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1 Introduction

Generalized Kähler geometry is efficiently probed by (2, 2) supersymmetric sigma models

in D = 2, [1]. Of particular interest for the present investigation is the symplectic case,

i.e., sigma models that depend on semichiral superfields only. Additional supersymme-

tries for these models were discussed in [2], and in [3]. In the latter article focus is on

four-dimensional target spaces and it is shown that a very general ansatz for additional su-

persymmetries leads to an on-shell extended supersymmetry and restricts the target space

geometry to be hyperkähler.

In [3] this is seen as a shortcoming of the ansatz, since it is argued that the SU(2)⊗U(1)

WZW model of [4] constitutes a counterexample. It has nonzero torsion and when coor-

dinatized by chiral and twisted chiral superfields it has “manifest” (4, 4) supersymmetry.

– 1 –



J
H
E
P
0
2
(
2
0
1
5
)
1
7
0

It further has a dual semichiral description [5] which is then expected to also display the

(4, 4) supersymmetry.1

In this paper we investigate the possibility that the (2, 2) semichiral conditions are

incompatible with “manifest” (4, 4) transformations.2 To study this problem, we descend

to (1, 1) superspace and develop an on-shell formalism for the extra super symmetries, a

formulation which retains the relation to (2, 2) semichirals. We test this (1, 1) formalism

on the second supersymmetry (which is non-manifest in (1, 1)) and then apply it to a

hyperkähler geometry which is shown to satisfy the conditions for having a (2, 2) semichiral

realisation, as expected from [3].

We also derive the extra supersymmetries for the WZW model [4] in (1, 1) superspace

in the relevant coordinates. When subjected to the same test they fail to satisfy some of

the conditions. This leads to the surprising conclusion that (4, 4) supersymmetry in a (1, 1)

formulation of a (2, 2) sigma model with on-shell supersymmetry is incompatible with the

introduction of the (2, 2) auxiliary fields.

2 Background

2.1 Semichiral sigma models

Consider a generalized Kähler potential [1] with one left- and one right semichiral field and

their complex conjugates, K(XL,XR), where L = (`, ¯̀) and R = (r, r̄). The action,

S =

∫
d2xd2θd2θ̄K(XL,XR) (2.1)

has manifest N=(2, 2) supersymmetry. The supersymmetry algebra is defined in terms of

the anti-commutator of the covariant supersymmetry derivatives as

{D±, D̄±} = i∂++
=

(2.2)

and the semichiral fields are defined by their chirality constraints as [7]

D̄+X` = 0 , D̄−Xr = 0 . (2.3)

The geometry of the model is bi-hermitean [7, 8], governed by two complex structures

J (+) and J (−) that both preserve the metric G

J (±)tGJ (±) = G (2.4)

as well as by an anti-symmetric B-field whose field strength H enters in the form of torsion

in the covariant constancy conditions

0 = ∇(±)J (±) =

(
∂ + Γ(0) ± 1

2
HG−1

)
J (±), (2.5)

1By “manifest” we shall mean “as realised by transformations of (2, 2) superfields”.
2Another case of supersymmetries being obstructed occurs when dualisation is along isometries that do

not commute with the extra super symmetries. This leads to nonlocal realisations of the extra susys in the

dual model [6]. Here, however, the extra susys commute with the isometry used in dualising.
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where Γ(0) is the Levi-Civita connection. These conditions identify the geometry as bi-

hermitean [8], or generalized Kähler geometry (GKG) [9].

The fact that our superfields are semichiral specifies the GKG as being of symplectic

type where the metric G and the B-field take the form3

G = Ω[J (+), J (−)]

B = Ω{J (+), J (−)} . (2.6)

The matrix Ω is defined as

Ω =
1

2

(
0 KLR

−KRL 0

)
(2.7)

and the submatrix KLR is the Hessian

KLR =

(
K`r K`r̄

K¯̀r K ¯̀̄r

)
. (2.8)

An additional condition results from the target space being four-dimensional and

reads [7]

{J (+), J (−)} = 2c , ⇒ B = 2cΩ , (2.9)

where in general c is a function of the coordinates.

2.2 Extra SUSY

In [3] it is shown that a general ansatz for (4, 4) susy in a semichiral sigma model

δX` = ε̄+D̄+f(XL,XR) + g(X`)ε̄−D̄−X` + h(X`)ε−D−X`,

δX¯̀
= ε+D+f̄(XL,XR) + ḡ(X¯̀

)ε−D−X
¯̀
+ h̄(X¯̀

)ε̄−D̄−X
¯̀
,

δXr = ε̄−D̄−f̃(XL,XR) + g̃(Xr)ε̄+D̄+Xr + h̃(Xr)ε+D+Xr,

δXr̄ = ε−D− ¯̃
f(XL,XR) + ¯̃g(Xr̄)ε+D+Xr̄ +

¯̃
h(Xr̄)ε̄+D̄+Xr̄, (2.10)

leads to invariance and closure of the algebra only on-shell and provided that the geometry

is hyperkähler. The on-shell requirement follows from

[δ1, δ2]` = −ε+[2ε̄
+
1]|f¯̀|2∂++ . . . (2.11)

which has the wrong sign for supersymmetry. It is an interesting fact that on-shell closure

of the algebra, together with conditions that come from invariance of the action, requires

that the function c(XL,XR) defined by (2.11) is constant with absolute value less than one,

which means that the geometry is hyperkähler. This on-shell closure is different than the

one which arises in the general (1, 1) discussion of extended susy [8] which locates the non-

closure of the algebra to the (+,−) sector where the commutator [J (+), J (−)] multiplies

the field equation. In the present case left or right susy alone require field equations.

3This gives the B field in a particular global gauge as B = B(2,0) + B(0,2) with respect to both complex

structures.
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In [3] we argue that the ansatz for the additional supersymmetry is too restrictive and

should include central charge transformations. The reason for trying to find a more general

ansatz is that there is a known example of a BiLP4 with (4, 4) supersymmetry, mentioned

in the introduction, that has a dual semichiral formulation which manifestly violates the

hyperkähler condition [5]. The duality and extra supersymmetry will be discussed in

detail in section 4 below. Since the isometry used in the dualisation commutes with the

extra supersymmetry, the dual model is expected to have the extra symmetry as well. To

investigate this, bearing in mind that the relevant algebra only closes on-shell, we now

develop a novel N=(1, 1) form of the semichiral model and its additional symmetries.

3 N=(4, 4) in N=(1, 1) superspace

We want to find out under what conditions a semichiral sigma model in 4D supports

additional complex structures forming an SU(2) algebra5

I
(a)
(+)I

(b)
(+) = −δab + εabcI

(c)
(+) (3.1)

with a = 1, 2, 3 and the identification I
(3)
(+) := J (+). To this end, we discuss the situation in

(1, 1) superspace [8]. This discussion is general, only the later applications in the example

section will be limited to 4D. We replace spinor derivatives according to

D̄± → D± + iQ± , D± → D± − iQ± . (3.2)

The general form of the (2, 2) sigma model reduced to (1, 1) has a Lagrangian that reads

L = D+X
AEAB(X)D−X

C + ΨR
+KRLΨL

− := L1 + L2 , (3.3)

where EAB := GAB +BAB and we have completed the square for the spinor auxiliary fields

ψR+ := Q+XR| , ψL− := Q−XL| , (3.4)

(vertical bar denotes the N = 1 component) and defined

ΨR
+ := ψR+ −D+X

AJR(+)A

ΨL
− := ψL− − JL(−)AD−X

A. (3.5)

Assume that we have found the additional transformations of the (1, 1) coordinates gener-

ated by the SU(2) set of complex structures I
(a)
(+) as in (3.1). These transformations leave

the L1 part of the action invariant. We would now like to extend them to symmetries of

the full action and subsequently check if the full set can come from transformations of the

(2, 2) semichiral fields.

There are obvious symmetries we can write down, field equation symmetries (also

called Zilch symmetries), but there are many possibilites.

4This acronym stands for “bihermitean local product” and refers to a 2D sigma model with chiral and

twisted chiral superfields only.
5Corresponding to (+)-supersymmetries. The general case also involves (−)-supersymmetries.
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3.1 N=(2, 2)

To get a guide to the correct form, we use the fact that we know that one of the symmetries

has the correct properties; the one generated by I
(3)
(+) = J(+).

The full action is invariant under the following transformations:

δXL = ε+JD+X
L

δXR = ε+ψR+

δψL− = ε+JD+ψ
L
−

δψR+ = ε+D2
+X

R, (3.6)

where J is the canonical complex structure diag(i,−i). They give

δL = −2δXA∇(−)
+ D−X

BGAB + δΨR
+KRLΨL

− + ΨR
+δKRLΨL

− + ΨR
+KRLδΨ

L
−

= −2ε+JA(+)CD+X
C∇(−)

+ D−X
BGAB + ΨR

+

(
KRLδΨ

L
− + 2ε+∇(−)

+ D−X
BGRB

)
+ δΨR

+KRLΨL
− + ΨR

+δKRLΨL
− , (3.7)

where capital letters from the beginning of the alphabet takes on all values L and R. The

first of the terms in the last line is the variation of L1 under the J
(3)
(+) symmetry and vanishes

in the action. We evaluate the remaining terms using

δΨL
− = ε+JD+ΨL

− + ε+JL(−)R′D−ΨR′
+ − ε+JL(−)AR′Ψ

R′
+ D−X

A

+ ε+
[
J(+), J(−)

]L
A

(
D+D−X

A +D+X
BΓ

(−) A
BC D−X

C
)

δΨR
+ = ε+JR(+)R′D+ΨR′

+ − ε+JR(+)AR′Ψ
R′
+ D+X

A, (3.8)

which follows from (3.6). (Here JL(−)AR denotes the derivative (JL(−)A),R etc.) Since

GAB = ΩAC

[
J(+), J(−)

]C
B

(3.9)

the second line may be rewritten as

ε+σLCGCA∇(−)
+ D−X

A, (3.10)

where we use the notation σLCΩCD = δCD. This part of the variation will cancel the

covariant derivative term multiplying ΨR
+ in (3.7). We are left with

δL = −1

2
ε+D−

(
ΨR

+CRR′Ψ
R′
+

)
+ ε+D+

(
ΨR

+KRLJΨL
−
)
, (3.11)

which ensures invariance of the action. Here where CRR′ := [J,KRR′ ] is the commutator

with the canonical complex structure J :

J :=

(
i 0

0 −i

)
. (3.12)

In deriving (3.11) heavy use is made of integrability and covariant constancy of J(±)

as well as their explicit expressions [1].
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We note that the transformations that leave the action invariant may be written

δXA = ε+JA(+)BD+X
B + δARε

+ΨR
+

δΨL
− = ε+JD+ΨL

− + ε+JL(−)R′D−ΨR′
+ − ε+JL(−)AR′Ψ

R′
+ D−X

A

− 2ε+KLRGRA∇(−)
+ D−X

A

δΨR
+ = ε+JR(+)R′D+ΨR′

+ − ε+JR(+)AR′Ψ
R′
+ D+X

A (3.13)

3.2 N=(4, 4)

We now investigate if our additional supersymmetries (4.31) can be written in terms of

transformations of semichiral fields in (2, 2) superspace. In our (1, 1) language, the relation

to semichirals is given by (3.5) in (XL, XR) coordinates.6 We denote a generic complex

structure by IAB and write the X transformations as

δXA = ε+
[
IA(+)BD+X

B +MA
RΨR

+

]
, (3.14)

where L1 is assumed to be invariant (up to total derivatives) under the first transformation

on the r.h.s. Note that MA
L = 0. The formula (3.14) is of the form in (3.13) and the most

general expression compatible with dimensions and symmetries. From (3.5) we have that

δΨṘ
+ = ε+

[(
IṘ(+)R − [M,J(+)]

Ṙ
R

)
D+ΨR

+ +
(
IṘ+A,R +M(M,J(+))

Ṙ
RA

)
D+X

AΨR
+

−M Ṙ
R,R′Ψ

R′
+ ΨR

+

]
δΨL̇
− = ε+

[
− [M,J(−)]

L̇
RD−ΨR

+ +M(M,J(−))
L̇
RAD−X

AΨR
+

+
(
IL̇(+)L −M

L̇
RJ

R
(+)L

)
D+ΨL

− +
(
IL̇(+)A,L −M

L̇
RJ

R
(+)A,L

)
D+X

AΨL
−

−M L̇
R,LΨL

−ΨR
+ +

(
[I(+), J(−)]

L̇
A −M L̇

R[J(+), J(−)]
R
A

)
∇(−)

+ D−X
A
]

(3.15)

where the Magri-Morosi concomitant for two endomorphisms I and J reads7

M(I, J)ABD = IFBJ
A
D,F − JFDIAB,F − IAFJFD,B + JAF I

F
B,D . (3.16)

When MA
R = δAR and I+ = J(+) these transformations reduce to (3.13).

From invariance of (3.3), we find a number of relations. First, raising and lowering

indices on M with KRL,

ML[R,Ṙ] −M[RṘ],L = 0

M[RṘ] = −1

2
KṘL̇[I(+), J(−)]

L̇
AGALKLR

MR
Ṙ

= −1

2
KṘL[I(+), J(−)]

L
AGAR (3.17)

6The reduction of (XL,XR).
7Originally defined for a Poisson structure P and a Nijenhuis tensor N when it reads [10]

Ckjm = P ljNk
m,l + P klNk

m,l −N l
mP

kj
,l +N j

l P
kl
,m − P ljNk

l,m

and is only a tensor when [P,N ] = 0.
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Note that only the antisymmetric part of MRṘ is determined by this.8 The D− terms in

the variation of L are

ΨṘ
+KṘLε

+
(
− [M,J(−)]

L
RD−ΨR

+ +M(M,J(−))
L
RAD−X

AΨR
+

)
For this to yield a total D− derivative, we shall need

−K(Ṙ|L|[M,J(−)]
L
R) = [J,M ](ṘR) + C(Ṙ|R|M

R
R) = 0 (3.18)

and

K[Ṙ|L|M(M,J(−))
L
R]AD−X

A = −1

2
D−
(
K[Ṙ|L|[M,J(−)]

L
R]

)
. (3.19)

Similarily, for the D+ terms to yield a total derivative, we need

KLRI
R
Ṙ
−KṘLI

L
L +KLR[J̃ ,M ]R

Ṙ
+ CLLK

LRM[RṘ] = 0 , (3.20)

where we have dropped the plus index on I and (J̃)R
Ṙ

:= KRR′JKR′Ṙ. We also need

(
IR
A,Ṙ

+M(M,J(+))
R
ṘA

)
KRL +KṘLBI

B
A +KṘL̇

(
IL̇A,L −M L̇

RJ
R
(+)A,L

)
=
((
IL̇L −M L̇

RJ
R
(+)L

)
KL̇Ṙ

)
,A
, (3.21)

where we have used (3.17) and the explicit form of J(+).

4 The S3 × S1 model

4.1 Duality

In this section we briefly recapitulate the dualisation of the BiLP formulation of the SU(2)×
U(1) WZW model [5], albeit in a different version.

We start from the following BiLP potential which gives a sigma model with target

space geometry S3 × S1;

K = − ln χ̂ ln ˆ̄χ+

∫ φ̂ ˆ̄φ
χ̂ ˆ̄χ

dq
ln(1 + q)

q
, (4.1)

where φ̂ is chiral, D̄±φ̂ = 0, and χ̂ is twisted chiral, D̄+χ̂ = 0 = D−χ̂. The potential

satisfies the Laplacian

K
φ̂ ˆ̄φ

+Kχ̂ ˆ̄χ = 0 , (4.2)

and hence the model has (4, 4) supersymmetry [8]. Changing coordinates to new chiral

and twisted chiral fields, φ = ln φ̂, χ = ln χ̂, results in

K → K = −χχ̄+

∫ φ+φ̄−χ−χ̄
dq ln(1 + eq) , (4.3)

8The r.h.s. of the equation containing M[RṘ] is antisymmetric due to hermiticity conditions.
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and makes it amenable to dualisation of the translation symmetry9

φ→ φ+ λ , χ→ χ+ λ . (4.4)

To apply the gauging prescription of [13] we add a term α(χ− χ̄)(φ− φ̄), which represents

a constant B-term, to the Lagrangian and rewrite the potential, up to generalized Kähler

gauge transformations, as

1

2
(χ− χ̄)2 + α(χ− χ̄)(φ− φ̄) +

∫ φ+φ̄−χ−χ̄
dq ln(1 + eq) . (4.5)

Following [13], we find the first order action (in a WZ gauge);

− 1

2
V 2
χ − αVχVφ − V ′X ′ − VφXφ − VχXχ +

∫ V ′

dq ln(1 + eq) , (4.6)

where Vφ, Vχ and V ′ are the Large Vector Multiplet (LVM) fields [13],10 and the Lagrange

multipliers are combinations of semichiral fields

Xφ =
i

2
(`− ¯̀− r + r̄)

Xχ =
i

2
(−`+ ¯̀− r + r̄)

X ′ =
1

2
(`+ ¯̀− r − r̄) . (4.7)

Eliminating the LVM and massaging the integral we find the dual semichiral action in

the form

− 1

2α2
X2
φ +

1

α
XφXχ −

∫ X′

dq ln(eq − 1) . (4.8)

This is the potential that is expected to have additional supersymmetries due to those of

the dual BiLP model.

4.2 The geometry

The reduction of a semichiral model to (1, 1) superspace may be expressed in several useful

coordinate systems. E.g., the (XL, XR) coordinates directly obtained in the reduction is

related to the (X,Y ) system where J(+) is canonical, J(+) = diag(J, J), via a coordinate

transformation [1, 14].

We now derive the metric in (X,Y ) coordinates for (4.8). To this end we first calculate

the various ingredient matrices according to the formulae in [1].

9This is equivalent to dualising the scaling symmetry of (4.1). These isometries both commute with the

extra supersymmetry [11, 12].
10In pure gauge they become

Vφ = i(φ̄− φ)

Vχ = i(χ̄− χ)

V ′ = φ+ φ̄− χ− χ̄ .
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Without loss of generality, we set α to −1 in (4.8) and drop the prime on X ′. The Y

coordinates are defined to be KL =: Y . We find

−y = K` =
i

2
Xχ +

1

2
ln(eX − 1) =

1

4
(`− ¯̀) +

1

4
(r − r̄) +

1

2
ln(eX − 1)

⇒

X = ln(1 + e−(y+ȳ))

r + r̄ = `+ ¯̀− 2 ln(1 + e−(y+ȳ)) ,

r − r̄ = −2(y − ȳ)− (`− ¯̀) (4.9)

The relevant matrices of derivatives of K are

KLL = − 1

4N

(
E 1

1 E

)
, −KRR =

1

4N

(
2− E M

4N + 1 2− E

)

−KLR = − 1

4N

(
1 E

E 1

)
, −KRL =

1

eX

(
1 −E
−E 1

)

−CLL =
2i

4N

(
0 1

−1 0

)
, −CRR =

2iM

4N

(
0 1

−1 0

)
(4.10)

where we have introduced the notation

N := e−(y+ȳ) = eX − 1 , E := 2eX − 1 , M := 4N + 1 , (4.11)

for combinations that will occur frequently in our formulae. The metric and B-field in

(X,Y ) coordinates can be calculated from the formulae in [1]:

−ELL = J(KLLK
LRJKRL −KLRJK

RLKLL −KLLK
LRCRRK

RLKLL) = −2σ1

ELY = J(KLRJK
RL +KLLK

LRCRRK
RL) = − 1

eX

(
2− eX −2E

−2E 2− eX

)

EY L = J(−KLRJKRL +KLRCRRK
RLKLL) =

1

eX

(
2− eX 2E

2E 2− eX

)

−EY Y = −JKLRCRRK
RL = −2M

eX
σ1 .

Note that the tensor E depends on y+ ȳ only. From the formulae for E = G+B, it follows

that the metric is11

G =
2

eX

(
eX E

E M

)
⊗ σ1 , (4.12)

with inverse

G−1 = − e
X

2N

(
−M E

E −eX

)
⊗ σ1 =: − e

X

2N
h⊗ σ1 . (4.13)

11Since a lot of the objects have 2D complex submatrices, it is convenient to introduce the Pauli matrices

σi and write matrices as direct products.
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Also

BY L = (2e−X − 1)1 . (4.14)

In these coordinates J(+) is canonical while

J(−) = e−X

(
(2− eX)J − 2Eσ2 −2Mσ2

2eXσ2 (2− eX)J + 2Eσ2

)
=: e−X

(
2j⊗ σ2 + (2− eX)⊗ iσ3

)
, (4.15)

where we use that J = iσ3.

4.3 Additional SUSY in (1, 1)

4.3.1 Deriving the transformations on the (1, 1) coordinate fields

In the original BiLP, (4.1) the additional super symmetries read [8]

δφ̂ = ε̄+D̄+ ˆ̄χ+ ε̄−D̄−χ̂

δ ˆ̄φ = ε+D+χ̂+ ε−D− ˆ̄χ

δχ̂ = −ε̄+D̄+
ˆ̄φ− ε−D−φ̂

δ ˆ̄χ = −ε+D+φ̂− ε̄−D̄− ˆ̄φ , (4.16)

and in the transformed version (4.3) they become

δφ = eχ̄−φε̄+D̄+χ̄+ eχ−φε̄−D̄−χ

δφ̄ = eχ−φ̄ε+D+χ+ eχ̄−φ̄ε−D−χ̄

δχ = −eφ̄−χε̄+D̄+φ̄− eφ−χε−D−φ

δχ̄ = −eφ−χ̄ε+D+φ− eφ̄−χ̄ε̄−D̄−φ̄ . (4.17)

These relations survive in the (1, 1) reduction with D± → D±. From (4.17) we then read

off the additional complex structures according to

δϕ =
1

2

[(
J

(1)
(±) + iJ

(2)
(±)

)
ε±D±ϕ+

(
J

(1)
(±) − iJ

(2)
(±)

)
ε̄±D±ϕ

]
(4.18)

For the J
(a)
(+) we find

J
(1)
(+) =


0 0 0 eχ̄−φ

0 0 eχ−φ̄ 0

0 −eφ̄−χ 0 0

−eφ−χ̄ 0 0 0

 (4.19)

J
(2)
(+) =


0 0 0 ieχ̄−φ

0 0 −ieχ−φ̄ 0

0 −ieφ̄−χ 0 0

ieφ−χ̄ 0 0 0

 , (4.20)

with J
(3)
(+) = J , the canonical complex structure.

– 10 –



J
H
E
P
0
2
(
2
0
1
5
)
1
7
0

We would like to see what these complex structures look like in (1, 1) coordinates

related to the semichiral description. While T-dual formulations are not in general related

by coordinate transformations, they are in this case due to the special choice of the isometry

direction; we have dualised along the common U(1). We now need to find the coordinate

transformation. To this end, we note that the relations (A.5), derived in the appendix,

Vφ = Xχ +Xφ

Vχ = Xφ

V = ln(eX − 1) . (4.21)

do not completely determine the transformations. Identifying the l.h.s. with BiLP fields

(WZ-gauge) and writing out the r.h.s. we have

i(φ̄− φ) = −i(r − r̄)

i(χ̄− χ) =
i

2
(`− ¯̀− r + r̄)

φ+ φ̄− χ− χ̄ = ln
(
e

1
2

(`+¯̀−r−r̄) − 1
)
. (4.22)

It turns out to be most convenient to identify the coordinate transformation to (X,Y )

coordinates where the complex structure derived from the semi side, J(+), is canonical.12

A coordinate transformation to (XL, XR) coordinates will then give a non-canonical J(+).

Comparing this to (4.9), we identify

y = χ− φ
`− ¯̀= 2(χ̄− χ)− (φ̄− φ) , (4.23)

but `+¯̀is left undetermined. In both coordinate systems we have J
(3)
(+) = J . Requiring that

the coordinate transformation takes the canonical complex structure into itself13 determines

`+ ¯̀= φ+ φ̄− 2(χ̄− χ), which results in

` = φ− 2χ . (4.24)

This gives the transformation Jacobian

V
=

(
∂L
∂φ

∂L
∂χ

∂Y
∂φ

∂Y
∂χ

)
=

(
1 −21

−1 1

)
, (4.25)

with inverse
V−1 = −

(
1 21

1 1

)
, (4.26)

12The map of J(±) under duality is discussed in [15] where the dual model appears in some preferred

coordinates. We have not investigated the relation to the present coordinates.
13This condition requires some comments. A coordinate transformation preserves the commutator be-

tween matrices. Hence if we also identify the semi J(−) as the coordinate transformation of the BiLP

J(−) we would conclude that [J(+), J(−)] = 0 on the semi side, which is incorrect. The strategy here is to

assume that there is an SU(2) of complex structures on the semi side containing the semi J(+) and that the

BiLP J(+) is mapped into the latter. The map of the BiLP J(−) is not the semi J(−) but another complex

structure that commutes with the semi J(+) and which is not considered in what follows.
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These transformations correctly relates the BiLP metric derived from (4.3) to the semi

metric (4.12). We now write the extra complex structures J
(a)
(+) as

J
(a))
(+) =

(
0 A(a)

−(A(a))−1 0

)
(4.27)

for a = 1, 2, with

A(1) =

(
0 eχ̄−φ

eχ−φ̄ 0

)
=

(
0 eϕ+y

e−ϕ+ȳ 0

)

A(2) =

(
0 ieχ̄−φ

−ieχ−φ̄ 0

)
=

(
0 ieϕ+y

−ie−ϕ+ȳ 0

)
, (4.28)

where

ϕ := (`− ¯̀) + (y − ȳ) . (4.29)

The expressions for J
(a)
(+) in (X,Y ) coordinates then become

J
(a)
(+) =

(
−E −M
eX E

)
⊗ A(a) =: j⊗ A(a), (4.30)

j2 = −N , (A(a))2 = N−1, (4.31)

where we again use the notation in (4.11). The complex structures J
(a)
(+) preserve the

metric (4.12), as confirmed by an explicit calculation.

4.3.2 (XL, XR) coordinates

Using (4.10) in the Jacobian

V
=

(
1 0

KLL KLR

)
=

1

4N

(
4N 0

−(E1 + σ1) 1 + Eσ1

)
,

V−1 =

(
1 0

−KRLKLL K
RL

)
=

(
1 0

σ1 −e−X(1− Eσ1)

)
, (4.32)

we find the expressions for J
(a)
(+) in left right coordinates (XL, XR):

J
(a)
(+) =

1

4N

{(
E −M
e−X −e−XE

)
⊗ A(a) +

(
M −ME

e−XE −e−XE2

)
⊗ A(a)σ1

+
N

eX

[(
0 0

1 −E

)
⊗ Ā(a) +

(
0 0

E −1

)
⊗ Ā(a)σ1

]}
, (4.33)

where Y (XL, XR) is given by the relations in (4.9).
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5 Examples

5.1 Hyperkähler

We want to show that there are hyperkähler solutions to our problem in 4D. To this end

we note that, when c is constant we have available the following hyperkähler structure [16];

I := J(+) , J :=
1√

1− c2
(J(−) + cJ(+)) , K :=

1

2
√

1− c2
[J(+), J(−)] . (5.1)

The relations (3.17) determine M in the three cases according to

I : MR
Ṙ

= δR
Ṙ
, M[ṘR] = 0

J : MR
Ṙ

=
c δR

Ṙ√
1− c2

,

K : MR
Ṙ
KLR = − 1√

1− c2
KṘLJ

L
(−)L = − 1√

1− c2
JKṘL

M[ṘR] = − 1√
1− c2

KṘLJ
L
(−)R = − 1√

1− c2
CṘR (5.2)

Each case satisfies the first relation in (3.17) (provided that c is constant).

The conditions (3.18) is satisfied by the hyperkähler structure (5.2). The relation (3.19)

is satisfied for I and J by direct insertion. For K we determine the full

ML
Ṙ

= − 1√
1− c2

KLRJKRṘ (5.3)

and find that

K[Ṙ|L|[M,J(−)]
L
R] = 0 , (5.4)

and the issue becomes the vanishing of M. This is again confirmed by direct insertion of

the K expressions from (5.2).

As a final check we also find that the relations (3.20) and (3.21) are indeed satisfied

for I,J and K.

5.2 SU(2)⊗U(1)

Using (4.31) and (4.15) we find that in (X,Y ) coordinates

[J
(a)
+ , J−] = −2e−X

(
(2− eX)j⊗

(
b(a)σ1 + a(a)σ2

)
+ 2N1⊗ a(a)iσ3

)
, (5.5)

where j is defined in (4.15). Using (4.28) we have defined

A(1) =: a(1)σ1 − b(1)σ2 =:
1√
N

(cosψ σ1 − sinψ σ2)

A(2) =: a(2)σ1 − b(2)σ2 =:
1√
N

(− sinψ σ1 − cosψ σ2) , (5.6)

and

iψ := (`− ¯̀) +
3

2
(y − ȳ) . (5.7)
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As is clear from (3.17), we shall need [J
(a)
+ , J−]G−1. We find

[J
(a)
+ , J−]G−1 = 2a(A)h⊗ σ2 + (2− eX)

(
0 1

−1 0

)
⊗
(
b(a)

1− a(a)iσ3

)
, (5.8)

where h is defined in (4.13). In (XL, XR) coordinates this becomes

(2e−X − 1)

(
0 1

−1 0

)
⊗ b(a)(1−Eσ1) +

(
2M E

E 0

)
⊗ a(a)σ2 −

(
0 1

−1 0

)
⊗ a(a)iσ3 . (5.9)

We read off the matrices relevant to (3.17)

M[RṘ] =
1

2
KṘL̇

([
J

(a)
+ , J−

]
G−1

)L̇L
KLR = −MeXa(A)

4N
σ2

MLR =
1

2
KRL̇

([
J

(a)
+ , J−

]
G−1

)L̇R
KRL

= −1

2

eX

4N

[
(2e−X − 1)b(a)(1 + Eσ1) + a(a)(Eσ2 − iσ3)

]
. (5.10)

We find that the quantities in (5.10) indeed satisfy the first relation in (3.17). Proceeding

to (3.18) and (3.19), we find that (3.18) is also satisfied using (5.10), and that the b(a)

terms in (3.19) cancel. However, the remaining terms in (3.19) must satisfy

(MF
[rKr̄]F )R = 0

M r
r[,rKr̄]L = 0 , (5.11)

where knowledge of the form of J(−) along with partial information from (5.10) has been

used. While the first of these equations determines the remaining parts of ML
R, the second

equations must be identically satisfied by MR
R in (5.10). This is not the case.

6 Discussion

We have extended the (1, 1) formulation of semichiral sigma models to allow for a treatment

of extra super symmetries with on-shell closure. To exemplify the general method we have

shown that a set of hyperkähler geometries arise as solutions of the conditions for extra

supersymmetry. We have further constructed the extra super symmetries in a semichiral

models dual to a BiLP model with “manifest” (4, 4) susy on the BiLP side. This model fails

the criteria for the additional supersymmetry to be manifest as transformations of (2, 2)

semichirals. Another way of saying this is that the (4, 4) supersymmetry is incompatible

with the introduction of the (2, 2) auxiliary spinor fields. The key ingredient in the analysis

is to show that invariance of the action fails (on-shell closure of the algebra is ensured by

construction). Note that the analysis shows that not even an extra supersymmetry of one

handedness only is possible.

Our analysis is carried out at the (1, 1) level, where conditions for additional super-

symmetries are well established since thirty years [8].
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An analysis at the (2, 2) level already indicated that the remedy suggested in [3] will

not work; a formulation including central charge transformations will typically display the

original obstructions when we go on-shell.

A further indication of problems with an extra supersymmetry comes from dualisation

procedure itself. One would expect the parent action, where the chirality constraints on the

chiral and twisted chiral superfields have been relaxed, to have the extra supersymmetry.

This would mean the the LVM gauge multiplet could carry extra supersymmetry. This

was concluded to be impossible under fairly general assumptions in [2].

In view of this result, it is reasonable to conjecture that manifest extra supersymme-

tries involving semichiral fields together with a 4D target space is only possible in models

including auxiliary fields such as in the (4, 4) superspace setting of [17].
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A Duality in (1, 1)

In this section we reduce the action (4.6) (with α = −1) to (1, 1) and eliminate the LVM

there instead. This makes clear the issue of coordinate transformations at the (1, 1) level.

We replace covariant derivatives according to

D̄± → D± + iQ± , D± → D± − iQ± . (A.1)

To facilitate the calculation we introduce the following notation:

Y A
± := Q±XA ,

ZA := Q+Q−XA , A = φ , χ , X

s` := `+ ¯̀, d` := `− ¯̀

sr := r + r̄ , dr := r − r̄
Σ := ψ + ψ̄

Λ := ψ − ψ̄ (A.2)

and define the (1, 1) components of the LVM (in WZ gauge) as

Vχ| =: Vχ , Q±Vχ| =: (A+B)± , Q+Q±Vχ| =: F

Vφ| =: Vφ , Q±Vφ| =: B± , Q+Q±Vφ| =: G

VX | =: VX , Q±VX | =: C± , Q+Q±VX | =: H . (A.3)
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The Lagrangian becomes

F (Vφ − Vχ −Xχ) +G(Vχ −Xφ) +H
(

ln(1 + eV )−X
)

− VφZφ − VχZχ − V ′ZX − (A+ + Y χ
+ )(A− + Y χ

− ) + Y χ
+Y

χ
−

+ (B+ − Y φ
+ − Y

χ
+ )(B− + Y φ

− + Y χ
− )− (Y φ

+ + Y χ
+ )(Y φ

− + Y χ
− )

+

(
C+ − Y X

+

(
1+eV

eV

))(
eV

1+eV

)(
C− −

(
1+eV

eV

)
Y X
−

)
− Y X

+ Y X
−

(
1+eV

eV

)
. (A.4)

Integrating out F,G,H gives the coordinate transformation

Vφ = Xχ +Xφ

Vχ = Xφ

V = ln(eX − 1) . (A.5)

Integrating Vφ, Vχ, V determines F,G,H in terms of the components of the semis:

F = Zφ

G = Zφ + Zχ

H =

(
1 + eV

eV

)[(
1− 1 + eV

eV

)
Y X

+ Y X
− + ZX

]
. (A.6)

(No contribution from C± terms etc. 1.5 formalism.) Finally, integrating A,B,C again

determines these fields in terms of the semi components. This leaves us with a purely semi

Lagrangian;

Y χ
+Y

χ
− − (Y φ

+ +Y χ
+ )(Y φ

− +Y χ
− )−Y X

+ Y X
−

(
eX

eX−1

)
− (Xχ+Xφ)Zφ−XφZ

χ− ln(eX−1)ZX

(A.7)

As a check that this agrees with the reduced semi action, we integrate out the auxiliary

spinors Ψ± and reconstruct the complex structures J (±). We shall need

Y φ
+ =

i

2

[
iD+s

` − Λr+
]

Y φ
− =

i

2

[
Λ`− − iD−sr

]
Y χ

+ = − i
2

[
iD+s

` + Λr+
]

Y χ
− = − i

2

[
Λ`− + iD−s

r
]

Y X
+ =

1

2

[
iD+d

` − Σr
+

]
Y X
− =

1

2

[
Σ`
− − iD−dr

]
Zφ = −1

2

[
D+Σ`

− +D−Σr
+

]
Zχ =

1

2

[
D+Σ`

− −D−Σr
+

]
ZX =

i

2

[
D+Λ`− +D−Λr+

]
(A.8)
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From the variations we find:

δΛr+ : Λ`− = 3iD−s
r − 2i

(
eX

eX − 1

)
D−X

δΣr
+ : Σ`

− = iD−d
r − 2

(
eX − 1

eX

)
D−(Xχ + 2Xφ)

δΛ`− : Λr+ = −iD+s
` + 2i

(
eX

eX − 1

)
D+X

δΣ`
− : Σr

+ = iD+d
` + 2

(
eX − 1

eX

)
D+Xχ .

This implies that (in the notation of (4.11))

Ψ`
− = i

1

4eXN

[
(1 + E2)D−`+ 2ED− ¯̀− 2(4N + 1)ED−r − 2(4N + 1)D−r̄

]
Ψr

+ = i
1

4eXN

[
2ED+`+ 2D+

¯̀− (1 + E2)D+r − 2ED+r̄
]

(A.9)

These are the correct expressions for these auxiliary fermions, as may be checked using the

matrices (4.10) in the formulae for J (±) in [1].

B An alternative dual form

We have been studying the action (4.8). It can be cast into a different form which con-

nects to the results in [18]. We perform a Legendre transformation of the right semichiral

superfields (for α = 1)

K̃ = K(L, x, x̄)− xr − x̄r̄ (B.1)

which together with the change L → −L (and some manipulations of the integral) brings

the potential to the form found in [18]:

− (`− r̄)(¯̀− r) +

∫ r+r̄

dq ln(1 + eq) . (B.2)

We already know the metric in these (XL, XR) coordinates from [18]

G =

(
σ1 −Z
−Z Zσ1

)
, (B.3)

where

Z :=
1

1 + er+r̄
=

1

1 + e`+¯̀−y−ȳ
, (B.4)

and transformation to new (X,Y ) coordinates reads

y = K` = ¯̀− r
r = ¯̀− y . (B.5)
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The corresponding Jacobian is [1]

J =

(
1 0

−KRLKLL K
RL

)
. (B.6)

We have

KLL = −σ1 , KRR = −Zσ1

KLR = 1 , KRL = 1 (B.7)

which implies

G→

(
−σ1 0

0 Zσ1

)
(B.8)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References
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