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1 Introduction

The most important Quantum Field Theories (QFT) for describing elementary particle

physics are gauge theories. Quantum Yang-Mills theories [1] were introduced about sixty

years ago and are now the foundation of most of elementary particle theory. One of the

main difficulties to extract theoretical predictions from perturbative calculations at higher

orders is the spread of infinities. In the high-energy regime, there are ultraviolet (UV)

divergences related to the point-like nature of the theory. Due to the preservation of gauge

invariance, dimensional regularization (DREG) [2–5], that consists in changing the number

of space-time dimensions from 4 to d = 4− 2ǫ, is the customary regularization method to

overcome this problem. The UV singularities in four dimensions manifest as poles in the

dimensional parameter ǫ, and are easily removed by renormalization. The real challenge

is, however, in the infrared (IR) regime. Unresolved radiation of massless particles (soft

and collinear) is physically degenerate with the absence of emission, while from the theory

point of view they are described as different final states. This leads to further infinities

that are also regularized in DREG.

The standard approach [6–14] to remove the IR singularities consists of adding to the

real radiation contribution suitable subtraction terms that mimic the IR behavior of the

emission scattering amplitudes and render them finite in the IR limit. The same subtraction

quantities, integrated over the phase-space of the extra radiation, are subtracted back from

the virtual corrections. The sum of both contributions leads to finite theoretical predictions

for physical observables, if all the degenerate states are considered in the sum. In this

paper, we describe an alternative approach which is based on the loop-tree duality (LTD)

theorem [15–22]. We propose a new method that combines simultaneously virtual and real

corrections, following in fact the original aim of the LTD method. We present here the

first practical realization of LTD that we illustrate with some reference examples. This

fact has also a strong implication: the possibility of carrying out purely four-dimensional
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implementations free of soft and final-state collinear subtractions. Unlike the method

proposed in ref. [23], LTD does not require any smearing in the total energy to combine

real and virtual corrections. Likewise, massless internal propagators are kept massless in

LTD, as opposed to the four dimensional implementations presented in refs. [24–26].

2 Review of the loop-tree duality

The LTD theorem [15] establishes a direct dual relation between one-loop N -leg scalar in-

tegrals or scattering amplitudes in any relativistic, local and unitary QFT with correspond-

ing tree-level objects integrated in a modified phase-space that resemble real corrections.

Specifically, the dual representation of a N -leg scalar one-loop integral consists of the sum

of N dual integrals:

L(1)(p1, . . . , pN ) = −
∑

i∈α1

∫

ℓ
δ̃ (qi)

∏

j∈α1, j 6=i

GD(qi; qj) , (2.1)

whereGD(qi; qj) = (q2j−m2
j−i0 η·kji)−1 are dual propagators, with i, j ∈ α1 = {1, 2, . . . N}.

The momenta of the internal lines are denoted qi,µ = (qi,0,qi), where qi,0 is the energy (time

component) and qi are the spacial components. They are defined as qi = ℓ + ki with ℓ

the loop momentum and ki = p1 + . . .+ pi. The four-momenta of the external legs are pi,

which are taken as outgoing, with kN = 0 by momentum conservation. The loop integration

measure reads ∫

ℓ
• = −iµ4−d

∫
ddℓ

(2π)d
• . (2.2)

The delta function δ̃ (qi) ≡ 2π i θ(qi,0) δ(q
2
i − m2

i ) sets the internal lines on-shell and is

the result of selecting the poles of the Feynman propagators with positive energy qi,0 and

negative imaginary part by applying the Cauchy residue theorem along a contour that

is closed in the lower half of the complex plane. LTD is equivalent to perform the loop

integration in the d − 1 dimensional space defined by the forward on-shell hyperboloids,

GF (qi)
−1 = (q2i −m2

i +i0) = 0 and qi,0 > 0, or forward light-cones for massless propagators.

The key feature of the dual representation in eq. (2.1) is that the usual Feynman propa-

gators have been replaced by dual propagators whose +i0 prescription depends now on the

sign of η · kji, where η is a future-like vector, η2 ≥ 0, with positive definite energy η0 > 0,

and kji = qj − qi. The idea of having different +i0 prescriptions for different propagators

is at first sight astonishing, but indeed it is a necessary condition for the consistency of the

method. As shown in ref. [18], the integrand in eq. (2.1) becomes singular at the intersec-

tion of forward on-shell hyperboloids (light-cones for massless propagators), and forward

with backward (qj,0 < 0) on-shell hyperboloids. Those singularities lead to integrable

threshold singularities or non-integrable soft and collinear divergences. In the forward-

forward case, there is a cancellation of singularities among different dual contributions,

and the change of sign of the dual prescription plays a central role in that cancellation.

In the forward-backward case, the singularities remain constrained to a compact region of

the loop three-momentum and admit a nice physical interpretation in terms of causality,

which is indeed consistent with the Cutkosky rule. These singularities occur only in one
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Figure 1. Kinematic configuration of the three-point function for the process p3 → p1 + p2, its

interference with the Born amplitude (left), and interference of real radiation contributions with

p3 → p′
1
+ p′

2
+ p′r (right).

direction, the direction of the chosen internal momentum flow, when the on-shell virtual

particle is emitted and interacts with another outgoing virtual on-shell particle (qj,0 < 0)

after loosing energy by radiating external particles.

3 Dual cancellations

To validate the LTD method with an explicit example, we focus our attention to the

simplest case of the scalar three-point function, with p3 → p1 + p2 as external momenta

and p23 = s12 > 0; p1, p2 and the internal momenta are taken massless. The loop integral

is defined by the internal momenta q1 = ℓ + p1, q2 = ℓ + p12 and q3 = ℓ, according to

figure 1. We proceed step by step, by integrating first in DREG and then by repeating the

calculation in a suitable representation where the limit ǫ → 0 can safely be taken at the

integrand level. The dual representation of the scalar three-point function consists of three

contributions:

Ii = −
∫

ℓ
δ̃ (qi)

∏

j 6=i

GD(qi; qj) , i, j = 1, 2, 3 . (3.1)

Assuming p1 oriented along the positive z-axis, p2 in the opposite direction, the on-shell

loop momenta are parametrized as

qµi =

√
s12
2

ξi,0 (1, 2
√
vi(1− vi) ei,⊥, 1− 2vi) , (3.2)

with ξi,0 ∈ [0,∞), vi ∈ [0, 1], and ei,⊥ a unit vector in the transverse space. Taking into

account these parametrizations the scalar products are given by 2qi · p1/s12 = ξi,0 vi, and

2qi · p2/s12 = ξi,0 (1− vi), and the dual integrals are written as

I1 =
1

s12

∫
d[ξ1,0] d[v1] ξ

−1
1,0 (v1(1− v1))

−1 ,

I2 =
1

s12

∫
d[ξ2,0] d[v2]

(1− v2)
−1

1− ξ2,0 + i0
,

I3 = − 1

s12

∫
d[ξ3,0] d[v3]

v−1
3

1 + ξ3,0
, (3.3)

where we defined the d-dimensional integration measures as

d[ξi,0] =
µ2ǫ (4π)ǫ−2

Γ(1− ǫ)
s−ǫ
12 ξ−2ǫ

i,0 dξi,0 ,

d[vi] = (vi(1− vi))
−ǫ dvi , (3.4)
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Figure 2. Light-cones of the massless three-point function in the loop coordinates ℓ =
√
s12/2 (ξ0, ξ⊥, ξz), with ξ⊥ =

√
ξ2x + ξ2y (left). Each forward light-cone correspond to the inte-

gration region of one dual integral Ii, and the intersection with the other light-cones generates

the singularities of the integrand. Location of threshold and IR singularities in the loop three-

momentum space (right).

and the dual vector was taken as ηµ = (1,0). Figure 2 (left) shows a graphical repre-

sentation of the corresponding light-cones and their intersections where threshold and IR

singularities appear. In eq. (3.3), only the dual prescription of the dual integral I2 has been

kept explicitly, as it regulates a threshold singularity. The dual prescription of the other

propagators is required for the consistent partial cancellation of singularities among dual

integrals [18], but can be removed for this practical calculation.

The explicit computation in DREG of the total integrals in eq. (3.3) gives

I1 = 0 , I2 = c̃Γ
µ2ǫ

2ǫ2
s−1−ǫ
12 ei2πǫ , I3 = c̃Γ

µ2ǫ

2ǫ2
s−1−ǫ
12 , (3.5)

with

c̃Γ = cΓ
1

cos(πǫ)
, cΓ =

Γ(1 + ǫ)Γ2(1− ǫ)

(4π)2−ǫΓ(1− 2ǫ)
, (3.6)

where c̃Γ is the volume factor of the phase-space integrals, and cΓ is the volume factor of

the loop integrals. The dual integral I1 vanishes because it is scaleless, and following the

usual convention in DREG it is analytically continued by matching its UV and IR poles, i.e.

ǫUV = ǫIR. Summing up the results in eq. (3.5) we obviously obtain the well-known result

L(1)(p1, p2,−p3) =

∫

ℓ

3∏

i=1

GF (qi) = −cΓ
µ2ǫ

ǫ2
(−s12 − i0)−1−ǫ . (3.7)

At this point, we start the discussion by isolating the singular regions of the loop

integrand, which are bounded to a compact region of the loop three-momentum, as it can

be seen from figure 2 (right). The dual integral I1 develops a soft singularity at ξ1,0 = 0

and a collinear singularity at v1 = 0 with ξ1,0 ∈ [0, 1], namely ξz ∈ [−1, 0]; the collinear

singularity at ξz > 0 cancels with the other dual contributions. Likewise, the dual integral

I2 is collinear at v2 = 1 with ξ2,0 ∈ [0, 1], or ξz ∈ [−1, 0], and undergo cancelling collinear

divergences at ξz < −1. The integrand of I2 gets in addition a threshold singularity at

ξ2,0 = 1, which prevents us from having a well defined integral if we restrict the integration
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region by ξ2,0 = 1. Consequently, we introduce an energy-cut w, with w close to zero, and

define the following soft and collinear contributions to the dual integrals

I
(s)
1 = I1(ξ1,0 ≤ w) ,

I
(c)
1 = I1(w ≤ ξ1,0 ≤ 1 ; v1 ≤ 1/2) ,

I
(c)
2 = I2(ξ2,0 ≤ 1 + w ; v2 ≥ 1/2) . (3.8)

The soft integral I
(s)
1 contains the soft singularity of the dual integral I1, and its collinear

singularities close to the soft region, ξ1,0 < w. Once the soft part is removed, the remaining

collinear singularities of I1 are contained in the collinear integral I
(c)
1 . It is necessary to

extend the integration limits of the collinear integral I
(c)
2 beyond the strict collinear singular

region of I2 in order to treat properly its threshold singularity at ξ2,0 = 1. Integrating these

contributions in DREG, we obtain the following results:

I
(s)
1 = c̃Γ

w−2ǫ

ǫ2
µ2ǫ s−1−ǫ

12

sin(2πǫ)

2πǫ
, (3.9)

I
(c)
1 = c̃Γ

1− w−2ǫ

2ǫ2
µ2ǫ s−1−ǫ

12

sin(2πǫ)

2πǫ
,

I
(c)
2 = c̃Γ

µ2ǫ

4ǫ2
s−1−ǫ
12

(
1 +

4ǫΓ(1− 2ǫ)

Γ2(1− ǫ)

) [
ei2πǫ − w−2ǫ

2F1

(
2ǫ, 2ǫ, 1 + 2ǫ;− 1

w

)
sin(2πǫ)

2πǫ

]
,

with 2F1 (2ǫ, 2ǫ, 1 + 2ǫ; z) = 1 + 4ǫ2 Li2(z) + O(ǫ3). As expected, the soft integral I
(s)
1

contains double poles in ǫ, while the collinear integrals I
(c)
1 and I

(c)
2 develop single poles

only. Each integral depends on the cut w, but the IR poles of the sum are independent of

w and they agree with the total divergences of the full integral in eq. (3.7).

At this stage, we have shown for the first time with a concrete example that the IR

singularities in the LTD representation are constrained to a compact region of the loop

three-momentum, as it was anticipated before based on the general demonstration from

ref. [18], and we have recalculated the IR poles only by taking into account this compact

region. The definition of the soft and collinear integrals is, however, somehow arbitrary;

strictly, the IR singularities of the loop integrand are constrained to the region defined by

the limit w → 0 and more precisely to the segment defined by ξz ∈ [−1, 0]. Any compact

region of the loop three-momentum enclosing ξz ∈ [−1, 0] will lead to the same ǫ poles,

although to different finite contributions. We will later redefine the IR regions of the loop

integrand in a more convenient way to combine them with the real corrections.

Outside the soft and collinear regions, the sum of the dual integrals is finite because

the integrand singularities appear at the intersection of forward light-cones. We define first

a forward region with vi ≤ 1/2:

I(f) = I1

(
ξ1,0 ≥ 1 ; v1 ≤

1

2

)
+ I2

(
v2 ≤

1

2

)
+ I3

(
v3 ≤

1

2

)

= cΓ
1

s12

∫ ∞

0
dξ0

∫ 1/2

0
dv

[
1

1 + ξ0

(
(1− v)−1

+ 2 log

(
1 + ξ0
ξ0

)
δ(v)

)
+

(1− v)−1

1− ξ0 + i0

]
+O(ǫ) . (3.10)
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The dual integrals I1 and I3 are divergent at v1 = v3 = 0 in the forward region, but their

sum is finite in this collinear limit. However, they diverge in the UV in all directions in

spite of the absence of UV divergences in the original integral. This is due to the fact

that dual propagators are linear in the loop momentum. The UV finiteness of the original

integral is recovered by adding together all the dual integrals [15]. Therefore, to cancel this

UV behaviour it is necessary to add the contribution of I2. The integral over the sum of the

three dual integrands in eq. (3.10) can thus be performed with ǫ = 0. In this expression, we

have also identified all the angular and energy variables, vi = v, ξ1,0 − 1 = ξ2,0 = ξ3,0 = ξ0,

to obtain common integration limits. Notice that it is necessary to keep the dual i0

prescription of I2 because its threshold singularity at ξ2,0 = 1 appears within the integration

region; it does not affect the UV cancellation. The logarithmic term of the integrand in

eq. (3.10) is the result of the mismatch in the ǫ-expansion of the integration measure of I1
and I3. The same result is obtained without extra logarithmic contributions by expressing

(ξ1,0, v1) in terms of (ξ3,0, v3) at the price, however, of introducing cumbersome integration

limits. We obtain in both cases

I(f) = cΓ
1

s12

[
π2

3
− iπ log(2)

]
+O(ǫ) . (3.11)

The other finite contribution in the backward region (vi ≥ 1/2) is

I(b) = I1

(
ξ1,0 ≥ w ; v1 ≥

1

2

)
+ I2

(
ξ2,0 ≥ 1 + w ; v2 ≥

1

2

)
+ I3

(
v3 ≥

1

2

)

= cΓ
1

s12

[
2Li2

(
− 1

w

)
− log(2) log(w)

]
+O(ǫ) . (3.12)

Now, the collinear cancellation occurs at v1 = 1 = v2 and the UV behaviour of I1 + I2 is

cancelled by I3. As expected, the sum of the soft, collinear, forward and backward integrals

in eq. (3.9), eq. (3.11) and eq. (3.12) leads to the full result given in eq. (3.7), up to O(ǫ).

4 Real-Virtual mapping and cancellation of infrared singularities

In the previous section we have analyzed the divergent structure of a scalar one-loop inte-

gral, and have isolated its IR behaviour to a compact region of the loop three-momentum.

We shall illustrate now how to combine virtual corrections with real radiation in order to

obtain physical cross-sections. To show the advantages of the method it is enough to work

out a simplified calculation where the one-loop scattering amplitude is just given by the

scalar three-point function

|M(1)(p1, p2; p3)〉 = −i g3 s12 L
(1)(p1, p2,−p3) , (4.1)

where g is an arbitrary coupling. Explicit computations in a real physical model

will be presented elsewhere [29, 30]. The corresponding scalar tree-level amplitude is

|M(0)(p1, p2; p3)〉 = ig, and we shall take into account their interference, Re 〈M(0)|M(1)〉,
integrated over the two-body phase-space. We consider also scalar scattering amplitudes

– 6 –
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with emission of an extra particle |M(0)
ir (p′1, p

′
2, p

′
r; p3)〉 = −ig2

√
s12/s

′
ir, and in particular

the interference (see figure 1 (right))

Re 〈M(0)
2r |M

(0)
1r 〉 = g4

s12
s′1r s

′
2r

, (4.2)

which is integrated over the corresponding three-body phase-space.1 To combine virtual

and real corrections directly, we first decompose the real-emission phase-space by using

the identity 1 = θ(y′2r − y′1r) + θ(y′1r − y′2r), where y′ir = s′ir/s12. It is unnecessary to

single out a soft region. In general, segmenting the real-emission phase-space into different

regions featuring at most one soft and/or collinear singularity is a common practice in many

subtraction schemes, as for instance in FKS [8]. The main novelty of the LTD approach is

that that segmentation will be translated into the virtual contributions such that a local

cancellation of singularities at the integrand level is achieved.

Thus, we define the following dual contributions to the total cross-section

σ̃
(1)
R,i =

1

2s12

∫
dΦ1→3 2Re 〈M(0)

2r |M
(0)
1r 〉 θ(y′jr − y′ir) ,

σ̃
(1)
V,i =

1

2s12

∫
dΦ1→2 2Re 〈M(0)|M(1)

i 〉 θ(y′jr − y′ir) , i, j = 1, 2 , (4.3)

where |M(1)
i 〉 = −ig3 s12 Ii is the ith dual component of the one-loop scattering amplitude.

The third dual component given by I3 in eq. (3.3) does not contribute to the IR structure

of |M(1)〉, and can be integrated independently of the real corrections.

The overall picture presented in eq. (4.3) must be completed with a mapping of the

virtual and the real kinematics. For a fixed value of the external momenta p1 and p2
entering the loop scattering amplitude, and the loop three-momentum ℓ, we define the

following mapping, with q1 = ℓ+ p1 on-shell,

p′µr = qµ1 , p′µ1 = −qµ3 + α1 p
µ
2 = pµ1 − qµ1 + α1 p

µ
2 ,

p′µ2 = (1− α1) p
µ
2 , α1 =

q23
2q3 · p2

, (4.4)

where q3 = q1 − p1 is off-shell. Momentum conservation is automatically fulfilled as p′1 +

p′2 + p′r = p1 + p2, and all the primed final-state momenta are on-shell. The non-collinear

parton p′2 plays here the role of the spectator parton in the dipole formalism [6]. The

mapping in eq. (4.4) is also valid for an arbitrary number of external particles, provided

that p′i = pi for partons not entering in the collinear subprocess. The two-body invariants

are given by

y′1r =
v1 ξ1,0

1− (1− v1) ξ1,0
, y′2r =

(1− v1) (1− ξ1,0) ξ1,0
1− (1− v1) ξ1,0

, y′12 = 1− ξ1,0 . (4.5)

These expressions are obtained from the momentum parametrizations given in eq. (3.2)

and eq. (4.4). The loop momentum q1 and p1 become collinear at v1 → 0, with α1 → 0

1For identical final-state particles all the other possible interferences should also be considered. Besides,

the squared amplitudes |Mir|
2 are necessary, which have to be mapped to self-energy insertions of external

legs. For the current illustrative purposes of the paper, however, it is enough to consider this interference.
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and y′1r → 0 in this limit. According to eq. (4.3), we use this mapping in the regions of the

two-body and three-body phase-space where y′1r < y′2r:

σ̃
(1)
1 = σ̃

(1)
V,1 + σ̃

(1)
R,1 = σ(0) 2g2

∫
d[ξ1,0] d[v1] θ(1− 2v1) θ

(
1− 2v1
1− v1

− ξ1,0

)

× ξ−1
1,0 (v1(1− v1))

−1

[(
1− ξ1,0

1− (1− v1) ξ1,0

)−2ǫ

− 1

]
, (4.6)

where σ(0) = g2/(2s12)
∫
dΦ1→2 would be the lowest order cross-section. In eq. (4.6),

the three-body phase-space dΦ1→3 was written in terms of the loop variables ξ1,0 and v1
by using eq. (4.5). The integrand in eq. (4.6) has the form ξ−1−2ǫ

1,0 v−1−ǫ
1 f(v1, ξ1,0), but

f(v1 = 0) = 0 = f(ξ1,0 = 0) with f(v1, ξ1,0) = O(ǫ), and thus this integral is of order ǫ,

i.e. σ̃
(1)
1 = O(ǫ). Similarly, we define a complementary mapping to cover the remaining

three-body phase-space, which includes the other collinear limit with y′2r → 0. Considering

q2 on-shell, the corresponding mapping is

p′µ2 = qµ2 , p′µr = −qµ1 + α2 p
µ
1 = pµ2 − qµ2 + α2 p

µ
1 ,

p′µ1 = (1− α2) p
µ
1 , α2 =

q21
2q1 · p1

, (4.7)

and the associated invariants are

y′12 =
v2 (1− ξ2,0) ξ2,0

1− v2 ξ2,0
, y′2r =

(1− v2) ξ2,0
1− v2 ξ2,0

, y′1r = 1− ξ2,0 . (4.8)

Then,

σ̃
(1)
2 = σ̃

(1)
V,2 + σ̃

(1)
R,2 = σ(0) 2g2

∫
d[ξ2,0] d[v2] θ

(
1−

√
1− v2
v2

− ξ2,0

)
(1− v2)

−1

×
[

(1− ξ2,0)
−2ǫ

(1− v2 ξ2,0)1−2ǫ
− 1

1− ξ2,0 + i0
− iπδ(1− ξ2,0)

]
, (4.9)

and we obtain directly with ǫ = 0

σ̃
(1)
2 = −σ(0) a

π2

6
+O(ǫ) , (4.10)

where a = g2/(4π)2. The condition y′2r < y′1r excludes the threshold singularity of I2 from

the integration region with the exception of the single point at v2 = 1, ξ2.0 = 1. This makes

unnecessary the introduction of an energy-cut w as in section 3.

Finally, analogously to the forward and backward dual integrals defined in section 3,

we collect the remnants of the three dual integrals obtained after excluding the respective

regions of the loop three-momentum already included in eq. (4.6) and eq. (4.10). Explicitly,

we define

σ̄
(1)
V = σ(0) 2g2

[
−
∫

d[ξ1,0] d[v1]

(
1− θ(1− 2v1) θ

(
1− 2v1
1− v1

− ξ1,0

))
ξ−1
1,0 (v1(1− v1))

−1

−
∫

d[ξ2,0] d[v2] θ

(
ξ2,0 −

1−
√
1− v2
v2

)
(1− v2)

−1

(
1

1− ξ2,0 + i0
+ iπδ(1− ξ2,0)

)

+

∫
d[ξ3,0] d[v3]

v−1
3

1 + ξ3,0

]
. (4.11)
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Although the individual contributions in eq. (4.11) are singular, this virtual cross-section is

UV and IR finite, and can be calculated with ǫ = 0. We apply the change of variables used

to obtain eq. (3.11) and eq. (3.12) to avoid logarithmic contributions from the ǫ-expansion

of the integration measure. The result is

σ̄
(1)
V = σ(0) a

π2

6
+O(ǫ) . (4.12)

The sum of all the contributions, eq. (4.6), eq. (4.10) and eq. (4.12), gives a total cross-

section of O(ǫ), in agreement with the result that would be obtained from the standard

calculation in DREG.

To conclude this section, we want to emphasize that DREG was only used for a

consistency check of our results. The advantage of the method presented here is that

NLO cross-sections can be computed in four dimensions, i.e. with ǫ = 0, because soft and

collinear divergences of virtual and real corrections are matched locally at the integrand

level. Collinear factorization guarantees that this matching is fulfilled in QCD [18, 27].

Threshold singularities should be treated apart in numerical calculations, e.g. by contour

deformation [23, 28]. A first numerical implementation of multi-leg scalar and tensor one-

loop integrals in LTD has been presented in refs. [19–21].

5 Ultraviolet renormalization

LTD also offers an appealing physical interpretation for the renormalization of UV diver-

gences at the integrand level. To illustrate the cancellation of these divergences, we consider

the simplest purely UV scalar two-point function, with massless internal lines. A detailed

calculation of this scalar two-point function in the LTD framework has been presented in

ref. [15]. Following the suggestion of ref. [28], we construct its UV counter-term from

IcntUV =

∫

ℓ

1
(
q2UV − µ2

UV + i0
)2 , (5.1)

where qUV = ℓ + kUV, with kUV located somewhere in the loop momentum space. This

counter-term has the same local UV behaviour as the integrand of the scalar two-point

function in all the loop directions. We shall now find the dual representation of IcntUV in

three dimensions.

The dual representation of eq. (5.1) requires to deal with double poles in the loop

energy [17], with the UV propagator being massive. The calculation of the corresponding

residue leads to the dual representation

IcntUV =

∫

ℓ

δ̃ (qUV)

2
(
q
(+)
UV,0

)2 , (5.2)

where q
(+)
UV,0 =

√
q2
UV + µ2

UV − i0. The detailed calculation of the double pole residue has

been presented in ref. [17]; again we used ηµ = (1,0) as dual vector. The arbitrary scale µUV

– 9 –



J
H
E
P
0
2
(
2
0
1
6
)
0
4
4

Figure 3. On-shell hyperboloids of the ultraviolet counter-term.

admits a direct physical interpretation as renormalization scale because the UV counter-

term only contributes for loop energies larger than −kUV,0+µUV in the LTD representation

(see figure 3), although with unconstrained loop three-momentum. As renormalization

scale, µUV has to be chosen of the order of the physical hard scale. In addition, a clear

criteria to select µUV and kUV arises if we pretend that the on-shell hyperboloids of the

UV propagator in eq. (5.1) do not intersect with any of the forward on-shell hyperboloids

of the original integral. Since the distance between the UV forward and backward on-shell

hyperboloids is 2µUV, the minimal choice fulfilling the aforementioned conditions would

be 1/2 of the hard scale, which accidentally agrees with one of the standard limits used

to estimate the theoretical uncertainty. Of course, this is an ad hoc argument that is not

supported by any physical evidence, but it represents a good interpretation of that choice.

In consequence, subtracting the UV counter-term from the scalar two-point function

we obtain

L(1)(p,−p)− IcntUV =
1

(4π)2

[
− log

(
− p2

µ2
UV

− i0

)
+ 2

]
+O(ǫ) , (5.3)

and this calculation gives the same result if each of the individual contributions is integrated

in DREG or if the sum of the integrands is taken at ǫ = 0.

We conclude this section by noting that contrary to the four-dimensional UV renormal-

ization introduced in ref. [24], where the limit µ → 0 is taken with the purpose of removing

the polynomial dependence in µ and the remainder is evaluated at the renormalization

scale µ = µR, the counter-term defined by eq. (5.1) keeps the complete dependence in µUV.

Eventual polynomial dependences in µUV can be cancelled by adding to the counter-term

UV subleading contributions such that only the UV pole is subtracted [28].

6 Conclusions

We have applied the LTD formalism to physically reinterpret perturbative calculations in

QFT. With some reference examples, we have reanalyzed the infrared and causal structure

of NLO computations. The sum over degenerate IR states is accomplished at integrand

level by mapping the phase-space of real radiation with that of the virtual contributions
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in the region of the loop three-momentum which is of the size of the physical scales. This

represents a new paradigm in perturbative calculations as virtual and real corrections are

not regularized independently, but they act directly as the IR subtraction counter-term

of each other. Outside this region, at large loop three-momentum, virtual corrections

require only the subtraction of UV divergences at integrand level to render them finite and

renormalization acquires a clear physical interpretation.

The application of LTD to loop scattering amplitudes in gauge theories was already

discussed in ref. [15], and the momentum mappings introduced in this paper can be ex-

tended straightforwardly to massless n-body scattering processes, and even generalized to

the massive case. Each mapping is suitable for a different collinear configuration, and has

to be applied to the sum of diagrams belonging to gauge invariant subsets featuring the

same collinear limit.

The results presented in this paper represent a promising first effort towards a four-

dimensional implementation for the computation of physical cross-sections at NLO without

introducing soft and final-state collinear subtractions. They also open the attractive pos-

sibility of extending this approach to next-to-next-to leading order (NNLO) and beyond.

Further details will be given in a forthcoming publication, including the application to

gauge theories [29].
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