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1 Introduction

In recent years there has been substantial progress in our understanding of conformal field

theories (CFT) in dimensions higher than two. In general such theories do not admit a

Lagrangian description, so one has to resort to consistency conditions arising from confor-

mal symmetry, unitarity, crossing symmetries and the properties of the operator product

expansion (OPE). This is the idea of the conformal bootstrap program. In the simplest

set-up one considers the four-point correlator of a scalar field φ of dimension d. Conformal

symmetry implies

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

x2d12x
2d
34

(1.1)

where we have introduced the cross-ratios u = (x212x
2
34)/(x

2
13x

2
24) and v =

(x214x
2
23)/(x

2
13x

2
24). By considering the OPE φ(x1) × φ(x2) we can decompose the four-

point function into conformal blocks

g(u, v) = 1 +
∑

∆,ℓ

a∆,ℓg∆,ℓ(u, v) (1.2)

where we have singled out the contribution from the identity operator. The sum runs over

the tower of conformal primaries present in the OPE (O∆,ℓ ∈ φ×φ ) and ∆ and ℓ denote the

dimension and the spin of the intermediate primary. a∆,ℓ denotes the square of the structure

constants and is non-negative due to unitarity. The conformal blocks g∆,ℓ(u, v) repack the

contribution of all descendants of a given primary and are fixed by conformal symmetry.

They depend only on the spin and dimension of the primary. Crossing-symmetry of the

four-point function
g(u, v)

x2d12x
2d
34

=
g(v, u)

x2d23x
2d
14

→ vdg(u, v) = udg(v, u) (1.3)
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together with associativity of the OPE imply the conformal bootstrap equation

∑

ℓ,∆

a∆,ℓF∆,ℓ(u, v) = 1, a∆,ℓ ≥ 0 (1.4)

F∆,ℓ(u, v) ≡
vdg∆,ℓ(u, v)− udg∆,ℓ(v, u)

ud − vd

As shown in [1], the conformal bootstrap equation can be used to put upper bounds to the

dimensions of leading twist primary operators appearing in the OPE φ× φ.

One can also analyze CFT’s with a continuous global symmetry group [2]. In this case

the natural starting point is the four-point correlator

〈φφφ†φ†〉 (1.5)

where the scalar primary operator φ transforms in a given representation R of the global

symmetry group. For instance, for SO(N) global symmetry and φ transforming in the

fundamental representation, the OPE φ × φ contains states transforming as singlets S,

symmetric traceless tensors T(ij) or antisymmetric tensors A[ij]. Consequently the confor-

mal bootstrap equation has a vector structure mixing these three components:

∑

∆,ℓ

aS∆,ℓ







0

F∆,ℓ

H∆,ℓ






+
∑

∆,ℓ

aT∆,ℓ







F∆,ℓ
(

1− 2
N

)

F∆,ℓ

−
(

1 + 2
N

)

H∆,ℓ






+
∑

∆,ℓ

aA∆,ℓ







−F∆,ℓ

F∆,ℓ

−H∆,ℓ






=







0

1

−1






(1.6)

where we have introduced H∆,ℓ(u, v) ≡ vdg∆,ℓ(u,v)+udg∆,ℓ(v,u)

ud+vd
. Again, the conformal boot-

strap equations can be used to put bounds on the dimensions of operators appearing in

the OPE, see e.g. [2–4].

Supersymmetric conformal field theories (SCFT) play a predominant role in theoret-

ical physics. Very recently the conformal bootstrap program has been extended to four-

dimensional N = 4 SCFT [5].1 In this case the energy momentum tensor lies in a half-BPS

multiplet whose superconformal primary is a scalar operator of dimension two, which trans-

forms in the [0, 2, 0] representation of the SU(4) R-symmetry group. The natural object to

consider is the four-point function of such scalar operator

〈O[2](x1)O[2](x2)O[2](x3)O[2](x4)〉 =
G(u, v)
x412x

4
34

(1.7)

This correlator decomposes into six channels, corresponding to the possible representations

of the intermediate states

[0, 2, 0]× [0, 2, 0] = [0, 0, 0] + [1, 0, 1] + [0, 2, 0] + [2, 0, 2] + [1, 2, 1] + [0, 4, 0] (1.8)

The contribution from each channel could be written as a sum over conformal primaries

with the corresponding conformal blocks, as in (1.2). On the other hand each intermediate

operator belongs to a particular superconformal multiplet. Hence, the correlator can also be

1See [3, 6–9] for extensions to four-dimensional N = 1 SCFT.
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written as a sum over superconformal primaries. For the present case only superconformal

primaries transforming in the singlet representation [0, 0, 0] belong to long unprotected

multiplets [10, 11], while the contribution from other superconformal primaries is fixed by

the superconformal Ward identities [12]. The conformal bootstrap equation takes the final

form [5]
∑

ℓ=0,2,...,
∆≥ℓ+2

a∆,ℓF∆,ℓ(u, v) = F short(u, v, c) (1.9)

where the sum runs over superconformal primaries singlet of SU(4). F short(u, v, c) arises

from short and semi-short contributions to the correlator and depends only on the central

charge c of the theory, which appears in the OPE of two stress tensors. Since operators in

short representations may combine into long representations at the unitarity bound, there

is an ambiguity when computing F short(u, v, c). There is a canonical choice for which all

the coefficients a∆,ℓ are non-negative. As shown in [5] this equation can be used to find

upper bounds for the scaling dimensions of leading twist operators transforming in the

singlet representation of SU(4), such as the Konishi operator.

The aim of this paper is to study the consistency of more general four-point func-

tions in four-dimensional N = 4 SCFT. More precisely we will study four-point correlation

functions of identical chiral primary half-BPS operators transforming in the [0, p, 0] repre-

sentation of the SU(4) R-symmetry group:

〈O[p](x1)O[p](x2)O[p](x3)O[p](x4)〉 (1.10)

The constraints of superconformal invariance on these correlators were studied in detail

in [13–17]. The correlation function can be decomposed into (p+1)(p+2)
2 channels but again,

only a restricted subset (p(p−1)/2 of them) contains unprotected superconformal primary

operators. In the next section we derive the conformal bootstrap equations arising from

crossing-symmetry of such correlation functions. They are given by p(p − 1)/2 coupled

equations and have the form of bootstrap equations for CFT’s with global symmetry, see

eq. (2.19). In addition to the central charge, the right hand side of these equations depends

on additional information about the SCFT, namely extra parameters that arise in the OPE

of symmetric-traceless tensors of rank p. In section three we use these equations to find

rigorous bounds for the anomalous dimensions of superconformal primaries of N = 4 SYM

with gauge group SU(N) as a function of the rank of the gauge group. We focus in the case

p = 3 and find bounds for operators transforming in the representations [1, 0, 1] and [0, 2, 0]

of the R-symmetry group. We end up with some conclusions. Finally, several technical

details are discussed in the appendices.

2 Generalized bootstrap equations

The superconformal algebra of four-dimensional N = 4 SCFT is PSU(2, 2|4). This algebra
contains a SU(4) R-symmetry group. The energy-momentum tensor lies in a half-BPS

multiplet whose superconformal primary is a scalar operator transforming in the [0, 2, 0]

– 3 –
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representation of the R-symmetry group. This scalar operator is part of a family of half-

BPS scalar operators O[p] of dimension p, transforming in the [0, p, 0] representation2

O[p](x, t) = tr1 . . . trp Tr (Φr1 · · ·Φrp) (2.1)

with t a complex six-dimensional null vector ( t · t = 0 ) and ri = 1, . . . , 6. The correlator

of four identical such operators can be written as [17]

〈O[p](x1, t1)O[p](x2, t2)O[p](x3, t3)O[p](x4, t4)〉 =
(

t1 · t2 t3 · t4
x212x

2
34

)p

G(p)(u, v, σ, τ) (2.2)

where u and v are conformal invariant cross-ratios while σ and τ are SU(4) invariants

u =
x212x

2
34

x213x
2
24

v =
x214x

2
23

x213x
2
24

σ =
t1 · t3 t2 · t4
t1 · t2 t3 · t4

τ =
t1 · t4 t2 · t3
t1 · t2 t3 · t4

(2.3)

G(p)(u, v, σ, τ) is a polynomial in σ and τ of degree p and can be decomposed into (p+1)(p+2)
2

contributions corresponding to the different SU(4) representations in the tensor product

[0, p, 0]× [0, p, 0] =

p
∑

k=0

p−k
∑

q=0

[q, 2p− 2q − 2k, q] (2.4)

Each of these contributions can be expanded in conformal partial waves, corresponding to

conformal primary operators with dimensions ∆ and spin ℓ transforming in the appropri-

ate representation. Superconformal symmetry implies that each conformal primary belongs

to a given supermultiplet, with a corresponding superconformal primary (which does not

necessarily transform in the same SU(4) representation). In general it is quite involved to

separate the contributions in the conformal partial wave expansion of descendant opera-

tors from superconformal primary operators. As explained in detail in [16, 17] this can be

done by solving explicitly the superconformal Ward identities. More precisely, superconfor-

mal Ward identities dictate the decomposition of G(u, v, σ, τ) in terms of long multiplets,

containing all the dynamical non-trivial information, and short and semi-short multiplets,

which are fully determined by symmetries and the free field theory results. Hence G can

be expressed as follows

G (z, z̄, α, ᾱ) = k + G
f̂
+ (αz − 1)(ᾱz − 1)(αz̄ − 1)(ᾱz̄ − 1)H (z, z̄, α, ᾱ) (2.5)

where we have suppressed the index p and have introduced the variables

u = zz̄ v = (1− z)(1− z̄)

σ = αᾱ τ = (1− α)(1− ᾱ)
(2.6)

The function G
f̂
depends only on free theory results while H includes dynamical effects,

G
f̂
=

(ᾱz − 1)(αz̄ − 1)(F (z, α) + F (z̄, ᾱ))− (αz − 1)(ᾱz̄ − 1)(F (z, ᾱ) + F (z̄, α))

(α− ᾱ)(z − z̄)
− 2k

(2.7)

2More generaly we consider ϕ[p] = ϕr1...rp tr1 . . . trp where ϕr1...rp is a symmetric traceless tensor field.
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and

F (z, α) =

(

α− 1

z

)

f̂(z, α) + k f̂(z, α) = G0 (z, z̄, α, ᾱ)ᾱ= 1
z̄

k = f̂(z, z) (2.8)

where G0 denotes the tree level four-point function. As already mentioned H (z, z̄, α, ᾱ)

encodes the non-trivial, unprotected, information of the four-point function. It turns out

it receives contributions only from a restricted set of representations (p(p− 1)/2 of them)

and can be written as

H(z, z̄, α, ᾱ) =
∑

0≤m≤n≤p−2

H[nm](z, z̄)Ynm(α, ᾱ) (2.9)

H[nm](z, z̄) =
∑

∆,ℓ

A
[nm]
∆,ℓ (zz̄)

1
2
(∆−ℓ)G

(ℓ)
∆+4(z, z̄) (2.10)

where we have introduced a short-hand notation [nm] ≡ [n − m, 2m,n − m] for SU(4)

representations. The harmonic polynomials Ynm(α, ᾱ) encode the dependence on the SU(4)

invariants and have an explicit definition in terms of Legendre polynomials [17]:

Ynm(α, ᾱ) =
Pn+1(2α− 1)Pm(2ᾱ− 1)− Pm(2α− 1)Pn+1(2ᾱ− 1)

2(α− ᾱ)
(2.11)

The sum over the spin in (2.10) runs over even/odd spins if n+m is even/odd. G
(ℓ)
∆ (z, z̄)

denote the four-dimensional conformal blocks, given by

G
(ℓ)
∆ (z, z̄) =

1

z − z̄

(

(

−1

2
z

)ℓ

zκ∆+ℓ(z)κ∆−ℓ−2(z̄)− (z ↔ z̄)

)

(2.12)

with κβ(z) = 2F1(
β
2 ,

β
2 , β, z). Unitarity requires that only contributions for ∆ ≥ 2n+ ℓ+2

arise and that the coefficients A
[nm]
∆,ℓ are non-negative.3 This is not automatic. On the other

hand, there is an ambiguity since a long multiplet decomposes into semi-short multiplets

at the unitary threshold. This ambiguity allows to letting A
[nm]
∆,ℓ → a

[nm]
∆,ℓ where now

H(z, z̄, α, ᾱ) =
∑

0≤m≤n≤p−2

Ĥ[nm](z, z̄)Ynm(α, ᾱ) (2.13)

Ĥ[nm](z, z̄) =
∑

∆,ℓ

a
[nm]
∆,ℓ (zz̄)

1
2
(∆−ℓ)G

(ℓ)
∆+4(z, z̄) + F

[nm]
(p) (z, z̄) (2.14)

The functions F
[nm]
(p) (z, z̄) contain only contributions from short and semi-short multiplets

for each specific SU(4) representation and do not depend on the coupling constant. There

is a canonical choice which makes the coefficients a
[nm]
∆,ℓ non-negative and the expansion

consistent with unitarity. This choice was explicitly worked out in [17] for p = 2, 3, 4

and is reproduced in appendix A for p = 3. The coefficients a
[nm]
∆,ℓ are then interpreted

3Since we would like to interpret them as the square of the structure constants of two half-BPS operator

transforming in the [0, p, 0] and one superconformal primary operator of dimension ∆ and spin ℓ transforming

in the [n−m, 2m,n−m].

– 5 –
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as the square of the structure constants of two half-BPS operator transforming in the

[0, p, 0] and the superconformal primary operator of dimension ∆ and spin ℓ transforming

in the [n−m, 2m,n−m].

Crossing symmetry requires invariance of the four-point function under exchanging

(x1, t1) with (x3, t3). This entails u → v, v → u, σ → σ
τ
and τ → 1

τ
at the level of cross

ratios and implies

G (z, z̄, α, ᾱ) = (1− α)p(1− ᾱ)p
(

zz̄

(1− z)(1− z̄)

)p

G
(

1− z, 1− z̄,
α

1− α
,

ᾱ

1− ᾱ

)

(2.15)

When substituting (2.5) into (2.15) one obtains an equation for the function H (z, z̄, α, ᾱ).

Plugging in this equation the conformal partial wave decomposition (2.13) and project-

ing over SU(4) representations it is possible to write p(p−1)
2 equations for combinations

of Ĥ[nm](z, z̄).

For p = 2 only the singlet representation contributes to the conformal partial wave

decomposition of Ĥ[nm](z, z̄) and (2.15) implies

u2Ĥ[00](v, u)− v2Ĥ[00](u, v)− (u− v)(a2 + a1(u+ v)) = 0 (2.16)

Using the decomposition (2.14) this implies
∑

∆≥ℓ+2
ℓ=0,2,...

a
[00]
∆,ℓF

(2)
∆,ℓ(u, v) = F short

(2) (u, v) (2.17)

where F short
(2) (u, v) can be worked out explicitly from the formulae in [17] and we have

introduced

F
(p)
∆,ℓ(u, v) = vpu

1
2
(∆−ℓ)G

(ℓ)
∆+4(u, v)− upv

1
2
(∆−ℓ)G

(ℓ)
∆+4(v, u) (2.18)

Equations (2.16) and (2.17) exactly agree with the equations found by [5]. As already

mentioned F short
(2) (u, v) does not depend on the coupling constant. It only depends on two

factors a1 and a2 related to different topologies of free field theory graphs. a1 corresponds

to the disconnected diagram and we can choose a normalization such that a1 = 1. With

this normalization a2 is the inverse of the central charge of the theory. Hence, the central

charge is the only information about the SCFT that enters the bootstrap equation for the

case p = 2.

For p = 3 the representations that contribute to the conformal partial wave decompo-

sition of Ĥ[nm](z, z̄) are [0, 0, 0], [1, 0, 1] and [0, 2, 0]. The crossing equation (2.15) implies

u3(Ĥ[00](v, u)− 15Ĥ[10](v, u) + 20Ĥ[11](v, u))− 6v3Ĥ[00](u, v)

−u2(a1u(4u− 3) + a3) + 3a1u
3v + a1(7u+ 12)v3 − 6a1v

4

+a2
(

−6u3 − u2(v + 2) + u(v − 4)(v − 1) + 6v(v + 1)2
)

+ 6a3v
2 = 0,

u3(−Ĥ[00](v, u) + 3Ĥ[10](v, u) + 4Ĥ[11](v, u))− 6v3Ĥ[10](u, v)

+u2(a1u+ 2a2(u+ 1) + a3)− v
(

a1u
3 + a2

(

u2 + u− 2
))

+v3(a1(3u+ 2)− 2a2)− 2a1v
4 + a2uv

2 = 0,

u3(Ĥ[00](v, u) + 3Ĥ[10](v, u) + 2Ĥ[11](v, u))− 6v3Ĥ[11](u, v)

+u
(

a1
(

2u3 − 3u2(v + 1) + v3
)

− a2(v + 2)(u− v + 1)− a3u
)

= 0,

– 6 –
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where the factors a1, a2, a3 correspond to different topologies of the graphs contributing to

the tree-level answer. For N = 4 SYM with gauge group SU(N) they are functions of the

rank of the gauge group. For the conformal bootstrap analysis of the next section, it is

important to compute them for finite rank. This is done in appendix B. In order to find

the conformal bootstrap equations we simply plug in the decomposition (2.14). F
[nm]
(3) (z, z̄)

receives specific contributions from short and semi-short multiplets and the explicit sums

are given and performed in appendix A. The final equations can be written in a very elegant

vector form

∑

∆≥ℓ+2
ℓ=0,2,...

a
[00]
∆,ℓ







F
(3)
∆,ℓ

0

H
(3)
∆,ℓ






+

∑

∆≥ℓ+4
ℓ=1,3,...

a
[10]
∆,ℓ







0

F
(3)
∆,ℓ

3H
(3)
∆,ℓ






+

∑

∆≥ℓ+4
ℓ=0,2,...

a
[11]
∆,ℓ







5F
(3)
∆,ℓ

F
(3)
∆,ℓ

−4H
(3)
∆,ℓ






=







F 1
short(u, v)

F 2
short(u, v)

F 3
short(u, v)







(2.19)

where we have introduced a new structure

H
(p)
∆,ℓ(u, v) = vpu

1
2
(∆−ℓ)G

(ℓ)
∆+4(u, v) + upv

1
2
(∆−ℓ)G

(ℓ)
∆+4(v, u) (2.20)

and F 1
short(u, v), F 2

short(u, v) and F 3
short(u, v) are simple combinations of F

[00]
3 (u, v),

F
[10]
3 (u, v) and F

[11]
3 (u, v). These equations have the same structure as the conformal

bootstrap equations in the presence of global symmetries and explore the non-trivial R-

symmetry structure of the theory.

For p = 4 and higher the structure is very much the same. In general we obtain p(p−1)
2

coupled equations that can be written in a vectorial form. These equations will involve

F
(p)
∆,ℓ(u, v) and H

(p)
∆,ℓ(u, v) on the left hand side, and complicated (but independent of the

coupling) contributions on the right hand side. The left hand side can be readily computed

as above. In order to compute the right hand side one needs the specific substractions to

be done in order to render the decomposition consistent with unitarity. To the best of our

knowledge this has been worked out only for p = 2, 3, 4. Furthermore, the equations will

depend on factors a1 (which can always be set to one) and a2, a3, etc. a2 depends only on

the central charge of the theory (see appendix B). More precisely

a2 =
p2

4 c
(2.21)

where c is the central charge, given by c = dim G/4 for N = 4 SYM with gauge group

G. On the other hand a3, a4, etc, carry extra information about the SCFT and distinguish

between different SCFT’s with the same central charge.

3 Numerical bounds

3.1 Setup

In this section we study the consequences of the conformal bootstrap equations found above

for the dimension of operators in N = 4 SYM with gauge group SU(N). We will focus in

the case p = 3 which was the one worked out in detail but the extension to p = 4 should

– 7 –
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be straightforward. The bootstrap equations (2.19) have the following three-dimensional

vector structure

∑

∆,ℓ

a
[00]
∆,ℓ

~V
[00]
∆,ℓ +

∑

∆,ℓ

a
[10]
∆,ℓ

~V
[10]
∆,ℓ +

∑

∆,ℓ

a
[11]
∆,ℓ

~V
[11]
∆,ℓ = ~Fshort (3.1)

with non-negative coefficients aR∆,ℓ. Unitarity demands the following lower bounds for the

dimensions of the operators

∆ ≥ ℓ+ 2 for [00], ∆ ≥ ℓ+ 4 for [10] and [11] (3.2)

Bootstrap equations with this structure appear when studying CFT’s with global symme-

tries and were analyzed in [2]. A given spectrum can be ruled out if we can find a linear

functional Φ : ~V → R such that

Φ ~V
[00]
∆,ℓ ≥ 0, for a

[00]
∆,ℓ 6= 0, ℓ = 0, 2, . . .

Φ ~V
[10]
∆,ℓ ≥ 0, for a

[10]
∆,ℓ 6= 0, ℓ = 1, 3, . . .

Φ ~V
[11]
∆,ℓ ≥ 0, for a

[11]
∆,ℓ 6= 0, ℓ = 0, 2, . . .

Φ ~Fshort < 0.

(3.3)

In order to write down the explicit linear operator we introduce the following variables:

z = 1/2 + a+ b, z̄ = 1/2 + a− b. (3.4)

The linear operator takes the form

Φ(Λ)







f1(a, b)

f2(a, b)

f3(a, b)






=

i+j=Λ
∑

i,j=0

(

ξ
(1)
ij

i!j!
∂i
a∂

j
bf1(0, 0) +

ξ
(2)
ij

i!j!
∂i
a∂

j
bf2(0, 0) +

ξ
(3)
ij

i!j!
∂i
a∂

j
bf3(0, 0)

)

(3.5)

In order to have a finite problem we have set a cut-off in the spin and the twist ∆− ℓ. This

is then supplemented by asymptotic expressions, valid for large dimension. Furthermore,

we have discretized the possible dimensions for each spin, with step δ∆ = 1/25. We

have used a linear operator with a maximum of thirteen derivatives, Λ = 13. This gives

a linear operator that depends on 84 parameters. The inequalities were generated with

Mathematica and then analyzed with the IBM ILOG CPLEX optimizer and Matlab .

3.2 Results

The conformal bootstrap equations found in this paper can be used to put upper bounds

to the dimensions of leading twist superconformal primary operators in long multiplets,

transforming in the representations [0, 0, 0], [1, 0, 1] and [0, 2, 0] of the R-symmetry group.

These bounds are non-perturbative and depend on the rank of the gauge group through

the color factors

a1 = 9(N2 − 1)2
(

N − 4

N

)2

, a2 =
9

N2 − 1
a1, a3 = 162(N2 − 1)

48− 16N2 +N4

N2
(3.6)
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Figure 1. Bounds for the scaling dimension of the leading twist unprotected superconformal

primary in the [1, 0, 1] representation of the R-symmetry group, with ℓ = 1.

where we are free to rescale them by an overall factor. From these expressions one can see

that the conformal partial wave expansion is consistent with unitarity for N ≥ 3, hence

we will restrict to this range. For leading twist operators in the singlet representation, of

the schematic form Tr ΦIDℓΦI , ℓ = 0, 2, . . ., we have found bounds consistent with [5] but

much less constraining.

The leading twist unprotected operators transforming in the [1, 0, 1] representation are

of the schematic form TrΦIDℓΦJΦKΦL + . . ., ℓ = 1, 3, . . ., where the indices I, J,K,L are

such that the operator transforms in the [1, 0, 1] representation.4 The bounds are stronger

for the case with lowest spin ℓ = 1 and are shown in figure 1.

The leading twist unprotected operators transforming in the [0, 2, 0] representation are of

the schematic form TrΦIDℓΦIΦ(JΦK) + . . ., ℓ = 0, 2, . . .. Again, the strongest bounds are

found for the case with lowest spin ℓ = 0 and are shown in figure 2.

The bounds presented in this paper were obtained by using linear operators with up

to 13 derivatives, or Λ = 13. From the plot 3, we see that the convergence is not optimal

yet, there is a significative difference between the bounds obtained with different number

of derivatives. It seems we haven’t yet exploited the full power of the bootstrap equations.

One should be able to improve these bounds by increasing the number of derivatives or by

using more efficient methods.

As for the singlet case, at large N we expect the leading twist operators to be given

by double trace operators and the dimension to behave as ∆ ≈ ∆0 + 2 − κ/N2 [19, 20].

4While there is a unique leading twist primary operator transforming in the singlet representation, this

is not true for the representations [1, 0, 1] (except for ℓ = 1) and [0, 2, 0]. In order to compute the anomalous

dimensions in perturbation theory one would have to solve a mixing problem, which will include not only

single trace operators, define the operators properly, etc. The leading twist operator is by definition the

one with the smallest anomalous dimension. See e.g. [18] where this problem is solved to one loop for the

operators with ℓ = 0 in the [0, 2, 0] representation.
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Figure 2. Bounds for the scaling dimension of the leading twist unprotected superconformal

primary in the [0, 2, 0] representation of the R-symmetry group, with ℓ = 0.
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Figure 3. Bounds for the scaling dimension of the leading twist unprotected superconformal

primary in the [0, 2, 0] representation of the R-symmetry group, with ℓ = 0 for different number of

derivatives. The best bound is given by the bottom curve (Λ = 13), while the other curves are for

Λ = 11, 9 (from bottom to top).

Bounds in the large N limit can be obtained by analyzing the bootstrap equations for

a1 = 1, a2 = a3 = 0 and we obtain ∆[10] . 7.36 and ∆[11] . 6.42. While these bounds

are a little too high at large N (but, as explained above, it is expected that these bounds

can be improve as we increase the number of derivatives), figures 1 and 2 show the correct

behavior as we decrease N . It would be very interesting to compute κ for each case by

holographic methods and compare it to our results.
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4 Discussion

In this paper we studied the consistency of four-point functions of half-BPS chiral primary

operators of weight p in four-dimensionalN = 4 SCFT. Superconformal symmetry together

with the structure of the OPE and crossing symmetry imply a set of coupled bootstrap

equations. These bootstrap equations put upper bounds to the scaling dimension of un-

protected superconformal primary operators transforming non-trivially under the SU(4)

R-symmetry group. These bounds depend not only on the central charge but also on ad-

ditional parameters that appear in the OPE of two symmetric traceless tensor fields. We

have analyzed in detail the case p = 3 and found bounds for operators in the [1, 0, 1] and

[0, 2, 0] representations for N = 4 SYM with gauge group SU(N). These bounds represent

rigorous, non-perturbative, information about non-planar N = 4 SYM.

There are several possible directions one could follow. From the comparison between

the bounds for different number of derivatives, it seems one should be able to improve the

bounds found in this paper, by increasing the number of derivatives or by applying more

efficient methods, e.g. as in [3] or [21].

It should be straightforward to write down the bootstrap equations for the p = 4 case.

This will allow to find bounds for the dimension of operators in other representations. On

the other hand, for p > 4 one would have to work out the explicit subtractions to make

the conformal partial wave expansion consistent with unitarity.

It should be straightforward to extend the present bounds to bounds for the structure

constants. This was done for operators in the singlet representation in [22].

For the case of N = 4 SYM, it would be interesting to understand how S-duality acts

on the above quantities. For leading twist superconformal primary operators singlets under

SU(4) one expects the scaling dimensions to be modular invariant [23]. The situation is

less clear for operators transforming in non-trivial representations, such as the ones studied

in this paper, since in perturbation theory one has a mixing problem. Understanding how

S-duality acts on these operators may allow, for instance, to study them in the whole

fundamental region, along the lines of [23, 24]. It was conjectured in [5] that the bounds

from the conformal bootstrap are saturated at special values of the coupling constant. It

would be very interesting to test such conjecture with non-singlets operators.

Finally, it would be interesting to extract analytic information from the bootstrap

equations of section 2, along the lines of [25–27]. For instance, following [27] one may be

able to understand the large spin behavior of the structure constants involving operators

in non-trivial SU(4) representations.
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A Expressions for F
[nm]
3 (z, z̄)

For the case p = 3 the suitable subtractions to render the conformal wave expansion consis-

tent with unitarity have been worked out in [17]. They result in the following expressions

for F
[nm]
3 (z, z̄)

F
[00]
3 (z, z̄) = −F [00]

a (z, z̄) + F
[00]
b (z, z̄) (A.1)

F
[11]
3 (z, z̄) = F [11]

a (z, z̄)− F
[11]
b (z, z̄) (A.2)

F
[10]
3 (z, z̄) = F [10]

a (z, z̄)− F
[10]
b (z, z̄) (A.3)

where

F [00]
a (z, z̄) =

∑

ℓ=0,2,...

2ℓ−1((ℓ+ 2)!)2(ℓ(ℓ+ 5)(a1(ℓ+ 1)(ℓ+ 4)− 8a2)− 12a2 + 6a3)

3(2ℓ+ 4)!
uG

(ℓ)
ℓ+6(z, z̄)

F
[00]
b (z, z̄) =

∑

ℓ=0,2,...

(

2ℓ−2((ℓ+ 1)!)2(−6a1(ℓ− 1)(ℓ+ 1)(ℓ+ 2)(ℓ+ 4) + 24(2a2 + a3)

3(2ℓ+ 2)!

+
24a2(ℓ+ 1)(ℓ+ 2))

3(2ℓ+ 2)!

)

G
(ℓ)
ℓ+4(z, z̄)

F [11]
a (z, z̄) =

∑

ℓ=0,2,...

2ℓ−2
(

ℓ2 + 5ℓ+ 6
)

((ℓ+ 2)!)2
(

a1
(

ℓ2 + 5ℓ+ 4
)

+ 4a2
)

3(2ℓ+ 4)!
uG

(ℓ)
ℓ+6(z, z̄)

F
[11]
b (z, z̄) =

∑

ℓ=0,2,...

(

2ℓ−3((ℓ+ 3)!)2(−6a1(ℓ+ 1)(ℓ+ 3)(ℓ+ 4)(ℓ+ 6) + 24(2a2 + a3)

9(2ℓ+ 6)!

+
24a2(ℓ+ 3)(ℓ+ 4))

9(2ℓ+ 6)!
u2
)

G
(ℓ)
ℓ+8(z, z̄)

F [10]
a (z, z̄) =

∑

ℓ=1,3,...

2ℓ−1((ℓ+ 3)!)2((ℓ+ 1)(ℓ+ 6)(a1(ℓ+ 2)(ℓ+ 5)− 8a2)− 12a3 + 6a3)

9(2ℓ+ 6)!
u2G

(ℓ)
ℓ+8(z, z̄)

F
[10]
b (z, z̄) =

∑

ℓ=1,3,...

2ℓ−1
(

ℓ2 + 3ℓ+ 2
)

((ℓ+ 1)!)2(a1ℓ(ℓ+ 3) + 4a2)

3(2ℓ+ 2)!
G

(ℓ)
ℓ+4(z, z̄)

In order to perform the sums note that F
[nm]
i (z, z̄) with i = a, b can be decomposed as

F
[nm]
i (z, z̄) = f

[nm]
i (z, z̄) + f

[nm]
i (z̄, z) (A.4)

By using the following integral representation of the hypergeometric function

2F1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−a

(1− tz)a
dt , (A.5)

It is possible to perform the sum over ℓ and then integrate over t. The final answer is

f [00]
a (z, z̄) = −((z − 2) log(1− z)− 2z)

(

(z̄ − 2)z̄
(

a1
(

2z̄4 + z̄3 + 5z̄2 − 12z̄ + 6
)

z2(z̄ − 1)3z̄(z − z̄)

+
(z̄ − 1)

(

2a2
(

2z̄2 + 9z̄ − 9
)

+ 3a3(z̄ − 1)
))

+ 6(z̄ − 1)3 log(1− z̄)(2a1 + 6a2 + a3)
)

z2(z̄ − 1)3z̄(z − z̄)

(A.6)
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f
[00]
b (z, z̄) =

z̄ log(1− z)
(

a1
(

z̄4 − 2z̄3 + 4z̄ − 2
)

+ (z̄ − 1)
(

a2(z̄ − 2)2 − a3z̄ + a3
))

z(z̄ − 1)3(z − z̄)
(A.7)

f [11]
a (z, z̄) =

(z − 2)z2((z̄ − 2) log(1− z̄)− 2z̄)
(

a1
(

z2 − z + 1
)

+ a2(−z) + a2
)

(z − 1)3z̄2(z − z̄)
(A.8)

f
[11]
b (z, z̄) =

5(((z − 6)z + 6) log(1− z)− 3(z − 2)z)
(

z̄
(

a1
(

z̄
(

z̄
(

z̄4 − 2z̄3 + 28z̄ − 74
)

+ 72
)

− 24
)

z3(z̄ − 1)3z̄2(z − z̄)

+
(z̄ − 1)(a2((z̄ − 2)z̄((z̄ − 2)z̄ + 48) + 48)− a3(z̄ − 1)((z̄ − 12)z̄ + 12)))

z3(z̄ − 1)3z̄2(z − z̄)

−6(z̄ − 2)(z̄ − 1)3 log(1− z̄)(2a1 + 4a2 + a3)
)

z3(z̄ − 1)3z̄2(z − z̄)
(A.9)

f [10]
a (z, z̄) = −5

((

z2 − 6z + 6
)

log(1− z)− 3(z − 2)z
)

3z3(z̄ − 1)3z̄3(z − z̄)

×
(

12(z̄ − 1)3 log(1− z̄)
(

a1z̄
2 − 2a2

(

z̄2 − 15z̄ + 15
)

+ 3a3
(

z̄2 − 5z̄ + 5
))

+(z̄ − 2)z̄
(

a1z̄
2
(

2z̄4 + z̄3 + 5z̄2 − 12z̄ + 6
)

+2a2
(

2z̄5 + 7z̄4 + 72z̄3 − 261z̄2 + 270z̄ − 90
)

+3a3
(

z̄2 − 30z̄ + 30
)

(z̄ − 1)2
))

(A.10)

f
[10]
b (z, z̄) =

(z̄ − 2)z̄2 log(1− z)
(

a1
(

z̄2 − z̄ + 1
)

+ a2(−z̄) + a2
)

3z(z̄ − 1)3(z − z̄)
(A.11)

B Color factors

In this appendix we compute the color factors corresponding to different topologies for the

case p = 3.

We take the gauge group to be SU(N). The generators T a, a = 1, . . . , N2 − 1 and the

trace satisfy

Tr(T aT b) = δab, T r(1) = N (B.1)

Contractions can be conveniently made by using the following rules

Tr(T aA)Tr(T aB) = Tr(AB)− 1

N
TrA TrB, (B.2)

Tr(T aA T aB) = TrA TrB − 1

N
Tr(A B), (B.3)
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which are a consequence of T a
pqT

a
rs = δpsδqr − 1

N
δpqδrs. Let us start by computing the

disconnected contribution a1. There are six ways to contract Trφ3 with itself. These split

into 3 + 3:

a1 = 9(〈abc|abc〉+ 〈abc|bac〉)2 (B.4)

where we have introduced the notation 〈abc|abc〉 = Tr T aT bT c Tr T aT bT c, etc. After a

short calculation we obtain

〈abc|abc〉 = −2
N2 − 1

N
, 〈abc|bac〉 = (N2 − 1)

(

N − 2

N

)

(B.5)

which results in

a1 = 9(N2 − 1)2
(

N − 4

N

)2

(B.6)

In order to compute a2 it is convenient to compute the following building blocks

〈abc|abd〉 = − 2

N
δcd, 〈abc|bad〉 =

(

N − 2

N

)

δcd (B.7)

The symmetry factor can be counted as follows. There are 18 ways to contract two scalars

in TrΦ3(x1) to two scalars in TrΦ3(x4). These split into 9 + 9. The same is true for the

other two operators. Hence

a2 = 81

((

N − 4

N

)

δcd
)((

N − 4

N

)

δcd
)

= 81

(

N − 4

N

)2

(N2 − 1) (B.8)

Now we compute a3. There are 162 ways to contract the scalars in TrΦ3(x1) to one

of each of the scalars of the remaining operators. For each of this possibility we have 8

contributions. Using cyclic symmetry these split into 3 + 4 + 1:

〈abc|ade|bdf |cef〉 = (N2 − 1)

(

6

N2
− 1

)

(B.9)

〈abc|ade|bdf |cfe〉 = (N2 − 1)

(

6

N2
− 2

)

(B.10)

〈abc|ade|bef |cfd〉 = (N2 − 1)

(

N2 − 5 +
6

N2

)

(B.11)

Putting all the contributions together we obtain

a3 = 162(N2 − 1)
48− 16N2 +N4

N2
(B.12)

Let us end this appendix by computing the analog of the color factor a2 for general p, which

we denote a
(p)
2 , for a generic gauge group G. The disconnected contribution is given by

a
(p)
1 =

(

∑

σ(p)

〈a1a2 . . . ap|σ(a1)σ(a2) . . . σ(ap)〉
)2

(B.13)
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where the sum runs over all permutations of p elements. Next, let us consider the following

building block

κbc ≡
∑

σ(p−1)

〈a1a2 . . . ap−1b|σ(a1)σ(a2) . . . σ(ap−1)c〉 (B.14)

Due to the index structure we must have κbc = κδbc. In terms of this building block a
(p)
2 is

simply given by

a
(p)
2 = p4κbcκbc = p4κ2δbcδbc = p4κ2 dim G (B.15)

In order to compute κ consider

κ dim G = δbcκbc =
∑

σ(p−1)

〈a1a2 . . . ap−1b|σ(a1)σ(a2) . . . σ(ap−1)b〉 =
1

p

√
a1 (B.16)

We arrive at the final expression

a
(p)
2 =

p2

dim G
a
(p)
1 (B.17)
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