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Abstract: We study two-dimensional N = (2, 2) gauge theory and its dualized system in

terms of complex (linear) superfields and their alternatives. Although this technique itself

is not new, we can obtain a new model, the so-called “semi-doubled” GLSM. Similar to

doubled sigma model, this involves both the original and dual degrees of freedom simultane-

ously, whilst the latter only contribute to the system via topological interactions. Applying

this to the N = (4, 4) GLSM for H-monopoles, i.e., smeared NS5-branes, we obtain its T-

dualized systems in quite an easy way. As a bonus, we also obtain the semi-doubled GLSM

for an exotic 53
2-brane whose background is locally nongeometric. In the low energy limit,

we construct the semi-doubled NLSM which also generates the conventional string world-

sheet sigma models. In the case of the NLSM for 53
2-brane, however, we find that the

Dirac monopole equation does not make sense any more because the physical information

is absorbed into the divergent part via the smearing procedure. This is nothing but the

signal which indicates that the nongeometric feature emerges in the considering model.
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1 Introduction

In string theory there are a lot of extended objects: a fundamental string, an NS5-brane and

D-branes in ten dimensions. Performing string dualities in lower dimensional spacetime,

we encounter different kind of objects, called exotic branes [1–4]. The exotic brane is of

codimension less than three, and its tension is often stronger than those of ordinary branes.

These days the exotic branes have been exhaustively investigated in the framework of
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supergravity theories [5–12], string worldsheet theories [13–19], worldvolume theories [20–

25], extended geometries such as doubled sigma model and double field theory [26–36],

β-supergravity and its extension [37–39], and other huge number of related works.1

The exotic 52
2-brane originates from the NS5-brane via T-duality along two directions

of the four-dimensional transverse space. Then the four transverse directions of the 52
2-

brane is written as a two-torus fibration of a two-dimensional plane. The exotic structure

is that the transition function of this geometry is governed by not only the coordinate

transformation group but also the T-duality group. This implies that, going around the

five-brane, the size of the torus is T-dualized, and the background geometry becomes multi-

valued. In order to understand this feature from the viewpoint of the string worldsheet, the

author has investigated mainly the exotic 52
2-brane in the framework of two-dimensional

supersymmetric gauge theory in [15]. This model is referred to as the gauged linear sigma

model (or GLSM, for short) [40]. The GLSM is the UV completion of the nonlinear sigma

model (NLSM), which provides us the string worldsheet theory.

The previous work [15] is motivated by the developed works [41–43] in the language

of the N = (4, 4) GLSM, where the target space configuration of the low energy effective

NLSM is NS5-branes or KK-monopoles. Applying further T-duality to this, the GLSM

description of the exotic 52
2-brane was successfully obtained [15]. However, the procedure to

derive such a model is technically complicated. This is because the duality transformation

of superfields in the model is performed only in terms of N = (2, 2) irreducible superfields.

Then, the construction of the first order Lagrangian which derives the original GLSM and

its dual system requires introducing many auxiliary superfields, most of which are just

integrated out in the process of the duality transformation.

In this paper, we continue to construct a more useful and powerful model than the

previous one. It is known that the duality transformations without isometry can be per-

formed in terms of complex linear superfields [44] (for instance, see the review [45]). We

expect that this will leads us to some faithful features of (non)geometric structures. Ac-

tually, applying this technique to the N = (4, 4) GLSM [41], we will be able to construct

the model for the exotic 52
2-brane and for the exotic 53

2-brane. The latter is regarded as

genuinely exotic because its background geometry is even locally nongeometric. We would

like to extract such a nongeometric feature in the framework of string worldsheet sigma

model and its UV completion.

The structure of this paper is as follows. In section 2, we briefly discuss the duality

transformation without isometry. First, we find a dualized Lagrangian with the duality

relation between a (twisted) chiral superfield and a complex (twisted) linear superfield.

We notice that the former is irreducible, while the latter reducible. Next, we replace the

complex (twisted) linear superfield to the sum of irreducible superfields. This is an im-

portant preliminary to investigate the GLSM and its T-dualized systems, and their low

energy effective theories. In section 3, we develop the duality transformation in terms of

the component fields of the superfields. There emerge various fields, some of them are

redundant and integrated out. We finally obtain a new first order Lagrangian, which we

1Of course this classification is not rigorous because they are deeply related to each other.
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refer to as the “semi-doubled” Lagrangian. This provides us not only the original La-

grangian but also the dual Lagrangians. In section 4, we study the “semi-doubled” GLSM

for five-branes. Applying the technique which we obtain in the previous section, we obtain

the conventional GLSM for H-monopoles (i.e., smeared NS5-branes), KK-monopoles, and

an exotic 52
2-brane in a straightforward way. Further, we propose a semi-doubled GLSM

for an exotic 53
2-brane whose background is locally nongeometric. In section 5, We obtain

the “semi-doubled” NLSM as the low energy effective theory of the semi-doubled GLSM.

Performing the duality transformations along certain directions, we precisely realize the

NLSM for the H-monopoles, the KK-monopoles, and the 52
2-brane. However, we cannot

obtain the consistent description of the 53
2-brane because the Dirac monopole equation is

broken down. We conclude that this background is nongeometric. Section 6 is devoted to

the summary. In appendix A, the conventions in this paper are exhibited. In appendix B,

we briefly discuss the duality transformation rules with(out) isometry in two-dimensional

N = (2, 2) theories. This is based on the work by Grisaru, Massar, Sevrin and Troost [45],

Roček and Verlinde [46], Hori and Vafa [47] and Tong [41].

2 Duality transformations in superfield formalism

In this section we discuss the duality transformation which interchanges a (twisted) chiral

superfield for a complex (twisted) linear superfield in a concrete way. We should notice

that we can perform the duality transformation even without isometry, where isometry is

broken by the existence of (twisted) F-term. A generic discussion can be seen in appendix B

which is based on [45].

2.1 Chiral superfields with F-term

Let us begin with a Lagrangian

LΨ =

∫
d4θ

1

g2
|Ψ|2 +

{
−
√

2

∫
d2θΨΦ + (h.c.)

}
=

∫
d4θ

{
1

g2
|Ψ|2 − 2

√
2 ΨC − 2

√
2 ΨC

}
. (2.1)

Here Ψ and Φ are N = (2, 2) chiral superfields, while C is the prepotential2 of Φ defined

by Φ = D+D−C. We note that the conventions of superfields are exhibited in appendix A.

g is a dimensionless sigma model coupling constant. Due to the existence of the F-term

−
√

2ΨΦ, this model has no isometry.3 In order to consider the duality transformation, we

introduce the first order Lagrangian of (2.1) such as

LRLC =

∫
d4θ

{
1

g2
|R|2 − 2

√
2RC − 2

√
2RC −RL−RL

}
, (2.2)

2In this work we do not introduce the “gauge-fixing” condition discussed in [48].
3Supersymmetric sigma models with F-term and their duality transformations only in terms of irreducible

superfields were recently discussed in [18].
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where R is an unconstrained complex prepotential and L is a complex linear superfield

whose definition is 0 = D+D−L. This Lagrangian leads to two second order Lagrangians.

One is the original form (2.1) and the other is the dualized form which we will show.

First, we evaluate the equation of motion for the complex linear superfield L. This

gives a constraint on the prepotential R such as 0 = D±R. Under this field equation R is

restricted to a chiral superfield X:

R = X . (2.3)

Substituting this into (2.2) and identifying X with Ψ, we go back to the original La-

grangian (2.1). On the other hand, the equation of motion for the prepotential R in (2.2)

is given as

0 =
1

g2
R− 2

√
2C − L . (2.4)

Plugging this into (2.2), we obtain

LRLC = −g2

∫
d4θ

∣∣∣L+ 2
√

2C
∣∣∣2 ≡ LLC . (2.5)

This is the dualized Lagrangian from the original one (2.1). We find the duality relation

between the original chiral superfield Ψ and the dual complex linear superfield L via (2.3)

and (2.4):
1

g2
Ψ = L+ 2

√
2C . (2.6)

We emphasize that the above duality transformation rule is quite simple and straightfor-

ward compared with those discussed in [18].

2.2 Twisted chiral superfields with twisted F-term

Analogous to the duality transformation of the chiral superfield, we consider the duality

transformation of twisted chiral superfields with twisted F-term. We start from a second

order Lagrangian

LΘ = − 1

g2

∫
d4θ |Θ|2 +

{
−
√

2

∫
d2θ̃ΘΣ + (h.c.)

}
=

∫
d4θ

{
− 1

g2
|Θ|2 − 2(Θ + Θ)V

}
, (2.7)

where Θ and Σ are twisted chiral superfields and V is a real vector superfield related to Σ

such as Σ = 1√
2
D−D−V . Strictly speaking, there is a total derivative term in the second

line in the right-hand side. Here we just ignore it because this does not contribute to the

dualization, whilst it will be explicitly described in due course. This plays a significant

role in quantum analysis [16, 41–43]. Since V is real, this Lagrangian has an isometry

along the imaginary part of Θ. For later discussions, however, it is important to study the

duality transformation with isometry in terms of a complex twisted linear superfield.4 We

4In appendix B.2, we describe the duality transformation from a twisted chiral superfield with isometry

to a chiral superfield in a standard way.
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introduce the first order Lagrangian of (2.7) in the following form:

L
R̃L̃V

=

∫
d4θ

{
− 1

g2
|R̃|2 − 2(R̃+ R̃)V − R̃L̃− R̃ L̃

}
. (2.8)

Here R̃ is an unconstrained complex prepotential and L̃ is a complex twisted linear super-

field defined by 0 = D+D−L̃. Analyzing the equation of motion for L̃ or R̃, we obtain

the original Lagrangian or its dual form, respectively. First, we evaluate the equation of

motion for L̃. This gives a constraint on the prepotential R̃ such as 0 = D+R̃ = D−R̃.

Hence R̃ is reduced to a twisted chiral superfield Y :

R̃ = Y . (2.9)

Plugging this into (2.8) with identification Y = Θ, we obtain the original form (2.7). If we

evaluate the equation of motion for R̃ in (2.8), we find

0 = − 1

g2
R̃− 2V − L̃ . (2.10)

Under this field equation, the Lagrangian is reduced to

L
R̃L̃V

= g2

∫
d4θ

∣∣∣L̃+ 2V
∣∣∣2 ≡ L

L̃V
. (2.11)

This is the dual Lagrangian from the original one (2.7). Through the equations (2.9)

and (2.10), we find the duality relation between the original twisted chiral superfield Θ and

the dual complex twisted linear superfield L̃ in the following way:

− 1

g2
Θ = L̃+ 2V . (2.12)

We remark that while the present transformation is the dualization without isometry,

this can be also applicable in the presence of isometry. This is a kind of generalization of

the duality transformation by Roček and Verlinde [46], and Hori and Vafa [47]. Then, in

later discussions, we will apply the duality transformed Lagrangians (2.5) and (2.11) to the

GLSM for H-monopoles (smeared NS5-branes) and its T-dualized systems [15, 19, 41–43].

Originally this has no isometry along three of four real scalar fields, which represent the

transverse directions of the H-monopoles in ten-dimensional string theory. However, smear-

ing the directions without isometry discussed in [1, 2, 6, 14, 49–51], we can geometrically

perform T-duality consistent with the Buscher rule [52]. In order to argue the same phys-

ical situation, it is better to replace the complex (twisted) linear superfields with certain

alternatives given by irreducible superfields.

2.3 Replacements

In the previous subsection, we discussed the duality transformation which interchanges a

(twisted) chiral superfields without isometry and a complex (twisted) linear superfields. In

later sections, we will apply this technique to the GLSM for H-monopoles and its T-dualized

systems, and their low energy effective theories as string worldsheet sigma models.
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We should keep in mind that the superfield formalism is not so appropriate to inves-

tigate geometrical structures of the systems. Hence we expand all superfields in terms of

their component fields. Now we should notice that complex (twisted) linear superfields

are reducible. Then, even in terms of the component fields, systems given by the complex

(twisted) linear superfields might not be well understood. In this subsection, we replace

a complex (twisted) linear superfield with the sum of the irreducible superfields such as

chiral and twisted chiral superfields.5

Recall that the definition of a complex linear superfield is 0 = D+D−L. Now we

replace L with the sum of the irreducible superfields in such a way as

L = X + Y + Z , (2.13)

where X is a chiral superfield, while Y and Z are twisted chiral superfields. All of the

irreducible superfields carry two off-shell complex scalar fields and two off-shell complex

Weyl fermions. We note that L carries six off-shell complex bosons and six off-shell complex

Weyl fermions (see appendix A). We can also replace a complex twisted linear superfield

L̃ with the sum of the irreducible superfields such as

L̃ = X ′ + Y ′ +W ′ . (2.14)

Here X ′ and W ′ are chiral superfields, while Y ′ is a twisted chiral superfield. The right-

hand side of (2.14) vanishes if the operator D+D− acts on it. This is consistent with the

definition of L̃. Again, the number of the component fields in the right-hand side is equal

to that of the left-hand side.

Now we apply the replacements (2.13) and (2.14) to the dualized Lagrangians and the

duality relations in the previous subsection:

LLC = −g2

∫
d4θ

∣∣∣X + Y + Z + 2
√

2C
∣∣∣2 , (2.15a)

L
L̃V

= g2

∫
d4θ

∣∣∣X ′ + Y ′ +W ′ + 2V
∣∣∣2 , (2.15b)

1

g2
Ψ = X + Y + Z + 2

√
2C , (2.15c)

− 1

g2
Θ = X ′ + Y ′ +W ′ + 2V . (2.15d)

Due to the replacements, one might think that the duality relations (2.15c) and (2.15d) are

inconsistent. This is because the right-hand sides of (2.15c) and (2.15d) carry the degrees

of freedom three times as many as those of the left-hand sides. This is true. However,

we can remove redundant degrees of freedom in an appropriate way. Furthermore, this

“unbalanced” situation will lead us to a simple description of nongeometric background

feature in the dualized system.

Here we roughly mention the reduction of the redundant degrees of freedom, though

in later discussions we will demonstrate it concretely: focus on the dynamical scalar fields,

5A similar discussion was demonstrated in [48].
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i.e., six real scalars. Two real bosons are replaced by the other bosonic degrees of freedom

when we expand the duality relation in terms of the component fields. Further two real

bosons are decoupled from the system because they do not contribute to the system at all.

The remaining two real bosons are genuinely the dual degrees of freedom.

3 Duality transformations by component fields

In this section we carefully investigate the dualized Lagrangians and the duality transforma-

tion rules (2.15) in terms of the component fields of the various superfields. As mentioned

before, there exist many fields as the original fields, the dual fields and the redundant fields.

Compared with the duality transformation with isometry exhibited in appendix B.2, we

will determine which fields are redundant and integrated out.

3.1 Expansions

We prepare the component fields of the superfields in (2.7) and (2.15). Following the

generic forms (A.9), we introduce the following expansions:

Ψ =
1√
2

(r1 + ir2) + i
√

2 θ+χ+ + i
√

2 θ−χ− + 2i θ+θ−G+ . . . , (3.1a)

Θ =
1√
2

(r3 + iϑ) + i
√

2 θ+χ̃+ − i
√

2 θ−χ̃− + 2i θ+θ−G̃+ . . . , (3.1b)

X =
1√
2

(φX,1 + iφX,2) + i
√

2 θ+ψX+ + i
√

2 θ−ψX− + 2i θ+θ−FX + . . . , (3.1c)

Y =
1√
2

(σY,1 + iσY,2) + i
√

2 θ+χY+ − i
√

2 θ−χY− + 2i θ+θ−GY + . . . , (3.1d)

Z =
1√
2

(σZ,1 − iσZ,2) + i
√

2 θ+χ̃Z+ − i
√

2 θ−χ̃Z− + 2iθ+θ−G̃Z + . . . , (3.1e)

X ′ =
1√
2

(φ′X,1 + iφ′X,2) + i
√

2 θ+ψ′X+ + i
√

2 θ−ψ′X− + 2i θ+θ−F ′X + . . . , (3.1f)

Y ′ =
1√
2

(σ′Y,1 + iσ′Y,2) + i
√

2 θ+χ′Y+ − i
√

2 θ−χ′Y− + 2i θ+θ−G′Y + . . . , (3.1g)

W ′ =
1√
2

(φ′W,1 − iφ′W,2) + i
√

2 θ+ψ′W+ + i
√

2 θ−ψ′W− + 2i θ+θ−F ′W + . . . . (3.1h)

The expansions of V and C are expressed in (A.9c) and (A.9f), respectively. Each superfield

starts from a pair of two real scalar fields. The second and third terms contain the fermionic

fields as complex Weyl spinors whose subscripts ± represent their chirality. The fourth term

in each superfield represents the auxiliary field as a complex scalar. The terms “. . .” involve

derivative terms.

Let us substitute (3.1) into the data in the previous section. From now on, we just

ignore the fermionic degrees of freedom because we can restore them via the supersymmetry

– 7 –
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transformations. First, we evaluate the original second order Lagrangians (2.1) and (2.7):

LΨ = − 1

2g2
(∂mr

1)2 − 1

2g2
(∂mr

2)2 +
1

g2
|G|2 −

√
2 (GMc +GM c) (3.2a)

− r1(Dc +Dc) +
1

2
∂+∂−r

1(φc + φc) +
i

2
∂+r

1(Ac= −Ac=) +
i

2
∂−r

1(Bc++ −Bc++)

− ir2(Dc −Dc) +
i

2
∂+∂−r

2(φc − φc)−
1

2
∂+r

2(Ac= +Ac=)− 1

2
∂−r

2(Bc+++Bc++) ,

LΘ = − 1

2g2
(∂mr

3)2 − 1

2g2
(∂mϑ)2 +

1

g2
|G̃|2 +

√
2
{
r3DV + ϑF01 − iσG̃+ iσG̃

}
, (3.2b)

where the gauge field strength is defined as F01 = εmn∂mAn by virtue of the invariant tensor

whose normalization is ε01 = −ε10 = +1. Next, we expand the dual Lagrangians (2.5)

and (2.11):

LLC = −g
2

2

{
(∂mσY,1)2 + (∂mσZ,1)2

}
+
g2

2
(∂mφX,1)2 (3.3a)

− g2

2

{
(∂mσY,2)2 + (∂mσZ,2)2

}
+
g2

2
(∂mφX,2)2

− 2g2|Mc|2 − g2
∣∣∣FX +

√
2Fc

∣∣∣2 + g2
∣∣∣iG̃Y +

√
2Gc

∣∣∣2 + g2
∣∣∣iG̃Z +

√
2N c

∣∣∣2
− g2

{
φX,1 + (σY,1 + σZ,1) + 2

√
2φc,1

}
(Dc +Dc)

+
g2

2
∂+∂−

(
φX,1 − (σY,1 + σZ,1)

)
(φc + φc) + g2(Ac= −Ac=)(Bc++ −Bc++)

− ig2

2
∂+

(
φX,1+(σY,1−σZ,1)

)
(Ac=−Ac=)− ig2

2
∂−
(
φX,1−(σY,1−σZ,1)

)
(Bc++−Bc++)

+ ig2
{
φX,2 + (σY,2 − σZ,2) + 2

√
2φc,2

}
(Dc −Dc)

− ig2

2
∂+∂−

(
φX,2 − (σY,2 − σZ,2)

)
(φc − φc)− g2(Ac= +Ac=)(Bc++ +Bc++)

− g2

2
∂+

(
φX,2+(σY,2+σZ,2)

)
(Ac=+Ac=)− g

2

2
∂−
(
φX,2−(σY,2+σZ,2)

)
(Bc+++Bc++),

L
L̃V

= −g
2

2

{
(∂mφ

′
X,1)2 + (∂mφ

′
W,1)2

}
+
g2

2
(∂mσ

′
Y,1)2

− g2

2

{
(Dmφ

′
X,2)2 + (Dmφ

′
W,2)2

}
+
g2

2
(∂mσ

′
Y,2)2 +

√
2 g2εmn(∂mσ

′
Y,2)An

− 4g2|σ|2 + i
√

2 g2
(
σG̃′Y − σG̃′Y

)
+ g2

(
|F ′X |2 + |F ′W |2 − |G̃′Y |2

)
−
√

2 g2DV

(
φ′X,1 + φ′W,1 + σ′Y,1

)
. (3.3b)

Here we introduced the gauge covariant derivatives

Dmφ
′
X,2 = ∂mφ

′
X,2 −

√
2Am , Dmφ

′
W,2 = ∂mφ

′
W,2 −

√
2Am . (3.4)

Finally, we describe the duality relations (2.15c) and (2.15d) in terms of the component
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fields. The duality relation (2.15c) provides the following relations:

1

g2
r1 = +

(
φX,1 + (σY,1 + σZ,1)

)
+ 2
√

2φc,1 , (3.5a)

1

g2
r2 = −

(
φX,2 + (σY,2 − σZ,2)

)
− 2
√

2φc,2 , (3.5b)

1

g2
∂mr

1 = −∂mφX,1 + εmn∂
n(σY,1 − σZ,1)− 2i(Wc,m −W c,m) , (3.5c)

1

g2
∂mr

2 = +∂mφX,2 − εmn∂n(σY,2 + σZ,2) + 2(Wc,m +W c,m) , (3.5d)

1

g2
G =

√
2Mc , (3.5e)

0 = −iG̃Z +
√

2Nc , (3.5f)

0 = +iG̃Y +
√

2Gc , (3.5g)

0 = FX +
√

2Fc . (3.5h)

Here we introduced a complex vector field Wc,m with Ac= = Wc,0 − Wc,1 and Bc++ =

Wc,0 +Wc,1, because Ac= and Bc++ are complex vectorial fields. The relation (3.5a) denotes

that σY,1+σZ,1 seems to be the original field r1, while (3.5c) implies that σY,1−σZ,1 behaves

as the dual field of r1. The relations (3.5b) and (3.5d) also indicate that σY,2 − σZ,2 is the

same as the original field r2, while σY,2 + σZ,2 as the dual field. As we will see later, the

fields (φX,1, φX,2) play a distinctive role in the dual system. In the same way, we can read

off the duality relations among the component fields from (2.15d):

1

g2
r3 = −

(
(φ′X,1 + φ′W,1) + σ′Y,1

)
, (3.6a)

1

g2
ϑ = +

(
(φ′X,2 − φ′W,2) + σ′Y,2

)
, (3.6b)

1

g2
∂mr

3 = −εmn∂n
(
φ′X,1 − φ′W,1

)
+ ∂mσ

′
Y,1 , (3.6c)

1

g2
∂mϑ = +εmnD

n
(
φ′X,2 + φ′W,2

)
− ∂mσ′Y,2 , (3.6d)

− i

g2
G̃ =

√
2σ , (3.6e)

0 = F ′X , (3.6f)

0 = F ′W , (3.6g)

0 = iG̃′Y −
√

2σ . (3.6h)

Here we omitted the duality relations among the fermionic fields. The relations (3.6a),

(3.6b), (3.6c) and (3.6d) give us the following interpretations: φ′X,1 +φ′W,1 and φ′X,2−φ′W,2
correspond to the original fields r3 and ϑ, respectively, whilst φ′X,1− φ′W,1 and φ′X,2 + φ′W,2
are the dual fields of r3 and ϑ. On the other hand, as discussed later, σ′Y,1 and σ′Y,2 are not

canonical fields.
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3.2 Eliminating redundant fields

We now investigate the Lagrangians (3.3). They contain many redundant fields which

should be eliminated by virtue of the duality relations (3.5) and (3.6). The strategy is as

follows: in the beginning, we find that terms of auxiliary fields are simplified by the duality

relations. Second, we focus on a field whose kinetic term is not canonical. We eliminate

it via the duality relations in order that the reduced Lagrangian can generate both the

original and the dual ones when we integrate out certain dynamical fields. Finally, we

integrate out fields which do not contribute to the system at all.

Lagrangian LL̃V . Let us first consider the Lagrangian L
L̃V

(3.3b) dualized from the

original one LΘ (3.2b). Since LΘ has an isometry along ϑ, we can dualize it in a standard

way as LΓV (B.14b) in appendix B.2. Thus we should keep in mind that (3.3b) derives

the same form as (B.14b).

In order to make (3.3b) simple, we introduce the following expressions:

φ′1± ≡ φ′X,1 ± φ′W,1 , φ′2± ≡ φ′X,2 ± φ′W,2 . (3.7)

Then the covariant derivatives of (φ′X,2, φ
′
W,2) are combined into Dmφ

′
2+ = ∂mφ

′
2+−2

√
2Am.

Substituting (3.7) and the relations among the auxiliary fields (F ′X , G̃
′
Y , F

′
W ) from (3.6) into

the Lagrangian (3.3b), we find

L
L̃V

= −g
2

4

{
(∂mφ

′
1+)2 + (∂mφ

′
1−)2

}
+
g2

2
(∂mσ

′
Y,1)2

− g2

4

{
(Dmφ

′
2+)2 + (Dmφ

′
2−)2

}
+
g2

2
(∂mσ

′
Y,2)2 +

√
2 g2εmn(∂mσ

′
Y,2)An

− 2g2|σ|2 −
√

2 g2DV

(
φ′1+ + σ′Y,1

)
. (3.8)

We immediately find that the kinetic terms of σ′Y,1 and σ′Y,2 are not canonical. Then

we eliminate them by virtue of the duality relations (3.6). We symbolically express the

derivatives of (3.6a) and of (3.6b), the relations (3.6c) and (3.6d) themselves, and the

kinetic terms as follows:

∂mσ̃
′
Y,1 ≡ −

1

g2
∂mr

3 − ∂mφ′1+ , (3.9a)

∂mσ̂
′
Y,1 ≡ +

1

g2
∂mr

3 + εmn∂
nφ′1− , (3.9b)

∂mσ̃
′
Y,2 ≡ +

1

g2
∂mϑ− ∂mφ′2− , (3.9c)

∂mσ̂
′
Y,2 ≡ −

1

g2
∂mϑ+ εmnD

nφ′2+ , (3.9d)

+
g2

2
(∂mσ

′
Y,1)2 ≡ g2

4

{
(∂mσ̃

′
Y,1)2 − (∂mσ̂

′
Y,1)2 + 2(∂mσ̃

′
Y,1)(∂mσ̂′Y,1)

}
, (3.9e)

+
g2

2
(∂mσ

′
Y,2)2 ≡ g2

4

{
(∂mσ̃

′
Y,2)2 − (∂mσ̂

′
Y,2)2 + 2(∂mσ̃

′
Y,2)(∂mσ̂′Y,2)

}
. (3.9f)
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While we substitute only (3.6a) and (3.6b) into the interaction terms. We are now ready

to remove the “tachyonic” fields σ′Y,1 and σ′Y,2. Combining the above result into the La-

grangian (3.8), we obtain

L
L̃V

= − 1

2g2
(∂mr

3)2 − εmn(∂mr
3)(∂nφ

′
1−)− g2

2
εmn(∂mφ

′
1+)(∂nφ

′
1−)

− 1

2g2
(∂mϑ)2 + εmn(∂mϑ)(Dnφ

′
2+)− g2

2
εmn(∂mφ

′
2−)(Dnφ

′
2+)

+
√

2 εmnAn(∂mϑ)−
√

2 g2εmn(∂mφ
′
2−)An − 2g2|σ|2 +

√
2 r3DV . (3.10)

This is not the end of story. We see that φ′1+ and φ′2− do not couple to the original scalar

fields r3 and ϑ. Then it is possible to integrate them out. Since their equations of motion

are trivially satisfied by virtue of the invariant tensor εmn, we can simply remove them

away. Then the final form is given as follows:

L
L̃V

= − 1

2g2
(∂mr

3)2 − 1

2g2
(∂mϑ)2 − εmn(∂mr

3)(∂nφ
′
1−) + εmn(∂mϑ)(Dnφ

′
2+)

+
√

2 εmn(∂mϑ)An − 2g2|σ|2 +
√

2 r3DV . (3.11)

This Lagrangian involves both the original fields (r3, ϑ) and their dual fields (φ′1−, φ
′
2+),

while the dual ones do not have kinetic terms explicitly. However, we can correctly derive

the dual Lagrangian if we integrate out the original fields. Focus on the (ϑ, φ′2+) sector.

Evaluating the equation of motion for ϑ, we obtain

∂mϑ = g2εmnD
nφ′2+ +

√
2 g2εmnA

n . (3.12)

Plugging this into the (ϑ, φ′2+) sector in (3.11), we obtain the dual form in LΓV (B.14b)

with identification φ′2+ = γ4. On the other hand, if we evaluate the equation of motion

for φ′2+, we obtain a trivial equation 0 = εmn∂m∂nϑ. Then we immediately obtain the ϑ

sector in the original Lagrangian (3.2b) (or the same form as in (B.14a)). Indeed, we have

determined the relative coefficients in (3.9f) in order to realize this structure. The (r3, φ′1−)

sector also has the same structure, though the interaction term prevents us from obtaining

the explicit form of the dual Lagrangian.

Hence we conclude that, in principle, the Lagrangian L
L̃V

(3.11) generates both the

original system of (r3, ϑ) and its dualized systems of (r3, φ′2+), (φ′1−, ϑ), and (φ′1−, φ
′
2+).

Lagrangian LLC . Next, we analyze the Lagrangian LLC (3.3a) dualized from the orig-

inal one LΨ (3.2a). In the same way as (3.7), we introduce the following combinations:

σ1± ≡ σY,1 ± σZ,1 , σ2± ≡ σY,2 ± σZ,2 . (3.13)
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Substituting this and the relations among the auxiliary fields (FX , G̃Y , G̃Z) into (3.3a), we

obtain

LLC = −g
2

4
(∂mσ1+)2 − g2

4
(∂mσ1−)2 +

g2

2
(∂mφX,1)2

− r1(Dc +Dc) +
g2

2
∂+∂−

(
φX,1 − σ1+

)
(φc + φc) + g2(Ac= −Ac=)(Bc++ −Bc++)

− ig2

2
∂+

(
φX,1 + σ1−

)
(Ac= −Ac=)− ig2

2
∂−
(
φX,1 − σ1−

)
(Bc++ −Bc++)

− g2

4
(∂mσ2+)2 − g2

4
(∂mσ2−)2 +

g2

2
(∂mφX,2)2

− ir2(Dc −Dc)−
ig2

2
∂+∂−

(
φX,2 − σ2−

)
(φc − φc)− g2(Ac= +Ac=)(Bc++ +Bc++)

− g2

2
∂+

(
φX,2 + σ2+

)
(Ac= +Ac=)− g2

2
∂−
(
φX,2 − σ2+

)
(Bc++ +Bc++)

− 2g2|Mc|2 . (3.14)

Analogous to the previous discussion in (3.9), we rewrite the kinetic term of φX,1 in terms

of (3.5c) and the derivative of (3.5a). The kinetic term of φX,2 is also rewritten by (3.5d)

and the derivative of (3.5b). Substituting (3.5a) and (3.5b) into the interaction terms, and

integrating out σ1+ and σ2− which do not couple to the original fields, we finally obtain

the following description:

LLC = − 1

2g2
(∂mr

1)2 + εmn(∂mr
1)(∂nσ1−)−

√
2 g2εmn(∂mφc,1)(∂nσ1−)

− 1

2g2
(∂mr

2)2 − εmn(∂mr
2)(∂nσ2+)−

√
2 g2εmn(∂mφc,2)(∂nσ2+)

− r1(Dc +Dc) +
1

2
(∂+∂−r

1)(φc + φc)− ir2(Dc −Dc) +
i

2
(∂+∂−r

2)(φc − φc)

+
i

2
(∂+r

1)(Ac= −Ac=) +
i

2
(∂−r

1)(Bc++ −Bc++)

− 1

2
(∂+r

2)(Ac= +Ac=)− 1

2
(∂−r

2)(Bc++ +Bc++)− 2g2|Mc|2 . (3.15)

This Lagrangian also contains two features. One is the original Lagrangian (3.3a) if we

integrate out the dual fields σ1− and σ2+. The other is the dual Lagrangian when we

integrate out the original fields r1 and r2, though the interaction terms prevent us from

performing integration.

We conclude that the Lagrangian LLC (2.5) and its alternative (2.15a), dualized from

LΨ (2.1) in terms of the complex linear superfield L and its alternative X + Y + Z,

is interpreted as a kind of the first order Lagrangian. This is because the component

expression (3.15) of LLC involves not only the original fields (r1, r2) but also their dual

fields (σ1−, σ2+). If we integrate out one of them, we immediately obtain the second order

Lagrangian. Indeed, LLC provides four second order Lagrangians, i.e., the original system

of (r1, r2) and its dual systems of (r1, σ2+), (σ1−, r
2), and (σ1−, σ2+).

Summarizing the feature of the Lagrangians (3.11) and (3.15) which contain both the

original fields and the dual fields, we refer to them as “semi-doubled” Lagrangians. In the

next section, we will apply the dualization technique to the GLSM for five-branes [41].

– 12 –



J
H
E
P
0
2
(
2
0
1
6
)
0
1
3

4 Semi-doubled GLSM for five-branes

In this section, we investigate the N = (4, 4) GLSM for five-branes background geometry

and its T-dualized systems by virtue of the the duality transformation technique discussed

in the previous sections. We notice that the previous works [15, 19, 41–43] were based

on the duality among the irreducible superfields, while the current work is developed in

terms of the reducible superfields (L, L̃) and their alternatives. We will refer to a gauge

theory applied such the dualization as the “semi-doubled” GLSM. The benefit is that we

can perform the duality transformation along directions even without isometry, i.e., we can

formally dualize any directions of the transverse space of the five-branes in ten-dimensional

string theory. This implies that we can, in principle, formulate a GLSM whose low energy

effective theory is described as the string worldsheet sigma model whose target space would

be nongeometric.

4.1 GLSM by superfields

We begin with the k-centered version [43] of the N = (4, 4) abelian GLSM for H-monopoles

(smeared NS5-branes) [41]. Its Lagrangian LH in the superfield formalism is given by

LH = L VM
H + L CHM

H + L NHM
H , (4.1a)

L VM
H =

k∑
a=1

∫
d4θ

1

e2
a

{
− |Σa|2 + |Φa|2

}
, (4.1b)

L CHM
H =

k∑
a=1

∫
d4θ
{
|Qa|2e+2Va +|Q̃a|2e−2Va

}
−

k∑
a=1

{√
2

∫
d2θQ̃aΦaQa+(h.c.)

}
, (4.1c)

L NHM
H =

1

g2

∫
d4θ

{
|Ψ|2 − |Θ|2

}
+

k∑
a=1

{√
2

∫
d2θ (sa −Ψ)Φa +

√
2

∫
d2θ̃ (ta −Θ)Σa + (h.c.)

}
. (4.1d)

Here (Σa,Φa) are k sets of the N = (4, 4) abelian vector multiplets whose building blocks

are N = (2, 2) twisted chiral superfields Σa and N = (2, 2) adjoint chiral superfields

Φa. Each of them carries the gauge coupling constant ea. Qa and Q̃a are N = (2, 2)

chiral superfields charged ±1 by a-th vector multiplet. They are the constituents of the

N = (4, 4) charged hypermultiplets. (sa, ta) are the complexified Fayet-Iliopoulos (FI)

parameters. They are also expressed as sa = 1√
2
(s1
a + is2

a) and ta = 1√
2
(t3a + it4a) in terms

of the real parameters (sia, t
i
a). (Ψ,Θ) is the N = (4, 4) neutral hypermultiplet constructed

by an N = (2, 2) neutral chiral superfield Ψ and an N = (2, 2) twisted chiral superfield Θ.

We consider the duality transformations along the superfields Ψ and Θ in L NHM
H (4.1d).

They will also give rise to the T-duality transformations of the background geometry in

the low energy effective theories, as discussed in [15, 41]. Following the previous sections,
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we easily obtain

L NHM = g2

∫
d4θ

{
−
∣∣∣L+ 2

√
2
∑
a

Ca

∣∣∣2 +
∣∣∣L̃+ 2

∑
a

Va

∣∣∣2} (4.2)

+
∑
a

{√
2

∫
d2θ sa Φa +

√
2

∫
d2θ̃ ta Σa + (h.c.)

}
+
√

2
∑
a

εmn∂m(ϑAn,a)

= g2

∫
d4θ

{
−
∣∣∣X + Y + Z + 2

√
2
∑
a

Ca

∣∣∣2 +
∣∣∣X ′ + Y ′ +W ′ + 2

∑
a

Va

∣∣∣2}
+
∑
a

{√
2

∫
d2θ sa Φa +

√
2

∫
d2θ̃ ta Σa + (h.c.)

}
+
√

2
∑
a

εmn∂m(ϑAn,a) .

The last term in the right-hand side of (4.2) is the total derivative term which we ignored

in section 2. We can also easily deduce the duality relations from (2.15c) and (2.15d) in

such a way as

1

g2
Ψ = X + Y + Z + 2

√
2
∑
a

Ca , (4.3a)

− 1

g2
Θ = X ′ + Y ′ +W ′ + 2

∑
a

Va . (4.3b)

It turns out that the resulting form (4.2) is much simpler than that of [15, 18]. Moreover,

the procedure of the dualization is also quite simple and straightforward. From now on, we

regard the sum of the Lagrangians (4.1b), (4.1c) and (4.2) under the duality relations (4.3)

as the “semi-doubled” GLSM LSDG in the superfield formalism.

4.2 GLSM by component fields

It is straightforward to expand the semi-doubled GLSM LSDG in terms of the component

fields, if we write down the expansion of the superfields as follows:

Σa = σa + i
√

2 θ+λ+,a − i
√

2 θ−λ−,a −
√

2 θ+θ−(DV,a − iF01,a) + . . . , (4.4a)

Φa = φa + i
√

2 θ+λ̃+,a + i
√

2 θ−λ̃−,a + 2i θ+θ−DΦ,a + . . . , (4.4b)

Qa = qa + i
√

2 θ+ψ+,a + i
√

2 θ−ψ−,a + 2i θ+θ−Fa + . . . , (4.4c)

Q̃a = q̃a + i
√

2 θ+ψ̃+,a + i
√

2 θ−ψ̃−,a + 2i θ+θ−F̃a + . . . . (4.4d)

The expansion of (Ψ,Θ, X, Y, Z,X ′, Y ′,W ′) has already been exhibited in (3.1). The pre-

potential Ca is also expanded as in (A.9f). We note that the definition Φa = D+D−Ca
gives the relations among their component fields:

φa = −iMc,a , (4.5a)

DΦ,a = −iDc,a +
1

2
∂+Ac=,a +

1

2
∂−Bc++,a +

i

2
∂+∂−φc,a , (4.5b)

λ̃±,a = −i
(
λc±,a ± ∂±χc∓,a

)
, (4.5c)

{Fc,a , Gc,a , Nc,a , ψc±,a , ζc±,a } : (no relations) . (4.5d)
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semi-doubled GLSM (4.6) H-monopoles KK-monopoles 52
2-brane 53

2-brane

dynamical (r1, r2, r3, ϑ) (r1, r2, r3, φ′2+) (r1, r2, σ2+, r
3, φ′2+) (r1, σ1−, r

2, σ2+, r
3, φ′2+)

integrated-out (σ1−, σ2+, φ
′
1−, φ

′
2+) (σ1−, σ2+, φ

′
1−, ϑ) (σ1−, φ

′
1−, ϑ) (φ′1−, ϑ)

co-existing – – (r2, σ2+) (r1, σ1−), (r2, σ2+)

Table 1. Various GLSMs from the semi-doubled GLSM LSDG (4.6).

Substituting the above into the Lagrangian LSDG, we obtain the explicit form with the

component fields. Since we have already known that there are many redundant fields under

the duality relations (4.3), we eliminate them in the same manner as in the last section.

At the end, we obtain the semi-doubled GLSM in terms of the component fields as follows:

LSDG =
∑
a

1

e2
a

{
1

2
(F01,a)

2 − |∂mσa|2 − |∂mMc,a|2
}
−
∑
a

{
|Dmqa|2 + |Dmq̃a|2

}
(4.6)

− 1

2g2

{
(∂mr

1)2 + (∂mr
2)2 + (∂mr

3)2 + (∂mϑ)2
}

+ εmn(∂mr
1)(∂nσ1−)−εmn(∂mr

2)(∂nσ2+)−εmn(∂mr
3)(∂nφ

′
1−)+εmn(∂mϑ)(Dnφ

′
2+)

+
√

2
∑
a

εmn∂m
(
(ϑ− t4a)An,a

)
+
√

2
∑
a

εmn(∂mϑ)An,a

− 2g2
∑
a,b

(
σaσb +Mc,aM c,b

)
− 2

∑
a

(
|σa|2 + |Mc,a|2

)(
|qa|2 + |q̃a|2

)
−
∑
a

e2
a

2

{
|qa|2−|q̃a|2−

√
2(r3−t3a)

}2
−
∑
a

e2
a

∣∣∣√2qaq̃a+
(
(r1−s1

a)+i(r2−s2
a)
)∣∣∣2 .

Here we have introduced the gauge covariant derivatives Dmqa = ∂mqa− iAm,aqa, Dmq̃a =

∂mq̃a + iAm,aq̃a, and Dmφ
′
2+ = ∂mφ

′
2+ − 2

√
2
∑

aAm,a. To make the description sim-

pler, we have already integrated out the auxiliary fields.6 We remark that the semi-

doubled Lagrangian (4.6) involves both the original fields (r1, r2, r3, ϑ) and the dual fields

(σ1−, σ2+, φ
′
1−, φ

′
2+). Selecting fields which would be integrated out from this semi-doubled

model in an appropriate way, we can obtain various kind of GLSMs for various five-branes.

Here we summarize them in table 1. We have several comments on table 1: in the first

row we listed various five-branes. We start from H-monopoles (smeared NS5-branes). Per-

forming T-duality along ϑ, KK-monopoles appear. Taking further T-duality along r2, the

background of the KK-monopoles is transformed to that of an exotic 52
2-brane which is

locally geometric but globally nongeometric [6]. Dualizing one more direction r1, an ex-

otic 53
2-brane will appear. This five-brane background would be even locally nongeometric.

Hence, in the second row the dynamical fields in each GLSM are listed, whilst in the third

row the fields integrated out are described. The backgrounds of the H-monopoles and the

KK-monopoles have an isometry along ϑ and φ′2+, respectively. However, the backgrounds

of the exotic branes have no isometry along r2 and r1 directions. Then, in the GLSM level,

both the original field and the dual field simultaneously exist. This is exhibited in the

fourth row.

6The explicit evaluation of the auxiliary fields can be seen in [19].
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4.3 Various GLSMs

In this subsection, we derive the GLSMs for various five-branes from the semi-doubled

GLSM (4.6) as listed in table 1. Although the computation itself is quite straightforward,

the result will play an instructive role in considering the low energy effective theories in

the next section.

H-monopoles. First, we derive the GLSM for H-monopoles. As seen in table 1, this

is a gauge theory of dynamical fields (r1, r2, r3, ϑ). We integrate out the other fields

(σ1−, σ2+, φ
′
1−, φ

′
2+) from the semi-doubled GLSM (4.6). Their equations of motion provide

trivial equations as

0 = ∂m
{

+ εmn∂
nr1
}
, 0 = ∂m

{
− εmn∂nr2

}
, (4.7a)

0 = ∂m
{
− εmn∂nr3

}
, 0 = ∂m

{
+ εmn∂

nϑ
}
. (4.7b)

Then we just remove the terms of (σ1−, σ2+, φ
′
1−, φ

′
2+) from (4.6). The resulting

Lagrangian is

LH =
∑
a

1

e2
a

{
1

2
(F01,a)

2 − |∂mσa|2 − |∂mMc,a|2
}
−
∑
a

{
|Dmqa|2 + |Dmq̃a|2

}
(4.8)

− 1

2g2

{
(∂mr

1)2 + (∂mr
2)2 + (∂mr

3)2 + (∂mϑ)2
}

+
√

2
∑
a

εmn∂m
(
(ϑ− t4a)An,a

)
−
√

2
∑
a

εmn(∂mϑ)An,a

− 2g2
∑
a,b

(
σaσb +Mc,aM c,b

)
− 2

∑
a

(
|σa|2 + |Mc,a|2

)(
|qa|2 + |q̃a|2

)
−
∑
a

e2
a

2

{
|qa|2 − |q̃a|2 −

√
2(r3 − t3a)

}2
−
∑
a

e2
a

∣∣∣√2qaq̃a +
(
(r1−s1

a) + i(r2−s2
a)
)∣∣∣2 .

Up to the total derivative term, this is nothing but the GLSM for H-monopoles discussed

in [41–43].

KK-monopoles. Second, we consider the GLSM for KK-monopoles from (4.6). Table 1

indicates that we should integrate out (σ1−, σ2+, φ
′
1−, ϑ). This is also straightforward.

Evaluate the equations of motion for them:

0 = ∂m
{

+ εmn∂
nr1
}
, 0 = ∂m

{
− εmn∂nr2

}
, (4.9a)

0 = ∂m
{
− εmn∂nr3

}
, 0 = ∂m

{
1

g2
∂mϑ− εmnDnφ′2+ −

√
2
∑
a

εmnA
n
a

}
. (4.9b)
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Plugging this into (4.6), we obtain

LKK =
∑
a

1

e2
a

{
1

2
(F01,a)

2 − |∂mσa|2 − |∂mMc,a|2
}
−
∑
a

{
|Dmqa|2 + |Dmq̃a|2

}
(4.10)

− 1

2g2

{
(∂mr

1)2 + (∂mr
2)2+(∂mr

3)2
}
− g

2

2
(Dmγ

4)2+
√

2
∑
a

εmn∂m
(
(ϑ−t4a)An,a

)
− 2g2

∑
a,b

(
σaσb +Mc,aM c,b

)
− 2

∑
a

(
|σa|2 + |Mc,a|2

)(
|qa|2 + |q̃a|2

)
−
∑
a

e2
a

2

{
|qa|2−|q̃a|2−

√
2(r3−t3a)

}2
−
∑
a

e2
a

∣∣∣√2 qaq̃a +
(
(r1−s1

a) + i(r2−s2
a)
)∣∣∣2 .

Here we rewrote φ′2+ as γ4 and introduced its gauge covariant derivative as

Dmφ
′
2+ +

√
2
∑
a

Am,a = ∂mγ
4 −
√

2
∑
a

Am,a ≡ Dmγ
4 . (4.11)

This is the correct form of the GLSM for KK-monopoles [41–43].

52
2-brane. Let us derive the GLSM for an exotic 52

2-brane discussed in [15, 19]. As

discussed before, the 52
2-brane is generated by the smearing along one direction without

isometry in the background geometry of the KK-monopoles. Suppose we perform the

duality transformation of the original field r2 and obtain the system of its dual field σ2+.

However, they do not have isometry. Then we construct the GLSM for the 52
2-brane by

integrating out only (σ1−, φ
′
1−, ϑ), while both r2 and σ2+ are not integrated out:

0 = ∂m
{

+ εmn∂
nr1
}
, 0 = ∂m

{
− εmn∂nr3

}
, (4.12a)

0 = ∂m
{

1

g2
∂mϑ− εmnDnφ′2+ −

√
2
∑
a

εmnA
n
a

}
. (4.12b)

Substituting them into the semi-doubled GLSM (4.6), we find

L522
=
∑
a

1

e2
a

{
1

2
(F01,a)

2 − |∂mσa|2 − |∂mMc,a|2
}
−
∑
a

{
|Dmqa|2 + |Dmq̃a|2

}
(4.13)

− 1

2g2

{
(∂mr

1)2 + (∂mr
2)2 + (∂mr

3)2
}
− g2

2
(Dmγ

4)2

− εmn(∂mr
2)(∂nσ2+) +

√
2
∑
a

εmn∂m
(
(ϑ− t4a)An,a

)
− 2g2

∑
a,b

(
σaσb +Mc,aM c,b

)
− 2

∑
a

(
|σa|2 + |Mc,a|2

)(
|qa|2 + |q̃a|2

)
−
∑
a

e2
a

2

{
|qa|2−|q̃a|2−

√
2(r3−t3a)

}2
−
∑
a

e2
a

∣∣∣√2qaq̃a +
(
(r1−s1

a) + i(r2−s2
a)
)∣∣∣2 .

Here we replaced (σ2+, φ
′
2+) to (−y2, γ4) and introduced Dmγ

4 (4.11). It turns out that

this is still the “semi-doubled” model. Moreover, this is nothing but the GLSM for the

52
2-brane proposed in [15, 19].
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53
2-brane. Finally we argue the GLSM for an exotic 53

2-brane. This five-brane is obtained

by T-duality along the three directions of the transverse space of the H-monopoles. This

background is regarded as a locally nongeometric background. Then there are explicitly no

descriptions as a conventional geometry. Fortunately, however, we can formally describe its

GLSM where the original and dual fields coexist. This is the same strategy as in doubled

sigma model and double field theory [26, 53–64], β-supergravity and related geometry [37,

65–67], and so forth.

Following table 1, we integrate out only (φ′1−, ϑ) from the semi-doubled GLSM (4.6):

0 = ∂m
{
− εmn∂nr3

}
, 0 = ∂m

{
1

g2
∂mϑ− εmnDnφ′2+ −

√
2
∑
a

εmnA
n
a

}
. (4.14)

Then the Lagrangian is reduced to the following form:

L532
=
∑
a

1

e2
a

{
1

2
(F01,a)

2 − |∂mσa|2 − |∂mMc,a|2
}
−
∑
a

{
|Dmqa|2 + |Dmq̃a|2

}
(4.15)

− 1

2g2

{
(∂mr

1)2 + (∂mr
2)2 + (∂mr

3)2
}
− g2

2
(Dmγ

4)2

+ εmn(∂mr
1)(∂nσ1−)− εmn(∂mr

2)(∂nσ2+) +
√

2
∑
a

εmn∂m
(
(ϑ− t4a)An,a

)
− 2g2

∑
a,b

(
σaσb +Mc,aM c,b

)
− 2

∑
a

(
|σa|2 + |Mc,a|2

)(
|qa|2 + |q̃a|2

)
−
∑
a

e2
a

2

{
|qa|2−|q̃a|2−

√
2(r3−t3a)

}2
−
∑
a

e2
a

∣∣∣√2qaq̃a+
(
(r1−s1

a)+i(r2−s2
a)
)∣∣∣2 .

This is still a “semi-doubled” GLSM because the dual fields (σ1−, σ2+) have no canonical

kinetic terms, while they contribute to the system. In the next section we will argue how

this model gives the nongeometric structure.

We summarize this section. We started from the semi-doubled GLSM for five-

branes (4.6). Integrating out certain fields, we obtained the conventional GLSMs for various

five-branes. All of them, expect for (4.15), are the models which have already been ob-

tained in previous works. The procedure of integration is quite simple. In addition, we

proposed the GLSM for the exotic 53
2-brane, although we have no ideas how to justify it in

the current stage.

5 Semi-doubled NLSM for five-branes

In this section, we investigate the low energy effective theory of the semi-doubled GLSM

LSDG (4.6) discussed in the last section. The low energy effective theory is given as a NLSM

which still involves the original and dual fields. Hence we will refer to this as the “semi-

doubled” NLSM. Integrating out a certain set of fields, we will obtain conventional NLSMs

whose target spaces are five-brane backgrounds. Independently, we also briefly mention the

low energy effective theories of the various GLSMs for five-branes obtained in the previous

section. They will correspond to the ones derived from the semi-doubled NLSM.
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5.1 Low energy limit of the semi-doubled GLSM

We explore the supersymmetric low energy effective theory. The Lagrangian (4.6) has the

potential terms which vanish on the supersymmetric vacua:

0 =
∑
a,b

(
σaσb +Mc,aM c,b

)
, 0 =

(
|σa|2 + |Mc,a|2

)(
|qa|2 + |q̃a|2

)
, (5.1a)

0 = |qa|2 − |q̃a|2 −
√

2 (r3 − t3a) , 0 =
√

2 qaq̃a +
(
(r1 − s1

a) + i(r2 − s2
a)
)
. (5.1b)

We focus only on the Higgs phase in which all of the scalar fields of the vector multiplets

vanish. Then the first two equations (5.1a) are trivial. Furthermore, we can solve the

second two equations (5.1b) with respect to the complex scalar fields (qa, q̃a) [41, 42]:

qa =
i

21/4
e+iαa

√
Ra + (r3 − t3a) , q̃a =

i

21/4
e−iαa

(r1 − s1
a) + i(r2 − s2

a)√
Ra + (r3 − t3a)

, (5.2a)

(Ra)
2 ≡ (r1 − s1

a)
2 + (r2 − s2

a)
2 + (r3 − t3a)2 . (5.2b)

Here αa is the gauge parameter. Plugging this solution into each kinetic term of (qa, q̃a),

we obtain the following form:

−
{
|Dmqa|2 + |Dmq̃a|2

}
= − 1

2
√

2Ra

{
(∂mr

1)2 + (∂mr
2)2 + (∂mr

3)2
}

−
√

2Ra

(
∂mαa −Am,a +

1√
2

Ωi,a ∂mr
i

)2

, (5.3a)

Ωi,a ∂mr
i ≡ −(r1 − s1

a)∂mr
2 + (r2 − s2

a)∂mr
1

√
2Ra(Ra + (r3 − t3a))

. (5.3b)

For later convenience, we refer to Ωi,a as the KK-vector. The KK-vector will play a

significant role in analyzing the target space structure of the low energy effective theory.

We note that the third component Ω3,a is trivial.7 Since we have solved the equations of

the supersymmetric vacua (5.1), the Lagrangian is reduced to

LSDG =
∑
a

1

2e2
a

(F01,a)
2 −

∑
a

√
2Ra

(
∂mαa −Am,a +

1√
2

Ωi,a ∂mr
i

)2

+ εmn(∂mϑ)(Dnγ
4)

− H

2

{
(∂mr

1)2 + (∂mr
2)2 + (∂mr

3)2
}
− 1

2g2
(∂mϑ)2

+ εmn(∂mr
1)(∂nσ1−)− εmn(∂mr

2)(∂nσ2+)− εmn(∂mr
3)(∂nφ

′
1−)

+
√

2
∑
a

εmn∂m
(
(ϑ− t4a)An,a

)
. (5.4)

7The triviality is just an artifact of the explicit construction of N = (4, 4) theory in terms of N = (2, 2)

supermultiplets. Indeed there exists SU(2)R symmetry in this system. Under this R-symmetry the vectors

ri and Ωi,a behave as the triplets.
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Here we introduced a harmonic function H whose divergence is given as a rotation of the

KK-vector:

H ≡ 1

g2
+
∑
a

1√
2Ra

, (5.5a)

∇iH = (∇× ~Ω)i , Ωi ≡
∑
a

Ωi,a . (5.5b)

The equation (5.5b) is interpreted as the Dirac monopole equation.

Next, we take the low energy limit of the model (5.4). This is controlled by the infinity

limit of the gauge coupling constants ea → ∞ because they are of mass dimension one.

Since the dynamics of the gauge fields Am,a are frozen in this limit, we integrate them out.

The solution of the equation of motion for each gauge field is

Am,a = ∂mαa +
1√
2

Ωi,a ∂mr
i +

1

2Ra
εmn ∂

nϑ . (5.6)

We have a comment that we can quite easily obtain the solution compared with the case

of the GLSM for KK-monopoles demonstrated in [43]. Plugging this into (5.4) in the low

energy limit, we obtain the following form:

LSDN = −H
2

{
(∂mr

1)2 + (∂mr
2)2 + (∂mr

3)2 + (∂mϑ)2
}

+ εmn(∂mr
1)(∂nσ1−)− εmn(∂mr

2)(∂nσ2+)− εmn(∂mr
3)(∂nφ

′
1−)

+ εmn(∂mϑ)
(
∂nϑ̃− Ωi ∂nr

i
)

+
√

2
∑
a

εmn∂m
(
(ϑ− t4a)Ån,a

)
. (5.7)

Here we introduced the gauge invariant field ϑ̃ ≡ γ4−
√

2
∑

a αa. This is genuinely the dual

field of ϑ. In the topological term, Ån,a indicates that we substituted the solution (5.6)

into this term. This is the low energy effective theory of the semi-doubled GLSM. We refer

to this as the “semi-doubled” NLSM because both the original fields (r1, r2, r3, ϑ) and the

dual fields (σ1−, σ2+, φ
′
1−, ϑ̃) are involved, though the latter contributes to the system only

topologically. We can derive various NLSMs whose target spaces are backgrounds of five-

branes, if we integrate out a certain set of original and/or dual fields as discussed at the

GLSM level.

5.2 Low energy limit of various GLSMs

Here we integrate out a certain set of fields from the semi-doubled NLSM LSDN (5.7)

and obtain the various NLSMs for five-branes. First we summarize the configurations

which we analyze in table 2. We have comments on table 2. The second row exhibits the

dynamical fields which govern the NLSM. We prepare the third row because we have to

make isometry along certain directions in order to obtain the backgrounds of the exotic five-

branes. The fourth row describes the fields which should be integrated out after smearing

the fields in the second row. In the fifth column in the first row, we express the name of

the background with double-quotation marks because we will not be able to obtain the

conventional description of this background. We will discuss this issue later.
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semi-doubled NLSM (5.7) H-monopoles KK-monopoles 52
2-brane “53

2-brane”

dynamical (r1, r2, r3, ϑ) (r1, r2, r3, ϑ̃) (r1, σ2+, r
3, ϑ̃) (σ1−, σ2+, r

3, ϑ̃)

smearing – – r2 (r1, r2)

integrated-out (σ1−, σ2+, φ
′
1−, ϑ̃) (σ1−, σ2+, φ

′
1−, ϑ) (σ1−, r

2, φ′1−, ϑ) (r1, r2, φ′1−, ϑ)

Table 2. Various NLSMs which will be derived from the semi-doubled NLSM (5.7).

From now on we derive the various NLSMs from the semi-doubled NLSM. In each

model we briefly mention the low energy limit of the corresponding GLSMs which we

obtained in section 4.3.

H-monopoles. Following table 2, we integrate out the dual fields (σ1−, σ2+, φ
′
1−, ϑ̃) in

the semi-doubled NLSM (5.7). It turns out that their field equations are trivial as seen

in (4.7):

0 = ∂m
{

+ εmn∂
nr1
}
, 0 = ∂m

{
− εmn∂nr2

}
, (5.8a)

0 = ∂m
{
− εmnr3

}
, 0 = ∂m

{
+ εmn∂

nϑ
}
. (5.8b)

We can simply remove the terms containing the dual fields. Then we obtain

LH = −H
2

{
(∂mr

1)2 + (∂mr
2)2 + (∂mr

3)2 + (∂mϑ)2
}

+ εmn Ωi (∂mr
i)(∂nϑ)

+
√

2
∑
a

εmn∂m
(
(ϑ− t4a)Ån,a

)
. (5.9)

This is nothing but the NLSM whose target space is the background configuration of the

H-monopoles. Following the procedure in section 5.1, this Lagrangian also appears as the

low energy limit of the GLSM (4.8). Indeed the analysis of the low energy limit of (4.8)

was demonstrated in [41–43].

KK-monopoles. We analyze the NLSM following the third column in table 2. First, we

integrate out the fields (σ1−, σ2+, φ
′
1−, ϑ). Their field equations are

0 = ∂m
{

+ εmn∂
nr1
}
, 0 = ∂m

{
− εmn∂nr2

}
, (5.10a)

0 = ∂m
{
− εmnr3

}
, 0 = ∂m

{
H ∂mϑ− εmn

(
∂nϑ̃− Ωi ∂

nri
)}

. (5.10b)

Only the field equation for ϑ is non-trivial. Applying them to the semi-doubled NLSM (5.7),

we obtain the conventional form of the NLSM whose target space is the background geom-

etry of the KK-monopoles [41–43]:

LKK = −H
2

{
(∂mr

1)2 + (∂mr
2)2 + (∂mr

3)2
}
− 1

2H

(
∂mϑ̃− Ωi ∂mr

i
)2

+
√

2
∑
a

εmn∂m
(
(ϑ− t4a)Ån,a

)
. (5.11)

This is also obtained by the low energy limit of the GLSM (4.10) through the the procedure

demonstrated in section 5.1.
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52
2-brane. We analyze the low energy theory in the fourth column in table 2. Before

doing this, we should keep in mind that the functions (H,Ωi) depend on the field r2.

In order to construct an isometry along the field r2 (and its dual σ2+), we perform the

smearing procedure and make (H,Ωi) independent of r2 [2, 6, 14, 49–51].

First, for simplicity, we set (s1
a, t

3
a) = (0, 0) for each FI parameter. Next, we set that

the field r2 moves only on a circle of radius R2. In other words, we introduce a periodicity

with period 2πR2 ≡ ∆s2
a. In addition, we set the second FI parameter s2

a to

s2
a = 2πR2 a ≡ x . (5.12)

In the small limit R2 → 0, the period 2πR2 is also infinitesimally small with ∆s2
a → dx.

This also implies the large limit k → ∞. Then we can replace the sum with respect to a

in (H,Ωi) to the integration as in the following forms:

(Ra)
2 = (r1)2 + (r2 − s2

a)
2 + (r3)2 = %2 + (r2 − x)2 , (5.13a)

r1 ≡ % cosϑ% , r3 ≡ % sinϑ% , (5.13b)

H =
1

g2
+ lim
k→∞

k∑
a=1

1√
2Ra

=
1

g2
+ lim
L→∞

1

2πR2

∫ L

−L

dx√
2Ra

=
1

g2
+ σ′′ log

Λ

%
, σ′′ ≡ 1√

2πR2

, (5.13c)

Ω1 = lim
k→∞

k∑
a=1

Ω1,a =
1

2πR2
lim
L→∞

∫ L

−L
dx

r2 − x√
2Ra(Ra + (r3 − t3j ))

= 0 , (5.13d)

Ω2 = lim
k→∞

k∑
a=1

Ω2,a = − r1

2πR2
lim
L→∞

∫ L

−L

dx√
2Ra(Ra + r3)

= σ′′ϑ% + (divergent part) . (5.13e)

Here L is the cut-off and Λ is a divergent parameter. We notice that Ω3 vanishes from the

beginning. Due to this procedure, the functions (H,Ωi) do not depend on r2 any more,

though they still satisfy the Dirac monopole equation (5.5b). Plugging the finite parts

of (5.13) into (5.7), we have the semi-doubled Lagrangian which do not depend on the non-

derivative r2. Then we integrate out the fields (σ1−, r
2, φ′1−, ϑ) as mentioned in table 2.

The field equations of (σ1−, φ
′
1−) are again trivial. The solution of the field equations of

(r2, ϑ) is given as

∂mr
2 = −H

K

(
εmn∂

nσ2+ −
Ω2

H
∂mϑ̃

)
, K ≡ H2 + (Ω2)2 , (5.14a)

∂mϑ =
H

K

(
εmn∂

nϑ̃+
Ω2

H
∂mσ2+

)
. (5.14b)

Substituting this into the Lagrangian, we eventually obtain the NLSM for the exotic
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52
2-brane:

L522
= −H

2

{
(∂m%)2 + %2(∂mϑ%)

2
}
− H

2K

{
(∂mσ2+)2 + (∂mϑ̃)2

}
+

Ω2

K
εmn(∂mσ2+)(∂nϑ̃) +

√
2
∑
a

εmn∂m
(
(ϑ− t4a)Ån,a

)
. (5.15)

This is the model derived in [15, 19], if we identify σ2+ with −y2. Applying the smearing

procedure and the reduction in section 5.1 to the GLSM (4.13), we again obtain the same

result. Indeed the GLSM (4.13) is nothing but the starting model of [15, 19].

We remark that the configuration of the target space of (5.15) is globally nongeometric.

This means that the function Ω2 is no longer single-valued with respect to the angular

coordinate ϑ%. However, we stress that the monopole equation (5.5b) is still valid. This is

one of the features that the background is locally geometric.

“53
2-brane”. Finally we try to investigate the NLSM exhibited in the fifth column in

table 2. Although the duality transformation of ϑ is straightforward, those of (r1, r2) are

difficult because they contribute to the functions (H,Ωi). Then we should again perform

the smearing procedure along (r1, r2).

Here we first smear the r2 direction, and later the r1 direction. The setup of the

smearing as follows. First, we split the label a into m sectors as

{a} =
{
{a1}, {a2}, . . . , {aj}, . . . , {am}

}
,

k∑
a=1

=
m∑
j=1

kj∑
aj=1

,
m∑
j=1

kj = k . (5.16)

Second, the FI parameters in the j-th sector are rewritten as (s1
j , s

2
aj , 0), where we set

t3a = 0 for simplicity. Third, we compactify the r2 direction of radius R2 and take the

small limit R2 → 0, as discussed in (5.13). This limit also implies kj →∞ in each sector.

More precisely, we obtain the following forms in this limit:

(Raj )
2 = (r1 − s1

j )
2 + (r2 − s2

aj )
2 + (r3)2 = (%j)

2 + (r3)2 , (5.17a)

r1 − s1
j ≡ %j cosϑj , r3 ≡ %j sinϑj , (5.17b)

H ≡ 1

g2
+

m∑
j=1

lim
kj→∞

kj∑
aj=1

1√
2Raj

=
1

g2
+

m∑
j=1

σ′′ log
Λj
%j
, σ′′ ≡ 1√

2πR2

, (5.17c)

Ω1 ≡
m∑
j=1

lim
kj→∞

kj∑
aj=1

Ω1,aj = 0 , (5.17d)

Ω2 ≡
m∑
j=1

lim
kj→∞

kj∑
aj=1

Ω2,aj =

m∑
j=1

σ′′ϑj + (divergent part) . (5.17e)

As mentioned before, this result still satisfies the Dirac monopole equation (5.5b) non-

trivially. Fourth, we compactify the r1 direction of radius R1, and we set the FI parameters

s1
j to

s1
j = 2πR1 j ≡ s . (5.18)
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Take the small limit R1 → 0. This limit indicates the large limit m→∞, and the period

2πR1 is also infinitesimally small as 2πR1 ≡ ds. In this limit, the functions (H,Ωi) are

reduced to

H =
1

g2
+ lim
m→∞

m∑
j=1

σ′′ log
Λj
%j

=
1

g2
+ lim
L→∞

σ′′

2πR1

∫ L

−L
ds log

Λj√
s2 + (r3)2

=
1

g2
+ (σ′σ′′)r3 + (divergent part) , σ′ ≡ 1√

2πR1

, (5.19a)

Ω2 = lim
m→∞

m∑
j=1

σ′′ arctan
( r3

r1 − sj

)
= lim

L→∞

σ′′√
2πR1

∫ L

−L
ds arctan

( r3

r1 − s

)
= 0 . (5.19b)

Then the function K is reduced to H2. Moreover, all components of the KK-vector Ωi

vanish. This reveals that the Dirac monopole equation (5.5b) is no longer valid.

We continue to analyze the semi-doubled NLSM (5.7). Since this model does not

depend on non-derivative (r1, r2) any more, we can perform the duality transformation via

the integrating out the fields (r1, r2, φ′1−, ϑ):

0 = ∂m
{
H ∂mr

1 − εmn ∂nσ1−

}
, 0 = ∂m

{
H ∂mr

2 + εmn ∂
nσ2+

}
, (5.20a)

0 = ∂m
{
− εmnr3

}
, 0 = ∂m

{
H ∂mϑ− εmn ∂nϑ̃

}
. (5.20b)

Substitute them into the Lagrangian. Then we obtain the final form:

L = −H
2

(∂mr
3)2 − 1

2H

{
(∂mσ1−)2 + (∂mσ2+)2 + (∂mϑ̃)2

}
+
√

2
∑
a

εmn∂m
(
(ϑ− t4a)Ån,a

)
. (5.21)

This NLSM tells us that there is no B-field on the target space geometry. This is also

caused by the disappearance of the KK-vector. Thus the configuration is purely geometric.

However, the geometry is not Ricci-flat. Then this configuration does not satisfy the field

equations of ten-dimensional supergravity. Hence we conclude that the NLSM (5.21) does

not correctly capture the feature of the background of the exotic 53
2-brane.

Go back to the GLSM (4.15) which we obtained in the previous section. This GLSM

does not have isometry along the (r1, r2) directions, neither. Then we also apply the smear-

ing procedures (5.17) and (5.19) to this GLSM after the low energy limit ea →∞. However,

this again generates the trivial KK-vector. Then the NLSM from the GLSM (4.15) precisely

coincides with (5.21).

The lack of consistency with ten-dimensional supergravity comes from the breakdown

of the Dirac monopole equation (5.5b) via the smearing procedure. This is because all of the

physical information of the exotic 53
2-brane is absorbed into the divergent part, though the

duality transformation rule itself seems consistent. Hence we confirm that the background

is locally nongeometric, genuinely.
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6 Summary

In this paper we studied the duality transformation without isometry and applied it to the

N = (4, 4) GLSM for five-branes.

We first utilized complex (twisted) linear superfields which are transformed from

(twisted) chiral superfields. After constructing the dual Lagrangians, we replaced the com-

plex (twisted) linear superfields with the sum of (twisted) chiral superfields. Expanding

these superfields in terms of the component fields, we obtained the so-called “semi-doubled”

Lagrangians which involve both the original and dual fields. Compared with the duality

transformation technique with isometry, the procedure we demonstrated here has a strong

benefit. This is the dualization along any directions irrespective of the existence of isome-

try. In particular, we can perform the duality transformation both the real and imaginary

part of the original (twisted) chiral superfields.

Applying this technique to the analysis of the N = (4, 4) GLSM and its dualized

systems, we obtained the “semi-doubled” GLSM for five-branes. This model generates the

conventional GLSMs for H-monopoles, KK-monopoles, and an exotic 52
2-brane in quite a

simple way. In particular, we also obtained the formal description of the semi-doubled

GLSM for the exotic 53
2-brane whose background is even locally nongeometric. Taking the

low energy limit of the semi-doubled GLSM, we obtained the semi-doubled NLSM which

also contains both the original and dual fields. Integrating out a certain set of fields, we

correctly derived the conventional NLSMs for the H-monopoles, the KK-monopoles and

the exotic 52
2-brane.

In the case of the model for the exotic 53
2-brane, however, we found that the Dirac

monopole equation, which governs the background structure of the five-branes, is broken

down caused by the smearing procedure. This is the feature of the nongeometric structure

of the 53
2-brane. Hence we understood that the nongeometric structure can be traced if the

Dirac monopole equation is non-trivially described even in the configuration of the exotic

53
2-brane. In order to realize this, we have to extend, at least, the semi-doubled NLSM

to the doubled sigma model, double field theory, and/or β-supergravity which involve the

kinetic terms of both the original and dual degrees of freedom.
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A 2D superfields

In this appendix we exhibit the conventions and the definition of various superfields in

two-dimensional spacetime. The notation is based on the previous work [19].

A.1 Conventions

Two-dimensional superspace is expanded by the conventional coordinates xm and the anti-

commuting Grassmann coordinates θ±. They are complex Weyl spinors. We define their

hermitian conjugate as θ± = (θ±)†. In order to classify superfields, we introduce the

supercovariant derivatives D± and D±:

D± =
∂

∂θ±
− iθ±∂± , D± = − ∂

∂θ±
+ iθ±∂± . (A.1)

Here we used the light-cone coordinates ∂± = ∂0 ± ∂1, where ∂m = ∂
∂xm . It is also useful

to define the integral measures of the Grassmann coordinates:

d2θ = −1

2
dθ+ dθ− , d2θ =

1

2
dθ+ dθ− , (A.2a)

d2θ̃ = −1

2
dθ+ dθ− , d2θ̃ = −1

2
dθ− dθ+ , (A.2b)

d4θ = d2θ d2θ = −d2θ̃ d2θ̃ = −1

4
dθ+ dθ− dθ+ dθ− , (A.2c)∫

d2θ θθ = 1 ,

∫
d2θ θθ = 1 ,

∫
d2θ̃ θ+θ− =

1

2
,

∫
d2θ̃ θ−θ+ =

1

2
. (A.2d)

A.2 Various superfields

Let us introduce various superfields in two dimensions. First, we define a chiral superfield

X in such a way as

0 = D±X . (A.3)

This is an irreducible superfield. This means that the chiral superfield cannot decompose

into any other superfields. In the same way, we define another irreducible superfield, called

a twisted chiral superfield Y :

0 = D+D−Y . (A.4)

There is a real superfield V = V † which carries a vector field. In two dimensions, this is

also described as a twisted chiral superfield Σ in the following form:

Σ =
1√
2
D+D−V . (A.5)

We note that this is an abelian vector superfield.

Relaxing the constraints in (A.3) and (A.4), we can introduce reducible superfields.

We define a left semi-chiral superfield X and a right semi-chiral superfield Y as

0 = D+X , 0 = D−Y . (A.6)
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Furthermore, we define a complex linear superfield L and a complex twisted linear superfield

L̃ as

0 = D+D−L , 0 = D+D−L̃ . (A.7)

Due to the definition, a complex (twisted) linear superfield can be given as the sum of

semi-chiral superfields:

L = X + Y , L̃ = X + Y . (A.8)

It is worth describing the expansion of superfields (X,Y, V, L, L̃) by means of the

Grassmann coordinates [19, 48]:8

X = φX + i
√

2 θ+ψX+ + i
√

2 θ−ψX− + 2i θ+θ−FX

− i θ+θ+∂+φX − i θ−θ−∂−φX +
√

2 θ+θ+θ−∂+ψX− +
√

2 θ−θ−θ+∂−ψX+

+ θ+θ−θ+θ−∂+∂−φX , (A.9a)

Y = σY + i
√

2 θ+χY+ − i
√

2 θ−χY− + 2i θ+θ−GY

− i θ+θ+∂+σY + i θ−θ−∂−σY −
√

2 θ−θ−θ+∂−χY+ −
√

2 θ+θ+θ−∂+χY−

− θ+θ−θ+θ−∂+∂−σY , (A.9b)

V = −θ+θ+(A0 +A1)− θ−θ−(A0 −A1)−
√

2 θ−θ+σ −
√

2 θ+θ−σ

− 2i θ+θ−
(
θ+λ+ + θ−λ−

)
+ 2i θ+θ−

(
θ+λ+ + θ−λ−

)
+ 2 θ+θ−θ+θ−DV , (A.9c)

L = φL + i
√

2 θ+ψL+ + i
√

2 θ−ψL− + i
√

2 θ+χL+ + i
√

2 θ−χL−

+ i θ+θ−FL + θ+θ−GL + θ−θ+NL + θ−θ−AL= + θ+θ+BL++

−
√

2 θ+θ−θ+ζL+ −
√

2 θ+θ−θ−ζL− +
√

2 θ+θ+θ−∂+χL− −
√

2 θ−θ+θ−∂−χL+

+ θ+θ−θ+θ−
(

i∂−BL++ + i∂+AL= − ∂+∂−φL

)
, (A.9d)

L̃ = φ̃L + i
√

2 θ+ψ̃L+ + i
√

2 θ−ψ̃L− + i
√

2 θ+χ̃L+ + i
√

2 θ−χ̃L−

+ i θ+θ−F̃L + i θ+θ−M̃L + θ+θ−G̃L + θ−θ−ÃL= + θ+θ+B̃L++

−
√

2 θ+θ−θ+∂+ψ̃L− −
√

2 θ+θ−θ−ζ̃L− −
√

2 θ+θ+θ−λ̃L+ +
√

2 θ−θ+θ−∂−χ̃L+

− θ+θ−θ+θ−
(
− ∂+∂−φ̃L − i∂+ÃL= + i∂−B̃L++

)
. (A.9e)

In the main part of this paper, we describe a chiral superfield Φ in terms of its prepotential

C by Φ = D+D−C. This C is unconstrained and complex. Its expansion is also exhibited

as follows:

C = φc + i
√

2 θ+ψc+ + i
√

2 θ−ψc− + i
√

2 θ+χc+ + i
√

2 θ−χc−

+ i θ+θ−Fc + i θ+θ−Mc + θ+θ−Gc + θ−θ+Nc + θ−θ−Ac= + θ+θ+Bc++

−
√

2 θ+θ−θ+ζc+ −
√

2 θ+θ−θ−ζc− −
√

2 θ+θ+θ−λc+ −
√

2 θ−θ+θ−λc−

− 2θ+θ−θ+θ−Dc . (A.9f)

8We do not expand semi-chiral superfields which do not appear in the main part of this paper.
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B Duality transformations

In this appendix we briefly review the duality transformations with(out) isometry.

B.1 General analysis

We briefly argue the duality transformations with(out) isometry in two-dimensional N =

(2, 2) theory discussed by Grisaru, Massar, Sevrin and Troost [45]. We begin with the most

generic first order Lagrangian:

L =

∫
d4θ

{
K(A,A,B,B)−AX−AX−BY−B Y

}
, (B.1)

where A and B are unconstrained complex prepotentials, and X and Y are semi-chiral

superfields. From now on, we impose various constraints on (B.1) and obtain the corre-

sponding duality transformation rules.

First, if we impose A = B on (B.1), then we obtain

L =

∫
d4θ

{
K(A,A)−A(X + Y)−A(X + Y)

}
=

∫
d4θ

{
K(A,A)−AL−AL

}
, (B.2)

where we used the relation (A.8). If we integrate out L, we find the constraint 0 = D±A.

This implies that A becomes a chiral superfield. Instead, if we integrate out A, we obtain

the second order Lagrangian of L. Thus it turns out that (B.2) is the first order Lagrangian

which dualizes a chiral superfield to a complex linear superfield, and vice versa. If we want

to obtain the first order Lagrangian which dualizes a twisted chiral superfield to a complex

twisted linear superfield and vice versa, we just interchange the role of B and B:

L =

∫
d4θ

{
K(A,A)−A(X + Y)−A(X + Y)

}
=

∫
d4θ

{
K(A,A)−AL̃−A L̃

}
. (B.3)

Second, assuming that the function K in (B.2) depends only on A+A, we rewrite (B.2)

in the following way:

L =

∫
d4θ

{
K(A+A)− 1

2
(A+A)(L+ L)− 1

2
(A−A)(L− L)

}
. (B.4)

Integrating out A− A, we obtain a new constraint L = L. This implies that L is reduced

to the sum of a twisted chiral and its conjugate L = Y + Y . Then introducing a real

prepotential R = A+A, we obtain

L =

∫
d4θ

{
K(R)− 1

2
R(Y + Y )

}
. (B.5)

Integrating out Y , we find that R becomes the sum of a chiral superfield and its conju-

gate. Instead, integrating out R, we obtain the second order Lagrangian of Y . Thus we
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understand that (B.5) is the first order Lagrangian which dualizes a chiral superfield to a

twisted chiral superfield [46, 47].

We can obtain a similar model when we assume that K in (B.3) depends only on A+A:

L =

∫
d4θ

{
K(A+A)− 1

2
(A+A)(L̃+ L̃)− 1

2
(A−A)(L̃− L̃)

}
. (B.6)

Integrating out A−A, we obtain the constraint L̃ = L̃. This indicates that L̃ is the sum of

a chiral superfield and its conjugate L̃ = X+X. Introducing a real prepotential R̃ = A+A,

we obtain

L =

∫
d4θ

{
K(R̃)− 1

2
R̃(X +X)

}
. (B.7)

This is the first order Lagrangian which dualizes a twisted chiral superfield to a chiral

superfield and vice versa. Because when we integrate out X, the prepotential R̃ becomes

the sum of a twisted chiral superfield and its conjugate.

B.2 Twisted chiral with isometry

We demonstrate the duality transformation of the Lagrangian (2.7) established by Roček

and Verlinde [46], Hori and Vafa [47], and Tong [41].

Superfields. First, we discuss in the superfield formalism. Since (2.7) has an isome-

try along the imaginary part of Θ, we introduce another first order Lagrangian different

from (2.8):

LBΓV =

∫
d4θ

{
− 1

2g2
B2 − 2BV − (Γ + Γ)V

}
. (B.8)

Here Γ is a chiral superfield, and B is a real prepotential. If we integrate out Γ, B is

constrained as 0 = D+D−B = D+D−B. This implies that B is the sum of a twisted chiral

superfield Y and its conjugate, i.e., B = Y +Y . Substituting this into (B.8) and identifying

Y with Θ, we find the original Lagrangian (2.7). Instead, if we evaluate the equation of

motion for B of the Lagrangian (B.8), we obtain

0 = − 1

g2
B − (Γ + Γ)− 2V . (B.9)

Plugging this into (B.8), we find the dual Lagrangian

LBΓV =
g2

2

∫
d4θ

(
Γ + Γ + 2V

)2
≡ LΓV . (B.10)

We also find the duality relation via the prepotential B:

− 1

g2
(Θ + Θ) = (Γ + Γ) + 2V . (B.11)
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Component fields. The descriptions (2.15b) and (2.15d) in the main part must contain

the information of (B.10) and (B.11), respectively. Then we express (2.7), (B.10) and (B.11)

in terms of the component fields. This is because their explicit forms play an essential role

in determining the reduction rule of redundant fields in (2.15b).

Following (A.9), we expand the chiral superfield Γ as follows:

Γ =
1√
2

(γ3 + iγ4) + i
√

2 θ+ζ+ + i
√

2 θ−ζ− + 2i θ+θ−GΓ + . . . , (B.12)

where “. . .” involves derivative terms. The expansion of the twisted chiral superfield Θ is

exhibited in (3.1b). The duality relation (B.11) provides a set of significant equations:

r3 = −g2γ3 , ±∂±ϑ = −g2D±γ
4 , Dmγ

4 = ∂mγ
4 −
√

2Am . (B.13)

We notice that the relation between ϑ and γ4 is described only with derivatives. Fur-

thermore, because of the twisting, the relative sign in front of the derivatives is different.

Substituting the above expansion into (2.7) and (B.10), we obtain the explicit form of the

two Lagrangians such as

LΘ = − 1

2g2

{
(∂mr

3)2 + (∂mϑ)2
}

+
√

2
{
r3DV + ϑF01

}
+ (other terms) , (B.14a)

LΓV = − 1

2g2
(∂mr

3)2 − g2

2
(Dmγ

4)2 +
√

2 r3DV + (other terms) , (B.14b)

where F01 = εmn∂mAn and ε01 = −ε10 = +1, and we simply ignore the detail of the

contribution from auxiliary fields and fermions.
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[12] D. Lüst, S. Massai and V. Vall Camell, The monodromy of T-folds and T-fects,

arXiv:1508.01193 [INSPIRE].

[13] S. Kawai and Y. Sugawara, D-branes in T-fold conformal field theory, JHEP 02 (2008) 027

[arXiv:0709.0257] [INSPIRE].

[14] T. Kikuchi, T. Okada and Y. Sakatani, Rotating string in doubled geometry with generalized

isometries, Phys. Rev. D 86 (2012) 046001 [arXiv:1205.5549] [INSPIRE].

[15] T. Kimura and S. Sasaki, Gauged Linear σ-model for Exotic Five-brane, Nucl. Phys. B 876

(2013) 493 [arXiv:1304.4061] [INSPIRE].

[16] T. Kimura and S. Sasaki, Worldsheet instanton corrections to 522-brane geometry, JHEP 08

(2013) 126 [arXiv:1305.4439] [INSPIRE].

[17] T. Kimura and S. Sasaki, Worldsheet Description of Exotic Five-brane with Two Gauged

Isometries, JHEP 03 (2014) 128 [arXiv:1310.6163] [INSPIRE].

[18] T. Kimura and M. Yata, T-duality Transformation of Gauged Linear σ-model with F-term,

Nucl. Phys. B 887 (2014) 136 [arXiv:1406.0087] [INSPIRE].

[19] T. Kimura, N = (4, 4) Gauged Linear σ-models for Defect Five-branes, arXiv:1503.08635

[INSPIRE].

[20] E.A. Bergshoeff, J. Hartong, T. Ort́ın and D. Roest, Seven-branes and Supersymmetry,

JHEP 02 (2007) 003 [hep-th/0612072] [INSPIRE].

[21] E.A. Bergshoeff and F. Riccioni, D-Brane Wess-Zumino Terms and U-duality, JHEP 11

(2010) 139 [arXiv:1009.4657] [INSPIRE].

[22] E.A. Bergshoeff and F. Riccioni, String Solitons and T-duality, JHEP 05 (2011) 131

[arXiv:1102.0934] [INSPIRE].

[23] E.A. Bergshoeff, A. Kleinschmidt and F. Riccioni, Supersymmetric Domain Walls, Phys.

Rev. D 86 (2012) 085043 [arXiv:1206.5697] [INSPIRE].

[24] A. Chatzistavrakidis, F.F. Gautason, G. Moutsopoulos and M. Zagermann, Effective actions

of nongeometric five-branes, Phys. Rev. D 89 (2014) 066004 [arXiv:1309.2653] [INSPIRE].

[25] T. Kimura, S. Sasaki and M. Yata, World-volume Effective Actions of Exotic Five-branes,

JHEP 07 (2014) 127 [arXiv:1404.5442] [INSPIRE].

[26] C. Albertsson, T. Kimura and R.A. Reid-Edwards, D-branes and doubled geometry, JHEP

04 (2009) 113 [arXiv:0806.1783] [INSPIRE].

– 31 –

http://dx.doi.org/10.1016/j.physrep.2013.07.003
http://arxiv.org/abs/1209.6056
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.6056
http://dx.doi.org/10.1016/j.nuclphysb.2015.01.023
http://arxiv.org/abs/1410.8403
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8403
http://dx.doi.org/10.1007/JHEP03(2015)131
http://arxiv.org/abs/1411.1043
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.1043
http://dx.doi.org/10.1007/JHEP03(2015)076
http://arxiv.org/abs/1411.3457
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.3457
http://dx.doi.org/10.1007/JHEP10(2015)011
http://dx.doi.org/10.1007/JHEP10(2015)011
http://arxiv.org/abs/1505.05169
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05169
http://arxiv.org/abs/1508.01193
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.01193
http://dx.doi.org/10.1088/1126-6708/2008/02/027
http://arxiv.org/abs/0709.0257
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.0257
http://dx.doi.org/10.1103/PhysRevD.86.046001
http://arxiv.org/abs/1205.5549
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5549
http://dx.doi.org/10.1016/j.nuclphysb.2013.08.017
http://dx.doi.org/10.1016/j.nuclphysb.2013.08.017
http://arxiv.org/abs/1304.4061
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4061
http://dx.doi.org/10.1007/JHEP08(2013)126
http://dx.doi.org/10.1007/JHEP08(2013)126
http://arxiv.org/abs/1305.4439
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.4439
http://dx.doi.org/10.1007/JHEP03(2014)128
http://arxiv.org/abs/1310.6163
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.6163
http://dx.doi.org/10.1016/j.nuclphysb.2014.08.004
http://arxiv.org/abs/1406.0087
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.0087
http://arxiv.org/abs/1503.08635
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.08635
http://dx.doi.org/10.1088/1126-6708/2007/02/003
http://arxiv.org/abs/hep-th/0612072
http://inspirehep.net/search?p=find+EPRINT+hep-th/0612072
http://dx.doi.org/10.1007/JHEP11(2010)139
http://dx.doi.org/10.1007/JHEP11(2010)139
http://arxiv.org/abs/1009.4657
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.4657
http://dx.doi.org/10.1007/JHEP05(2011)131
http://arxiv.org/abs/1102.0934
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0934
http://dx.doi.org/10.1103/PhysRevD.86.085043
http://dx.doi.org/10.1103/PhysRevD.86.085043
http://arxiv.org/abs/1206.5697
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5697
http://dx.doi.org/10.1103/PhysRevD.89.066004
http://arxiv.org/abs/1309.2653
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.2653
http://dx.doi.org/10.1007/JHEP07(2014)127
http://arxiv.org/abs/1404.5442
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5442
http://dx.doi.org/10.1088/1126-6708/2009/04/113
http://dx.doi.org/10.1088/1126-6708/2009/04/113
http://arxiv.org/abs/0806.1783
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1783


J
H
E
P
0
2
(
2
0
1
6
)
0
1
3

[27] C. Albertsson, S.-H. Dai, P.-W. Kao and F.-L. Lin, Double Field Theory for Double

D-branes, JHEP 09 (2011) 025 [arXiv:1107.0876] [INSPIRE].

[28] M. Hatsuda and T. Kimura, Canonical approach to Courant brackets for D-branes, JHEP 06

(2012) 034 [arXiv:1203.5499] [INSPIRE].
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