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1 Introduction

In this paper we are interested in four-dimensional theories with N = 2 superconformal

invariance. There are many well known examples of N = 2 quantum field theories (with or

without a known Lagrangian description) that exhibit manifolds of superconformal fixed

points (specific examples will be discussed in the main text). Although particular neigh-

borhoods of these manifolds can sometimes be described by a conventional weakly coupled

Lagrangian, the generic fixed point is a superconformal field theory (SCFT) at finite or

strong coupling. It is of considerable interest to determine how the physical properties

of these theories vary as we change the continuous parameters (moduli) that parametrize

these manifolds.1 A well-studied maximally supersymmetric example with a (complex) one-

dimensional conformal manifold is N = 4 super-Yang-Mills (SYM) theory. Large classes of

examples are also known in theories with minimal (N = 1) supersymmetry (see e.g. [1]).

Four-dimensional superconformal field theories with N = 2 supersymmetry are particu-

larly interesting because they are less trivial than the N = 4 theories, but are considerably

more tractable compared to the N = 1 theories.

A particularly interesting subsector of N = 2 dynamics is controlled by chiral primary

operators. These are special operators in short multiplets annihilated by all supercharges

of one chirality. They form a chiral ring structure under the operator product expansion

(OPE). The exact dependence of this structure on the marginal coupling constants is

currently a largely open interesting problem.

In two spacetime dimensions the application of the ‘topological anti-topological fusion’

method gives rise to a set of differential equations, called tt∗ equations, which were employed

successfully in the past [2, 3] to determine the coupling constant dependence of correlation

functions in theN = (2, 2) chiral ring. An analogous set of tt∗ equations in four-dimensional

N = 2 theories was formulated using superconformal Ward identities in [4].2 In four

dimensions, however, it is less clear how to solve these differential equations without further

input.

More recently, a different line of developments has led to the proposal that the exact

quantum Kähler potential on the N = 2 superconformal manifold is given by the S4

partition function of the theory [7]. The latter can be determined non-perturbatively with

the use of localization techniques [8]. As a result, it is now possible to compute exactly the

Zamolodchikov metric on the manifold of superconformal deformations of N = 2 theories

via second derivatives of the S4 partition function. Equivalently, the two-point function of

1The moduli of the conformal manifold in this paper should be distinguished from the moduli space of

vacua, e.g. Coulomb or Higgs branch moduli, of a given conformal field theory.
2In a different direction, tt∗ geometry techniques have also been applied to higher dimensional quantum

field theories more recently in [5, 6].
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scaling dimension 2 chiral primaries is expressed in terms of second derivatives of the S4

partition function. We review the relevant statements in section 2.

In the present work we take a further step and argue that, when combined with the tt∗

equations of [4], the exact Zamolodchikov metric is a very useful datum that leads to exact

information about more general properties of the chiral ring structure of N = 2 SCFTs.

Specifically, it provides useful input towards an exact solution of the tt∗ equations, which

encodes the non-perturbative dependence of 2- and 3-point functions of chiral primary

operators on the marginal couplings of the SCFT. In this solution, correlation functions of

chiral primaries with scaling dimension greater than two are expressed in terms of more

than two derivatives of the S4 partition function. A review of the relevant concepts with

the precise form of the tt∗ equations is presented in section 3.

Such results can have wider implications. In subsection 3.5 we demonstrate that a solu-

tion of the 2- and 3-point functions in the N = 2 chiral ring has immediate implications for

a larger class of n-point ‘extremal’ correlation functions. Moreover, it is not unreasonable

to expect that 2- and 3-point functions in the chiral ring may eventually provide useful

input towards a more general solution of the theory using conformal bootstrap techniques.

In section 4 we demonstrate the power of these observations in an interesting well-

known class of theories: N = 2 superconformal QCD defined as N = 2 SYM theory

with gauge group SU(N) coupled to 2N fundamental hypermultiplets. This theory has

a (complex) one-dimensional manifold of exactly marginal deformations parametrized by

the complexified gauge coupling constant τ = θ
2π + 4πi

g2
Y M

. For the SU(2) theory, which has

a single chiral ring generator, we demonstrate that the tt∗ equations take the form of a

semi-infinite Toda chain.3 Solving this chain in terms of the SU(2) S4 partition function

provides the exact 2- and 3-point functions of the entire chiral ring. Unlike the N = 4 SYM

case, where these correlation functions are known not to be renormalized [9–18], in N = 2

theories they turn out to have very nontrivial, and at the same time exactly computable,

coupling constant dependence that we determine. In section 4 we also comment on the

transformation properties of these results under SL(2,Z) duality.

In the more general SU(N) case, the presence of additional chiral ring generators

makes the structure of the tt∗ equations considerably more complicated. A recursive use

of the tt∗ equations is now less powerful and appears to require information beyond the

Zamolodchikov metric (e.g. information about the exact 2-point functions of the additional

chiral ring generators) which is not currently available. We present the SU(N) tt∗ equations

and provide preliminary observations about their structure.

Independent evidence for these statements is provided in section 5 with a series of

computations in perturbation theory up to two loops. Already at tree-level, agreement with

the predicted results is a non-trivial exercise, where the generic correlation function comes

from a straightforward, but typically involved, sum over all possible Wick contractions. We

find evidence that there are compact expressions for general classes of tree-level correlation

functions in the SU(N) theory. The next-to-leading order contribution arises at two loops.

3We remind that in certain two-dimensional examples with N = (2, 2) supersymmetry the tt∗ equations

give a periodic Toda chain [3].
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We provide an explicit 2-loop check for the general correlation function in the SU(2) N = 2

superconformal QCD theory. As a by-product of this analysis we present a 2-loop check of a

recently proposed relation [7] between the quantum Kähler potential on the superconformal

manifold and the S4 partition function.

Some of the wider implications of the tt∗ equations and interesting open problems

are discussed in section 6. Useful facts, conventions and more detailed proofs of several

statements are collected for the benefit of the reader in four appendices at the end of the

paper.

A companion note [19] contains a consice presentation of some of the main results of this

work with emphasis on the SU(2) N = 2 superconformal QCD theory.

2 Marginal deformations and the chiral ring

2.1 The chiral ring of N = 2 theories

The R-symmetry of 4d N = 2 SCFTs is SU(2)R × U(1)R. We concentrate on (scalar)

chiral primary operators defined as superconformal primary operators annihilated by all

supercharges of one chirality. These operators belong to short multiplets of type “ER
2
(0,0)”

in the notation of [20].4 As was shown there, these must be singlets of the SU(2)R and

must have nonzero charge R under U(1)R. We work in conventions5 where the unitarity

bound is

∆ ≥ |R|
2

. (2.1)

Superconformal primaries saturating the bound ∆ = R
2 are annihilated by all right-chiral

supercharges Qi
α̇. We call them chiral primaries and denote them by φI . Their conjugate,

which obey ∆ = −R
2 , are annihilated by Qi

α. We call them anti-chiral primaries and denote

them as φI . We write the 2-point functions of chiral primaries as

〈φI(x)φJ(0)〉 =
gIJ
|x|2∆ . (2.2)

By the symbol gJI we denote the inverse matrix i.e. gIJg
JK = δKI .

It is well known that the OPE of chiral primaries is non-singular

φI(x)φJ(0) = CK
IJ φK(0) + . . . , (2.3)

where φK is also chiral primary and CK
IJ are the chiral ring OPE coefficients [22]. We also

define the 3-point function of chiral primaries

〈φI(x)φJ(y)φK(z)〉 = CIJK

|x− y|∆I+∆J−∆K |x− z|∆I+∆K−∆J |y − z|∆J+∆K−∆I
, (2.4)

4For an interesting recent discussion of other higher-spin chiral primary operators see [21].
5In these conventions the supercharges Qi

α have U(1)R charge equal to −1 and Q
i

α̇ have +1. The α, α̇

are Lorentz spinor indices, while the i is an SU(2)R index.
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and we have the obvious relation between OPE and 3-point coefficients

CIJK = CL
IJ gLK . (2.5)

So far we have defined the chiral ring for one particular N = 2 SCFT. In general,

such SCFTs may have exactly marginal coupling constants. In that case the elements of

the chiral ring (i.e. the corresponding 2- and 3-point functions) will become functions of

the coupling constants. The goal of our paper is to analyze this (typically non-trivial)

coupling-constant dependence of the chiral ring.

2.2 Marginal deformations

We are interested inN = 2 SCFTs with exactly marginal deformations. We parametrize the

space of marginal deformations (conformal manifold), called M from now on, by complex

coordinates λi, λ
i
. Under an infinitesimal marginal deformation the action changes by

S → S +
δλi

4π2

∫
d4xOi(x) +

δλ
i

4π2

∫
d4xOi(x) . (2.6)

It can be shown that the marginal deformation preserves N = 2 superconformal invariance,

if and only if the marginal operators are descendants of (anti)-chiral primaries with ∆ = 2

and R = ±4, more specifically

Oi = Q4 · φi , Oi = Q4 · φi , (2.7)

where φi is chiral primary of charge R = 4. The notation Oi = Q4 · φi means that Oi can

be written as the nested (anti)-commutator of the four supercharges of left chirality. Their

Lorentz and SU(2)R indices of the supercharges are combined to give a Lorentz and SU(2)R
singlet. The overall normalization of factors of 2 etc. is fixed so that equation (2.10) holds.

Notice that since the Q’s have U(1)R charge equal to −1 the marginal operators are U(1)R
neutral, as they should.

From now on in this section and the next we use lowercase indices i, j, . . . to indicate

chiral primaries of R-charge equal to ±4. These are special since, via (2.7), they corre-

spond to marginal deformations. We use uppercase indices I, J, . . . to denote general chiral

primaries of any R-charge.

The Zamolodchikov metric is defined by the 2-point function6

〈Oi(x)Oj(0)〉 =
Gij

|x|8 . (2.8)

The conformal manifold M equipped with this metric is a complex Kähler manifold (pos-

sibly with singularities). The corresponding “metric” for the chiral primaries is

〈φi(x)φj(0)〉 =
gij
|x|4 . (2.9)

6Notice that 2-point functions of the form 〈OiOj〉 or 〈OiOj〉 are zero, as can be easily shown by

superconformal Ward identities.
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We define the normalization of (2.7) in such a way that 〈Oi(x)Oj(0)〉 = ∇2
x∇2

x〈φi(x)φj(0)〉,
which implies

gij =
Gij

192
. (2.10)

2.3 The exact Zamolodchikov metric from supersymmetric localization

In [7] it was shown that the partition function of an N = 2 theory on the four-sphere

S4, regulated in a scheme that preserves the massive supersymmetry algebra OSp(2|4),
computes the Kähler potential for the Zamolodchikov metric. The result is

Gij = ∂i∂j̄K , (2.11)

where7

K = 192 logZS4 . (2.12)

Combining this result with (2.10) we conclude that

gij = ∂i∂j̄ logZS4 . (2.13)

The partition function ZS4 can be computed exactly for a certain class of N = 2 SCFTs,

using supersymmetric localization [8]. Via (2.13) this immediately provides the 2-point

functions of chiral primaries with scaling dimension ∆ = 2.

Our strategy will be to use these 2-point functions and the tt∗ equations that we derive

in the following section to compute the 2-point functions of chiral primaries of higher R-

charge. In turn, this will allow us to compute the exact, non-perturbative 3-point functions

of chiral primaries over the conformal manifold.

3 tt∗ equations in four-dimensional N = 2 SCFTs

In this section we review the analogue of the tt∗ equations for 4d N = 2 SCFTs, which

were derived in [4]. We omit proofs, which can be found there.

3.1 tt∗ equations and the connection on the bundles of chiral primaries

We parametrize the conformal manifold M by complex coordinates λi, λ
i
. In general, the

chiral primary 2- and 3-point functions are non-trivial functions of the coupling constants.

In order to discuss the coupling constant dependence of correlators we have to address

issues related to operator mixing. This mixing is an intrinsic property of the theory,

similar to the (in general, non-abelian) Berry phase, which appears in perturbation theory

in Quantum Mechanics.8 The operator mixing in conformal perturbation theory has been

discussed in several earlier works, here we mention those that are most relevant for our

approach [4, 23–28].

7In [7] the marginal operators are normalized in a different way, namely Ohere = 4Othere, so various

coefficients have been adjusted accordingly. For instance this explains the factor 192 = 12×4×4 as opposed

to 12 in [7].
8In fact, by considering the state-operator map, it becomes possible to relate more precisely the connec-

tion on the space of operators to the Berry phase of quantum states of the CFT on S3× time.
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In order to describe the operator mixing, it is useful to think of local operators as being

associated to vector bundles over the conformal manifold. These bundles are equipped with

a natural connection that we denote by (∇µ)
L
K = δLK∂µ + (Aµ)

L
K . This connection encodes

the mixing of operators with the same quantum numbers under conformal perturbation

theory. The curvature of this connection can be defined in terms of an integrated 4-point

function in conformal perturbation theory, by the expression

(Fµν)
L
K ≡ [∇µ,∇ν ]

L
K =

1

(2π)2

∫
d4x d4y 〈φL(∞)O[µ(x)Oν](y)φK(0)〉 . (3.1)

The index L is raised with the inverse of the matrix of 2-point functions. The reason

that the r.h.s. is not identically zero, despite the antisymmetrization in the indices µ, ν, is

that the integral on the r.h.s. has to be regularized to remove divergences from coincident

points. The need for regularization is one way to understand why we end up with nontrivial

operator mixing. A very thorough explanation of the regularization procedure needed to

do the double integral is given in [27].9

In the case of N = 2 SCFTs, and when considering operators in the chiral ring,

this double integral can be dramatically simplified, given that the marginal operators are

descendants of chiral primaries of the form Oi = Q4 · φi and similarly for the antiholomor-

phic deformations. As was shown in [4], we can use the superconformal Ward identities

to move the supercharges from one insertion to the other, and using the SUSY algebra

{Qi
α,Q

j

β̇
} = 2Pαβ̇δ

ij repeatedly, we get derivatives inside the integral. Then, by integra-

tions by parts the integral simplifies drastically, and only picks up contributions which are

determined by chiral ring 2- and 3-point functions and the CFT central charge c. The

interested reader should consult [4] for details. The final result is that in N = 2 SCFTs

the curvature of bundles of chiral primaries is given by

[∇i,∇j ]
L
K = [∇i,∇j ]

L
K = 0 , (3.2a)

[∇i,∇j ]
L
K = −[Ci, Cj ]

L
K + gijδ

L
K

(
1 +

R

4c

)
. (3.2b)

The equations on the first line express the fact that the bundles of chiral primaries are (at

least locally10) holomorphic vector bundles over the conformal manifold.

In the second line, R is the U(1)R charge of the bundle, c the central charge of the

CFT and gij is the 2- point function of chiral primaries of ∆ = 2, whose descendants are

the marginal operators (2.7). These equations are the analogue of the tt∗ equations derived

in [2] for the Berry phase of the Ramond ground states and the chiral ring of N = (2, 2)

theories in two dimensions.

9In [27] only 2d CFTs are discussed but several of their statements can be generalized to 4d conformal

perturbation theory.
10From now on, whenever we say ‘holomorphic bundle’, ‘holomorphic section’, ‘holomorphic function’

these terms should be understood in the sense of ‘locally holomorphic’, since the equations we derived are

local and we have not analyzed global issues. There may be obstructions in extending the holomorphic

dependence globally.
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Moreover, it can be shown [4] that the OPE coefficients of chiral primaries are covari-

antly holomorphic

∇jC
I
JK = 0 (3.3)

and that OPE coefficients obey the analogue of the WDVV equations [29–31] which have

the form

∇iC
L
jK = ∇jC

L
iK . (3.4)

Here, and according to our notation, the indices i, j run over the marginal deformations,

while K,L, can be any chiral primary.

Finally, the supercharges and supercurrents are associated to a holomorphic line bundle

L over the conformal manifold, whose curvature is given by11

Fij = Fi j = 0 ,

Fij =
1

4c
gij . (3.5)

The bundle L encodes the ambiguity of redefining the phases of the supercharges as Qi
α →

eiθQi
α and Qi

α̇ → e−iθQi
α̇ (the superconformal generators transform as S → e−iθS and S̄ →

eiθS̄, while the bosonic generators remain invariant). It is clear that this transformation

is an automorphism of the N = 2 superconformal algebra. The equations (3.5) are saying

that in the natural connection defined by conformal perturbation theory, the choice of this

phase varies as we move on the conformal manifold. As we see from (3.5) the curvature of

the corresponding bundle L is proportional to the Kähler form of the Zamolodchikov metric.

The statements above are covariant in the sense that they hold independent of how we

select the normalization/basis of chiral primaries as a function of the coupling constants.

However, it is more practical to select a particular scheme, where we will see that the

equations above reduce to standard partial differential equations for the 2- and 3-point

functions, without any reference to the connection A on the bundles.

A natural choice would be to select a basis of chiral primaries over the conformal

manifold that consists of holomorphic sections of the corresponding bundles. Furthermore,

from (3.2a) we see that it is possible to go to a holomorphic gauge (Aj)
L
K = 0, where

∇j = ∂j . In this gauge, the condition (3.3) simply becomes ∂jC
I
JK = 0, so the OPE

coefficients are holomorphic functions of the couplings. Let us denote the chiral primaries

in the gauge where they are holomorphic sections as φ′I and the corresponding 2-point

functions as 〈φ′Iφ
′
J〉 = g′

IJ
. In terms of these holomorphic sections, the curvature of the

underlying holomorphic bundles can be simply expressed as

[∇i,∇j ]
L
K = −∂j(g′

ML
∂ig

′
KM

) , (3.6)

and there is no longer any explicit dependence on the connection A. Here we used the

compatibility of the connection and the metric on the bundle, see [27] for explanations.

11This can be shown [4] by considering the general formula (3.1) and applying it to the case where the

operators φK , φL are the supercurrents. Since [supercharge] =
∫

d3x [supercurrent]0 it is clear that the

holonomy (phase) that the supercharges pick up under conformal perturbation theory is the same as that

of the supercurrents.
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We could continue working with these holomorphic sections, but we need to pay at-

tention to the following technical detail. The marginal operators Oi can be related to the

chiral primaries φ′i with ∆ = 2 by an expression of the form Oi = Q′4 ·φ′i. The supercharges
Q′ can be viewed as sections of the holomorphic bundle L mentioned in equations (3.5).

Having chosen a convention for Oi and φ′i we have also chosen the conventions for the

section Q′. Assuming Oi is holomorphic (from (2.6)), the above choice of the holomor-

phic section φ′i implies that Q′ is a holomorphic section of L. These conventions for the

supercharges are not the standard ones following from the supersymmetry algebra. In the

standard conventions, although the overall phase of the supercharges can be redefined in a

coupling-constant dependent way due to the U(1) automorphism of the algebra, the “mag-

nitude” of the normalization of the supercharges is fixed in order to satisfy the standard

supersymmetry algebra {Qi
α,Q

j

β̇
} = 2Pαβ̇δ

ij . Equivalently, the normalization of the 2-

point function of the corresponding supercurrents is independent of the coupling constant.

Since the supercharges Q with this standard choice have constant magnitude, they cannot

be a holomorphic section of the bundle L.12 Hence, the standard Q and the Q′ above are

different types of sections. What is the precise relation between them?

Equation (3.5) implies that the combination

Q′ = e
K

c′ Q , c′ = 8× 192× c (3.7)

can be a holomorphic section for an appropriate choice of the (coupling-constant dependent)

phase of Q. K is the Kähler potential of the Zamolodchikov metric. Notice that the

appropriate choice of the phase of Q depends on the choice of Kähler gauge. Under a

Kähler transformation, K → K+ f + f̄ (where f (f̄) is (anti)holomorphic), the section Q′

in (3.7) becomes

e
2f
c′ ei

2Imf

c′ Q′ .

There is an overall holomorphic factor e
2f
c′ and the original phase of Q has been shifted.

With these specifications (3.7) is the relation between Q and Q′ that we are looking for.

This suggests the following choice of conventions: select chiral primaries φI at any

level of R-charge R so that φ′I = e−
R
c′
KφI are holomorphic sections. Equivalently, if we

have already a choice of holomorphic sections φ′I (as above), then we define a new non-

holomorphic basis by φI = e
R
c′
Kφ′I .

13 The corresponding 2-point functions obey the relation

gIJ = e
2R
c′

Kg′
IJ
. This choice ensures that Oi = Q′4 ·φ′i = Q4 ·φi, where Q are supercharges

with the standard normalization. The non-holomorphicity of φi precisely cancels the non-

holomorphicity of Q. In addition, the general OPE coefficients are the same in the two

bases, CI
JK = CI′

J ′K′ , as a consequence of R-charge conservation.

12Had they been holomorphic sections with constant magnitude, we would conclude from (3.6) that the

curvature of L is zero, which is inconsistent with the direct computation leading to (3.5).
13Again, this definition of φI depends on the Kähler gauge and the resulting 2-point function gIJ trans-

forms as gIJ → e
2R

c′
(f+f̄)

gIJ under Kähler transformations. Happily, this dependence drops out of the final

equation (3.10), which is indeed invariant under Kähler transformations. We are grateful to M. Buican, for

discussions which led us to an investigation of the invariance of our statements under Kähler transforma-

tions.
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In the φI -basis the curvature of the bundles becomes

[∇i,∇j ]
L
K = −∂j(g′

ML
∂ig

′
KM

) = −∂j(gML∂igKM ) +
R

4c
gijδ

L
K . (3.8)

Inserting into (3.2b) we obtain the partial differential equations14

∂j(g
ML∂igKM ) = [Ci, Cj ]

L
K − gijδ

L
K . (3.9)

3.2 Differential equations for 2- and 3-point functions of chiral primaries

The result of this choice of gauge (scheme) is that the tt∗ equations reduce to differential

equations for the 2- and 3-point functions, where there is no explicit appearance of the

connection on the bundles. For the sake of clarity we summarize here the detailed form of

the equations with all indices written out

∂

∂λj

(
gML ∂

∂λi
gKM

)
= CP

iK gPQC
∗Q

jR
gRL − gKN C∗N

jU
gUV CL

iV − gij δ
L
K . (3.10)

As we can see these differential equations relate the coupling constant dependence of 2-

and 3-point functions of various chiral primaries. They have to be supplemented by equa-

tion (3.3), which in this gauge takes the simpler form

∂

∂λ
j
CK
IJ = 0 , (3.11)

and the WDVV equations (3.4)

∂CL
jK

∂λi
− ∂CL

iK

∂λj
= gQL ∂igPQC

P
jK − CL

jP g
QP ∂igKQ − (i↔ j) . (3.12)

In the examples that we will study later the conformal manifold is 1-(complex) dimensional,

hence the WDVV equations are trivially obeyed and that is why we do not discuss them

any further. In other N = 2 theories with higher dimensional conformal manifolds they

may be nontrivial.

Let us elaborate a little further on the notation in equation (3.10). The lowercase

indices i, j run over (anti)-chiral primaries of ∆ = 2, R = ±4, or equivalently, over the

marginal directions along the conformal manifold. We remind that chiral primaries of

R = ±4 and dimension ∆ = 2 are those whose descendants are the marginal operators

corresponding to λi, λj on the l.h.s.. The capital indices run over general chiral primaries of

any R-charge. These equations can be applied for each possible sector of chiral primaries.

The function gKM is the 2-point function of chiral primaries of charge R. The OPE

coefficients CP
iK relate the chiral primaries of charge R (corresponding to the index K) to

the chiral primaries of charge R + 4 (corresponding to the index P ). The indices U, V

correspond to chiral primaries of charge R− 4. Finally by C∗Q

jR
we mean (CQ

jR)
∗.

14The reader familiar with the 2d tt∗ equations should notice that the last term −gijδ
L
K can be effectively

removed by a slight redefinition, see the discussion around (4.9) for an example.
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Remark on the curvature of the Zamolodchikov metric. If we consider equa-

tion (3.10) specifically for the bundle of chiral primaries of R-charge 4 (whose descendants

are the marginal operators) and using (2.10) and the general formula for the Riemann

tensor of a Kähler manifold we get the equation

Rl
ijk

= −CM
ik gMNC

∗N
jq
gql + gkjδ

l
i + gijδ

l
k (3.13)

We notice that the curvature of the conformal manifold obeys an equation, which is remi-

niscent of the one for the moduli space of 2d N = (2, 2) SCFTs with general values of the

central charge, as some sort of generalization of special geometry [25, 26].

Note on normalization conventions. We emphasize once again that the differential

equations (3.10) hold in a particular choice of normalization conventions described near the

end of section 3.1. The benefit of this choice is that it allows us to circumvent the details of

a non-trivial connection on the chiral primary bundles. These normalization conventions

are typically different from the more common ones in conformal field theory where one

diagonalizes the 2-point functions of conformal primary fields,

〈
φK(x)φL(0)

〉
=

δKL

|x|2∆ . (3.14)

In the conventions (3.14) the OPE coefficients CK
IJ are no longer holomorphic functions of

the marginal couplings and therefore do not obey (3.11) (but they still obey (3.3)).

In the examples of section 4 a natural basis of chiral primaries will lead to the holo-

morphic gauge of equation (3.11). Once there is a solution of the tt∗ equations in this basis,

it is not hard to rotate to the more conventional basis (3.14).

3.3 Global issues

When studying the equations (3.10) it is important and interesting to explore certain

global issues15 of the bundles of chiral primaries over the conformal manifold M. The

equations are local, since they were derived in conformal perturbation theory, but the

conformal manifold may have special points (e.g. the weak coupling point gYM = 0) and

nontrivial topology like in the class S theories [32, 33], where the conformal manifold

is related to the moduli space of punctured Riemann surfaces. Because of these global

issues, it is conceivable that in certain theories, the connection on the space of operators

is not entirely determined by the local curvature expression (3.10), but there may be

additional “Wilson line”-like configurations around the special points/nontrivial cycles on

the conformal manifold. Moreover, whether we can find global holomorphic sections or not

and if we can set ∂C = 0 globally, may be a nontrivial question. In this paper, since we are

dealing mostly with the simpler superconformal QCD theories, we will not go into these

global issues but we are planning to return to them in future work.

15We are grateful to M. Buican for discussions on this.
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3.4 Solving the tt∗ equations

The resulting equations (3.10) are a set of coupled differential equations for the 2- and

3- point functions of chiral primaries. In certain 2d N = (2, 2) QFTs the tt∗ equations

could be solved [2, 3] just from the requirement that the 2-point functions must be positive

and from knowing the correlators in the weak coupling region. For this to work it was

important that the chiral ring in 2d is finite dimensional. For example, in N = (2, 2)

SCFTs a unitarity bound constrains the R-charge by |q| ≤ c
3 , which shows that in theories

with reasonable spectrum the chiral ring is truncated. In 4d N = 2 SCFTs the chiral ring

has no known upper bound in R-charge and if we try to apply these equations we end

up with an infinite set of coupled differential equations. For instance, while in certain 2d

examples one gets equations corresponding to the periodic Toda chain [3], in 4d N = 2

SCFTs we find equations similar to the semi-infinite Toda-chain (this will become more

clear in section 4). Unlike what happened to 2d examples [2, 3], we have not been able to

find a way to uniquely determine a solution of these equations, just from the requirement

of positivity of the 2-point functions and the boundary conditions at weak coupling.

On the other hand, in certain 4d N = 2 SCFTs, these equations have a recursive

structure: if we somehow fix the coupling constant dependence of the lowest nontrivial

chiral primaries, then the equations predict the 2- and 3- point functions of higher-charge

chiral primaries. As we explained in section 2, the 2-point functions of chiral primaries of

R-charge 4, are proportional to the Zamolodchikov metric on the conformal manifold.

Hence, if we knew the exact Zamolodchikov metric as a function of the coupling, we

would also know the 2-point function of chiral primaries of R-charge 4, and then by plugging

this into the sequence of tt∗ equations we would be able to compute the 2- and 3-point

functions of an infinite number of other chiral primaries. Progress in this direction becomes

possible after the recent proposal [7], which relates the partition function of N = 2 SCFTs

on S4 computed by localization in the work of Pestun [8], to the Kähler potential of the

Zamolodchikov metric on the moduli space.

While this strategy allows us to partly solve the tt∗ equations, it would be interesting

to explore whether it is possibile to determine the relevant solution of these equations

without input from localization. This could perhaps be possible by demanding positivity

of all 2-point functions of chiral primaries over the conformal manifold supplemented by

some weak coupling perturbative data, in analogy to what was done in [3]. This is a very

speculative possibility, which if true, would in principle lead to an alternative computation

of the nontrivial information encoded in the sphere partition function, without the use of

localization. We plan to investigate this further in future work.

3.5 Extremal correlators

By computing the 2- and 3-point functions of chiral primaries we can also get exact results

for more general “extremal correlators”. These are correlators of the form

〈φI1(x1) . . . φIn(xn)φJ(y)〉 , (3.15)

where φIk are chiral primaries and φJ is antichiral, with R-charges related as RJ =

−∑k RIk .
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First, it is convenient to use a conformal transformation of the form

xµ
′

=
xµ − yµ

|x− y|2 (3.16)

to write the correlator as

〈φI1(x1) . . . φIn(xn)φJ(y)〉 =
〈φI1(x′1) . . . φIn(x′n)φJ(∞)〉
|x1 − y|2∆1 . . . |xn − y|2∆n

, (3.17)

where the x′’s on the r.h.s. are related to x’s by (3.16).

For an extremal correlator in N = 2 SCFT, the superconformal Ward identities imply

that

〈φI1(x1) . . . φIn(xn)φJ(∞)〉 (3.18)

is independent of the positions xi. Consequently, we are free to evaluate it in any particular

limit. Let us define a new chiral primary φI by fusing together all the chiral primaries

φI(0) ≡ lim
{xi}→0

φI1(x1)× . . .× φIn(xn) , (3.19)

where the symbol × refers to an OPE. Notice that, since all operators are chiral primaries,

this multi-OPE is non-singular and associative, so the limit is well defined and it is simply

given by a chiral primary φI of charge RI =
∑

k RIk . Then we find that

〈φI1(x1) . . . φIn(xn)φJ(∞)〉 = 〈φI(0)φJ(∞)〉 = gIJ , (3.20)

where on the last step we got the usual 2-point functions of chiral primaries (2.2). Due to

the associativity of the chiral ring we can also write

gIJ = CM1
I1I2

CM2
M1I3

. . . C
Mn−1

Mn−2In
gMn−1J

(3.21)

Re-instating the full coordinate dependence from (3.17), we can write the following formula

for extremal correlators

〈φI1(x1) . . . φIn(xn)φJ(y)〉 =
gIJ

|x1 − y|2∆1 . . . |xn − y|2∆n
. (3.22)

So according to our argument, extremal correlators can be uniquely determined by the

chiral ring 2- and 3-point functions, which were used in formulae (3.19) (OPE coefficients)

and (3.20) (2-point functions).

3.6 N = 4 theories

Until this point we considered general theories with N = 2 supersymmetry. It is interesting

to ask parenthetically how the formalism captures the properties of N = 4 theories. An

N = 4 theory can also be written as an N = 2 theory, so our formalism should apply. The

R-symmetry SU(2)R × U(1)R of the N = 2 viewpoint, is embedded inside the underlying

SO(6)R of the full N = 4 theory. We proceed to flesh out the pertinent details and verify

that the tt∗ equations work correctly in N = 4 theories.
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Consider an N = 4 gauge theory with semi-simple gauge group G. The theory has 6

real scalars ΦI, I = 1, . . . , 6. It is useful to define the complex combination

ϕ = Φ1 + iΦ2 (3.23)

which is the bottom component of an SU(3) highest weight N = 1 superfield. The U(1)R
symmetry that rotates this field corresponds to rotations on the 1-2 plane. The chiral

primary, whose descendant is the N = 4 marginal operator, has the form

φ2 ∝ Tr[ϕ2] . (3.24)

From the N = 4 viewpoint this is the superconformal primary of the 1
2 -BPS short rep-

resentation of N = 4 which contains, among other operators, the R-symmetry currents,

stress tensor and marginal operators.

General chiral primaries of charge R in 1
2 -BPS representations can be deduced from

multitrace operators of the form

φK ∝ Tr[ϕn1 ] . . .Tr[ϕnk ], (3.25)

where 2
∑
ni = R. The trace is taken in the adjoint of G.

The conformal manifold of this theory is parametrized by the complexified coupling

τ =
θ

2π
+

4πi

g2YM

(3.26)

up to global identifications due to S-duality transformations. θ denotes the θ-angle and gYM

the Yang-Mills coupling. An important point is that for N = 4 theories the Zamolodchikov

metric on the conformal manifold does not receive any quantum corrections and in our

conventions is equal to

GN=4
τ τ̄ = 96

c

Imτ2
. (3.27)

This means that the conformal manifold is locally a two-dimensional homogeneous space

of constant negative curvature. The marginal operators Oτ ,Oτ can be thought of as

holomorphic and antiholomorphic tangent vectors to the conformal manifold. Since the

manifold (3.27) has nonzero curvature, the marginal operators have a nontrivial connection.

On the other hand, we will argue that the bundles encoding the connection for chiral

primaries have vanishing curvature in N = 4 theories. This can be seen as follows: while

from the N = 2 point of view the chiral primaries are only charged under U(1)R, in the

underlying N = 4 theory they belong to representations of SO(6)R. Since the conformal

manifold is one-complex dimensional and the holonomy of the tangent bundle is only U(1),

it is not possible to have notrivial SO(6)-valued curvature for bundles over the conformal

manifold, without breaking the SO(6) invariance of the theory.

Hence we conclude that the bundles of chiral primaries for N = 4 theories must have

vanishing curvature. One might wonder, how this statement can be consistent with the fact

that the tangent bundle has nontrivial curvature and the fact that the marginal operators

are descendants of the chiral primaries. The resolution is simple. Recalling the relation
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Oτ = Q4 ·φ2, we can see that the curvature corresponding to Oτ is given by the sum of the

curvature of the supercurrents plus that of φ2. Since the latter is vanishing, we learn that

the curvature of the tangent bundle comes entirely from that of the supercharges (3.5).

It is easy to check that, using (3.5), the relation Oτ = Q4 · φ2 and comparing with the

curvature of the tangent bundle of (3.27), all factors work out correctly.

Alternatively, we can verify the fact that the chiral primaries in N = 4 have vanishing

curvature directly from the tt∗ equations. This can be done in two steps. The first step

is to observe that in N = 4 theories, we have a non-renormalization theorem for 3-point

functions [9–18], which can be expressed in equations as

∇τC = ∇τC = 0 . (3.28)

The second step requires taking the covariant derivative (either ∇ or ∇) of both sides of

the tt∗ equation (3.2b). The covariant derivative of the r.h.s., which involves the two-point

function coefficients g and the 3-point function coefficients C, vanishes from (3.28) and the

compatibility of g with the connection, which implies ∇g = ∇g = 0. The vanishing of

the covariant derivative of the r.h.s. implies that the covariant derivative of the l.h.s. also

vanishes, from which we deduce that the bundles must have covariantly constant curvature.

This allows a direct evaluation of the curvature in the weak coupling limit. Hence, in order

to show that the curvature vanishes in N = 4 theories for all values of the coupling, it is

enough to show that the r.h.s. of the tt∗ equations (3.2b) vanishes in the weak coupling

limit.

All ingredients on the r.h.s. of (3.2b) can be evaluated — in principle — by standard,

alas rather involved in general, Wick contractions. In appendix C we provide an alternative

derivation of the following general combinatoric/group theoretic identity

{
−[C2, C2]

L
K + g22δ

L
K

(
1 +

R

dimG

)}

tree

= 0 . (3.29)

This is an identity16 for free-field contractions between traces that should hold for any

semi-simple group G. The subscript 2 refers to the chiral primary φ2 = Tr[ϕ2].

Using this identity, we can demonstrate the desired result, i.e. that the r.h.s. of the tt∗

equation vanishes for N = 4 theories: in standard N = 4 gauge theories the central charge

is related to dimG by

c =
dimG
4

.

Inserting this formula into (3.29) we find

− [C2, C2]
L
K + g22δ

L
K

(
1 +

R

4c

)
= 0 (3.30)

which is precisely what we wanted to show.

As a final comment we would like to clarify a possibly confusing point. The tt∗ equa-

tions (3.10) predict that the chiral primaries in N = 2 theories have nonzero curvature

16It is quite possible that this equation corresponds to a natural group-theoretic statement, but we have

not yet investigated this in detail. See also section 5.2 for related explicit tree-level 2-point functions.
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even in the limit of weak coupling. Indeed, the relation between c and dimG is different for

N = 2 theories compared to N = 4 theories and as a result (3.30) does not hold in N = 2

theories ((3.29), however, does hold). On the other hand, we argued that the curvature

of operators in conformal perturbation theory is computed by (3.1). In the free limit the

4-point function inside the double integral, relevant for the computation of the curvature

of chiral primaries, is the same in N = 2 and N = 4 theories. How can it then be, that

in N = 2 the bundle of primaries has nonzero curvature even in the weak coupling limit,

while in N = 4 the curvature vanishes?

The answer is that the two processes, of taking the zero coupling limit and of doing the

double regularized integral, do not commute. In principle, the correct computation is to

first compute the integral at some finite value of the coupling, and then send the coupling to

zero. If one (wrongly) first takes the zero coupling limit inside the integral, then operators

whose conformal dimension takes “accidentally” small value at zero coupling, start to

contribute to the double integral. At infinitesimally small coupling these operators lift

and their contribution discontinously drops out of the double integral. Such operators are

different between N = 2 and N = 4, thus resolving the aforementioned paradox.

4 N = 2 superconformal QCD as an instructive example

4.1 Definitions

The N = 2 SYM theory with gauge group SU(N) coupled to 2N hypermultiplets (in short,

N = 2 superconformal QCD or SCQCD) is a well known superconformal field theory for

any value of the complexified gauge coupling constant (3.26). This theory will serve as

a testing ground for the general ideas presented above. The bosonic field content of the

theory comprises of: (a) the gauge field Aµ and a complex scalar field ϕ in the adjoint

representation of the gauge group (both are part of the N = 2 vector multiplet), and

(b) 2N doublets of complex scalars QI (I = ±) in the fundamental representation of the

gauge group, that belong to 2N N = 2 hypermultiplets. The global symmetry group is

U(2N) × SU(2)R × U(1)R. U(2N) is a flavor symmetry rotating the hypermultiplets and

SU(2)R×U(1)R is the N = 2 R-symmetry. More details about the theory are summarized

in appendix B.

The generators of the N = 2 chiral ring, as defined in section 2.1, are the single-trace

superconformal primaries

φℓ ∝ Tr [ϕℓ] , ℓ = 2, 3, . . . , N . (4.1)

The proportionality constant is convention-dependent (specific convention choices will be

made below). The remaining fields of the chiral ring are generated by products of the

fields (4.1); in the weak-coupling formulation of the theory chiral primaries with ℓ > N

are related to the primaries with ℓ ≤ N by polynomial equations dictated by the Cayley-

Hamilton theorem of N ×N matrices.

N = 2 superconformal QCD has a single (complex) exactly marginal deformation (2.6)

with coupling τ (3.26). The exactly marginal operator Oτ is a descendant of the chiral

– 16 –



J
H
E
P
0
2
(
2
0
1
5
)
1
2
2

primary field φ2

Oτ = Q4 · φ2 . (4.2)

We note in passing that the chiral ring defined in terms of an N = 1 subalgebra

contains the additional mesonic superconformal primaries

M J
3 I ∝

(
QI jQ

J j
)
− 1

2

(
QK jQ

K j
)
δJI . (4.3)

A sum over the gauge group indices is implicit, the index j = 1, . . . , 2N runs over the

number of hypermultiplets, I,J ,K = ± are SU(2)R indices, and the subindex 3 denotes

that this particular combination belongs in a triplet representation of the SU(2)R.
17 Such

primaries are not part of the N = 2 chiral ring defined in section 2.1 and therefore will not

be part of our analysis.

4.2 SU(2) with 4 hypermultiplets

We begin the discussion with the SU(2) case which provides a simple clear demonstration

of the general ideas in section 3. In this case, φ2 is the single chiral ring generator.

We normalize φ2 by requiring the validity of the conventions (2.6), (2.7), (2.10) (see also

section 5.1.1 for an explicit tree-level implementation of these conventions). We notice that

since Oτ is, by this definition, related to a holomorphic section of the tangent bundle of

the conformal manifold, then as explained in section 3, φ2 ∝ Tr[ϕ2] (with a normalization

that is a holomorphic function of τ) is a non-holomorphic section of the bundle of chiral

primaries. A holomorphic φ2 arises by multiplying Tr[ϕ2] with the non-holomorphic factor

e−
K

384 c , where K is the Kähler potential for the Zamolodchikov metric.

In addition, the chiral ring includes a unique chiral primary φ2n ∝
(
Tr[ϕ2]

)n
at each

scaling dimension ∆ = 2n (n ∈ Z+) (generated by φ2 with repeated multiplication). We

normalize the higher order chiral primaries φ2n (n > 1) by requiring the OPE

φ2(x)φ2n(0) = φ2n+2(0) + . . . (4.4)

which fixes the OPE coefficients

C2n+2
2 2n = 1 . (4.5)

Notice that this choice is consistent with the holomorphic gauge (3.11). Moreover, as a

straightforward consequence of the associativity of the chiral ring all the non-vanishing

OPE coefficients are fixed to one; namely, one can further show that

C
2(n+m)
2n 2m = 1 . (4.6)

17For a complete analysis of the shortening conditions of the N = 2 superconformal algebra in general

theories we refer the reader to [20]. For an application to the N = 2 superconformal QCD theories see for

example [34].
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4.2.1 tt∗ equations and exact 2- and 3-point functions

In these conventions the 2-point functions of the chiral primaries φ2n

〈
φ2n(x)φ2n(0)

〉
=
g2n(τ, τ)

|x|4n (4.7)

have a non-trivial dependence on the modulus τ . Our purpose is to determine the exact

form of the functions g2n(τ, τ̄). This will immediately provide information about 3-point

functions as well.

Since we have a one-dimensional sequence of chiral primaries without any non-trivial

degeneracies, the tt∗ equations (3.10) assume the following particularly simple form

∂τ∂τ log g2n =
g2n+2

g2n
− g2n
g2n−2

− g2 , (4.8)

where n = 1, 2, . . . and g0 = 1 by definition. This infinite sequence of differential equations

can be recast as the more familiar semi-infinite Toda chain

∂τ∂τ̄qn = eqn+1−qn − eqn−qn−1 , n = 2, . . . (4.9)

by setting g2n = exp (qn − logZS4). A reality condition on qn implies that g2n are positive,

which is expected by unitarity. In section 5 we collect several perturbative checks of

equations (4.8).

It may be interesting to classify the most general solution of the equations (4.8), subject

to positivity over the entirety of the conformal manifold, but this is beyond the scope of the

current paper.18 Instead, in what follows we will use these equations to solve recursively

for the 2-point functions as follows

g2n+2 = g2n ∂τ∂τ̄ log g2n +
g22n
g2n−2

+ g2 g2n, n = 1, 2, . . . (4.10)

Knowledge of a single 2-point function, e.g. g2, implies recursively the precise form of all the

rest. As we show now, for SU(2) this provides the complete non-perturbative determination

of the 2- and 3-point functions of all chiral primary operators.

Exact 2-point functions. We can use supersymmetric localization on S4 and the for-

mula (2.13) to determine the exact coupling constant dependence of g2 . For the SU(2)

SCQCD theory an integral expression for the sphere partition function gives [8]

ZS4(τ, τ) =

∫ ∞

−∞
da e−4πIm(τ)a2(2a)2

H(2ia)H(−2ia)

(H(ia)H(−ia))4 |Zinst(a, τ)|2 . (4.11)

H is a function on the complex plane defined in terms of the Barnes G-function [35] as

H(z) = G(1 + z)G(1− z) . (4.12)

18We do not expect positivity alone to fix the solution uniquely. It is worth exploring the possibility that

positivity, in combination with the data of higher order perturbative corrections around the point weak

coupling point Imτ = ∞, might lead to a unique solution, in analogy to 2d examples [3].
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Further details are summarized for the convenience of the reader in appendix A. Zinst is

the Nekrasov partition function [36] that incorporates the contribution from all instanton

sectors.

Consequently, implementing (2.13) we obtain the exact 2-point function of the lowest

chiral primary φ2 as

g2 = ∂τ∂τ logZS4 . (4.13)

The 2-point functions of the higher order chiral primaries can be computed recursively

using (4.10). We will return to the resulting expressions momentarily.

Exact 3-point functions. The general non-vanishing 3-point function

〈
φ2m(x1)φ2n(x2)φ2m+2n(y)

〉
=

C2m 2n 2m+2n

|x1 − y|4m|x2 − y|4n (4.14)

follows immediately from the above data since

C2m 2n 2m+2n = C
2(m+n)
2m 2n g2(m+n) = g2(m+n) . (4.15)

In the second equality we made use of the OPE coefficients (4.6). This formula provides

the non-perturbative 3-point functions of chiral primaries as a function of the modulus τ ,

including all instanton corrections. Following section 3.5 it is straightforward to extend

this result to any extremal correlator of chiral primaries.

While the above normalization of the chiral primaries is very convenient for the type

of computations of the previous section, it is common in conformal field theory to work

with orthonormal fields φ̂I for which

〈
φ̂I(x)φ̂J(0)

〉
=

δIJ̄
|x|2∆ . (4.16)

In these conventions, the OPE coefficients ĈK
IJ depend non-trivially on the moduli. Con-

verting to this normalization in the case at hand we find the structure constants

Ĉ2m 2n 2m+2n =

√
g2m+2n

g2m g2n
. (4.17)

4.2.2 Perturbative expressions

The tt∗ equations have allowed us to obtain exact results for 2- and 3-point functions of

the chiral primary fields. The resulting expressions depend implicitly on the S4 partition

function of the SU(2) theory, which is given in terms of an one-dimensional integral (4.11).

It is interesting to work out the first few orders in the perturbative expansion of the exact

expressions. This will be useful later on in section 5 when we compare against independent

computations in perturbation theory.

0-instanton sector. Consider the perturbative contributions around the weak coupling

regime gYM → 0, or equivalently τ → +i∞. Working with the perturbative (0-instanton)

part of the S4 partition function we obtain

Z
(0)
S4 =

∫ ∞

−∞
da e−4πIm(τ)a2(2a)2

H(2ia)H(−2ia)

(H(ia)H(−ia))4 . (4.18)
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The mathematical identity

log

(
H(2ia)H(−2ia)

(H(ia)H(−ia))4
)

= −8
∞∑

k=2

ζ(2k − 1)

k
(22k−2 − 1)(−1)ka2k (4.19)

implies the perturbative expansion (see also [37])

Z
(0)
S4 =

1

4π(Imτ)3/2

(
1− 45 ζ(3)

(4π Imτ)2
+

525 ζ(5)

(4π Imτ)3
+ . . .

)
. (4.20)

Then, employing (4.13) and the recursive tt∗ equations (4.10) we deduce the pertubative

expansion of the 2-point functions of any chiral primary. For the first five chiral primaries

the specific expressions are

g
(0)
2 =

3

8

1

(Imτ)2
− 135 ζ(3)

32π2
1

(Imτ)4
+

1575 ζ(5)

64π3
1

(Imτ)5
+ . . . , (4.21)

g
(0)
4 =

15

32

1

(Imτ)4
− 945 ζ(3)

64π2
1

(Imτ)6
+

7875 ζ(5)

64π3
1

(Imτ)7
+ . . . , (4.22)

g
(0)
6 =

315

256

1

(Imτ)6
− 76545 ζ(3)

1024π2
1

(Imτ)8
+

1677375 ζ(5)

2048π3
1

(Imτ)9
+ . . . , (4.23)

g
(0)
8 =

2835

512

1

(Imτ)8
− 280665 ζ(3)

512π2
1

(Imτ)10
+

1913625 ζ(5)

256π3
1

(Imτ)11
+ . . . , (4.24)

g
(0)
10 =

155925

4096

1

(Imτ)10
− 91216125 ζ(3)

16384π2
1

(Imτ)12
+

2982065625 ζ(5)

32768π3
1

(Imτ)13
+ . . . .

(4.25)

In section 5 we verify independently the validity of the first two orders of these expressions

(for arbitrary g
(0)
2n ) in perturbation theory. For each of these 2-point functions, the leading

order term comes from a tree-level computation. The one-loop contribution is always

vanishing and the next-to-leading order contribution comes from a two-loop computation.

The corresponding 3-point functions follow immediately from equation (4.15). In

the alternative conventions (4.16) they follow from a straightforward application of equa-

tion (4.17). The first few coefficients are

Ĉ
(0)
2 2 4 =

√
10

3

(
1− 9 ζ(3)

2π2
1

(Imτ)2
+

525 ζ(5)

8π3
1

(Imτ)3
+ . . .

)
, (4.26)

Ĉ
(0)
2 4 6 =

√
7

(
1− 9 ζ(3)

π2
1

(Imτ)2
+

675 ζ(5)

4π3
1

(Imτ)3
+ . . .

)
, (4.27)

Ĉ
(0)
2 6 8 = 2

√
3

(
1− 27 ζ(3)

2π2
1

(Imτ)2
+

2475 ζ(5)

8π3
1

(Imτ)3
+ . . .

)
, (4.28)

Ĉ
(0)
2 8 10 =

√
55

3

(
1− 18 ζ(3)

π2
1

(Imτ)2
+

975 ζ(5)

2π3
1

(Imτ)3
+ . . .

)
, (4.29)

Ĉ
(0)
4 4 8 = 3

√
14

5

(
1− 18 ζ(3)

π2
1

(Imτ)2
+

825 ζ(5)

2π3
1

(Imτ)3
+ . . .

)
, (4.30)

Ĉ
(0)
4 6 10 =

√
66

(
1− 27 ζ(3)

π2
1

(Imτ)2
+

2925 ζ(5)

4π3
1

(Imτ)3
+ . . .

)
. (4.31)
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1-Instanton sector. The contribution of instantons can be deduced from known expres-

sions of Zinst without much additional effort. For example, in the 1-instanton sector19 the

first few orders in the perturbative expansion of ZS4 are

Z
(1)
S4 =cos θ exp

(
− 8π2

g2
Y M

)(
− 3

4π(Imτ)3/2

)[
1− 1

8πImτ
− 45ζ(3)

16π2(Imτ)2
+
105(ζ(3)+10ζ(5))

128π3(Imτ)3
+. . .

]
.

(4.32)

We have written out θ = π(τ + τ) and gYM explicitly in some of the terms, to make the

expression more intuitive. The corresponding corrections g
(1)
2n of g2n can be computed by

starting with (4.13)

g2 = ∂τ∂τ log
(
Z

(0)
S4 + Z

(1)
S4 + . . .

)
, (4.33)

recursively applying (4.10)

g2n+2 = g2n ∂τ∂τ̄ log g2n +
g22n
g2n−2

+ g2 g2n, n = 1, 2, . . . (4.34)

and finally isolating the exp
(
− 8π2

g2
Y M

)
contribution g

(1)
2n at every level g2n. For the first

terms we find

g
(1)
2 = cos θ exp

(
− 8π2

g2
Y M

)(
3

8(Imτ)2
+

3

16π(Imτ)3
− 135ζ(3)

32π2(Imτ)4
+ . . .

)
, (4.35)

g
(1)
4 = cos θ exp

(
− 8π2

g2
Y M

)(
15

16(Imτ)4
+

15

32π(Imτ)5
− 945ζ(3)

32π2(Imτ)6
+ . . .

)
(4.36)

It is straightforward to continue with higher n if desired. Analogous results can be obtained

likewise for the general ℓ-instanton sector. From these 2-point functions we can also express

the exact instanton corrections to chiral primary 3-point functions.

It would be interesting to confirm these results with an independent perturbative

computation in the ℓ-instanton sector.

4.2.3 Comments on SL(2,Z) duality

It is interesting to explore the transformation properties of correlators of chiral primaries

in N = 2 SCQCD under non-perturbative SL(2,Z) transformations20

τ ′ =
aτ + b

cτ + d
, a, b, c, d ∈ Z , ad− bc = 1 . (4.37)

We expect that the Zamolodchikov metric obeys the identity

Gτ ′ τ ′ dτ
′dτ ′ = Gτ τdτdτ , (4.38)

19By this we mean contributions of 1 instanton or 1 anti-instanton, i.e. the part that scales like

exp
(

− 8π2

g2
Y M

)

.
20In this subsection we denote by τ a holomorphic coordinate on the conformal manifold which transforms

in a simple way (4.37) under SL(2,Z). We would like to thank B. van Rees for discussions on this issue.
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or equivalently

Gττ

(
aτ + b

cτ + d
,
aτ + b

cτ + d

)
= |cτ + d|2Gτ τ (τ, τ) . (4.39)

A similar transformation property holds for the 2-point function g2 = Gττ/192.

Given the relation between the Zamolodchikov metric and the S4 partition function

Gττ = 192 ∂τ∂τ̄ZS4 (4.40)

and taking into account the transformation (4.37), we notice that the validity of (4.39)

requires the partition function ZS4 to be SL(2,Z) invariant up to Kähler transformations

logZS4(τ ′) = logZS4(τ) + f(τ) + f(τ) . (4.41)

The issue we would like to address here is the following: suppose that we have verified

the correct SL(2,Z) transformation of g2. What is the SL(2,Z) behavior of the 2-point

functions g2n of the higher order chiral primaries?

The tt∗ equations provide a specific answer. Assuming g′2 = |cτ + d|2g2, it is easy to

verify recursively from (4.10) that

g′2n = |cτ + d|2ng2n . (4.42)

Alternatively, in the normalization (4.16), equations (4.17) and (4.42) imply that the 3-

point functions are SL(2,Z) invariant

Ĉ ′
2m 2n 2m+2n

= Ĉ2m 2n 2m+2n , (4.43)

which is consistent with expectations. See [38] for a related discussion of the S-duality

properties of chiral primary correlation functions in N = 4 SYM theory.

4.3 SU(N) with 2N hypermultiplets

The case of general SU(N) gauge group can be analyzed in a similar fashion. Unfortunately,

for general N ≥ 3 it is less clear under which conditions we can identify the relevant

solution of the tt∗ equations. We proceed to discuss the detailed structure of the SU(N)

tt∗ equations.

The general SU(N) N = 2 SCQCD theories possess N − 1 chiral ring generators

represented by the single-trace operators

Tr[ϕ2] , Tr[ϕ3] , · · · , Tr[ϕN ] . (4.44)

The general element of the chiral ring is freely generated from these operators and can be

viewed as a linear combination of the primaries

φ(n1,n2,...,nN−1) ∝
N−1∏

i=1

(
Tr[ϕi+1]

)ni . (4.45)

The operator that gives rise to the single exactly marginal direction Oτ of the theory is

φ2 ≡ φ(1,0,...,0) . (4.46)
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We notice that the scaling dimension of the generic chiral primary (4.45) is ∆ =
∑N−1

i=1 (i+

1)ni. Obviously, there are values of ∆ where more than one chiral primary can have

the same scaling dimension. Such chiral primaries can mix non-trivially with each other

to exhibit non-diagonal τ -dependent 2-point function matrices. We verify this mixing

explicitly in specific examples at tree-level in subsection 5.3.

The OPE of the chiral primaries (4.45) can be chosen to take the form

φ(n1,...,nN−1)(x)φ(m1,...,mN−1)(0) = φ(n1+m1,...,nN−1+mN−1)(0) + . . . , (4.47)

or in more compact notation

φK(x)φL(0) = φK+L(0) + . . . . (4.48)

This choice allows us to fix the non-vanishing OPE coefficients to

CK+L
K L = 1 , (4.49)

in analogy to the SU(2) equation (4.6). In this way, once we choose the normalization

of the chiral ring generators (4.44) the normalization of all the chiral primary fields is

uniquely determined. We will consider a normalization of φ2 that adheres to the conven-

tions (2.6), (2.10). The remaining chiral primaries in (4.44) are chosen with an arbitrary

normalizing factor NK(τ) that is a holomorphic function of the complex coupling τ .

4.3.1 The structure of the SU(N) tt∗ equations

In these conventions the tt∗ equations (3.10) become

∂τ̄

(
gM̄∆L∆∂τgK∆M̄∆

)
= gK∆+2,R̄∆+2̄ g

R̄∆L∆ − gK∆R̄∆
gR̄∆−2̄,L∆−2 − g2 δ

L∆
K∆

. (4.50)

The addition of 2 in the index notation K+2 refers to the element φ2 φK . The subindex ∆

on the indices has been added here to flesh out the scaling dimension of the corresponding

chiral primaries. Sample tree-level checks of equations (4.50) (that exhibit the non-trivial

mixing of chiral primaries) are collected in section 5.3.

Similar to the SU(2) case the equations (4.50) relate 2-point functions of chiral pri-

maries at three different scaling dimensions and can be recast in the recursive form

gK∆+2,N̄∆+2̄ = gL∆N̄∆
∂τ̄

(
gM̄∆L∆∂τgK∆M̄∆

)
+ gK∆M̄∆

gM̄∆−2̄,L∆−2gL∆N̄∆
+ g2 gK∆N̄∆

.

(4.51)

However, unlike the situation of the SU(2) gauge group, the complicated degeneracy pat-

tern of the general SU(N) theory and the corresponding non-trivial mixing of the chiral

primary fields makes this system of differential equations a far more complicated one to

solve explicitly in terms of a few externally determined data (like the Zamolodchikov met-

ric).

Most notably, the l.h.s. of equation (4.51) involves primaries that belong in a subse-

quence generated by multiplication with the field φ2. In contrast, the r.h.s. involves in

general 2-point functions of all available chiral primaries. This feature complicates the re-

cursive solution of the system of equations (4.51). As we move up in scaling dimension with
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the action of φ2 the number of degenerate fields will stay the same or increase. Increases

are due to the appearance of additional degenerate chiral primary fields that involve the

action of the extra chiral ring generators other than φ2, i.e. Tr[ϕ
3] etc. In such cases, there

are seemingly new 2-point function coefficients that have not been determined recursively

from the previous lower levels and represent new data that need to be provided externally.

It is an interesting open question whether other properties (like the property of positivity

over the entire moduli space) are strong enough to reduce the number of unknowns and fix

the full solution uniquely.

Despite the apparent complexity of (4.51), it is quite likely that this system has a

hidden structure that allows to simplify its description. For example, in section 5.4 we find

preliminary evidence at tree-level that one can isolate differential equations that form a

closed system on the subsequence of the chiral primary fields (φ2)
n. If true, the data of

such subsequences could be determined solely in terms of the SU(N) S4 partition function

in direct analogy to the SU(2) case. Such possibilities are currently under investigation.

4.3.2 3-point functions

The non-vanishing 3-point structure constants of the SU(N) theory are

CK∆1
L∆2

M∆1+∆2
= C

(K+L)∆1+∆2
K∆1

L∆2
g(K+L)∆1+∆2

,M∆1+∆2
= g(K+L)∆1+∆2

,M∆1+∆2
. (4.52)

This relation is the SU(N) generalization of (4.14), (4.15). Consequently, a solution of the

tt∗ equations (4.50) determines immediately also the 3-point functions (4.52).

The conversion of the above results into the language of the common alternative nor-

malization (4.16) 〈
φ̂K(x)φ̂L̄(0)

〉
=

δKL̄

|x|2∆K
(4.53)

requires a transformation

φ̂K =
∑

L

N L
K φL (4.54)

at each scaling dimension ∆, where the matrix elements N L
K are suitable functions of

the 2-point coefficients gKL̄. Once the matrix elements N L
K are determined the 3-point

structure constants ĈIJK̄ in the basis (4.53) can be written as

ĈIJK̄ =
∑

L1,L2,L̄3

N L1
I N L2

J N̄ L̄3

K̄
gL1+L2,L̄3

. (4.55)

5 Checks in perturbation theory

In this section we perform a number of independent checks of the above statements in

perturbation theory. These checks provide a concrete verfication of the validity of the

general formal proof of the tt∗ equations in [4], and allow us to verify that the tt∗ equations

were applied correctly in the previous section. In the process, we encounter and comment

on several individual properties of correlation functions in N = 2 SCQCD. We work in the

conventions listed in appendix B.
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5.1 SU(2) SCQCD

We begin with a perturbative computation up to 2 loops of the 2-point coefficients g2n in

the SU(2) N = 2 SCQCD theory.

5.1.1 Tree-level

Let us start with a comment about normalizations in the general SU(N) theory. At lead-

ing order in the weak coupling limit, gYM ≪ 1, (and the conventions summarized in

appendix B) the 2-point function of the adjoint scalars ϕ = ϕaT a is
〈
ϕa(x)ϕb(0)

〉
= δab

1

π Imτ

1

|x|2 . (5.1)

T a (a = 1, . . . , N2−1) is a basis of the SU(N) Lie algebra. Normalizing the chiral primary

operator φ2 as

φ2 =
π

4N
Tr[ϕ2] =

π

4
ϕaϕa (5.2)

we obtain
〈
φ2(x)φ2(0)

〉
=
N2 − 1

8

1

(Imτ)2
1

|x|4 . (5.3)

On the other hand, the exactly marginal operator Oτ , (4.2), has the explicit form presented

in equation (B.11) of appendix B. A tree-level computation yields21

〈
Oτ (x)Oτ (0)

〉
= 24(N2 − 1)

1

(Imτ)2
1

|x|8 , (5.4)

which is consistent with the conventions (2.8), (2.9), (2.10). This is important for the va-

lidity of the tt∗ equations (3.10), or the equations (4.8) in the SU(2) case of this subsection.

Specializing now to the SU(2) case we find that the 2-point function (5.3) has the

tree-level coefficient

g2 =
3

8

1

(Imτ)2
. (5.5)

We can read off the 2-point function coefficients g2n of the higher chiral primary operators

φ2n = (φ2)
n from free field Wick contractions in the 2-point correlation function

〈
φ2n(x)φ2n(0)

〉
=
〈
(φ2)

n(x) (φ2)
n(0)

〉
. (5.6)

A brute-force computation gives

g2n =
(2n+ 1)!

6n
gn2 . (5.7)

With this result the tt∗ equations (4.8)

∂τ∂τ̄ log g2n =
g2n+2

g2n
− g2n
g2n−2

− g2 (5.8)

reduce at tree-level to the differential equation

∂τ∂τ̄ log g2 =
4

3
g2 , (5.9)

which is found to hold for the g2 given in equation (5.5).

21At tree-level only the gauge part iπ
16
F a
µν+F

µν+a of Oτ in (B.11) contributes. The auxiliary fields

contribute only contact terms and the cubic interactions are subleading in gY M . The boson and fermion

kinetic terms vanish on-shell. A similar observation was made in [12].
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5.1.2 Quantum corrections up to 2 loops

We proceed to compute the first non-vanishing quantum corrections to g2n in perturbation

theory. This will allow us to reproduce the Zamolodchikov metric derived from localiza-

tion [7] at g4YM order and will provide a test of the tt∗ equations at the quantum level.

Furthermore, due to the discussion in section 3.2, this provides a g4YM check of the chi-

ral primary three-point functions in a diagonal basis as well. We will use the techniques

of [39], namely we will exploit the fact that quantum corrections for N = 4 SYM vanish

at each order in perturbation theory,22 so that we only need to compute the diagrammatic

difference between the N = 2 and N = 4 theories.

Following [39], it is easy to see that the diagrammatic difference between N = 2 and

N = 4 at order g2YM vanishes. It immediately follows that the theory does not receive

quantum corrections to this order, consistent with the results from localization (4.21)–

(4.25).

We now examine the diagrams that contribute to order g4YM to the 2-point function

〈
φ2n(x)φ2n(0)

〉
=
〈
(φ2)

n(x) (φ2)
n(0)

〉
=

g2n
|x|4n . (5.10)

To understand what type of diagrams can contribute to this order, it is convenient to

temporarily regard the adjoint scalar ϕ lines as external and change the normalization of

the fields so that the coupling constant dependence is on the vertices. Diagrams which

differ between N = 2 and N = 4 must involve hypermultiplets running in the internal

lines. After a brief inspection of the N = 2 SCQCD Lagrangian it is not too hard to

convince oneself that the only possible types of diagrams that can contribute to order g4YM

(and which differ between N = 2 and N = 4) come from two types of topologies, when

trying to connect the 2n ‘external lines’ of ϕ at point x to the 2n ‘external lines’ of ϕ at

point 0:

a) diagrams where one external ϕ line is connected to one external ϕ line by a 2-loop-

corrected ϕ− ϕ propagator, while all others lines are connected by free propagators

b) diagrams where two external ϕ lines and two external ϕ lines are all connected to-

gether by a nontrivial 4-leg subdiagram, while the remaining ϕ and ϕ lines are con-

nected by free propagators.

Let us examine the former first. We denote the quantum corrected propagator as

〈
ϕa(x)ϕ̄b(y)

〉
= δabS(x− y) = δabS(0)(x− y)

(
1 + f1 g

4
YM + . . .

)
, (5.11)

where S(0)(x−y) is the tree-level propagator (5.1) and we have used the fact that the g4YM

corrections are proportional to the tree-level propagator [39]. f1 is a numerical constant

that we will determine in the following.

22See [40, 41] for perturbative computations of 2-point functions of chiral primaries in N = 4 SYM.
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a

b d

c

p

a

b d

c

p

D1 D2

Figure 1. The diagrams D1 and D2. Solid double lines represent ϕ propagators, dashed double

lines correspond to hyperscalars and dashed lines to hyperfermions. a, b, c and d are adjoint gauge

indices and p is the incoming momentum.

Regarding diagrams of type b), there are only two diagrams23 that can contribute to

this order, which are shown in figure 1. In the diagram D1 hyperscalars run in the internal

loop, while the diagram D2 corresponds to the exchange of hyperfermions. In more detail,

we define D1(x, y) and D2(x, y) as

D1(x, y) =
1

2

〈
ϕa(x)ϕb(x)ϕ̄c(y)ϕ̄d(y)(Ξ1)

2
〉

connected
, (5.12)

D2(x, y) =
1

4!

〈
ϕa(x)ϕb(x)ϕ̄c(y)ϕ̄d(y)(Ξ2)

4
〉

connected
, (5.13)

where Ξ1 and Ξ2 are the interaction actions associated to the terms in the Lagrangian (B.6)

coupling the vector sector to the hypermultiplet sector, namely

Ξ1 =

∫
d4xQI (ϕ̄ϕ+ ϕϕ̄)QI , (5.14)

Ξ2 = i
√
2

∫
d4x (ψ̃ϕψ − ψ̄ϕ̄

¯̃
ψ) , (5.15)

and we take Wick’s contractions that correspond to connected diagrams only.

It is easy to see that all the other diagrams either vanish or are identical to their

N = 4 counterparts. We start by examining the gauge structure of these diagrams. Both

are proportional to Tr(T aT cT bT d) (or permutations thereof), so the difference between the

N = 2 and N = 4 color factors reads

4Tr(T aT cT bT d)fundamental − Tr(T aT cT bT d)adjoint = −1

2

(
δacδbd + δadδbc + δabδcd

)
,

(5.16)

where the factor of 4 in the equation above comes from the fact that the N = 2 theory has

4 hypermultiplets. It is thus convenient to define the quantity

C ≡ δacδbd + δadδbc + δabδcd , (5.17)

23We remind the reader that we are only considering diagrams which differ between N = 2 SCQCD and

N = 4 SYM with the same gauge group. Also the statement that these are the only diagrams is true only

for SU(2) gauge group. See [39] for useful background.
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and parametrize the contribution from these two diagrams as

D1(x, y) +D2(x, y) = C S(0)(x− y)2 f2 g
4
YM , (5.18)

where f2 is a numerical constant that we will determine momentarily.

With these results, it is straightforward to work out the combinatorics and find the

g4YM corrections to the correlation functions g2n as a function of the two contributions f1
and f2. After some work we find that the result is

〈φ2n(x)φ2n(y)〉 =
(π
4

)2n
(2n+ 1)!S(0)(x− y)2n

[
1 +

n

2
(4f1 + (6n− 1)f2) g

4
YM

]
, (5.19)

where f1 and f2 are defined in equations (5.11) and (5.18) respectively. In order to derive

the expression above, one has to consider all the possible ways to connect the propagators

associated to φ2n with those associated to φ̄2n, with the insertion of g4YM corrections

coming from the diagrams described above. We notice that the contribution coming from

g4YM diagrams with two external ϕ lines has a different dependence on n compared to the

one coming from diagrams with four external ϕ lines, reflecting the different combinatorial

properties of these graphs.

It is important to notice that the equation above is not automatically consistent with

the tt∗ equations. In fact, we find that demanding that (5.19) satisfies the tt∗ equations

leads to the non-trivial condition

f2 =
2

5
f1 . (5.20)

We conclude that the tt∗ equations do encode non-trivial information about the quantum

corrections to chiral primary correlation functions, as they are sensitive to the ratio f2/f1.

Determining this ratio by explicitly computing the relevant Feynman diagrams will thus

provide us with a stringent test of these equations at the quantum level.

We will now determine the value of f1 and f2 by computing the Feynman diagrams D1

and D2. We will show that their ratio is precisely the one predicted by the tt∗ equations.

Furthermore, the result will allow us to compute the g4YM correction to the Zamolodchikov

metric, providing thus a perturbative check of the results of [7].

Computation of f1 and f2. Recall that the tree-level propagator (5.1) reads

S(0)(x− y) =
g2YM

4π2(x− y)2
= g2YM

∫
d4p

(2π)4
e−ip(x−y)

p2
. (5.21)

As is customary, we work in momentum space and in dimensional regularization, where

the spacetime dimension d is d = 4− 2ǫ.

The g4YM correction to the propagator S(1)(x−y) was computed in [39], and is given by

S(1)(x− y) = −15ζ(3)

64π4
g4YMS

(0)(x− y) , (5.22)

which in turn implies that

f1 = −15ζ(3)

64π4
. (5.23)
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B41 B51

B52 B62 B81

Figure 2. Master integrals appearing in the reduction of the Feynman diagrams of figure 1.

They are associated to loop integrals consisting of scalar propagators only (i.e. without non-trivial

numerators).

To compute the remaining two diagrams, we employ standard techniques [42] to reduce

any 3-loop loop integral to a linear combination of “master integrals”, whose ǫ-expansion

can be found in the literature. We will see in a moment that the only master integrals that

we need are those that correspond to the topologies shown in figure 2. For the convenience

of the reader, we report here their ǫ-expansion up to the order needed for our computation.

We use the conventions of [43]

B41 = p4−6ǫ (4π)
3ǫ−6

Γ(1− ǫ)3

( 1

36ǫ
+

71

216
+

3115

1296
ǫ−

(7ζ(3)
9

− 109403

7776

)
ǫ2 + . . .

)
, (5.24)

B51 = p2−6ǫ (4π)
3ǫ−6

Γ(1− ǫ)3

(
− 1

4ǫ2
− 17

8ǫ
− 183

16
+
(
3ζ(3)− 1597

32

)
ǫ+ . . .

)
, (5.25)

B52 = p2−6ǫ (4π)
3ǫ−6

Γ(1− ǫ)3

(
− 1

3ǫ2
− 10

3ǫ
− 64

3
+
(22ζ(3)

3
− 112

)
ǫ+ . . .

)
, (5.26)

B62 = p−6ǫ (4π)
3ǫ−6

Γ(1− ǫ)3

( 1

3ǫ3
+

7

3ǫ2
+

31

3ǫ
+
(8ζ(3)

3
+

103

3

)
+ . . .

)
, (5.27)

B81 = p−4−6ǫ (4π)
3ǫ−6

Γ(1− ǫ)3

(
20ζ(5) + . . .

)
. (5.28)

The contributions coming from the diagrams D1 and D2 in momentum space will be

denoted by D̃1(p) and D̃2(p) respectively. At the end of the computation, we transform

back to position space using the formula
∫

ddp

(2π)d
e−ipx

(p2)2−k+αǫ
=

22k−4

π2
(−1)k(k − 1)!(k − 2)!α

ǫ

(x2)k−(α+1)ǫ

(
1 +O(ǫ)

)
. (5.29)
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This formula tells us that we only need to determine the 1/ǫ term in the Feynman diagrams

of interest, since they are the only ones that can contribute to the finite part of the posi-

tion space correlator (see also [40, 41]). We will explicitly show that all the higher-order

poles cancel exactly between the two diagrams D1 and D2, as expected from extended

supersymmetry.

We first examine the diagram D1. We find that its contribution in momentum space

is given by

D̃1(p) = −8 g8YM CB62 , (5.30)

where B62 is the master integral associated to the topology of the corresponding diagram

in figure 2 and C was defined in (5.17). Since the diagram is already in the “master

integral” form, we do not need to further reduce it and we can directly use the result in

equation (5.27).

The Feynman diagram D2 is more complicated, but can also be reduced to a linear

combination of master integrals as explained above. We used the mathematica package

FIRE [44] to perform the reduction. The result turns out to be

D̃2(p) = 2 g8YM C
(4(2d− 5)(3d− 8)(43d2 − 288d+ 480)

(d− 4)3(2d− 7)p4
B41

+
14(d− 3)(3d− 10)(3d− 8)

(d− 4)2(2d− 7)p2
B51 −

96(d− 3)2

(d− 4)2p2
B52

− (7d2 − 35d+ 38)

(d− 4)(2d− 7)
B62 +

(d− 4)p4

14− 4d
B81

)
. (5.31)

Combining the results in equations (5.24)–(5.28), we obtain

D̃1(p) + D̃2(p) =
(
− 8ζ(3)

(4π)6ǫ
g8YM C + . . .

) 1

p6ǫ
, (5.32)

where the ellipses denote terms of order ǫ0 or higher. It is pleasing to see that the 1/ǫ3

and 1/ǫ2 poles precisely cancel, as well as all the non-ζ(3) contributions to the simple pole.

Finally, we use equation (5.29) to transform back to position space, so our final result reads

D1(x, y) +D2(x, y) = −6ζ(3)

64π4
g4YM C S(0)(x− y)2 . (5.33)

Comparing with (5.18), we immediately get

f2 = −6ζ(3)

64π4
. (5.34)

Using the results (5.23) and (5.34) we can confirm the relation (5.20), which — as was

explained around equation (5.19) — implies the validity of the tt∗ equations for the entire

chiral ring 2-point functions g2n up to the relevant order!

Moreover, using equation (5.19) we are able to provide an independent derivation of

the g4YM perturbative correction to the Zamolodchikov metric

〈
φ2(x)φ2(y)

〉
=

3π2

8
S(0)(x− y)2

(
1− 45 ζ(3)

4π2
1

(Imτ)2
+ . . .

)
. (5.35)

Recalling that the tree-level propagator is given by equation (5.1), we find perfect agreement

with the result from localization (4.21) and the prediction of [7].
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5.2 SU(N) SCQCD at tree level

We continue with a tree-level investigation of the tt∗ equations for the general SU(N) group.

The 2- and 3-point functions entering in (4.50) can be computed directly by straightforward

Wick contractions. Examples of such computations will be provided below.

However, before we enter these examples it is worth making first the following general

point. Although the explicit implementation of Wick contractions can be rather cumber-

some with complicated combinatorics, it is trivial to obtain the τ -dependence of the 2-point

function at leading order in the weak coupling limit. In general,

gKM

∣∣∣
tree

=
1

(Imτ)∆K
g̃KM (5.36)

where g̃KM is coupling constant independent and contains the combinatorics from the

contractions of the traces. From this expression the l.h.s. of the tt∗ equations (4.50) follows

trivially as

∂τ

(
gML∂τgKM

) ∣∣∣
tree

= − ∆K

(τ − τ̄)2
δLK =

R

8(Imτ)2
δLK (5.37)

where we set ∆K = R/2.

The r.h.s. of the tt∗ equations (4.50) has the form

[C2, C2]
L
K − g2δ

L
K . (5.38)

Notice that the tree level 2- and 3-point functions in this expression are exactly the same

as the ones we encountered in section (3.6) in the context of N = 4 SYM theory. As a

result, we can use the identity (3.29) to recast (5.38) into the simpler form

[C2, C2]
L
K−g2 δLK

∣∣
tree

= δLK
R

dimG g2
∣∣
tree

=
R

N2 − 1

N2 − 1

8

1

(Imτ)2
δLK =

R

8(Imτ)2
δLK . (5.39)

We used the fact that for the SU(N) theories dimG = N2 − 1. Comparing the l.h.s. (5.37)

and the r.h.s. (5.39) we find that the tt∗ equations are obeyed at tree level for any SU(N)

N = 2 SCFT and for all sectors of charge R in the chiral ring.

The reader should appreciate that the short argument we have just presented is simpler

than the general proof of the tt∗ equations in [4] because it makes explicit use of the special

properties of correlators in a free CFT, such as the tree-level identity (3.29), and its proof

in appendix C.

5.3 SU(3) examples

To illustrate the content of the above equations and the new features of the SU(N) tt∗

equations (N ≥ 3) (compared to the SU(2) case) we consider a few sample tree-level

computations in the SU(3) theory.

The SU(3) N = 2 SCQCD theory possesses two chiral ring generators, φ2 and φ3. We

normalize φ2 as in (5.3) and φ3 as

φ3 =
N3

8
Tr[ϕ3] (5.40)
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with an arbitrary τ -independent normalization constant N3.

The tt∗ equation (4.51) applied to scaling dimension ∆ = 3 gives

g5 = g3 ∂τ∂τ̄ log g3 + g2 g3 . (5.41)

g5 is the 2-point function coefficient for the single chiral primary φ5 = φ2 φ3 at ∆ = 5. The

explicit tree-level computation gives

g3 = 5N 2
3

1

(Imτ)3
, (5.42)

g5 =
35

4
N 2

3

1

(Imτ)5
(5.43)

in agreement with the differential equation (5.41) for any N3.

More involved examples with non-trivial degeneracy arise as we move up in scaling

dimension. For instance, at scaling dimension ∆ = 6 there are two degenerate chiral

primary fields

φ(3,0) = (φ2)
3 , φ(0,2) = (φ3)

2 . (5.44)

A tree-level computation shows that these fields are not orthogonal. The 2 × 2 matrix of

2-point function coefficients is

G6 =

(
g
(3,0)(3,0)

g
(3,0)(0,2)

g
(0,2)(3,0)

g
(0,2)(0,2)

)
=

1

4(Im τ)6

(
45 15N 2

3

15N 2
3 425N 4

3

)
. (5.45)

Similarly, at scaling dimension ∆ = 8 there are two degenerate fields

φ(4,0) = (φ2)
4 , φ(1,2) = φ2 (φ3)

2 (5.46)

with the 2-point function coefficient matrix

G8 =

(
g
(4,0)(4,0)

g
(4,0)(1,3)

g
(1,3)(4,0)

g
(1,3)(1,3)

)
=

1

4(Im τ)8

(
315 105N 2

3

105N 2
3 1085N 4

3

)
. (5.47)

The tt∗ equation (4.50) at ∆ = 6 is a matrix equation of the form

3

2

1

(Im τ)2
δLK = (G8)(1,0)+K,(1,0)+R̄

(G−1
6 )R̄L − (G6)K(3,0)

(g4)
−1δL(3,0) − g2 δ

L
K . (5.48)

One can verify that the algebraic equations (5.48) are satisfied by the tree-level expres-

sions (5.45), (5.47) and (5.50) for N = 3, n = 1, 2.

5.4 SU(N) observations

After the implementation of (5.36) the SU(N) tt∗ equations (4.50) take the following alge-

braic form at tree-level

∆

4
g̃M̄∆L∆ g̃K∆ M̄∆

= g̃K∆+2,R̄∆+2̄ g̃
R̄∆ L∆ − g̃K∆ R̄∆

g̃R̄∆−2̄,L∆−2 − g̃2 δ
L∆
K∆

. (5.49)
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This equation as an explicit index version of (5.39) is the SU(N) generalization of the

SU(3) matrix equation (5.48) above. Although it is just a simple tree-level version of the

full equations (5.36) it continues to carry much of their complexity and encodes non-trivial

information about the combinatorics of free field Wick contractions of 2-point functions of

arbitrary multi-trace operators in the chiral ring.

Focusing on the 2-point functions g2n of the chiral primary fields φ2 ∝ (Tr[φ2])n we

have observed experimentally (by direct Mathematica computation of free field Wick

contractions in a considerable range of values of n,N), that the following mathematical

identity holds24

g2n =
1

16n (Imτ)2n

N2−1∑

a1,...,a2n=1

δa1a2 · · · δa2n−1a2n

∑

σ∈S2n

δσ(a1)σ(a2) · · · δσ(a2n−1)σ(a2n)

=
n!

4n

(
N2 − 1

2

)

n

1

(Imτ)2n
. (5.50)

In this formula (x)n denotes the Pochhammer symbol

(x)n = x(x+ 1) · · · (x+ n− 1) , (5.51)

S2n refers to the group of permutations of 2n elements and σ is the generic permutation

in this group.

Although currently we do not have an analytic proof of this formula, we expect that

it holds generally for any value of the positive integers n ≥ 1, N > 1. For example, for

N = 2 (the SU(2) case, where there are no degeneracies and equations (5.8) make up the

full set of tt∗ equations) one can easily see that the Pochhammer formula (5.50) reproduces

the result (5.5), (5.7). As another explicit check, notice that all the values of g2n (for

n = 1, 2, 3, 4) in the previous SU(3) section are consistent with (5.50).

The intriguing fact about (5.50) is that it predicts values of g2n (at all N > 1) that

obey the tree-level version of the same semi-infinite Toda chain

∂τ∂τ̄ log g2n =
g2n+2

g2n
− g2n
g2n−2

− g2 (5.52)

that followed directly from the tt∗ equations in the SU(2) case. This is not an obvious

property of the matrix equations (5.49) at arbitrary N and hints at a hidden underlying

structure that will be useful to understand further. Moreover, if (5.52) holds for g2n at all

N beyond tree-level it would allow us to use the SU(N) S4 partition function to obtain a

complete non-perturbative solution of the two-point functions 〈(φ2)n (x) (φ2)n (0)〉 in the

SU(N) theory similar to the SU(2) case above. These issues and their implications for the

structure of the SU(N) tt∗ equations (as well as possible extensions to more general chiral

primary fields) are currently under investigation.

24We are not aware of a previous appearance of this identity in the literature. Related work that may be

useful in proving it has appeared in [45].
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6 Summary and prospects

We argued that the combination of supersymmetric localization techniques and exact re-

lations like the tt∗ equations opens the interesting prospect for a new class of exact non-

perturbative results in superconformal field theories.

In this paper we focused on four-dimensional N = 2 superconformal field theories.

Combining the tt∗ equations of ref. [4] with the recent proposal [7] that relates the Zamolod-

chikov metric on the moduli space of N = 2 SCFTs to derivatives of the S4 partition

function we found useful exact relations between 2- and 3-point functions of N = 2 chiral

primary operators. In some cases, like the case of SU(2) SCQCD, the tt∗ equations form

a semi-infinite Toda chain and a unique solution can be determined easily in terms of the

well-known S4 partition function of the SU(2) theory. The solution provides exact formulae

for the 2- and 3-point functions of all the chiral primary fields of this theory as a function of

the (complexified) gauge coupling. We verified independently several aspects of this result

with explicit computations in perturbation theory up to 2-loops.

In more general situations, e.g. the SU(N) SCQCD theory, the structure of the tt∗

equations is further complicated by the non-trivial mixing of degenerate chiral primary

fields. We provided preliminary observations of an underlying hidden structure in these

equations that is worth investigating further. The minimum data needed to determine a

unique complete solution of the general SU(N) tt∗ equations, and the structure of that

solution, remains an interesting largely open question. It would be useful to know if a few

fundamental general properties, like positivity of 2-point functions over the entire conformal

manifold, combined with some ‘boundary’ data, e.g. weak coupling perturbative data, are

enough to specify a unique solution.

An exact solution of the tt∗ equations would have several important implications. In

section 3.5 we argued that the explicit knowledge of 2- and 3-point functions of chiral

primary operators can be used to determine also the generic extremal n-point correlation

function of these operators. In a different direction these results can also be used as input

in a general bootstrap program in N = 2 SCFTs to determine wider classes of correlation

functions, spectral data etc. Interesting work along similar lines appeared recently in [46].

For the case of N = 2 SCQCD we note that the methods developed in [46] (e.g. the

correspondence with two-dimensional chiral algebras) are best suited for a discussion of

the mesonic (Higgs branch) chiral primaries and are less useful for the N = 2 (Coulomb

branch) chiral primaries analyzed in the present paper. As a result, our approach can be

viewed in this context as a different method providing useful complementary input.

In the main text we considered mostly the case of N = 2 SCQCD theories as an illus-

trative example. It would be interesting to extend the analysis to other four-dimensional

N = 2 theories, e.g. other Lagrangian theories, or the class S theories [32, 33]. Eventually,

one would also like to move away from N = 2 supersymmetry and explore situations with

less supersymmetry where quantum dynamics are known to exhibit a plethora of new ef-

fects. Two obvious hurdles in this direction are the following: (i) it is known that the S4

partition function of N = 1 theories is ambiguous [7]; (ii) it is currently unknown whether

there is any useful generalization of the tt∗ equations to N = 1 theories [4]. A related
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question has to do with the extension of these techniques to theories of diverse amounts of

supersymmetry in different dimensions, e.g. three-dimensional SCFTs.

Originally, topological-antitopological fusion and the tt∗ equations [2, 3] were also

useful in analyzing two-dimensional N = (2, 2) massive theories. Therefore, another in-

teresting direction is to explore whether a similar application of the tt∗ equations is also

possible in four dimensions. Massive four-dimensional N = 2 theories, like N = 2 SYM

theory, would be an interesting example. Related questions were discussed in [5].
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A Collection of useful facts about S4 partition functions

In section 4 we make use of the S4 partition function of N = 2 SU(N) SYM theories

coupled to 2N hypermultiplets. Some of the pertinent details of this partition function are

summarized for the convenience of the reader in this appendix.

The S4 partition function ofN = 2 gauge theories was computed using supersymmetric

localization in [8] and the general result takes the form

ZS4(τ, τ̄) =
1

|W|

∫
da∆(a)Ztree(a)Z1−loop(ia)

∣∣Zinst(ia, r
−1, r−1, q)

∣∣2 , (A.1)

where the integral is performed over the Cartan subalgebra of the gauge group G,

∆(a) =
∏

α∈ roots of G

α(a) (A.2)

is the Vandermond determinant, Ztree is the classical tree-level contribution, Z1−loop is the

1-loop contribution and Zinst is Nekrasov’s instanton partition function [36]. r denotes the

radius of S4 and q = e2πiτ . |W| is the order of the Weyl group G.
In the case of the SU(N)N = 2 SCQCD theories the elements of the Cartan subalgebra

are parametrized by N real parameters ai (i = 1, . . . , N) satisfying the zero-trace condition
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∑N
i=1 ai = 0, and

∆(a) =
N∏

i 6=j

(ai − aj) , (A.3)

Ztree = e−2π Im(τ)
∑N

i=1 a
2
i , (A.4)

Z1−loop =

∏
i 6=j H(ir(ai − aj))

∏N
j=1 (H(iraj)H(−iraj))2N

. (A.5)

The instanton factor Zinst has a more complicated form. General expressions can be found

in [33, 36, 49]. In the main text we set r = 1 for the radius of S4.

The special function H that appears in the one-loop contribution is related to the

Barnes G-function [35]

G(1 + z) = (2π)
z
2 e−((1+γz2)+z)/2

∞∏

n=1

(
1 +

z

n

)n
e−z+ z2

2n (A.6)

(γ is the Euler constant) through the defining equation

H(z) = G(1 + z)G(1− z) = e−(1+γ)z2
∞∏

n=1

(
1− z2

n2

)n ∞∏

n=1

e
z2

n . (A.7)

B Conventions in SU(N) N = 2 SCQCD

Here we collect our conventions for the N = 2 SCQCD theories with gauge group SU(N).

The N = 2 chiral ring of the SU(N) SCQCD theory is generated by the single-trace

operators

φℓ ∝ Tr
[
ϕℓ
]
, ℓ = 2, 3, . . . , N . (B.1)

The descendant

Oτ = Q4 · φ2 (B.2)

of the chiral primary φ2, that has the lowest scaling dimension ∆ = 2, controls the exactly

marginal deformation

δS =
δτ

4π2

∫
d4xOτ (x) +

δτ̄

4π2

∫
d4xOτ (x) . (B.3)

The complex marginal coupling is τ = θ
2π + 4πi

g2
Y M

, and we normalize the elementary fields

of the theory so that the full Lagrangian in components takes the form

L = Lvector + Lhyper , (B.4)

Lvector =− 1

g2YM N
Tr

(
1

4
FµνF

µν +
g2YM θ

32π2
FµνF̃

µν + iλ̄I σ̄
µDµλ

I +DµϕDµϕ̄

+ i
√
2
(
ǫIJ λ

IλJ ϕ̄− ǫIJ λ̄I λ̄J ϕ
)
+

1

2
[ϕ, ϕ̄]2

)
, (B.5)
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Lhyper =−
(
DµQ̄IDµQI + iψ̄σ̄µDµψ + iψ̃σ̄µDµ

¯̃
ψ

+ i
√
2
(
ǫIJ ψ̄λ̄IQJ − ǫIJ Q̄

IλJψ + ψ̃λIQI − Q̄I λ̄I
¯̃
ψ + ψ̃ϕψ − ψ̄ϕ̄

¯̃
ψ
)

+ Q̄I (ϕ̄ϕ+ ϕϕ̄)QI + g2YMV(Q)

)
, (B.6)

with

V(Q) =
(
Q̄I i

a Q a
I j

) (
Q̄J j

b Q b
J i

)
− 1

2

(
Q̄I i

a Q a
J j

) (
Q̄J j

b Q b
I i

)

+
1

N

(
1

2

(
Q̄I i

a Q a
I i

) (
Q̄J j

b Q b
J j

)
−
(
Q̄I i

a Q a
J i

) (
Q̄J j

b Q b
I j

))
(B.7)

the D-term potential for the hypermultiplet complex scalars Q.

We use standard notation where

Fµν = F a
µνT

a , F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν , F̃ a

µν =
1

2
εµνρσF

ρσ (B.8)

and T a (a = 1, . . . , N2 − 1) is a basis of the Lie algebra generators of SU(N) with the

normalization

Tr
[
T a
adjT

b
adj

]
= N δab , Tr

[
T a
�T

b
�

]
=

1

2
δab (B.9)

in the adjoint and fundamental representations respectively. The gauge-covariant deriva-

tives are

Dµ = ∂µ + iAµ . (B.10)

I,J , . . . = ± are SU(2)R indices raised and lowered with the antisymmetric symbols ǫIJ .

i, j = 1, . . . , 2N in (B.7) are flavor indices. The N = 2 vector fields in the adjoint repre-

sentation include the bosons Aµ, ϕ and the fermions λI . The 2N N = 2 hypermultiplet

fields in the fundamental representation include 2N complex bosons QI and 2N fermion

doublets (ψ, ψ̃).

In this normalization all the τ dependence is loaded on the vector part of the La-

grangian.25 This is consistent with (B.2), (B.3) and the identification

Oτ =
iπ

2N
Tr

[
1

8
Fµν+F

µν+ + iλ̄I σ̄
µDµλ

I − ϕ̄DµDµϕ− 1

2
D2 − F̄F

+
√
2
(
ǫIJ λ

IλJ ϕ̄− ǫIJ λ̄I λ̄Jϕ
)
−D[ϕ, ϕ̄]

]
. (B.11)

Fµν± = Fµν ∓ iF̃µν is the (anti)self-dual part of the gauge field strength. D and F are

respectively the D- and F -auxiliary fields of the N = 1 vector and N = 1 chiral multiplet

that make up the N = 2 vector multiplet.

25The last term of the hypermultiplet interactions, g2Y MV(Q), appears to be gY M -dependent, but this is

only so after we integrate out the D auxiliary field. Before integrating out D the Lagrangian Lvector has a

term 1
2g2

Y M

D2 and Lhyper has no explicit gY M -dependence.
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C An (eccentric) proof of equation (3.29)

In this section we will give a proof of equation (3.29). Instead of giving a direct combinatoric

proof, we will proceed as follows. Consider the N = 4 SYM theory with gauge group G,
in the free limit. This can also be thought of as an N = 2 SCFT. This theory has 6 real

scalars ΦI, I = 1, . . . , 6. We consider the complex combination

ϕ = Φ1 + iΦ2. (C.1)

The chiral primary, whose descendant is the marginal operator, has the form

φ2 = N Tr[ϕ2]. (C.2)

where the normalization constant N was determined in previous sections. We define the

2-point function

g22 = 〈φ2φ2〉. (C.3)

A general chiral primary of charge R can be written as a multitrace operator of the form

φK ∝ Tr[ϕn1 ] . . .Tr[ϕnk ], (C.4)

where 2
∑
ni = R. The trace is taken in the adjoint of G. Similarly we define the anti-chiral

primaries and the matrix of 2-point functions gKL = 〈φKφL〉. Notice that the matrix of

2-point functions gKL is not diagonal in the basis of multitrace operators and is somewhat

cumbersome to compute by considering Wick contractions.

Our starting point is to consider the following 4-point function

A = 〈φ2(x1)φ2(x2)φK(x3)φL(x4)〉. (C.5)

Here K,L can be different chiral primaries, but by R-charge conservation this 4-point

function is nonzero only if K,L have the same R-charge. By Wick contractions it is not

hard to see that there are only three possible structures of the coordinate dependence for

this correlator. So the general form is

A =
p1

|x12|4|x34|2∆K
+

p2
|x12|2|x14|2|x23|2|x34|2∆K−2

+
p3

|x14|4|x23|4|x34|2∆K−4
. (C.6)

In principle we can compute the constants p1, p2, p3 by working out the combinatorics of

the Wick contractions, however we will try to avoid this. By considering the double OPE

in the (13) → (24) channel we learn that

p1 + p2 + p3 = CP
2KgPQC

∗Q

2L
. (C.7)

By considering the OPE in the (12) → (34) channel we have

p1 = g22 gKL. (C.8)

Finally from the OPE in the (14) → (23) channel we find

p3 = gKNC
∗N
2U
gUV CR

2V gRL. (C.9)
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Using these results we have completely fixed the 4-point function (C.5) in the free limit,

in terms of the 2- and 3-point function coefficients which enter the tt∗ equations.

However, the desired equation (3.29) expresses a nontrivial relation among these coef-

ficients. We will now argue that the consistency of the underlying CFT implies the desired

relation.

We will establish the relation by the following argument. The tree level correlator (C.5)

can be thought of as a correlator in a theory of only dimG complex scalar fields.26 This

by itself is a consistent conformal field theory with a central charge cscalar which is related

to dimG by

cscalar =
8

3
dimG. (C.10)

To derive equation (C.8) we considered the OPE in the channel (12) → (34) and only kept

the leading term, i.e. the identity operator. One of the subleading contributions involves

conformal block of the stress energy tensor. In any consistent CFT the contribution of this

block is fully determined using Ward identities, by the central charge of the CFT and by

the conformal dimension of the external operators [20]. Our strategy is to:

a) isolate the contribution of the conformal block of the stress energy tensor for the

4-point function (C.5), (C.6) written in terms of the data (C.7), (C.8), (C.9) and

b) demand that this contribution is the same as that predicted by general arguments

based on the Ward identities for CFTs. We will discover that this requirement leads

to the desired formula (3.29).

We write equation (C.6) in a notation which is somewhat more convenient to perform

the conformal block expansion

A =
1

|x12|4|x34|2∆K

(
p1 + p2

u

v
+ p3

u2

v2

)
, (C.11)

where we have introduced the conformal cross ratios

u =
|x12|2|x34|2
|x13|2|x24|2

, v =
|x14|2|x23|2
|x13|2|x24|2

. (C.12)

It is easy to see that the term p1 = g22gKL is coming from the exchange of the identity

operator (the reason that it is not equal to 1 is because our 2-point functions are not

normalized to be ∝ 1
|x|2∆

). With a little work on the conformal block expansion in the

u→ 0, v → 1 channel, we find that the block of the stress tensor comes with the coefficient

A =
1

|x12|4|x34|2∆K

(
. . .+

2

3
p2uG

(2)(1, 1, 4, u, v) + . . .

)
, (C.13)

where the function G(2) is defined in [20].

26Since we are in the free limit the presence of the other fields does not make any difference to the

counting of the Wick combinatorics.

– 39 –



J
H
E
P
0
2
(
2
0
1
5
)
1
2
2

On the other hand, the Ward identities predict [20] that for any consistent CFT if we

have the 4-point function 〈φ(x1)φ(x2)φ′(x3)φ′(x4)〉 and we expand it in the (12) → (34)

channel, then the stress tensor must contribute like

〈φ(x1)φ(x2)φ′(x3)φ′(x4)〉 =
1

|x12|4|x34|2∆K

(
. . .+

16∆∆′

9c
gφφgφ′φ′uG(2)(1, 1, 4, u, v) + . . .

)
,

(C.14)

where c is the central charge of the CFT and gφφ, gφ′φ′ is the normalization of the 2-point

functions, which in [20] was taken to be 1. In our case we have ∆ = 2,∆′ = ∆K = R/2

and c ≡ cscalar = 8
3dimG. Putting everything together we find that what we expect in

a consistent CFT for the 4-point function (C.6) is that the stress-tensor conformal block

comes with the coefficient

A =
1

|x12|4|x34|2∆K

(
. . .+

2

3

R

dimG p1 uG
(2)(1, 1, 4, u, v) + . . .

)
. (C.15)

Comparing this to what we found in (C.13) we conclude that consistency of the CFT

demands the relation

p2 =
R

dimG p1. (C.16)

Using the expression (C.7), (C.8) and (C.9) it is straightforward to show that this implies

− [C2, C2]
L
K + g22δ

L
K

(
1 +

R

dimG

)
= 0. (C.17)
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