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1 Introduction

Dualities are an intriguing property of string theory. They identify the dynamics of a string

propagating in two backgrounds which are at a first glance totally different. Nevertheless,

for the string these backgrounds are completely indistinguishable. There are two different

dualities: S-duality identifies a strongly coupled theory with its weakly coupled counterpart

and T-duality which e.g. relates string theories defined on two different tori. Finally, S-

and T-duality can be unified into U-duality. Over several years, the study of dualities has

revealed some fundamental properties of string theory and has also led to the formulation

of M-theory.
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Double Field Theory (DFT) is an approach along these lines [1–7]. In order to visualize

its significance, consider first supergravity (SUGRA). It describes the target space dynamics

of massless closed string excitations and T-duality is only accessible through the Buscher

rules [8]. However they are non-linear transformations mixing metric and B-field, which

in general do not correspond to symmetries of the supergravity action. DFT solves this

problem by making T-duality a manifest symmetry. It extends the D-dimensional target

space to a space with 2D dimensions called doubled space. In this space a T-duality

transformation corresponds to a simple O(D,D,Z) rotation.

DFT was derived from Closed String Field Theory (CSFT) expanding it up to cubic

order on a torus1 [2]. In addition to the D center of mass coordinates xi of the string, D

extra coordinates x̃i were introduced. They are conjugate to the string winding wi, like the

coordinates xi are conjugate to the string momentum pi. The fields on the doubled space

are restricted by level matching, a consistency constraint of CSFT. A sufficient condition

for closure of the DFT gauge algebra is the strong constraint [3]. It is more restrictive

than level-matching, which is hence also called weak constraint. Equipped with the strong

constraint, a background independent version of DFT was derived in [4] and shown to be

equivalent [9] to a theory proposed by Siegel [1] long before. Its gauge algebra is governed

by the C-bracket, which is equivalent to the Courant bracket of Generalized Geometry

if the strong constraint holds. Finally, the trivial solution to the strong constraint with

vanishing x̃i dependence transforms DFT back into SUGRA.

Meanwhile, also an extension of DFT was constructed implementing U-duality as a

manifest symmetry. It is called Exceptional Field Theory [10–13] and is constrained by the

section condition, a generalization of the strong constraint of DFT.

Thus, it is clear that the strong constraint is a fundamental ingredient of DFT. There

are also attempts to soften it, motivated by the fact that it is impossible to obtain all

gauged supergravities arising from the embedding tensor formalism (see [14] for a nice in-

troduction) by flux compactifications of SUGRA. Performing a generalized Scherk-Schwarz

compactification [15–19] in DFT and substituting the strong constraint by the weaker so-

called closure constraint, one is able to reproduce all electrically gauged half-maximal

supergravities suggested by the embedding tensor [20, 21]. This result suggests that DFT

with a weakened constraint is more general than SUGRA. Indeed, the backgrounds related

to these gaugings are not accessible from SUGRA and are globally or even locally not well

defined. Thus, they are called non-geometric backgrounds. Standard diffeomorphisms and

B-field gauge transformations are not sufficient to patch them properly. In special cases

this problem can be cured by performing a field redefinition [22–26], but in general it is

not possible to describe non-geometric backgrounds in a consistent way in D-dimensional

target space. Nevertheless, they are totally well defined in the 2D-dimensional doubled

space of DFT with closure constraint. Already before the advent of DFT, the need of a

doubled space to treat non-geometric backgrounds was discussed in a series of papers by

Hull and Dabholkar [27–29].

1Much earlier, Siegel derived a doubled theory from 1st-quantized closed string theory [1]. It is back-

ground independent and introduces the strong constraint for the first time.
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Motivated by these findings, the flux formulation of DFT was developed [6, 30]. Up

to total derivatives it is equivalent to the original formulation after applying the strong

constraint. In general, the flux formulation substitutes the strong constraint by the closure

constraint so that additional terms are allowed in the action. Furthermore, all dynamical

fields are encoded in the O(D,D) covariant fluxes FABC . These are equivalent to the

embedding tensor mentioned above.

The picture outlined by these developments shows the power of dualities: starting

from a reformulation to make T-duality manifest, one is allowed to go beyond well known

geometric string backgrounds. However often for this general approach, the uplift to string

theory and conformal field theory is not clear. There are examples related to asymmetric

orbifolds [15, 19, 31, 32] which provide some evidence that at least for these cases uplifts

to string theory exist.

In this paper we intend to provide a new perspective upon the traditional version

of DFT, in particular on the issues related to the strong constraint, background (in-

)dependence and uplifts of non-geometric configurations. For that purpose, we are going

back to the root of DFT and evaluate the CSFT action up to cubic order for a non-toroidal

solution to the string equations of motion. Indeed, instead of considering a flat torus as

the background, like in the work of Hull and Zwiebach [2], we use a string propagating

on a compact group manifold with fluxes. Due to their isometries, these manifolds have

the same local properties at each point. Generically, these isometries are non-abelian, but

they include also the torus with abelian isometries. Group manifold are also well suited to

study various properties of doubled geometries [28, 33].

On the world-sheet, the exactly solvable background is described by a Wess-Zumino-

Witten model (WZW) [34] in the large radius/level limit (k ≫ 1). Employing the occurring

current algebras, we derive a cubic action and the corresponding gauge transformations

from CSFT. Just like in DFT, we find that one also has to impose a weak/strong constraint,

which however takes a different form. Instead of partial derivatives, it exhibits additional

terms which can be adsorbed into a connection forming a covariant derivative. The same

pattern also appears for the generalized Lie derivative and the C-bracket. Therefore, the

gauge algebra we derive resembles the one proposed by Cederwall [35] with the difference

that the connection encountered in our approach turned out not to be torsion-free.

Due to the split into left- and right movers, the gauge algebra closes even for asym-

metric backgrounds, i.e. for backgrounds not solving the traditional strong constraint of

DFT. Thus, our set-up is general enough to describe fluctuation around backgrounds that

violate the strong constraint and, in this respect, goes beyond the framework of traditional

DFT. These asymmetric WZW backgrounds, at least in the large radius/level limit, are

candidates for the uplift of non-geometric configurations beyond the well studied locally

flat asymmetric (toroidal) orbifold examples. All these findings suggest that the theory

we derive in this paper is a generalization of traditional DFT, though containing it for a

toroidal background. In order to distinguish them, we call it DFTWZW.

This paper is organized as follows: in section 2, we review the relevant features of

the WZW model and its current algebra. Furthermore, we give a representation for two-

and three-point correlators involving these currents in terms of scalar functions on a group
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manifold in the limit of large level k. Section 3 presents the derivation of the action and

its gauge transformations to cubic order in CSFT. In section 4 we discuss the generalized

Lie derivative, the gauge algebra and the constraint necessary for its closure. Finally in

section 5, we start an investigation of the relation between the theory constructed in this

paper so far and the flux formulation of toroidal DFT. There, we also propose the string

theory uplift of non-geometric flux backgrounds arising from a generalized Scherk-Schwarz

compactification of traditional DFT.

2 World-sheet theory for strings on a group manifold

In this section, we briefly review the WZW model and its current algebra providing the

notation for the rest of the paper. For a more detailed review of WZW models, we refer

to e.g. [36] or the appendix of [37]. Additionally, we show how the various representations

of a semisimple Lie algebra can be expressed in terms of scalar functions on the group

manifold. Afterwards, we use this result to express two- and three-point correlators and

show that they fulfill the Knizhnik-Zamolodchikov equation [38]. Finally, we provide the

two- and three-point off-shell amplitude for Kač-Moody primary fields.

2.1 Wess-Zumino-Witten model and Kač-Moody current algebra

A string propagating on a group manifold of a semisimple Lie group G is described by the

non-linear sigma model

S =
1

4πα′

∫

∂M
K(ωγ , ⋆ωγ) + SWZ (2.1)

on the world-sheet two-sphere S2 = ∂M . Note that its prefactor does not match the com-

mon choice −k/(8π), but it is very convenient for comparing (2.1) with a non-linear sigma

model given in terms of a metric and an asymmetric two-form field. We will compensate

for this uncommon choice in the definition of the Killing metric (2.3). The action given

here is exactly the same as the one presented in [36].

Let us explain the notation used in (2.1) in more detail. As usual, ⋆ denotes the Hodge

dual and ωγ is the left-invariant Maurer-Cartan form.2 The function γ(σ), which appears as

subscript of ωγ , maps each point of S2 to an element of the group G. In this way the string

world sheet is embedded into the target space. In order to fix a certain group element γ ∈ G,

one needs D different parameters xi where i runs from one to D. Infinitesimal changes of

them at a fixed γ create the tangent space TγG of the group manifold. At the identity,

TeG is identified with the Lie algebra g associated to G. The tangent space at an arbitrary

group element Tγ is mapped to g by the left- or right-invariant Maurer-Cartan form

ωγ = γ−1dγ = γ−1∂iγ dx
i or ω̄γ = dγγ−1 = ∂iγγ

−1 dxi with ∂i =
∂

∂xi
. (2.2)

They arise if γ is assumed to act as a left or right translation of G. Both of them take

values in the Lie algebra g. Two elements of this algebra are contracted to a scalar by the

2We could also use the right-invariant Maurer-Cartan form and would obtain the same results. But in

the literature it is common to use the left-invariant one.
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symmetric, bilinear Killing form3

K(x, y) = −α
′k

2

Tr(adx ady)

2h∨
, with x, y ∈ g (2.3)

where adx is the adjoint representation of x and h∨ denotes the dual Coxeter number of

g. The generalization of this equation to n-forms is straightforward: one has to insert a

wedge product ∧ between adx and ady. With these definitions at hand, one is able to

expand (2.1) as

S =
1

4πα′

∫

∂M
gij dx

i ∧ ⋆dxj + SWZ with gij = K(γ−1∂iγ, γ
−1∂jγ) (2.4)

where gij is the target space metric of the group manifold. The parameters xi parameteriz-

ing the elements of the group G are equivalent to coordinates on the manifold. They are re-

lated to the word-sheet coordinates σα by the mapping xi(σa) giving rise to dxi = ∂αx
idσα.

Since the metric part (2.4) of the action S alone spoils local conformal symmetry, one

has to add the topological Wess-Zumino term

SWZ =
1

12πα′

∫

M
K (ωγ , [ωγ , ωγ ]) =

1

2πα′

∫

M
H (2.5)

with the 3-form flux

H =
1

3!
Hijk dx

i ∧ dxj ∧ dxk and Hijk = K
(

γ−1∂iγ, [γ
−1∂jγ, γ

−1∂kγ]
)

. (2.6)

Here, the H-flux is the field strength associated to the massless, antisymmetric Kalb-

Ramond field Bij . Both are linked via the relation4

H = dB with B =
1

2!
Bijdx

i ∧ dxj and Hijk = 3∂[iBjk] . (2.7)

Of course, a physically meaningful sigma model only depends on the world sheet ∂M and

not on its extension to the three-dimensional spaceM . Thus, physics has to be independent

of the specific choice for M . For G being a compact semisimple Lie groups with non-trivial

homology π3(G) = Z, this is only the case if SWZ is an integer multiple of 2π [39]. Thereby,

the H-flux of a compact background is quantized.

The variation of the action with respect to theG-valued field γ gives rise to the equation

of motion

∂α(γ
−1∂αγ) +

1

2
ǫαβ∂

α(γ−1∂βγ) = 0 . (2.8)

3We use the common convention that the length square of the longest root in the root system of g is

normalized to 2.
4Within this paper we use the notation

T[a1...an] =
1

n!

∑

σ∈P

sign(σ)Tσ1...σn
and T(a1...an) =

1

n!

∑

σ∈P

Tσ1...σn
,

to denote the (anti)symmetrization of rank n tensors. P is the set of all permutations of the indices

a1, . . . , an.
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It is interesting to note that the second term in this equation origins from the Wess-Zumino

term in the action. By fixing the word sheet metric to hzz̄ = 2, hzz = hz̄z̄ = 0 and writing

out the components of the totally antisymmetric tensor ǫαβ with ǫzz̄ = 1, one obtains

∂(γ−1∂̄γ) = 0 . (2.9)

One can directly read off the anti-chiral Noether current

j̄(z̄) = − 2

α′γ
−1∂̄γ (2.10)

from the equation of motion. Note that, without the second term in (2.8), we would

not obtain an anti-holomorphic current. To obtain the chiral current, we apply complex

conjugation to (2.10) and substitute γ by γ−1 afterwards. By this procedure we get

j(z) =
2

α′∂γγ
−1 . (2.11)

To motivate the normalization of these currents, consider the infinitesimal transformations

δξγ(w, w̄) = ξ(w)γ(w, w̄) and δξ̄γ(w, w̄) = −γ(w, w̄)ξ̄(w̄) . (2.12)

of the field γ. Here, ξ(w) and ξ̄(w̄) are the Lie algebra valued parameters of the transfor-

mations. It is sufficient to discuss the chiral part ξ(z) only. Applying (2.12) to the action

S, we obtain

δξS = − 1

2πi

∮

0
dzK(ξ(z), j(z)) (2.13)

where
∮

w dz denotes a closed contour integral around the point w. Here, we have chosen the

normalization factor of ja in (2.11) to obtain precisely the factor 1/(2πi) in this expression.

With δS one can compute small changes

δξ〈X〉 = 〈δξSX〉 = 1

2πi

∮

0
dz〈K(ξ(z), j(z))X〉 (2.14)

of an arbitrary expectation value

〈X〉 =
∫

[dγ]Xe−S[γ]

∫

[dγ] e−S[γ]
(2.15)

in the Euclidean path integral.

As a brief interlude, let us discuss the D = dim g generators ta of the Lie algebra g.

They form a basis of the adjoint representation. We define the symmetric tensor

ηab = K(ta, tb) = −α
′k

2

Tr(tatb)

2xλ
= − 1

2h∨
fad

cfbc
d . (2.16)

In the last step we have expressed the generators in terms of the structure coefficients of

the Lie algebra appearing in the commutation relation5

[ta, tb] =

√

2

α′k
fab

c tc = Fab
c tc with Fab

c :=

√

2

α′k
fab

c . (2.17)

5There are different conventions. Some use an additional i in front of the structure coefficients. We stick

to the convention in [37] without i.
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For later convenience, we defined the rescaled structure coefficients Fab
c. Note that it is

always possible to choose the generators ta of a semisimple Lie algebra g in a way that ηab
is a diagonal matrix with entries ±1. Thus, ηab is completely specified by its signature.

A compact Lie group G has a Lie algebra with a negative definite Killing form, i.e. the

signature of ηab is (−, . . . ,−). In combination with its inverse ηab, ηab is used to raise and

lower flat indices a, b, . . . .

Coming back, the chiral current (2.11) can be written in terms of the generators ta as

j(z) = taja(z) with ja(z) = K(ta, j(z)) . (2.18)

In this form, the infinitesimal transformation δξ of the chiral current reads

δξjb(w) = Fab
c jc(w) ξ

a(w) +
2

α′ ηab∂ξ
a(w) with ξa(w) = K(ta, ξ(w)) . (2.19)

Plugging this into (2.14) one obtains

δξ〈jb(w)〉 =
1

2πi

∮

dz〈ja(z)jb(w)〉ξa(z) = Fab
c 〈jc(w)〉ξa(w) +

2

α′ ηab∂ξ
a(w) (2.20)

allowing to read off the OPE

ja(z)jb(w) =
Fab

c jc(w)

z − w
− 2

α′
ηab

(z − w)2
+ . . . (2.21)

of the chiral currents. The analogous algebra holds for the anti-chiral current j̄(z̄). Nor-

mally one would expect the level k in front of the flat metric ηab instead of −α′/2. Here,

k is hidden in the rescaled structure coefficients Fab
c. For this reason, the OPE (2.21)

corresponds to the usual form of the Kač-Moody algebra at level k. Applying the same

procedure to the transformation in (2.12), we get the OPE

ja(z)γ(w, w̄) =
taγ(w, w̄)

z − w
+ · · · (2.22)

defining a Kač-Moody primary. Introducing the mode expansion

ja(z) =
∑

n

ja,n z
−n−1 (2.23)

the OPE (2.21) is equivalent to the Kač-Moody algebra

[ja,m, jb,n] = Fab
c jc,m+n − 2

α′ mηab δm+n . (2.24)

2.2 A geometric representation for semisimple Lie algebras

In the following we will show that there exist highest weight representations of a semi-simple

Lie algebra in terms of scalar functions defined on the group manifold. For that purpose,

let us first change from the abstract notation with Maurer-Cartan forms to a more explicit

one by introducing vielbeins. Expressing ωγ in (2.2) in terms of the generators ta, we obtain

ωγ = ta e
a
i dx

i with the vielbein eai = K(ta, γ−1∂iγ) . (2.25)

– 7 –



J
H
E
P
0
2
(
2
0
1
5
)
0
0
1

It carries two different kinds of indices: flat ones are labeled by a, b, c, · · · and curved ones

by i, j, k, · · · . Flat indices are raised and lowered with the metric ηab, whereas for curved

indices we use the target space metric gij in (2.4), which in terms of the vielbein reads

gij = ηab e
a
i e

b
j . (2.26)

Moreover, ea
i denotes the inverse transposed of eai and the H-flux defined in (2.6) can be

written as

Hijk = eai e
b
j e

c
k Fabc . (2.27)

Introducing the flat derivative

Da = ea
i∂i (2.28)

the commutator of two of them satisfies

[Da, Db] = Fab
cDc , (2.29)

with

Fab
c = 2e[a

i∂ieb]
jecj = 2D[aeb]

ieci . (2.30)

Thus, we found a representation of the generators ta in terms of the differential operators

Da acting on functions defined on a patch of the group manifold. We will see that these

functions include all highest weight representations of the Lie algebra.

Flat derivatives are mainly used under volume integrals with the volume element

dDx
√

|g| where g denotes the determinate of the target space metric gij . In this case,

one finds ∫

dDx
√

|g|Dav =

∫

dDx ∂i(
√

|g|eaiv) , (2.31)

where v is an arbitrary scalar function depending on the target space coordinates xi. Thus,

the right hand side reduces to a boundary term, which we always assume to vanish. Then

one can perform integration by parts

∫

dDx
√

|g|(Dav)w = −
∫

dDx
√

|g|v(Daw) . (2.32)

Note that (2.31) is not restricted to semisimple Lie algebras, but is much more general and

always holds if

Fab
b = 0 or equivalently Tr adx = 0 ∀x ∈ g (2.33)

is fulfilled. Lie algebras with this property are called unimodular.

The well known procedure of building highest weight representations also carries over

to the flat derivatives discussed above. Take e.g. the group SU(2) parameterized by Hopf

coordinates xi = (η1, η2, η3) with 0 ≤ η1 < π/2 and 0 ≤ η2,3 < 2π. A detail derivation of

the vielbeins for this group is presented in appendix A. Here we are only interested in the

flat derivatives

D̃3 = −
√

α′k

2
D3 = − i√

2

(

∂2 + ∂3
)

and (2.34)

– 8 –
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D̃± = −
√

α′k

2
(±iD1 −D2)

= − ie±i(η2+η3)

√
2 sin(2η1)

[

±i sin(2η1) ∂1 + 2 sin2(η1) ∂2 − 2 cos2(η1) ∂3
]

. (2.35)

We look for eigenfunctions of D̃3 which are annihilated by D̃+. A short calculation shows

that this is the case for

yλ(x
i) = Cλ(sin η

1)
√
2λei

√
2λη3 (2.36)

where Cλ denote normalization constant constants fixed by the requirement

∫

dDx
√

|g|y∗λyλ= |Cλ|24π2(α′k)3/2
π/2
∫

0

dη1 cos(η1) sin(η1)1+2
√
2λ= |Cλ|2

2π2(α′k)3/2√
2λ+ 1

=1 ,

(2.37)

which is only possible if
√
2λ + 1 > 0. Furthermore, we know from su(2) representation

theory that λ is an element of the 1-dimensional weight lattice Λ = Z/
√
2.Therefore, λ has

to be an element of N0/
√
2 in order to allow the normalization (2.37). Starting from these

highest weight states, one can construct the full su(2) representation by acting with D̃−
on yλ. We denote the resulting functions according to their D̃3 eigenvalues as

yλq = Cλq(D̃−)
(λ−q)/

√
2yλ with D̃3yλq = q yλq and q = −λ,−λ+

√
2, . . . , λ . (2.38)

Some of these functions are listed in appendix A. According to the integral
∫

dDx
√

|g| y∗λ1q1 yλ2q2 = δλ1λ2δq1q2 , (2.39)

which fixes the normalization constants Cλq, they form an orthonormal basis of the Hilbert

space of square-integrable functions on the 3-sphere L2(S
3). It is straightforward to gen-

eralized this procedure for other compact semisimple Lie algebras. In this case λ and q are

not just scalars, but vectors of dimension r = rank g.

For non-compact Lie algebras, the structure becomes more involved: first, one has to

consider lowest weight states in addition to the highest weight states discussed so far. These

are states annihilated by all negative simple roots. A representation is build by acting with

all negative simple roots on highest weight states vλ and with all positive simple roots

on lowest weight states v−λ. In contrast to a compact Lie algebra, this process does not

terminate. Thus, there is an infinite tower of states for each highest and lowest weight. A

simple example for a non-compact Lie algebra is sl(2). Its representations are discussed in

the context of the SL(2) WZW model in [40].

2.3 Two- and three-point correlation functions of Kač-Moody primaries

In order to perform the CSFT calculation in the next section, we need to know the corre-

lation functions 〈γ1(w1) . . . γn(wn)〉 of Kač-Moody primary fields. We have already defined

their OPE in (2.22). These have to fulfill the Knizhnik-Zamolodchikov equation [38]


∂wi
+

2

α′
k

k + h∨

∑

i 6=j

ηab t
(i)
a ⊗ t

(j)
b

wi − wj



 〈γ1(w1) . . . γn(wn)〉 = 0 (2.40)
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where the notation t
(i)
a indicates that the generator ta acts on the ith field γi(wi). The

chiral energy momentum tensor is given by the Sugawara construction as

T (z) = −α
′

2

k

2(k + h∨)
: ηabja(z)jb(z) : . (2.41)

Again, the uncommon factors in the Knizhnik-Zamolodchikov equation and the energy

momentum tensor are due to the normalization we performed in section 2. With the OPE

of the chiral currents ja(z) in (2.21), it is straightforward to calculate

T (z)ja(w) =
ja(w)

(z − w)2
+
∂wja(w)

z − w
+ . . . and (2.42)

T (z)T (w) =
c

2(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
+ . . . (2.43)

with the central charge

c =
kD

k + h∨
and D = dim g . (2.44)

From there, one can compute the OPE

T (z)γ(w) =
h

(z − w)2
γ(w) +

∂wγ(w)

z − w
+ . . . with h = − α′k

4(k + h∨)
tat

a . (2.45)

For γ(w) to be a Kač-Moody and a Virasoro primary, it needs to be an eigenstate of the

Lie algebra’s quadratic Casimir operator ηabtatb.

The CSFT calculation in this paper will be performed only up to quartic order so

that we need to know the two-point and three-point correlation functions. Recall that for

Virasoro primaries, these are completely determined up to some structure constants. We

introduce a Fourier-type expansion of the Kač-Moody primary

γ(w) =
∑

λ,q

cλq φλq(w, x
i) (2.46)

in terms of the Virasoro primaries φλq(w, x
i) with constant coefficients cλq. Due to the

linearity of the correlation functions, it is sufficient to know the correlations functions of

φλq. As mentioned above, these are fixed by conformal symmetry as

〈φλ1q1(w1)φλ2q2(w2)〉 =
dλ1q1 λ2q2δhλ1

hλ2

w
2hλ1
12

with w12 = w1 − w2 , (2.47)

〈φλ1q1(w1)φλ2q2(w2)φλ3q3(w3)〉 =
Cλ1q1 λ2q2 λ3q3

w
hλ1

+hλ2
−hλ3

12 w
hλ2

+hλ3
−hλ1

23 w
hλ1

+hλ3
−hλ2

13

. (2.48)

In these equations, hλ denotes the conformal weight of φλq as written in (2.45). Note that

it is independent of q.

Finally, we apply the Knizhnik-Zamolodchikov equation (2.40) to fix the constants

dλ1q1 λ2q2 and Cλ1q1 λ2q2 λ3q3 in (2.47) and (2.48). To do so, we realize that the functions

– 10 –



J
H
E
P
0
2
(
2
0
1
5
)
0
0
1

yλq(x
i) we introduced in the last section are eigenstates of L0, too. Therefore, a natural

candidate for the two-point structure constant is

dλ1q1 λ2q2 =

∫

dDx
√

|g| y∗λ1q1 yλ2q2 = δλ1λ2δq1q2 . (2.49)

We now show that this is compatible with the Knizhnik-Zamolodchikov equation. It au-

tomatically implies the delta function δhλ1
hλ2

in (2.47) by its δλ1λ2 part. Plugging the

correlation function into (2.40) gives rise to

hλ1dλ1q1 λ2q2 −
α′

2

k

2(k + h∨)

∫

dDx
√

|g| D̃ay
∗
λ1q1 D̃

ayλ2q2 = 0 . (2.50)

where we used that the differential operators D̃a give a representation of the Lie algebra

generators ta. Now, we perform integration by parts, pull the factor in front of the integrand

and obtain

hλ1dλ1q1 λ2q2 −
∫

dDx
√

|g| L0 y
∗
λ1q1 yλ2q2 = 0 . (2.51)

Recalling the eigenvalue equation L0 yλq = hλ yλq, one immediately sees that the Knizhnik-

Zamolodchikov equation is indeed fulfilled. A similar calculation proofs that in order to

fulfill (2.40) for the three-point correlation function (2.48), we have to set

Cλ1q1 λ2q2 λ3q3 =

∫

dDx
√

|g| y∗λ1q1 yλ2q2 yλ3q3 . (2.52)

Let us discuss how the usual toroidal case fits into this scheme. A torus corresponds

to an abelian group manifold with Fab
c = 0 and a coordinate independent vielbein ea

i.

Applied to the torus metric gij = δij , it gives rise to the flat metric ηab = ea
igijeb

j .

Plugging these quantities in (2.24) and introducing the abelian currents

αi,m = −i
√

α′

2
eai ja,m , (2.53)

we obtain the same current algebra

[αi,m, αj,n] = mgij δm+n (2.54)

as used for the derivation of DFT on a torus in [2]. To reproduce the zero mode αi,0, we

perform the substitution ja,0 → Da giving rise to

αi,0 = −i
√

α′

2
Di . (2.55)

Finally, the Virasoro zero mode read

L0 = −α
′

4
ηab
∑

n

: ja,n jb,−n := N +
1

2
gij DiDj with N =

∑

n>0

gij αi,nαj,−n . (2.56)

Note that the operator DaD
a is the Laplace operator on the group manifold. As we

have seen above, the functions yλq are its eigenfunctions. Consider now flat space where

we find

yk(x
i) =

1√
2π
eikix

i

(2.57)
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as eigenfunctions of the Laplace operator. The corresponding expansion (2.46) is noth-

ing else than a Fourier expansion. According to (2.52), the constant in the three-point

correlation function reads

Ck1 k2 k3 = δ−k1+k2+k3 . (2.58)

Physically, this reflects momentum conservation in a scattering process with two incoming

particles (momentum k2 and k3) and one outgoing particle (momentum k1). Switching to

the SU(2) example discussed in appendix A, one obtains [41]

Cλ1q1 λ2q2 λ3q3 = 〈j1q1|j2q2 j3q3〉 (2.59)

with 〈j1q1|j2q2 j3q3〉 denoting the Clebsch-Gordan coefficients. In contrast to flat space, the

corresponding scattering process is not ruled by momentum conservation but by angular

momentum conservation.

2.4 Doubled space and fundamental CSFT off-shell amplitudes

In the previous subsection we considered only the chiral primary φλq(w). Now, we take

also their anti-chiral counterparts φ̄(w̄)λ̄q̄ into account. In order to keep the notation as

simple as possible, we introduce the following abbreviations:

R = (λq , λ̄q̄) and φR(w, w̄) = φλq(w)φ̄λ̄q̄(w̄) . (2.60)

For the WZW model in section 2.1, the anti-chiral current j̄a(z̄) is governed by the same

Kač-Moody algebra as the chiral one.

In analogy to (2.28) and (2.25), we introduce a flat derivative Dā defined in terms of

the vielbein

eāī = K(ta, ∂īγ γ
−1) as Dā = eā

ī∂ī . (2.61)

In order to distinguish between the chiral and the anti-chiral part, it is convenient to use

bared indices so that the commutator is written as

[Dā, Db̄] = Fāb̄
c̄Dc̄ . (2.62)

In the left/right symmetric WZW model corresponding to a geometric background, the

bared and unbared structure coefficients are related by

Fāb̄
c̄ = −Fab

c . (2.63)

However in general, we want to treat them as independent quantities. The derivative

in (2.61) acts on the right-moving coordinates xī only. Combining these D right-moving

coordinates with the D left-moving ones, we obtain a doubled space parameterized by

the 2D coordinates XI = (xi, xī). From this world-sheet perspective it is very natural to

introduce the doubled derivative ∂I = (∂i, ∂ī) and the doubled vielbein

EA
I =

(

ea
i 0

0 eā
ī

)

(2.64)
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giving rise to a doubled flat derivative

DA = EA
I∂I with [DA, DB] = FAB

CDC . (2.65)

At this point, one realizes a striking similarity to the flux formulation of DFT. The latter

also uses a flat doubled derivative giving rise to the same algebra (see e.g. [9, 30]). How-

ever, the details are different, as here we are considering a CFT background, whereas in

traditional DFT the doubled vielbein is introduced for fluctuations. The individual entries

in the vielbein are also different, e.g. in (2.64) the background B-field is sort of hidden in

the left and right moving frames ea
i and eā

ī. Recall that the distinction between these two

frames only exist for a CFT in the first place.

It is straightforward to generalize the structure constants dλ1q1 λ2q2 and Cλ1q1 λ2q2 λ3q3

to the combination of the chiral and anti-chiral fields φR

dR1 R2 =

∫

d2DX
√

|H|Y ∗
R1
YR2

= δR1R2 and (2.66)

CR1 R2 R3 =

∫

d2DX
√

|H|Y ∗
R1
YR2

YR3
(2.67)

with

YR(X
I) = yλq(x

i) ȳλ̄q̄(x̄
ī) , HIJ = EA

IE
B
JSAB and SAB =

(

ηab 0

0 ηāb̄

)

. (2.68)

As we will see, all expressions arising in the CSFT calculation in the next section can

be eventually reduced to two different off-shell amplitudes of the primaries φR. In the

vertex notation [42, 43], these amplitudes read

〈R12|φR1〉1|φR2〉2 = lim
wi→0

〈I ◦ φR1(w1, w̄1) φR2(w2, w̄2)〉 and (2.69)

〈V3|φR1〉1|φR2〉2|φR3〉3 = lim
wi→0

〈I ◦ f1 ◦ φR1(w1, w̄1) f2 ◦ φR2(w2, w̄2) f3 ◦ φR3(w3, w̄3)〉 ,

(2.70)

where 〈R12| denote the so-called reflector and state 〈V3| the three-point vertex. Moreover,

I is the BPZ conjugation defined as

I(w) =
1

w
and I ◦ φR(w, w̄) = w−2hRw̄−2h̄RφR(I(w), Ī(w̄)) (2.71)

Furthermore,

fi(wi) = wi 0 + ρiwi +O(w2
i ) = w (2.72)

is a conformal mapping between the local coordinates wi around the i-th puncture of the

sphere S2 and global coordinates w. We fix the punctures to (w1 0, w2 0, w3 0) = (∞, 0, 1).

The parameter ρi appearing in fi is called mapping radius [44]. We will comment on its sig-

nificance later. Note that for Virasoro primaries, like φR, a conformal transformation act as

fi ◦ φR(wi, w̄i) =

(

dfi
dwi

)hRi

(

df̄i
dw̄i

)h̄Ri

φR(fi(wi), f̄i(w̄i)) . (2.73)
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An important consistency condition of CSFT is that all primaries have to be level

matched (hR = h̄R). In this case, the off-shell amplitudes take the simple form

〈R12|φR1〉1|φR2〉2 = dR1 R2 and (2.74)

〈V3|φR1〉1|φR2〉2|φR3〉3 = |ρ1|2hR1 |ρ2|2hR2 |ρ3|2hR3 CR1 R2 R3 . (2.75)

Now, we have introduced all the necessary tools to perform the CSFT calculations in the

next section.

3 DFTWZW action and gauge transformations from CSFT

After having discussed the details of the world sheet theory, the corresponding CFT corre-

lation functions and off-shell amplitudes, we present the CSFT calculations in this section.

We start with introducing the string fields describing a massless closed string state on a

group manifold and the parameter for its gauge transformations. Then, from CSFT we

derive the effective DFTWZW action and its gauge transformations up to cubic order. After

introducing a version of the strong constraint, we simplify the results by applying the same

field redefinitions as in [2]. Interestingly, the form of the strong constraint differs from

the one of DFT. Finally, we calculate the gauge algebra (C-bracket) and check its closure

under the new strong constraint.

Throughout the remainder of this paper, we will work in the large level k limit corre-

sponding to the large radius limit of the group manifold. Therefore, many of the quantities

we will compute receive higher order in k−1 corrections corresponding to α′ corrections.

3.1 String fields for massless excitations and the weak constraint

The starting point for the CSFT calculations are two string fields |Ψ〉 and |Λ〉. They are

level matched and in Siegel gauge [45]. Thus they are annihilated by

L0 − L̄0 and b−0 = b0 − b̄0 . (3.1)

The first one has ghost number two and the second one has ghost number one. The general

string field consists of fields corresponding to all order Kač-Moody modes acting on the

Kač-Moody ground states |φR〉. Recall that for toroidal DFT, one restricts the string field

to just the lowest lying massless oscillation modes acting on the Kaluza-Klein (momentum)

and winding ground states. Since in this case there does not exist a regime for the radius

such that all these states are lighter than the first excited oscillation mode, this is not a

low-energy truncation of the theory. However, the strong constraint prohibits simultaneous

winding and momentum excitations in the same direction. In this sense, for DFT the torus

can always be chosen in a way permitting a consistent low-energy truncation.

For the WZW model the situation is similar. Analogous to the toroidal case, we first

remove all massive string excitations from the string field. Then, we recall the explicit

Sugawara form of the Virasoro operator

Lm = −α
′

4

(

1− h∨k−1
)

ηab
∑

n

: ja,n−m jb,−n : +O(k−3) (3.2)
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where we have expanded the prefactor as

− α′

2

k

2(k + h∨)
= −α

′

4
(1− h∨k−1 + · · · ) (3.3)

and have taken into account that the chiral currents ja and jb include a normalization

factor k−1/2. Hence, we find exactly the order O(k−3) stated in (3.2). Then, e.g. the state

ja,−1 jb̄,−1 c1c̄1|φR〉 is still present in the truncated string field and its mass is given by

(L0 + L̄0)ja,−1jb̄,−1c1c̄1|φR〉 =
1

2k
(1− h∨k−1)(c2(λ) + c2(λ̄))ja,−1jb̄,−1c1c̄1|φR〉+O(k−3)

(3.4)

where c2(λ) denotes the quadratic Casimir of the representation with the highest weight

λ. Now, for a fixed ground state in the representation λ, one can always choose the level

k large enough so that the mass in (3.4) is much smaller than one. For fixed level k, there

exist always ground states with a mass much larger than one.6 This is the same behavior

as for the toroidal case, but only after one applies the strong constraint there. Thus, the

truncated string field is given by

|Ψ〉 =
∑

R

[

α′

4
ǫab̄(R) ja,−1 j̄b̄,−1 c1c̄1 + e(R) c1c−1 + ē(R) c̄1c̄−1+

+
α′

2

(

fa(R) c+0 c1 ja,−1 + f b̄(R) c+0 c̄1 j̄b̄,−1

)

]

|φR〉 , (3.5)

and for the gauge parameters the corresponding string field is

|Λ〉 =
∑

R

[

1

2
λa(R)ja,−1c1 −

1

2
λb̄(R) j̄b̄,−1 c̄1 + µ(R) c+0

]

|φR〉 (3.6)

with c±0 = 1
2(c0± c̄0). The fields ǫab̄(R), e(R) etc. can be considered as fluctuations around

the WZW background. In contrast to the toroidal case [2], in (3.5) one does not sum over

winding and momentum modes but over the different representations R = (λq λ̄q̄).

Now, let us derive the consequences of the level-matching constraint (3.1) in more

detail. This will guide us to the DFTWZW generalization of the weak and strong constraint.

For that purpose, let us take a closer look at a component of the string field, like e.g. e(R).

We assume that the group manifold G is simply-connected so that the functions YR(X)

introduces in section 2.4 form a basis for the square-integrable functions L2(G) on G.

Hence, we are able to express each e(X) ∈ L2(G) as

e(X) =
∑

R

e(R)YR(X) . (3.7)

For this field, the level matching constraint (3.1) translates into

(

DaD
a −DāD

ā
)

e = 0 . (3.8)

6For instance for SU(2)k, there are finitely many highest weight representations with conformal dimension

h = l(l+2)
4(k+2)

with 0 ≤ l ≤ k. The state carrying highest mass is l = k with h = k/4.
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This can be compactly expressed in terms of the doubled index notation introduced in

section 2.4. Introducing the O(D,D) type constant metric

ηAB =

(

ηab 0

0 −ηāb̄

)

and it’s inverse ηAB =

(

ηab 0

0 −ηāb̄

)

, (3.9)

the level matching constraint reads

ηABDADB · = DAD
A · = 0 . (3.10)

Here, · stands for the physical fields e, ē, ǫab̄, fa, f b̄ and the gauge parameters λa, λb̄, µ.

In this notation, it closely resembles the weak constraint of usual DFT. However, it is given

in flat and not in curved indices so that for a proper comparison, we have to transform it

into curved ones. To this end, we employ the identities

Ωb
ba = −Ωb

ab + ∂ig
ijeaj with the coefficients of anholonomy Ωab

c = ea
i∂ieb

jecj (3.11)

and

Fab
b = 0 = 2Ω[ab]

b = Ωab
b − Ωba

b ⇒ Ωab
b = Ωba

b , (3.12)

which follows from unimodularity of the Lie algebra g, as required in (2.33). Moreover, for

a constant dilaton φ one gets

2Dad = Ωa
b
b , where d = φ− 1

2
log
√

|G| (3.13)

is the generalized dilaton of DFT. Combining these results we obtain the relation

Ωb
ba = −2Dad+ ∂ig

ijeaj (3.14)

by which one finds

DaD
a· = (Ωb

baDa + gij∂i∂j)· = (−2∂id ∂
i + ∂i∂

i) · . (3.15)

The analogous relation holds for bared indices, as well. Thus, with

ηIJ = EA
IEB

JηAB =

(

gij 0

0 −gīj̄

)

(3.16)

we obtain for (3.10) in curved indices

(∂I∂
I − 2 ∂Id ∂

I)· = 0 . (3.17)

Note that curved doubled indices are raised and lowered with ηIJ which in this case is

not constant. This is an essential difference to traditional DFT. It implies that one cannot

pull ηIJ in and out of partial derivatives so that e.g. the expressions ∂I∂I = ηIJ∂J∂I and

∂I∂
I = ∂I(η

IJ∂J) are not equivalent.

The weak constraint (3.17) can be further simplified by invoking the definition of a

covariant derivative

∇IV
J = ∂IV

J + ΓIK
JV K . (3.18)
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In general, not all components of the generalized Christoffel symbols ΓIK
J are fixed but,

as we will show in section 4, the compatibility with partial integration yields

ΓI = ΓJI
J = −2∂Jd . (3.19)

Hence, one can rewrite (3.17) as

∇I∂
I · = 0 . (3.20)

We will also see in section 4 that one can require metric compatibility ∇Iη
JK = 0. Using

this, the expression (3.20) does not suffer from the problem ∂I∂
I · 6= ∂I∂I · outlined above.

Indeed, it follows immediately that ∇I∂
I · = ∇I∂I · .

Applying (3.10) to a product of two elementary objects we arrive at the strong con-

straint

DAf D
Ag = ∂If ∂

Ig = 0 . (3.21)

Note that in curved indices this constraint also involves the non-constant metric ηIJ .

3.2 Action and gauge transformations

In closed string field theory, the tree level action is given by [2, 42]

(2κ2)S =
2

α′

(

{Ψ, QΨ}+ 1

3
{Ψ,Ψ,Ψ}0 +

1

3 · 4{Ψ,Ψ,Ψ,Ψ}0 + . . .

)

(3.22)

where ψ denotes the string field (3.5). It is a sum over infinitely many string vertices

{·, · · · , ·}0 evaluated at the genus zero world-sheet S2. These are also called string func-

tions. As in [2], here we will evaluate these vertices up to order three. The fourth order term

is already quite challenging as it involves an integral over a region in C, whose boundary

is not analytically known. First we will calculate the quadratic order and then discuss the

appearance of Ward identities which will be used along the line of [46] to calculate the cubic

order. This will give the simplest interactions among the components of the string field.

Besides the action (3.22), CSFT admits to calculate gauge transformations of the

action, too. They read

δΛΨ = QΛ + [Λ,Ψ]0 +
1

2!
[Λ,Λ,Ψ]0 + . . . (3.23)

and are parameterized by Λ, the ghost number one string field introduced in (3.6). Here,

the string product [·, ·]0 appears, which is connected to the string function by the identity

[B1, . . . , Bn]0 =
∑

s

|φs〉{φcs, B1, . . . , Bn}0 . (3.24)

The string fields φcs are called conjugate fields of φs. Since for CSFT on the torus, the CFT

is free, it is straightforward to obtain the conjugate fields. However, on group manifolds, the

world-sheet theory is in general interacting so that the notion of conjugate fields becomes

more involved. We will tackle this problem while discussing the gauge transformations at

quadratic order.
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3.2.1 CSFT at quadratic order

Let us start with the leading order CSFT action

{Ψ, QΨ} = 〈Ψ|c−0 Q|Ψ〉 (3.25)

with the BRST operator given by7

Q =
∑

m

(

: c−mLm : +
1

2
: c−mL

gh
m :

)

+ anti-chiral . (3.26)

We know the exact definition of Lm and Lgh
m in terms of the modes jam, cm and bm, but

for most purposes we only need to employ the commutator

[Lm, φn] =
(

(h− 1)m− n
)

(3.27)

between a Virasoro generator and a primary field φ of conformal weight and similarly for

the ghost contribution Lgh
m h.

As we have already defined in (2.74), a convenient way to express the expectation

value (3.25) is in terms of the reflector state 〈R12|, namely

〈Ψ|c−0 Q|Ψ〉 = 〈R12|Ψ〉1c−(2)
0 Q(2)|Ψ〉2 . (3.28)

Then, we can use the identities [42]

〈R12|c(1)m + c
(2)
−m = 0 and 〈R12|j(1)a,m + j

(2)
a,−m = 0 (3.29)

to move operators from one side of the reflector to the other. As (3.28) is bilinear, one

can treat each term in the string field (3.5) separately. To continue, we use the following

algorithm: on each side of the reflector state we move operators annihilating the primary

|φR〉 or the ghost vacuum to the right by using the commutation relations (3.27) and (2.24).

This procedure is called normal ordering. It is performed in such a way that the Virasoro

generators are transported directly to the primary field in each slot of the reflector state.

Only L0 and L−1 survive this procedure. According to (3.2), one can replace L0 and L−1 by

L0|φR〉 = −α
′

4
(1− h∨k−1 + . . . )ηab ja,0 jb,0|φR〉 ,

L−1|φR〉 = −α
′

2
(1− h∨k−1 + . . . )ηab ja,−1 jb,0|φR〉 (3.30)

for large k. Afterwards, we perform normal ordering again until only zero modes or cre-

ation operators are left over. All operators acting on the first part of 〈R12| are moved to

the second one utilizing the identities (3.29). We establish normal ordering and so that,

finally, only zero modes are left over.

7In a theory free from conformal anomalies, the BRST operator has to be nilpotent. This is only the

case if the central charge cgh = −26 of the ghost system cancels the one of the bosons. Thus, we have to

add 26 −D (D is the dimension compact Lie algebra g) abelian directions. Furthermore, for finite level k

we need a linear dilaton in one of the abelian directions.
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Just to give an impression, one of the many terms of the resulting expression is

{Ψ, QΨ} = · · ·+ α′

2

∑

R1, R2

ē(R1) e(R2) η
ab 〈R12|φR1〉1c−1c̄−1c0c1c̄1 ja,0 jb,0|φR2〉2 + . . . .

(3.31)

To get rid of the ghost zero modes c−1, c0 and c1 we apply the ghost overlap8

〈φR1 |c−1c̄−1c
−
0 c

+
0 c1c̄1|φR2〉 := δR1 R2 ⇔ 〈φR1 |c−1c0c1c̄−1c̄0c̄1|φR2〉 = 2δR1 R2 .

(3.32)

Recalling the two-point amplitude (2.74) and combining it with the substitution

ja,0|φR〉 = ta|φR〉 and ta → Da , (3.33)

we obtain the final result

(2κ2)S = · · ·+ α′

2

∫

d2DX
√

|H| ē DaD
ae+ . . . . (3.34)

After a tedious computation, at leading order O(k−1) the complete quadratic action reads

(2κ2)S(2,−1) =

∫

d2D
√

|H|
[

1

4
ǫab�ǫ

ab + 2 ē�e− fa f
a − fb̄ f

b̄

− fa(Db̄e
ab̄ − 2Daē) + fb̄(Dae

ab̄ + 2Db̄e)

]

(3.35)

where the generalized Laplace operator is defined as

� =
1

2

(

DaD
a +DāD

ā
)

. (3.36)

Let us make a couple of comments:

• Note that we assumed the auxiliary fields fa and fā to be proportional to k−1/2, as

otherwise we would also find additional terms in (3.35). This situation is in total

accordance with toroidal DFT, where the auxiliary fields are also weighted by an

additional factor
√
α′.

• On the torus, the vielbein EA
I is independent of the coordinates XI , so that one

can simply substitute the flat coordinates in (3.35) by curved ones. In this way, one

exactly reproduces the result derived in [2].

• Even though (3.35) looks like the one for toroidal DFT, there is a substantial differ-

ence in that the derivatives appearing there do not commute.

At subleading orders in k−1 the difference become even more striking. Recall that such

corrections have the interpretation of α′ corrections.Whereas for the toroidal case such

corrections are absent in the CFT action at quadratic order, for the WZW model there

exist a whole series of them. Thus, all quantities on the world-sheet receive corrections

8We use the convention of [2] which differs by a sign from the earlier works like [42].
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which is already reflected in (3.30), where the Virasoro generators L0 and L−1 receive

corrections in all orders of k−1.

Now, we come to the evaluation of the gauge transformation (3.23) at second order,

which involve the conjugate fields φs. These are defined by the relation

{φcs, φs′}0 = 〈φcs|c−0 |φs′〉 = 〈R12|φcs〉1c
−(2)
0 |φs′〉2 = δss′ . (3.37)

Since ja,−1 and jb̄,−1 are the only creation operators appearing in the massless string fields,

it is sufficient to know the conjugate field of φs = ja,−1|φR〉 with s = (a,R) (and its anti-

chiral counterpart). A first guess for this conjugate field is φcs = ja−1|φR〉, which is along

the lines of the abelian case. Evaluating (3.37), we obtain

〈R12|ja (1)−1 |φR1〉1 j
(2)
b,−1|φR2〉2 = −F a

b
c 〈R12|φR1〉1 j

(2)
c,0 |φR2〉2 +

2

α′ δ
a
b δR1 R2 . (3.38)

We realize that, even though the second term on the right hand side looks quite good, the

first one spoils everything. We can get rid of this term by instead defining the conjugate

field as

φcs =

(

α′

2
−
(

α′

2

)3/2

k−1

)(

ja−1 +
α′

2
F abc jc,0 jb,−1

)

. (3.39)

Indeed, after some algebra and using (2.16), up to order k−1, this ansatz gives rise to the

desired result

〈R12|φcs1〉1j
(2)
b,−1|φR2〉2 = δab δR1 R2 +O(k−3/2) , (3.40)

which is an improvement in comparison to our first guess. There it was only satisfied up

to the order k−1/2. In general, one has to determine the conjugate fields order by order

in inverse powers of k. However, for all orders we are considering in this paper, (3.40) is

sufficient.

Now, we have collected all ingredients to calculate the gauge transformations

δΛΨ =
∑

s

|φs〉{φcs, QΛ}0 , (3.41)

using the same techniques as for computing the CSFT action. In the end, at leading order

O(k−1) we obtain the gauge transformations

δΛǫab̄ = Daλb̄ +Db̄λa δΛe = µ− 1

2
Daλ

a δΛfa = Daµ− 1

2
�λa (3.42)

δΛē = µ+
1

2
Db̄λ

b̄ δΛfb̄ = Db̄ µ+
1

2
�λb̄ . (3.43)

These and the quadratic action (3.35) possess the Z2 symmetry

ǫab̄ ↔ ǫb̄a , Da ↔ Dā , fa ↔ −fā , e ↔ −ē , λa ↔ λā and µ ↔ −µ ,
(3.44)

which is a direct consequence of vanishing (anti-)commutators between chiral and anti-

chiral operators in the theory.
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3.2.2 Interactions at cubic order

In this section we compute the string function

{Ψ,Ψ,Ψ} = 〈V3|Ψ〉1|Ψ〉2|Ψ〉3 , (3.45)

which forms the cubic part of the tree-level action (3.22). Even though [46] considers open

string field theory, our closed CSFT computation is very analogous.

From the discussion in section 2, we know that each mode ja,n of the current ja(z) is

a symmetry generator of our theory. Hence, the variation

δε〈f1 ◦ V1 f2 ◦ V2 f3 ◦ V3〉 =
∮

dz

2πi
〈ε(z)ja(z)I ◦ f1 ◦ V1 f2 ◦ V2 f3 ◦ V3〉 = 0 (3.46)

has to vanish for arbitrary vertex operators Vi. In the vertex 〈V3| notation introduced

in (2.70), this expression translates into [46]

3
∑

i=1

∮

Ci

dz

2πi
〈V3|ε(z) ja(z) = 0 . (3.47)

Here, we do not explicitly write the right hand side of the equation, because it holds

for arbitrary Vi. The integral in (3.46) receives only contributions around the punctures

introduced by the vertex operators. These punctures are enclosed by the contours Ci .
To pull the integration directly in front of the corresponding vertex operator, one has to

change the integration variable from z to zi = f−1
i (z). Since ja(z) has conformal weight

one, this transformation gives rise to

dz ε(z) ja(z) = dzi
dz

dzi

(

dzi
dz

)1

ε(fi(zi)) ja(zi) = dzi εi(zi) ja(zi) (3.48)

with εi(zi) = ε(fi(zi)). Thus, for (3.47) we obtain

3
∑

i=1

∮

Ci

dzi
2πi

〈V3|εi(zi) ja(zi) = 0 . (3.49)

The functions z = fi(zi) map the local coordinates around the punctures at z0 i = {∞, 0, 1}
to a common coordinate system z. In doing so, they describe the world-sheet geometry of

the three-point interaction. As shown in more detail in appendix B, they are given by

f2(z2) = ρz2 + d1(ρz2)
2 + d2(ρz2)

3 + . . . , (3.50)

f3(z3) =
1

1− f2(z3)
and f1(z1) = 1− 1

f2(z1)
(3.51)

with the constants

ρ = − 4

3
√
3
, d1 = −1/2 and d2 = −1/16 . (3.52)

Choosing ε(z) = ρ/z and utilizing the mode expansion of the chiral current ja(zi) in (2.23),

we obtain the Ward identity

〈V3|
(

ρ j
(1)
a,0 − ρ2 j

(1)
a,0 + j

(2)
a,−1 − ρd1 j

(2)
a,0 + ρ2(d21 − d22) j

(2)
a,1 − ρ2 j

(3)
a,1 + . . .

)

= 0 . (3.53)
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A similar argument holds for the c-ghosts, which are Virasoro primaries of conformal weight

−1. Thus, the main difference is the transformation behavior of

dz φ(z) c(z) = dzi
dz

dzi

(

dzi
dz

)−1

φ(f(zi)) c(zi) = dzi φi(zi) c(zi) (3.54)

with φi(zi) = (f ′(zi))−2 φ(f(zi)). Again, for the specific choices

φ(z) =
1

(1− z)z2
and φ(z) =

(z − 2)ρ

2(z − 1)z3
(3.55)

the two Ward identities

〈V3|
(

ρc
(1)
1 + c

(2)
0 + ρ(1 + 2d1) c

(2)
1 − ρ c

(3)
1

)

=0 (3.56)

〈

V3

∣

∣

∣

(

−ρ
2

2
c
(1)
1 +c

(2)
−1+

ρ

2
(1+2d1) c

(2)
0 +

ρ2

2
(1+2d1−4d21+6d2) c

(2)
1 − ρ2

2
c
(3)
1

)

=0 (3.57)

follow. For bared operators, analogous Ward identities hold.

Equipped with these Ward identities, we one can now proceed and compute the string

function (3.45). Like for the quadratic term, we again use the bilinearity of the string func-

tion and obtain 53 = 125 different terms to calculate. Considering also their symmetries,

it is sufficient to calculate only 35 different terms and weight them with the corresponding

combinatoric prefactors.

To evaluate each of these 35 remaining string functions, we apply the following al-

gorithm: first we use one of the Ward identities (3.53), (3.56) or (3.57) to remove the

corresponding operator from the second slot of 〈V3|. Afterwards we establish normal or-

dering of all slots and remove terms where annihilation operators hit the primaries. We

repeat this procedure until slot two of 〈V3| contains the operators c1, c̄1 and ja,0 only. Now,
we rotate the vertex according to the rule

〈V3|V1〉1 V2〉2 V3〉3 = (−)V1(V2+V3)〈V3|V2〉1 V3〉2 V1〉3 (3.58)

and start over again by applying the Ward identities and normal ordering. Then we rotate

again and we continue until all slots of 〈V3| contain c1, c̄1, ja,0 and j̄ā,0 operators only.

Finally, we apply the ghost overlap (3.32) giving rise to the substitution rule

〈V3|c(1)1 c̄
(1)
1 c

(2)
1 c̄

(2)
1 c

(3)
1 c̄

(3)
1 =

2

|ρ|6 〈V3| (3.59)

where the |ρ|6 term in the denominator arises because we have 6 ghosts with conformal

weight −1. It is canceled completely by the |ρ|6 due to the successive application of the

Ward identities. After all these steps, only the fundamental three-point off-shell ampli-

tudes (2.75) are left over. Writing them in terms of an integral over the doubled space,we

have to take care of the |ρ|2hi factors in (2.75). However, they can be expressed as

|ρ|2hR = |ρ|−
α
′

2(k+h∨)
�
= 1− α′

2
ln |ρ|�+ · · · = 1 +O(k−1) (3.60)

– 22 –



J
H
E
P
0
2
(
2
0
1
5
)
0
0
1

and therefore, at leading order, do not give any contribution to the action.9 Finally, at

leading order O(k−1), the cubic part of the action can be expressed as

(2κ2)S(3,−1) =

∫

d2DX
√

|H|
[

−1

8
ǫab̄

(

−Dcǫ
cb̄Dd̄ǫ

ad̄ −Dcǫ
cd̄Dd̄ǫ

ab̄ − 2Daǫcd̄D
b̄ǫcd̄

+ 2Daǫcd̄D
d̄ǫcb̄ + 2DcǫadDb̄ǫcd̄

)

− 1

4
ǫab̄

(

F a
cd ǫ

cēDēǫ
db̄ + F b̄

c̄d̄ ǫ
ec̄Deǫ

ad̄
)

− 1

12
Face Fd̄b̄f̄ ǫ

ab̄ ǫcd̄ ǫef̄ (3.61)

+
1

2
ǫab̄ f

af b̄ − 1

2
faf

a ē+
1

2
fāf

ā e

− 1

8
ǫab̄

(

DaDb̄e ē−DaeDb̄ē−Db̄eDaē+ eDaDb̄ē
)

− 1

4
fa
(

2ǫab̄D
b̄ē+Db̄ǫab̄ ē

)

+
1

4
fa
(

Dae ē− eDaē
)

− 1

4
f b̄
(

2ǫab̄D
ae+Daǫab̄ e

)

+
1

4
f b̄
(

Db̄e ē− eDb̄ē
)

]

. (3.62)

Like already observed for the second order action (3.35), large parts of it resemble the orig-

inal result obtained by Hull and Zwiebach. However, there are also additional terms (3.61),

linear and quadratic in the structure coefficients Fabc. On the abelian torus they vanish and

then the action (3.61) reduces to the one derived in [2]. Whereas in toroidal DFT, there are

kinetic terms in the action only, one of the additional terms (3.61) represents a potential

V = − 1

12
Face Fb̄d̄f̄ ǫ

ab̄ ǫcd̄ ǫef̄ (3.63)

for the fluctuations ǫab̄.

In order to evaluate the gauge transformations in cubic order, we again use the conju-

gated string fields φcs from section 3.2.1. They allow to express the string product

[Ψ,Λ]0 =
∑

s

|φs〉{φcs,Ψ,Λ}0 (3.64)

in terms of string functions, which we compute like those appearing in the action. One

finally obtains for the gauge variations of the fluctuations

δλǫab̄ = −1

4

(

λcDaǫcb̄ −Daλ
c ǫcb̄ + λaD

cǫcb̄ + 2Dcλa ǫcb̄ − λcD
cǫab̄ − 2λcD

cǫab̄

)

− 1

4

(

λaDb̄ē−Db̄λa ē
)

+
1

2
λa fb̄ +

1

2
Fac

d λc ǫdb̄ (3.65)

δλe = −1

4
fa λa +

1

8
eDaλa +

1

4
λaD

ae (3.66)

δλē =
1

16
ē Daλa +

1

8
λaD

aē . (3.67)

9Even though the algorithm presented here is straightforward, the calculations are lengthy and cum-

bersome. For that purpose we developed a Mathematica package that was inspired to some extent by

Lambda [47], a package to evaluate operator product expansions in vertex algebras. It also extensively uses

MathGR [48] to simplify tensor expressions.
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The corresponding ones for λā arise after applying the Z2 symmetry (3.44). Here, we are

not interested in the gauge transformations of the auxiliary fields fa and fā, because they

are eliminated by their equations of motion in the next subsection anyway. A µ-type gauge

transformation acts as

δµǫab̄ = 0 , δµe = −3

8
µe and δµē =

3

8
µē . (3.68)

3.3 Simplifying the action and gauge transformations

Following [2, 49], we simplify the action by first fixing the µ gauge in such a way that

e = d and ē = −d . (3.69)

Afterwards, we redefine the fields

ǫ′ab̄ = ǫab̄ + ǫab̄ d , d′ = d+
1

32
ǫab̄ ǫ

ab̄ (3.70)

and the gauge parameter

λ′a = λa +
3

4
λa d−

1

4
λb̄ ǫab̄ . (3.71)

Let us briefly discuss how the level matching condition works for these redefined fields. We

know that the unprimed fields in (3.70) have to satisfy the weak constraint (3.10). Since

the primed ones contain products of unprimed fields, they do not automatically satisfy it.

However, requiring also the strong constraint (3.21) guarantees that the primed fields do it.

Therefore, already at the level of this field redefinition the strong constraint is necessary.

Now, plugging the redefined quantities into the quadratic and cubic gauge transforma-

tions and removing all contributions that are not linear in the parameter λ or the fields,

we obtain

δλǫab̄ = Db̄λa +
1

2

(

Daλ
c ǫcb̄ −Dcλa ǫcb̄ + λcD

cǫab̄ + Fac
d λc ǫdb̄

)

+

+Daλb̄ +
1

2

(

Db̄λ
c̄ ǫac̄ −Dc̄λb̄ ǫac̄ + λc̄D

c̄ǫab̄ + Fb̄c̄
d̄ λc̄ ǫad̄

)

,

δλd = −1

4
Daλ

a +
1

2
λaD

ad− 1

4
Dāλ

ā +
1

2
λāD

ād ,

(3.72)

where for simplicity of the notation we dropped the prime. Except for the flux term, they

have the same form as the gauge transformations of toroidal DFT.

As already mentioned above, it is convenient to simplify the action by eliminating the

auxiliary fields fa and fā. To this end, we solve their equations of motion up to quadratic

order in the remaining fields, yielding

fa = −1

2
Db̄ǫ

ab̄ −Dad+
1

2

(

ǫab̄Db̄d+ dDad
)

+
1

8

(

Dcǫcb̄ ǫ
ab̄ − dDb̄ǫ

ab̄
)

(3.73)

f b̄ =
1

2
Daǫ

ab̄ +Db̄d− 1

2

(

ǫab̄Dad+ dDb̄d
)

− 1

8

(

Dcǫac̄ ǫ
ab̄ − dDaǫ

ab̄
)

. (3.74)
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Furthermore, we apply the field redefinitions (3.70) which we already used to simplify the

gauge transformations so that finally we obtain

(2κ2)S =

∫

d2DX
√

|H|
[

1

4
ǫab̄�ǫ

ab̄ +
1

4
(Db̄ǫab̄)

2 +
1

4
(Daǫab̄)

2 − 2dDaDb̄ǫab̄ − 4d�d

+
1

4
ǫab̄

(

Daǫcd̄D
b̄ǫcd̄ −Daǫcd̄D

d̄ǫcb̄ −Dcǫad̄Db̄ǫcd̄

)

− 1

4
ǫab̄

(

F ac
dD

ēǫdb̄ ǫcē + F b̄c̄
d̄D

eǫad̄ ǫec̄

)

− 1

12
F ace F b̄d̄f̄ ǫab̄ ǫcd̄ ǫef̄

+
1

2
d
(

(Daǫab̄)
2 + (Db̄ǫab̄)

2 +
1

2
(Dcǫab̄)

2 +
1

2
(Dc̄ǫab̄)

2 + 2ǫab̄(DaD
cǫcb̄ +Db̄D

c̄ǫac̄)
)

+ 4ǫab̄ dD
aDb̄d+ 4d2�d

]

(3.75)

where we defined e.g.

(Db̄ǫab̄)
2 = (Db̄ǫab̄)(Dc̄ǫ

ac̄) . (3.76)

Thus, we have derived the leading order form of the DFTWZW action,which reduces to the

form of the usual DFT action for a flat torus, containing, though, additional terms which

go beyond it. First, the derivatives Da are non-commuting and, second, the fluxes Fabc

appear explicitly.

4 Generalized Lie derivative and C-bracket

In this section, we analyze the obtained action and gauge transformations further, focusing

in particular on the generalization of some of the salient features of DFT, like the Lie

derivative, the generalized metric, the C-bracket and its closure. Recall that in DFT, the

latter is closely related to the implementation of the strong constraint.

To simplify the gauge transformations (3.72), we change to doubled index notation

introduced in section 2.4. Hence, we define the doubled parameter of the gauge transfor-

mations and the doubled derivative as

λA = (λa, λā) , DA = (∂a, ∂ā) . (4.1)

As in section 3.1, capital indices are raised and lowered with the tangent space metric η

defined in (3.9). Following this prescription we obtain

λA = (λa,−λā) , DA = (∂a,−∂ā) . (4.2)

Similarly, the structure constants in capital indices are defined as

FAB
C =















Fab
c

Fāb̄
c̄

0 otherwise

which e.g. gives rise to FABC =















Fabc

−Fāb̄c̄

0 otherwise .

(4.3)

In the remainder of this section, these conventions will be often used.
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4.1 Generalized Lie derivative and metric

Now, we want to see whether the gauge transformations (3.72) encode the notation of a

generalized Lie derivative. The non-trivial issue is that the right hand side of (3.72) is

given in terms of an expansion up to linear order in the small fluctuation ǫab̄. Therefore,

we first have to “integrate” this relation, which we do following the procedure outlined for

the generalized metric formulation of DFT in [4, 50].

For that purpose, consider first the symmetric transformation HAB leaving η invariant

HACηCDHDB = ηAB . (4.4)

A simple example for such a matrix is SAB. A small perturbation of it,which is still

compatible with the properties of HAB, is called ǫAB. Therefore, ǫAB has to be symmetric

and has to satisfy the relation

ǫACηCDS
DB + SACηCDǫ

DB +O(ǫ2) = 0 . (4.5)

The most general, symmetric solution for this equation reads

ǫAB =

(

0 −ǫab̄

−ǫāb 0

)

with ǫab̄ = (ǫT )b̄a . (4.6)

Therefore, the small fluctuations initially introduced in the string field Ψ in (3.5) can be

thought of parameterizing ǫAB. These are D2 different entries and allows us to express

HAB in a series expansion

HAB = SAB + ǫAB +
1

2
ǫAC SCD ǫ

DB + · · · = exp(ǫAB) . (4.7)

Guided by the flux formulation of toroidal DFT [6, 30], let us define the generalized Lie

derivative of DFTWZW as

LλV
A = λBDBV

A +
(

DAλB −DBλ
A
)

V B + FA
BCλ

BV C . (4.8)

Objects transforming like δλV
A = LλV

A are called generalized vectors. The generalized

Lie derivative extends to tensors in the usual way so that e.g. the generalized Lie derivative

of ǫAB reads

Lλǫ
AB = λCDCǫ

AB + (DAλC −DCλ
A)ǫCB+

+ (DBλC −DCλ
B)ǫAC + FA

CDλ
CǫDB + FB

CDλ
CǫAD . (4.9)

Moreover, it leaves ηAB invariant

Lλη
AB = 0 (4.10)

and for a closed gauge parameter it acts trivially, i.e.

LDAχV
B = 0 (4.11)
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after applying the strong constraint (3.21). The gauge transformations (3.72) affect fluc-

tuations only. They are trivial

δλS
AB = 0 (4.12)

for the background metric. A straightforward computation shows that the gauge transfor-

mation of ǫAB can be expressed in terms of the generalized Lie derivative as

δλǫ
AB =

1

2

(

LλS
AB + Lλǫ

AB + LλS
(A

CS
B)

D ǫ
CD
)

. (4.13)

With (4.12), one can evaluate the gauge transformation of the generalized metric

δλHAB = δλǫ
AB +

1

2
δλe

ACSCDe
DB +

1

2
eACSCDδλe

DB +O(ǫ2) (4.14)

=
1

2

(

LλS
AB + Lλǫ

AB + LλS
(A

CS
B)
D ǫCD + ǫC(ASCDLλS

B)D
)

+O(ǫ2) (4.15)

=
1

2
(LλS

AB + Lλǫ
AB) +O(ǫ2) =

1

2
LλHAB +O(ǫ2) . (4.16)

Being equivalent to (4.5), we applied the identity

SA
C ǫ

CB = −SB
C ǫ

CA (4.17)

in the step from the second to the third line. In a similar vein, the gauge transformation

of the generalized dilaton d

δλd =
1

2
Lλd with Lλd = λADAd−

1

2
DAλ

A (4.18)

can be expressed by using the generalized Lie derivative for a density. In summary, we

obtain the very compact notation for the gauge transformations

δλHAB =
1

2
LλHAB and δλd =

1

2
Lλd . (4.19)

4.2 The C-bracket

Let us analyze whether the gauge transformations (3.72) close to give the algebra of the

theory. In CSFT, at cubic order the commutator of two gauge transformations δΛ1 and

δΛ2 gives another one parameterized by

Λ12 = [Λ2,Λ1]0 . (4.20)

Using the techniques presented in section 3.2.2, it is straightforward to evaluate this ex-

pression and obtain

λ12 a = −1

2
λb1Dbλ2,a +

1

4

(

λ1,bDaλ
b
2 + λ1,aDbλ

b
2 − λb̄1Db̄λ2,a + λ2,a µ1 + fabc λ

b
1 λ

c
2

)

− 1

8
λ2,aDb̄λ

b̄
1 − (1 ↔ 2) . (4.21)

Due to the Z2 symmetry (3.44), the equation for the λ12 ā has exactly the same form. Note

that these commutators hold before the field redefinition of the gauge parameter (3.71) is
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applied. As explained in section 3.1 of [49], after the field redefinition, we have to adapt

λ12 a according to

λ′12,a = λ12,a+

(

1

4

(

Db̄λ1,a λ
b̄
2+Daλ1,b̄ λ

b̄
2

)

+
3

16

(

Db̄λ
b̄
1 λ2,a+Dbλ

b
1 λ2,a

)

−(1 ↔ 2)

)

. (4.22)

In addition, we have to set

µ =
1

4
Daλ

a − 1

4
Dāλ

ā (4.23)

which takes into account the µ gauge fixing performed in the last subsection. After remov-

ing all terms which are not linear in λ1 or λ2 (or in both), we obtain the result

λ′12,a = −1

2

(

λb1Db + λb̄1Db̄

)

λ2,a +
1

4

(

λ1,bDaλ
b
2 − λ1,b̄Daλ

b̄
2 − fabc λ

b
1 λ

c
2

)

− (1 ↔ 2) . (4.24)

For the bared parameter we obtain by the same procedure

λ′12,ā = −1

2

(

λb1Db + λb̄1Db̄

)

λ2,ā −
1

4

(

λ1,bDāλ
b
2 − λ1,b̄Dāλ

b̄
2 − fāb̄c̄ λ

b̄
1 λ

c̄
2

)

− (1 ↔ 2) . (4.25)

At linear order, λ is equivalent to λ′ and therefore λ can be substituted by λ′ on the right

hand side of these two equations. Using the conventions (4.1), (4.2) and (4.3), one can write

this result in terms of the double index notation, where it takes the very compact form

λA12 = −1

2
λB1 DBλ

A
2 +

1

4
λB1 D

Aλ2,B − 1

4
FA

BC λ
B
1 λ

C
2 − (1 ↔ 2) . (4.26)

This motivates to introduce the C-bracket of DFTWZW as

[λ1, λ2]
A
C := −2λA12 = λB1 DBλ

A
2 − 1

2
λB1 D

Aλ2B +
1

2
FA

BCλ
B
1 λ

C
2 − (1 ↔ 2) (4.27)

which differs essentially in the third term from the expression for DFT presented in [3].

Furthermore, please keep in mind that the derivatives appearing in (4.27) do not commute.

At this point we observe that the C-bracket of DFTWZW can also be expressed in terms

of the generalized covariant derivative

∇AV
B = DAV

B +
1

3
FB

ACV
C and ∇AVB = DAVB +

1

3
FBA

CVC (4.28)

as

[λ1, λ2]
A
C = λB1 ∇Bλ

A
2 − 1

2
λB1 ∇A λ2,B − (1 ↔ 2) . (4.29)

In section 4.4, we will discuss this generalized covariant derivative in more detail. The

generalized Lie derivative (4.8) can also be expressed in terms of the covariant derivative as

LλV
A = λC∇CV

A + (∇AλC −∇Cλ
A)V C . (4.30)

Due to the total antisymmetry of the structure coefficients FABC , the weak constraint (3.10)

when acting on a generalized scalar can also written with the covariant derivative

∇AD
Af =

(

DAD
A +

1

3
FA

ABD
B

)

f = DAD
Af . (4.31)

In the context of the weak/strong constraint, the quantities ǫAB and λA appearing in the

string fields are treated as generalized scalars. Thus, e.g. ∇AD
AλB gives rise to

∇AD
AλB = DAD

AλB instead of DAD
AλB +

1

3
FB

ACD
AλC . (4.32)
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4.3 Closure of gauge algebra

In this section we check the closure of the gauge algebra. There are two different ways to

prove closure which are completely equivalent. First, one can compute the Jacobiator

J(λ1, λ2, λ2) = [λ1, [λ2, λ3]C]C + [λ3, [λ1, λ2]C]C + [λ2, [λ3, λ1]C]C (4.33)

and impose that it vanishes up to terms parameterizing a trivial gauge transformations.

According to (4.11), then the constraint

LJ(λ1,λ2,λ3)V
A = 0 (4.34)

has to hold. Alternatively, one can show that the commutator of two generalized Lie

derivatives closes in the sense that

L[λ1,λ2]CV
A = (Lλ1Lλ2 − Lλ2Lλ1)V

A . (4.35)

Here, we will show this second property of the generalized C-bracket.

In the course of the computation, we make extensive use of the commutator of two

covariant derivatives

[∇A,∇B]VC = RABC
DVD − TD

AB∇DVC (4.36)

containing the torsion

TA
BC = −1

3
FA

BC (4.37)

and the Riemann curvature

RABC
D =

2

9
FAB

EFEC
D . (4.38)

In calculating the Riemann curvature, we used the Jacobi identity

FAB
EFEC

D + FCA
EFEB

D + FBC
EFEA

D = 0 (4.39)

for the structure coefficients FAB
C . Note that both the curvature and the torsion of this

generalized covariant derivative do not vanish. Thus, the algebra we consider here can

be considered as a generalization of the one proposed by [35],10 which assumed vanishing

torsion. We think that it is remarkable that Cederwall proposed a similar algebra by just

considering possible generalizations/extensions of the DFT algebra.

Evaluating the condition (4.35), one eventually arrives at the expression

L[λ1,λ2]CV
A = (Lλ1Lλ2 − Lλ2Lλ1)V

A

− 1

3

(

FBC
FFFD

A + FDB
FFFC

A + FCD
FFFB

A
)

, (4.40)

where the second line vanishes due to the Jacobi identity (4.39). Let us emphasize that

this closure result goes beyond what one would expect from the CSFT construction. A

priori CSFT at cubic order only forces the V A independent part of (4.35) to hold [49]. For

all terms depending on V A, there are in general corrections and closure is only guaranteed

on-shell. However, here we do not face any of these problems. Moreover, for the closure

of the usual DFT algebra, the strong constraint was essential for the fluctuations and the

background, whereas here one only needs the Jacobi-identity for the background flux.

10We thank David Berman for bringing this paper to our attention.
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4.4 Properties of the generalized covariant derivative

Until now, we did not show that ∇A really deserves to be called covariant, i.e. that it

satisfies the mandatory compatibility conditions [6, 9, 51]:

• Compatibility with the frame requires

∇AEB
I = 0 . (4.41)

Here the covariant derivative acts on a tensor with both, flat and curved indices.

Thus, we have to extend its definition

∇AEB
I = DAEB

I +
1

3
FBA

CEC
I + EA

KΓKJ
IEB

J = 0 (4.42)

by the curved connection ΓIK
J . We already made acquaintance with it in section 3.1

while expressing the weak constraint (3.20) in terms of a covariant derivative. Due

to (4.41), it is completely determined

ΓIJ
K = −EA

IE
B
JEC

K 1

3

(

2ΩAB
C +ΩBA

C
)

= −1

3

(

2ΩIJ
K +ΩJI

K
)

(4.43)

in terms of the coefficients of anholonomy ΩABC = DAEB
IECI and the vielbein EA

I .

• Compatibility with the invariant metric

∇AηBC = DAηBC + FBA
DηDC + FCA

DηBD = FBAC + FCAB = 0 (4.44)

is fulfilled due to the total antisymmetry of FABC , a direct consequence of the total

antisymmetry of its components fabc and fāb̄c̄. Split into bared and unbared indices,

the non-trivial contributions of (4.44) read

fbac + fcab = 0 and − fb̄āc̄ − fc̄āb̄ = 0 . (4.45)

• Compatibility with the background metric

∇ASBC = DASBC + FBA
DSDC + FCA

DSBD = FBA
DSDC + FCA

DSBD = 0 (4.46)

is checked along the same lines as for η. The only difference is a plus sign instead of

a minus sign in the bared part of (4.45).

• Compatibility with integration by parts
∫

d2DX e−2d U ∇MV
M = −

∫

d2DX e−2d∇MU VM (4.47)

fixes the trace

ΓJI
J = ΓI = −2∂Id (4.48)

of the curved connection. Employing the relation between curved and flat connec-

tions (4.43), unimodularity

FAB
B = ΩAB

B − ΩBA
B = 0 ⇔ ΩAB

B = ΩBA
B (4.49)
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and (3.13), linking ΩAB
B with the flat derivative of d, we obtain

ΓI = −EA
IΩAB

B = −2EA
I DAd = −2∂Id . (4.50)

This proves compatibility with integration by parts.

• Let us now consider the generalized torsion of ∇A. Like for DFT, it is defined

as the difference between the usual C-bracket and the C-bracket where the partial

derivatives are substituted by the covariant ones. In our case, this leads to

[λ1, λ2]
I
C − T I

JKλ
J
1λ

K
2 = λJ1∂Jλ

I
2 −

1

2
λJ1∂

Iλ2J − (1 ↔ 2) (4.51)

with [λB1 , λ
C
2 ]

I
C = [EB

Jλ
J
1 , E

C
Kλ

K
2 ]AC EA

I . Evaluating this expression by using the

compatibility with the frame, results in the non-vanishing torsion

T I
JK = 2Γ[JK]

I + ΓI
[JK] = −1

3

(

2Ω[JK]
I + 2ΩI

[JK] +Ω[J
I
K]

)

. (4.52)

Thus, in contrast to the covariant derivative of toroidal DFT, the generalized torsion

of the covariant derivative of DFTWZW does not vanish.

5 About the relation of DFTWZW and DFT

Closely following the original derivation of DFT from CSFT on a toroidal background,

we have derived a third order action and the gauge transformations for a DFT describing

fluctuations around the WZW model. Note that, since we are working at string tree level

and in a large level limit, the left and right moving sector of the background completely

decouples so that at this stage we can straightforwardly extend the formalism to left-right

asymmetric backgrounds.

We observed that the usual notions of DFT like a generalized Lie derivative, a C-

bracket and the strong constraint receive a natural generalization, which encodes, however,

the background fields in an intricate way. Both the frame fields and the fluxes of the

background appear in the corresponding relations making the above DFT notions explicitly

background dependent.

The original double field theory was claimed to be background independent so that

the question arises how DFTWZW and DFT and related. If DFT is indeed background

independent, then the schematic relation should hold

SDFT(H + ǫ) ≡ SDFTWZW
(ǫ̃) (5.1)

i.e. the DFT action expanded around the WZW background H should be physically equiv-

alent to the action of DFTWZW. Here we indicated that there might exist a non-trivial

map between fluctuation ǫ in DFT and fluctuations ǫ̃ in DFTWZW.

In this section, we start to analyze the relation between these two theories. A more

exhaustive analysis requires the knowledge of the complete action of DFTWZW in terms of

the finite generalized metric (4.7). The construction of this action is beyond the scope of

this paper and is postponed to future research [52]. Therefore, in this section we cannot

yet provide a fully conclusive picture but merely collect some indications and observations.
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5.1 Asymmetric WZW models as solutions to DFT

In this section, we show that the asymmetric WZWmodels, we used as backgrounds, indeed

arise as solutions to traditional DFT in the flux formulation [6, 30].

First, we face the problem that quantities like the generalized vielbein EA
I or the

metric ηIJ are defined differently in the flux formulation and the theory presented here.

Hence, it is not straightforward to compare them. The most obvious difference is that

the index structures in both formulations are not the same. In the generalized metric

formulation of DFT [50] the coordinates and partial derivatives read

XM̂ = (x̃i, x̂
i) , ∂M̂ = (∂̂i, ∂̃

i) . (5.2)

Indices marked with a hat are lowered with the O(D,D) invariant metric

ηM̂N̂ =

(

0 δij

δji 0

)

(5.3)

and for the lower-case ones, like i, j, k, . . . , the background metric gij is used. To relate

these quantities to the ones used in DFTWZW, we consider the diffeomorphism

x̃i =
1√
2
(xi − xī) and x̂i =

1√
2
(xi + xī) (5.4)

which is mediated by the matrices

MM̂
N =

1√
2

(

gij −gīj̄
δij δī

j̄

)

=
∂XM̂

∂XN
and MM̂

N =
1√
2

(

gij gīj̄

δji −δj̄
ī

)

=
∂XM̂

∂XN
. (5.5)

Note that it is not a large gauge transformation of DFT [53–55], but an ordinary diffeo-

morphism in the 2D dimensional doubled space. By construction, it links the invariant

metric ηIJ in DFTWZW with its counterpart in traditional DFT according to

MM̂
IM

N̂
Jη

IJ =





gij − gīj̄ δji + δj̄
ī

δij + δī
j̄
gij − gīj̄



 = ηM̂N̂ if gij = gīj̄ . (5.6)

For this relation to hold, it is inevitable that in DFTWZW the metric gīj̄ for the right movers

and gij for the left movers coincide. For geometric backgrounds this condition is fulfilled.

As we will explicitly see in this section, tree-level DFTWZW makes sense also for a large class

of genuinely non-geometric backgrounds. Thus, from this simple point of view, traditional

DFT and DFTWZW can at best only be equivalent for left-right symmetric backgrounds.

Recall that there are only two quantities, which carry all physically relevant infor-

mation about the group manifold and can be compared directly. These are the totally

antisymmetric generalized fluxes

FABC = 3D[AEB
ÎEC]Î (5.7)

FA = ΩB
BA + 2DAd = 0 . (5.8)
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Please note that the definition of FABC given here is the one used in the flux formulation

of DFT. It differs from our definition (2.30) by a prefactor so that we have to perform the

rescaling

FABC =
3

2
FABC . (5.9)

Both, FABC and FA, are constant on a group manifolds. In this respect, they are very

similar to generalized Scherk Schwarz compactifications [17, 18] of traditional DFT.11 In

this context, they have to fulfill several consistency constraints [20, 30]. Besides

FA = const. , and FABC = const. , (5.10)

the most important one is the quadratic constraint

FE[ABFE
C]D = 0 (5.11)

which in our setup corresponds to the Jacobi identity of the Lie algebra g. Recall that it

was mandatory for the closure of the gauge algebra (4.39) discussed in section 4.

Now, let us check whether the WZW background solves the equation of motion of

usual DFT. For left-right symmetric WZW this is of course expected, as the background is

a solution already to the supergravity equations of motion. One possible way to derive the

DFT equations of motion starts from the generalized Ricci scalar R, which in flat indices

reads [30]

R = FABCFDEF

(

1

4
SADηBEηCF − 1

12
SADSBESCF − 1

6
ηADηBEηCF

)

, (5.12)

after taking into account that FABC = const. and FA vanishes. By variation with respect

to the flat background metric SAB, we obtain the symmetric tensor

KAB =
1

4
FACDFBEF

(

ηCEηDF − SCESDF
)

(5.13)

which, after the projection

RAB = 2P(A
C P̄B)

DKCD with P̄AB =
1

2
(ηAB + SAB) and PAB =

1

2
(ηAB − SAB) ,

(5.14)

gives rise to the generalized Ricci tensor (see e.g. [19] for details). For each solution of the

equations of motion, this tensor and the generalized Ricci scalar have to vanish. An alter-

native way to write the equation of motions make use of an antisymmetric tensor G[AB] [30].

However, we will stick to (5.14) because it is more convenient for expanding the double

indices A and B into their bared and unbared components. For the left-right asymmetric

structure coefficients FABC used in this paper, expanding (5.14) into components give rise to

0 =
4

9
FacēFb̄f̄dη

cdηēf̄ and (5.15)

0 = − 16h∨

27α′k
D . (5.16)

11Similar effects arise in massive type II theories, which were discussed in DFT [56], too.
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Note that the first equation is automatically satisfied as long as we have a strict separation

between left and right movers, i.e. the structure coefficients

Fābc = Fāb̄c = 0 and all permutations thereof (5.17)

vanish. We note that the second equation (5.16) is closely related to the k−1 corrections

of the central charge (2.44)

c =
kD

k + h∨
= D

(

1− h∨

k

)

+O(k′−2) . (5.18)

In an appropriate number of dimensions, the k independent part is canceled by the ghost

contribution, whereas the k−1 part is canceled by a linear dilaton. In the k → ∞ limit

this correction vanishes. Thus we conclude that (5.16) is in perfect agreement with our

theory, too. Therefore, at this stage even the left-right asymmetric WZW backgrounds are

consistent solutions of usual DFT. Note that such an asymmetric background generically

violates the strong constraint of toroidal DFT. To see this, consider the term

1

6
FABCFABC + FAFA (5.19)

which vanishes under the strong constraint [30]. According to (5.8), FA is zero and thus

we are left with

FABCF
ABC = ηabηcdηefFaceFbdf − ηāb̄ηc̄d̄ηēc̄fFāc̄ēFb̄d̄f̄ 6= 0 (5.20)

for Fabc 6= ±Fāb̄c̄.

Let us close this subsection with a comment related to the background independence

of toroidal DFT. For the aforementioned background not satisfying the strong constraint,

we cannot find even a local frame so that ∂̃i. = 0, i.e. the background cannot be described

in supergravity. Since the weak constraint of DFT for fluctuations around this background

∂I∂
I(f + φ) = ∂I∂

If + ∂I∂
Iφ = 0 (5.21)

receives an extra additive contribution ∂I∂
If 6= 0, it looks very different from the strong

constraint of DFTWZW. Therefore, at least from this perspective we do not see any pos-

sibility how the background independence relation (5.1) can ever be satisfied. Thus we

conjecture that DFTWZW for asymmetric WZW models cannot be described by perturb-

ing toroidal DFT around this background.

However, even for the geometric WZW model, the situation is far from being obvious,

as there are some substantial differences between DFTWZW and toroidal DFT. As already

mentioned, the metric ηIJ is constant in DFT, while it is space dependent for DFTWZW.

Moreover, as opposed to DFTWZW , the generalized covariant derivative of DFT has vanish-

ing torsion. Thus, without a deeper analysis it appears to be difficult to settle these issues.
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ID Mnm

√
k/ cosα M̃nm

√
k/ sinα gauging algebra

1 diag(1, 1, 1, 1) diag(1, 1, 1, 1) SO(4) su(2)× su(2)

2 diag(1, 1, 1,−1) diag(1, 1, 1,−1) SO(3, 1) su(2)× sl(2)

3 diag(1, 1,−1,−1) diag(1, 1,−1,−1) SO(2, 2) sl(2)× sl(2)

Table 1. Duality orbits of consistent semisimple gaugings with d = 3 internal dimensions and

−π/4 < α < π/4. This table is an extract from table 6 in [20] which in addition includes non-

semisimple setups.

5.2 Uplift of genuinely non-geometric backgrounds

In the previous subsection we have seen that also asymmetric WZW models are solutions

to the equation of motion of toroidal DFT. Moreover, they are very similar to generalized

Scherk-Schwarz compactifications of the latter theory. First, they satisfy very similar con-

sistency constraints and second they violate the strong constraint. Therefore, it is natural

to suspect that the WZW models provide the fully backreacted solutions corresponding

to the minima of the effective scalar potential induced by the Scherk-Schwarz reduction.

Note that the latter potential is nothing else than the scalar potential of half-maximally

(electrically) gauged supergravity. It is important to keep in mind that here we are only

working at string tree-level so that e.g. modular invariance at the one-loop level can easily

spoil the existence of such a left-right asymmetric CFT.

Let us elaborate on this for the concrete case of d = 3 dimensional internal back-

grounds. In this case, the authors of [20] have classified all consistent backgrounds with

constant generalized fluxes explicitly. Considering only the ones which give rise to semisim-

ple gaugings, we are left with the three different possibilities listed in table 1. Each of them

describes an orbit of physical inequivalent backgrounds parameterized by a real parameter

α. It is sufficient to focus on the compact orbit 1 because the other two orbits are only the

non-compact generalizations of it. Its structure coefficients read

Fabc =
1√
k

√
2ǫabc(cosα+ sinα) and Fāb̄c̄ =

1√
k

√
2ǫabc(cosα− sinα) . (5.22)

For α = π/2, they reproduce our prime example, the S3 with H-flux and inverse string

tension α′ = 2, which is discussed in appendix A.12 A T-duality transformation along

all internal directions flips the sign of the right movers structure coefficients Fāb̄c̄. It is

equivalent to a −π/2 shift of α and acts as

Mmn ↔ −M̃mn (5.23)

on the parameters Mmn and M̃mn of the embedding. Thus, the notion of T-duality pre-

sented here completely agrees with the convention in [20]. Except for α = 0, all other

backgrounds in the orbit do not have a geometric T-dual counterpart. They are called

12Comparing (5.22) with (A.10), they differ by the imaginary unit i. This is due to a different conventions

used in DFT. Whereas, we have a negative definite SAB with signature (−, . . . ,−), DFT uses a positive

definite one with signature (+, . . . ,+).
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genuinely non-geometric backgrounds and violate the strong constraint of toroidal DFT.

To see this, one computes

FABCF
ABC =

24

k2
sin(2α) = 0 only if α =

π

2
n with n ∈ Z , (5.24)

for orbit one in table 1. Only the background T-dual to the S3 with H-flux is compatible

with the strong constraint. All other backgrounds with α 6= 0 in the orbit violate the

strong constraint. This finding is reflected by the fluxes

M = diag(H123, Q1
23, Q2

31, Q3
12) and M̃ = diag(R123, f23

1, f31
2, f12

3) , (5.25)

too. For α 6= 0 we alway find H- and R-flux at the same time.

Thus we conclude that asymmetric WZW models are candidates for the uplift of gen-

uinely non-geometric backgrounds of toroidal DFT. Until now, this uplift was only studied

for locally flat backgrounds in terms of asymmetric orbifolds [31, 32]. Here, we found a

generalization which also works for curved backgrounds.

6 Conclusion and outlook

In this paper we have investigated the effective theory of a closed string propagation on

a group manifold with H-flux. We started from a purely geometric setup giving rise to a

WZW model with two equivalent Kač-Moody algebras for the left and right moving parts

of the closed string. For this setup, using CSFT we computed the effective action and its

gauge transformations up to cubic order in a large level k limit. Consistency required the

introduction of the weak constraint (3.17) implementing the CSFT level-matching condition

on the fields. In contrast to toroidal DFT, it contained an additional term which could be

written as the connection of a covariant derivative. This covariant derivative also appeared

when we calculated a generalized Lie derivative and the corresponding C-bracket. It turned

out that this generalized covariant derivative has non-vanishing torsion.

Even without having the complete action in terms of a generalized metric yet, we

also started to investigate the relation of the new DFTWZW with traditional DFT. We

showed that the coordinates used in both descriptions can be related by an ordinary 2D

diffeomorphism, but that the metrics ηIJ only transform properly for left-right symmetric

backgrounds. In this respect, the metric ηIJ of DFTWZW turned out to be coordinate

dependent, indicating a possible connection to the work of Cederwall [35]. Moreover, we

checked that the equations of motion of toroidal DFT were satisfied not only for left-right

symmetric (geometric) backgrounds but also for asymmetric ones, where the latter do not

satisfy the strong constraint of toroidal DFT. These asymmetric WZW backgrounds only

had to fulfill the closure constraint for guaranteeing the closure of the gauge algebra under

the new strong constraint (3.21).

Despite the fact that supergravity is background independent, even for geometric back-

grounds, we could not yet conclusively show that usual DFT expanded around a WZW
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background is physically equivalent to DFTWZW. For non-geometric backgrounds violat-

ing the strong constraint of toroidal DFT, we found strong indications that DFTWZW goes

beyond toroidal DFT. Finally, we studied a concrete class of such asymmetric backgrounds

and conjectured that they are related to minima of Scherk-Schwarz reductions of toroidal

DFT. In fact, the asymmetric WZW models provide candidates for their string theory

uplift. All these findings suggest that DFTWZW contains structures going beyond toroidal

DFT. In relation to toroidal DFT, we are still at a very early stage of developing the full ac-

tion of DFTWZW. One should learn more about the properties of the generalized metric and

then try to find a fully self-consistent action of DFTWZW in terms of the generalized metric.

Expanded in fluctuations of the metric, this action should reduce to the third order action

derived from CSFT in this paper. We hope to report on this in a future publication [52].

Besides these fundamental challenges, DFT in (asymmetric) WZW backgrounds opens

up many possibilities to study non-geometric backgrounds. The latter can be found via

generalized Scherk-Schwarz reductions of toroidal DFT. However, let us emphasize again

that the derivations in this paper are all performed at string tree level so that one should

analyze whether the proposed up-lifts of these non-geometric gauged supergravity vacua

admit e.g. modular invariant one-loop partition functions. From such an analysis one

might also learn something about the construction of non-geometric branes [57–59]. For

instance, it is known that the near horizon geometry of k NS5-branes is precisely the

SU(2) WZW model plus a linear dilaton. Finally, the implications for non-commutative

and non-associative target space structures, as are expected to arise in non-geometric flux

backgrounds [60–64], deserve a renewed study in the framework of DFTWZW.
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A The toy model SU(2)

A nice toy model is the group manifold SU(2) which corresponds to a S3 with H-flux. On

this background we compute now all relevant quantities discussed through the paper. We

start with the generators

ta =
1

α′k
σa with a = 1, 2, 3 (A.1)

in the fundamental representation. Here, σa denote the Pauli-matrices

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

and σ0 =

(

1 0

0 1

)

. (A.2)
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The normalization of the generators is chosen in such a way that, according to (2.16), they

give rise to the Killing metric

ηab = −α
′k

2

Tr(tatb)

2xf
= diag(−1,−1,−1) with xf =

1

2
(A.3)

denoting the Dynkin index of the fundamental representation. Each group element

g = y0σ0 − iyaσa (A.4)

is parameterized in terms of four coordinates yi which have to fulfill

(y1)2 + (y2)2 + (y3)2 + (y4)2 = 1 . (A.5)

Doing so they describe the embedding of a unit three-sphere S3 into the four dimensional eu-

clidean space R4. To parameterize the sphere, we choose Hopf coordinates xi = (η1, η2, η3)

with

y0 = cos η2 cos η1 y1 = sin η2 cos η1 (A.6)

y2 = cos η3 sin η1 y3 = sin η3 sin η1 . (A.7)

After this preparation, we apply (2.25) and (2.61) to obtain the vielbeins

eai = −i
√
kα′









0 cos2 η1 sin2 η1

cos η23+ sin η1 cos η1 sin η23+ − sin η1 cos η1 sin η23+

sin η23+ − sin η1 cos η1 cos η23+ sin η1 cos η1 cos η23+









and (A.8)

eāī = −i
√
kα′









0 cos2 η1 − sin2 η1

cos η23− sin η1 cos η1 sin η23− − sin η1 cos η1 sin η23−

− sin η23− sin η1 cos η1 cos η23− sin η1 cos η1 cos η23−









(A.9)

with the abbreviation η23± = η2 ± η3. They give rise to the structure coefficients (2.30)

Fabc =
2i√
α′k

ǫabc and Fāb̄c̄ = − 2i√
α′k

ǫabc (A.10)

which, as expected for a geometric background, fulfill Fabc = −Fāb̄c̄. The target space

metric obtained form the vielbein eai reads

gij = α′k diag(1, cos2 η1, sin2 η1) . (A.11)

It belongs to a S3 with the radius R =
√
α′k. With the structure coefficients (A.10), (2.6)

and (2.27), we calculate the 3-form

H = 2α′k sin η1 cos η1dη1 ∧ dη2 ∧ dη3 . (A.12)

As a consistency check we evaluation the quantization condition

1

2πα′

∫

S3

H =
k

π

2π
∫

0

dη2
2π
∫

0

dη3
π/2
∫

0

dη1 sin η1 cos η1 = 2πk (A.13)
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for the H-flux. It reproduces the quantization condition k ∈ N for the level on compact

group manifolds.

Following the prescription outlined in section 2.2, one obtains the functions

yλq λ = 0 λ = 1/
√
2 λ =

√
2 · · ·

... . .
.

q =
√
2

√
3ei2η

3
sin2 η1√

2π(α′k)3/4
· · ·

q =
1√
2

eiη
3
sin η1

π(α′k)3/4
– · · ·

q = 0 0 – −
√
3ei(η

3−η2) cos η1 sin η1

π(α′k)3/4
· · ·

q = − 1√
2

−e
−iη2 cos η1

π(α′k)3/4
– · · ·

q = −
√
2

√
3e−i2η2 cos2 η1√
2π(α′k)3/4

· · ·
...

. . .

which form an orthonormal basis of the Hilbert space of square-integrable functions on the

S3.

B Geometry of the three-point string vertex

The quadratic differential for the three-punctured sphere with punctures at zi 0 = (∞, 0, 1)

reads [65, 66]

ϕ(z) = φ(z)(dz)2 with φ(z) = − 1

(z − 1)2
− 1

z2
+

1

z(z + 1)
. (B.1)

A local coordinates system around these punctures reproducing ϕ(z) is given in terms of

the functions z = fi(zi) with the property

dfi
dzi

=
√

φ(zi) . (B.2)

Expanding the left and right hand side of this equation into a Laurent series around z2 0 = 0,

it is straightforward to show that the function

f2(z2) =
(
√
3− i)

[

(i+ z)2/3 + (i− z)2/3
]

(
√
3 + i)(i+ z)2/3 + 2i(i− z)2/3

(B.3)

is a solution of (B.2). A Taylor expansion of f2(z2) around z2,0 gives rise to

f2(z2) = − 4

3
√
3
z2 −

8

27
z22 +

4

81
√
3
z32 +

16

243
z42 −

52

2187
√
3
z52 + · · · . (B.4)

We compare this expansion with (3.50) and finally obtain

ρ = − 4

3
√
3
, d1 = −1

2
, d2 = − 1

16
, d3 =

3

16
, d4 =

13

256
, . . . (B.5)
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as stated in (3.52). The remaining functions f3(z3) and f1(z1) arise from the Möbius

transformations

z → 1

1− z
and z → 1− 1

z
(B.6)

which permute the punctures of the sphere.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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