q44−q50−

−q56−q60+q62−2q64−q72−q74+q76−q78−q82+q84−q86−q88+q92−
−q96+q102−2q104+q106+q110−q112+q114+q116−q122+3q124−q126+

+q132−q136+q138−q144+q146−q152+q164−q166+q172−q174−q184+q186
)

5.2 General 2-strand torus knots [2, 2k + 1]

5.2.1 The HOMFLY polynomial

For the entire one-parametric family of the 2-strand knots, the HOMFLY polynomial in

the fundamental representation is

H [2,2k+1]
�

= A2k+1 · q
−2k−1{Aq}−q2k+1{A/q}

{q2} (5.24)

and the special polynomial is equal to

H
[2,2k+1]
[1] (q = 1) =

(
k + 1− kA2

)
·A2k (5.25)

The uniform HOMFLY polynomial in the adjoint representation, a generalization of (5.4)

turns out to be

H[2,2k+1]
Adj (q|A) = A4k+4

(
1−X2

k

)
+A4k

(
A2Xk −A{A}Yk

)2
+A4k+4{A2}{q}2 · Zk

(5.26)

where

Xk = q2k−1+q−2k+1

q+q−1 , Yk = q2k+2−q−2k−2

q2−q−2 (5.27)

and

Zk =
∑k−1

i=0 A
4(k−1−i) · Yi ·

(
Yi +A2Yi−1

)
(5.28)

e.g.

Z1 = 1, Z2 = A4 + (q2 + q−2)A2 + (q2 + q−2)2, (5.29)

Z3 = A8+(q2+q−2)A6+(q2+q−2)2A4+(q2+q−2)(q4+1+q−4)A2+(q4+1+q−4)2, . . .
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i) This uniform HOMFLY satisfies

H[2,2k+1]
Adj (q = 1|A) =

(
H

[2,2k+1]
[1] (q = 1|A)

)2
(5.30)

and

ii)

H[2,2k+1]
Adj (q|A = 1) = 1, (5.31)

moreover,

iii) the deviation from unity is always quadratically small:

H[2,2k+1]
Adj (q|A)− 1

... {A}2 (5.32)

5.2.2 The Kauffman polynomial

The normalized Kauffman polynomial for 2-strand knots is given by the Rosso-Jones for-

mula (2.30),

K[2,n]
Adj = K

[2,n]
[11] =

q−4nA4n

d[11]

(
A−2nd[22] − q2nA−2nd[211] + q6nA−2nd[1111]+

+ q−nA−nd[2] − qnA−nd[11] + 1
)

(5.33)

and satisfies

i)

K[2,2k+1]
Adj (q = 1|A) =

(
σ[2,2k+1](A)

)2
(5.34)

and

ii)

K[2,2k+1]
Adj (q|A = ±q) = 1 (5.35)

iii) Its deviation from unity is only linear, but always has an additional factor (Aq − 1):

K[2,2k+1]
Adj (q|A) − 1

... (Aq + 1){A/q} (5.36)

We remind that in this case A = qN−1, so A = q corresponds to the Abelian SO(2) group.

5.3 Other knots

The same properties i)–iii) are also true for the 3-strand torus knots and also for the

figure-eight knot. For this later, in particular,

U41
Adj(u = v = 1, w) =

(
w2 − 1 + w−2

)2
(5.37)
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and the properties i)–iii) for the SU(N) line look like

H41
Adj(q = 1|A) =

(
A2 − 1 +A−2

)2
=
(
σ41(A)

)2
,

H41
Adj(q|A = 1) = 1,

H41
Adj(q|A)− 1

... {A}2

(5.38)

moreover, the complete (refined) differential expansion (iii) is in this case

H41
Adj(q|A) = 1 +

(
q2 + q−2 + {q2}2

)
· q

3+q−3

q+q−1 · {A}2 +
(
q3+q−3

q+q−1 · {A}2
)2

(5.39)

If not the underlined term, this differential expansion would very much resemble that for

the symmetric representations [49],

H41
[2](q|A) = 1 + (q + q−1){Aq2}{A/q}+ {Aq3}{Aq2}{A}{A/q},

H41
[r](q|A) = 1 +

r∑
k=1

[r]!

[k]![r − k]!

k−1∏
i=0

{Aq2+i}{Aqi−1}
(5.40)

As to underlined {q}2 term it first appeared in [100], see also [84] for a little more about

such terms.

Similarly, for SO(N) line we have:

K41
Adj − 1

... (Aq + 1) · {A/q} (5.41)

6 Conclusion

In this paper we constructed the universal adjoint knot polynomials for the 2-strand torus

knots (formula (3.1)) and links (formula (3.5)), for the 3-strand torus knots (formula (3.19))

and links (formula (3.26)), see also formulas (3.14) for the eigenvalues of the cut-and-join

operator, κR and formulas for the universal quantum dimensions: (3.16), (3.18) and (3.15)

with (3.9), (3.3) and (3.4).

We also proposed a universal adjoint knot polynomial for the figure eight knot in (4.2).

These are the first examples of universal expressions for non-trivial knots, and they

provide a strong evidence that all adjoint colored knot polynomials exhibit Vogel’s univer-

sality and can be lifted to entire Vogel’s plane, so that the corresponding HOMFLY and

Kauffman polynomials are just their particular cases on particular hyperplanes of codimen-

sion one. This fact opens absolutely new perspectives for study of both the universality and

the colored knot polynomials and deserves extension in various directions: to other knots,

to superpolynomials and to other representations from the family of adjoint descendants.

Another application of present results can be in the study of the theory of Jacobi

diagrams and Vogel’s Λ-algebra. From the point of view of the Chern-Simons theory above

polynomials are Wilson averages for a given knot in adjoint representation. In a given

order in perturbation theory it is the sum of Jacoby diagrams (depending on gauge group)

weighted with space-time integrals, independent of gauge group, but dependent on knot.
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So, for a finite set of Jacobi diagrams of given order we get 1-parameter universal values

for their different combinations, where integer parameter runs values up to the order of

diagram, approximately. Since the number of Jacobi diagrams is about the square of

their order [7], would we have 2-parameter universal expressions, we can hope to find

universal expression to any particular Jacobi diagram, which should be compared with

results of Vogel [7].

Acknowledgments

AM’s are grateful to Satoshi Nawata for a useful correspondence. RM is indebted to

P.Deligne for discussions and e-mail exchange, which particularly includes [93, 94].

Our work is partly supported by grants NSh-1500.2014.2 (AM’s) and 15-31-20832-Mol-

a-ved (A.Mor.), by RFBR grants 13-02-00457 (A.Mir.) and 13-02-00478 (A.Mor.), by joint

grants 15-52-50034-YaF (AM’s), 15-51-52031-NSC-a (AM’s), by 14-01-92691-Ind-a (AM’s),

by the Brazilian National Counsel of Scientific and Technological Development (A.Mor.),

by Volkswagen Foundation (RM) and the Science Committee of the Ministry of Science

and Education of the Republic of Armenia (RM) by the contract 15T-1C233.

A Quantum dimensions for SU(N) and SO(N)

Quantum dimensions for first few irreps of SU(N) and SO(N) are:

SU(N) with A = qN SO(N) with A = qN−1

D[1] = [N ] = {A}
{q} d[1] = [N − 1] + 1 = {A}

{q} + 1 = D[1](A, q) + 1

D[2] = [N ][N+1]
[2] = {A}{Aq}

{q}{q2} d[2] = [N − 1] ·
(

[N ]
[2] + 1

)
=
(

1 + {q2}
{Aq}

)
·D[2](A, q)

D[11] = [N ][N−1]
[2] = {A}{A/q}

{q}{q2} d[11] = [N − 1] ·
(

[N−2]
[2] + 1

)
=
(

1 + {q2}
{A/q}

)
·D[11](A, q)

D[3] = [N ][N+1][N+2]
[2][3] = {A}{Aq}{Aq2}

{q}{q2}{q3} d[3] = [N ][N−1]
[2]

(
1 + [N+1]

[3]

)
=
(

1 + {q3}
{Aq2}

)
·D[3](A, q)

D[21] = [N+1][N ][N−1]
[3] = {Aq}{A}{A/q}

{q}2{q3} d[21] = [N ][N − 2]
(

1 + [N−1]
[3]

)
=
(

1 + {q3}
{A}

)
·D[21](A, q)

D[111] = [N ][N−1][N−2]
[2][3] = {A}{A/q}{A/q2}

{q}{q2}{q3} d[111] = [N−1][N−2]
[2]

(
1 + [N−3]

[3]

)
=
(

1 + {q3}
{A/q2}

)
·D[111](A, q)

D[4] = [N ][N+1][N+2][N+3]
[2][3][4] = {A}{Aq}{Aq2}{Aq3}

{q}{q2}{q3}{q4} d[4] = [N−1][N ][N+1]
[2][3]

(
1 + [N+2]

[4]

)
=
(

1 + {q4}
{Aq3}

)
·D[4](A, q)

D[31] = [N+2][N+1][N ][N−1]
[2][4] = {Aq2}{Aq}{A}{A/q}

{q}2{q2}{q4} d[31] = [N−2][N−1][N+1]
[2]

(
1 + [N ]

[4]

)
=
(

1 + {q4}
{Aq}

)
·D[31](A, q)

D[22] = [N+1][N ]2[N−1]
[2]2[3]

= {A}2{Aq}{A/q}
{q}{q2}2{q3} d[22] = [N+1][N−3]

[2]2[3]

(
1 + [N − 1]

)(
[3] + [N − 1]

)
=

= {Aq2}{A/q2}
{q}{q2}2{q3} · (A+ q)(1− 1

Aq )(A+ q3)(1− 1
Aq3

)

D[211] = [N+1][N ][N−1][N−2]
[2][4] = {Aq}{A}{A/q}{A/q2}

{q}2{q2}{q4} d[211] = [N ][N−1][N−3]
[2]

(
1 + [N−2]

[4]

)
=
(

1 + {q4}
{A/q}

)
·D[211](A, q)

D[1111] = [N ][N−1][N−2][N−3]
[2][3][4] = {A}{A/q}{A/q2}

{q}{q2}{q3}{q4} d[1111] = [N−1][N−2][N−3]
[2][3]

(
1 + [N−4]

[4]

)
=
(

1 + {q4}
{A/q3}

)
·D[1111](A, q)
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These dimensions satisfy the necessary sum rules:

d2
[1] = d[2] + d[11] + 1

d3
[1] = d[3] + 2d[21] + d[111] + 3d[1]

d4
[1] = d[4] + 3d[31] + 2d[22] + 3d[211] + d[1111] + 6d[2] + 6d[11] + 3

. . .

d[2]d[1] = d[3] + d[21] + d[1]

d[11]d[1] = d[21] + d[111] + d[1]

. . .

d2
[2] = d[4] + d[31] + d[22] + d[2] + d[11] + 1

d[2]d[11] = d[31] + d[211] + +d[2] + d[11]

d2
[11] = d[22] + d[211] + d[1111] + d[2] + d[11] + 1

. . .

d[3]d[1] = d[4] + d[31] + d[2]

d[21]d[1] = d[31] + d[22] + d[211] + d[2] + d[11]

d[111]d[1] = d[211] + d[1111] + d[11]

. . .

(A.1)

B Quantum dimensions for exceptional algebras

As follows from (2.25), the quantum dimensions for SO(N) algebras do not factorize in the

variables A, q, but they do so in a =
√
A, Q =

√
q, for example

D
SO(N)
Adj = d[11] =

(
1 + {q2}

{A/q}

)
{A}{A/q}
{q}{q2} = {aQ}{a2}{a2/Q6}

{a/Q3}{Q4}{Q2} (B.1)

which, in terms of N , is

D
SO(N)
Adj = [N − 1] ·

(
[N−2]

[2] + 1
)

= [N/2][N−1][N−4]
[N/2−2][2] (B.2)

and “looks better” for the series DN = SO(2N):

D
SO(2N)
Adj = [N ][2N−1][2N−4]

[N−2][2]
(B.3)

For exceptional algebras the factorized formulas are even more involved:

DG2
Adj =

[8/3][7/3][5]

[4/3][5/3]

q−→1−→ 14,

DF4
Adj =

[10][13/2][6]

[3][5/2]

q−→1−→ 52,

DE6
Adj =

[13][9][8]

[4][3]

q−→1−→ 78,

DE7
Adj =

[19][14][12]

[6][4]

q−→1−→ 133,

DE8
Adj =

[31][24][20]

[10][6]

q−→1−→ 248

(B.4)

– 28 –



J
H
E
P
0
2
(
2
0
1
6
)
0
7
8

Another dimension, contributing to the antisymmetric square, see (2.48) below, is

DG2
X2

=
[6][5][11/3][7/3]

[3][2][5/3][1/3]

q−→1−→ 77 =
14 · 13

2
− 14,

DF4
X2

=
[11][10][7][15/2][13/2][4][7/2]

[11/2][5][5/2][2]2[3/2]

q−→1−→ 1274 =
52 · 51

2
− 52,

DE6
X2

=
[14][13][10][9]2[5]2

[7][5][3]2[2]2
q−→1−→ 2925 =

78 · 77

2
− 78,

DE7
X2

=
[20][19][15[14][13]

[5][4][3][2]

q−→1−→ 8645 =
133 · 132

2
− 133,

DE8
X2

=
[32][31][25][24][21][18][14]

[16][12][9][6][5][2]

q−→1−→ 30380 =
248 · 247

2
− 248

(B.5)

and the non-trivial doublets, contributing to the symmetric square are:

DG2
Y2

=
[10/3][11/3][4][7]

[4/3][5/3][2]

q−→1−→ 77,

DF4
Y2

=
[12][9][15/2][7][13/2][6]

[2][5/2][3][7/2][4]

q−→1−→ 1053,

DE6
Y2

=
[15][12][10][9]2[8]

[5][4]2[3][2]

q−→1−→ 2430,

DE7
Y2

=
[21][18][15][14][13][12]

[7][6][5][4][2]

q−→1−→ 7371,

DE8
Y2

=
[33][30[25][24][21][20]

[11][10][7][6][2]

q−→1−→ 27000

(B.6)

DG2

Y ′2
=

[5][4]

[5/3][4/3][1/3]

q−→1−→ 27 =
14 · 15

2
− 77− 1,

DF4

Y ′2
=

[10][9][15/2][6][3/2]

[5][3][5/2][1/2]

q−→1−→ 324 =
52 · 53

2
− 1053− 1,

DE6

Y ′2
=

[13][12][10][8][5]

[6][4]2
q−→1−→ 650 =

78 · 79

2
− 2430− 1,

DE7

Y ′2
=

[19][18][15][12]

[5][4][2]

q−→1−→ 1539 =
133 · 134

2
− 7371− 1,

DE8

Y ′2
=

[31][30][25][20][14]

[10][7][6][4]

q−→1−→ 3875 =
248 · 249

2
− 27000− 1

(B.7)

In these formulas Y2, Y
′

2 , Y
′′

2 are Y2(α), Y2(β), Y2(γ), respectively, in general decompo-

sition (2.37). However, for exceptional algebras Y ′′2 = Y2(γ) = 0.

Knot polynomials for exceptional algebras are rather lengthy, to give an example, we

list them for the trefoil in section5.1.5.
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