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Abstract: A remarkable connection between perturbative scattering amplitudes of four

dimensional planar SYM, and the stratification of the positive Grassmannian, was revealed

in the seminal work of Arkani-Hamed et al. Similar extension for three-dimensional ABJM

theory was proposed. Here we establish a direct connection between planar scattering

amplitudes of ABJM theory, and singularities thereof, to the stratification of the positive

orthogonal Grassmannian. In particular, scattering processes are constructed through on-

shell diagrams, which are simply iterative gluing of the fundamental four-point amplitude.

Each diagram is then equivalent to the merging of fundamental OG2 orthogonal Grass-

mannian to form a larger OGk, where 2k is the number of external particles. The invariant

information that is encoded in each diagram is precisely this stratification. This informa-

tion can be easily read off via permutation paths of the on-shell diagram, which also can

be used to derive a canonical representation of OGk that manifests the vanishing of consec-

utive minors as the singularity of all on-shell diagrams. Quite remarkably, for the BCFW

recursion representation of the tree-level amplitudes, the on-shell diagram manifests the

presence of all physical factorization poles, as well as the cancellation of the spurious poles.

After analytically continuing the orthogonal Grassmannian to split signature, we reveal

that each on-shell diagram in fact resides in the positive cell of the orthogonal Grassman-

nian, where all minors are positive. In this language, the amplitudes of ABJM theory is

simply an integral of a product of d log forms, over the positive orthogonal Grassmannian.
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1 Introduction

Among many others, the Grassmannian formulation of scattering amplitudes in four-

dimensional maximally supersymmetric theory (N = 4 SYM) [1] has been a great step

forward in unearthing a host of hidden properties of the theory, in particular it is this

“dual” formulation of the S-matrix that makes both conformal and dual conformal sym-

metries of the theory manifest. Rational functions that are leading singularities of loop

integrands, and form building blocks for tree-level amplitudes, are given by the residues

of an integral over a Grassmannian manifold, which is the space of k-planes in n dimen-

sions. On the other hand, it is well known that many of the symmetries exposed by the
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Grassmannian formulation extend to the full planar loop integral in four dimensions, prior

to integration. Indeed this aspect was utilized to construct the full planar integrand of

N = 4 SYM [2]. As the Grassmannian formulation naturally encodes the symmetry of

N = 4 SYM, it begs the question of whether the planar integrand also “lives” in the

Grassmannian as well.

This was achieved in the remarkable recent work of Arkani-Hamed et al. [3], where the

residue of the Grassmannian integral can be identified with individual on-shell diagrams.

The on-shell diagram representation of scattering amplitudes are built up by gluing two

different fundamental three-point on-shell amplitudes together, and integrate over all the

internal lines by their on-shell phase spaces. Writing the three-point amplitudes as Grass-

mannians, this gluing procedure is translated into the merging of smaller Grassmannians

into larger ones. For on-shell diagrams that correspond to terms in the BCFW tree-level re-

cursion [4, 5], their Grassmannian representative have precisely the same dimensions as the

bosonic constraints that remain after the merging procedure, thus leading to a completely

localized Grassmannian configuration, i.e. rational terms. A more general class of diagrams

that arises from the loop-level recursion has dimensions greater than the constraints, thus

leading to left over integrals! This realizes the vision that the planar integrand indeed lives

inside the Grassmannian.

The Grassmannian representation constructed via on-shell diagrams can be classified

by the linear dependency of adjacent columns in the Grassmannian. This study of linear

dependency is termed stratification, and for ordered columns this is referred to as “positroid

stratification” [6, 7] in the mathematics literature. The invariant content of the on-shell

diagrams is precisely this stratification, where different on-shell diagrams that belong to

the same strata, can be shown to be equivalent though a series of change of variables, whose

physical interpretation simply mounts to the equivalence of distinct BCFW representations.

This invariant data can be readily read off from the permutation paths associated with the

on-shell diagrams.

This new understanding leads to a direct connection between several beautiful areas of

current research in mathematics and the physics of scattering amplitudes. For instance, one

of the outcomes is that the Grassmannian formulation of scattering amplitudes naturally

hands us to a novel d log-form representation of loop integrands [3, 8, 9], which manifest

the relation between loop integrands and their leading singularities. Furthermore, various

fundamental physical properties of scattering amplitudes, such as locality and unitarity, are

tightly related to the deep mathematical structures of the positive cell of the Grassmannian.

Quite interestingly, many similar underlying mathematics have also been appeared in the

study of other areas of physics, so-called Bipartite Field Theories, where a supersymmetric

gauge theory is defined by bipartite graphs on a Riemann surface [10–15]. The physics of the

theory are also captured by the positive Grassmannian as well as the zig-zag permutation

paths of the graph.

In this paper we aim to explore the applications of on-shell diagrams for the study

of a different but closely related theory, the three-dimensional N = 6 supersymmetric

Chern-Simons matter theory (ABJM theory) [16]. Before turning to the main focus of

the paper, let us briefly summarise some of the known results regarding the scattering
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amplitudes in ABJM theory. At tree-level, there is a three-dimensional generalization [17]

of BCFW recursion relations [4, 5], based on which a recursion relation for the one-loop

supercoefficients was also found [18], so tree-level as well as one-loop amplitudes are in

principle fully determined recursively. A few lower-point amplitudes at tree-level [17] and

one-loop [19–21] have been computed explicitly. At two loops, only four and six-point

amplitudes have been calculated so far [22–24], with results interestingly resemble to the

corresponding one-loop amplitudes in N = 4 SYM. Actually, with appropriate redefinition,

four-point amplitudes in two theories match with each other exactly. This similarity was

further explored in the context of Wilson and amplitude duality [23, 25–29]. Form factors

and some non-planar amplitudes in ABJ(M) theories have also been studied in recent

works [30–32].

More importantly, for the purpose of this paper, the scattering amplitudes in ABJM

theory also enjoy both conformal and dual conformal symmetries [33, 34]. The leading

singularities can be identified with an integral over the orthogonal Grassmannian [35],

which is simply the space of null k-planes in n dimensions, i.e. a k-dimensional plane in an

n-dimensional space spanned by k vectors, ~vi with i = 1, · · · , k, satisfying ~vi ·~vj = 0. Here

we apply on-shell diagrams to build up representatives of the orthogonal Grassmannian.

An important distinction between ABJM and N = 4 SYM is their fundamental building

blocks. More specifically, in contrast to the three-point amplitudes in N = 4 SYM our

fundamental building block, the four-point amplitude in ABJM theory, has much richer

structure such as singularities and distinct branches. The branch structure is a reflection of

the fact that three-dimensional massless kinematics is projectively a circle, and thus have

distinct winding numbers. This fact turns out to be intimately tied to the interplay of the

two branches in the orthogonal Grassmannian.

UnlikeN = 4 SYM, the BCFW bridge in ABJM theory is the fundamental vertex itself.

This difference leads to the result that the on-shell diagram representation of the BCFW

recursion manifest the presence of all physical singularities. As proposed in ref. [3], the

Grassmannian derived from the on-shell diagram of ABJM theory should also correspond to

stratification of the orthogonal Grassmannian, where this invariant data is again encoded in

permutation paths. Here, we verify this proposal and show that such encoding is consistent

with the orthogonality of the Grassmannian. Furthermore, armed with the stratification

we can easily achieve the following:

• The tree contour: as each BCFW on-shell diagram gives a stratification, which would

imply the vanishing of consecutive minors, this gives us sufficient information to de-

termine the contour in the Grassmannian integral of [35] that gives the tree ampli-

tude. Interestingly this also gives us a straightforward way to determine terms that

correspond to a composite leading singularity.

• A canonical representation of the orthogonal Grassmannian: using the permutation

encoded in the on-shell diagram, we can build up a representative of the Grass-

mannian whose consecutive minors are always given by a simple product of the ver-

tex variables.
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The last feature is desired since this implies that the singularities of the on-shell diagrams

correspond to configurations of the Grassmannian where consecutive minors become lin-

early dependent. This is consistent with the identification of the on-shell diagram and

particular stratification. For N = 4 SYM, this property is ensured by the realization that

the on-shell diagrams populate the positive Grassmannian, which is defined such that all

ordered minors are strictly positive. One important difficulty in proceeding with a sim-

ilar analysis for ABJM theory is that due to the orthogonal constraints, the minors are

forced to alternate between purely real and imaginary. Thus positivity is ill defined. Quite

remarkably, this difficulty can be easily circumvented by analytically continue the Grass-

mannian to split signature, where all the minors are real and positivity can be defined.

The positive orthogonal Grassmannian then plays the same central role as its counterpart

in N = 4 SYM does.

The rest of the paper is organized as follows. In section 2, we review some basics

about the scattering amplitudes in ABJM theory, in particular their description in terms

of orthogonal Grassmannian. We then turn to a detailed study on the four-point amplitude,

as a top-cell of the OG2 Grassmannian, which turns out to have a rather rich structures

of its own. After fully understanding the fundamental vertex, we proceed in section 3 on

the construction of more general on-shell diagrams for higher-point amplitudes by gluing

four-point vertices together. Applying BCFW recursion relations, remarkably the on-shell

diagram form of all tree-level amplitudes can be represented in a novel way making manifest

of cyclic symmetries and physical poles, which are usually obscured in the case of four

dimensions. For characterizing the invariant content of on-shell diagrams, the notion of

permutation is introduced. The central focus of section 4 is the applications of permutation

on various important aspects of the orthogonal Grassmannian and on-shell diagrams of

ABJM theory. Furthermore some intriguing structure regarding the consecutive minors of

BCFW diagrams is observed, and proved generally. In section 5, by analytically continuing

to split signature, we reveal that each on-shell diagram in fact resides in the positive

cell of the orthogonal Grassmannian, where all minors are real and positive orthogonal

Grassmannian is well-defined. We conclude the paper in section 6 with a discussion and

remarks on the BCFW recursion relation for the loop-level amplitudes.

During the completion of this work, we were made aware of the work in progress by

Sangmin Lee and Joonho Kim [36], which has independently produced some results in the

current paper.

2 Scattering amplitude of ABJM and the orthogonal Grassmannian

The scattering amplitudes of ABJM [16] theory will be the focus of our study. It is a Chern-

Simons matter theory with N = 6 supersymmetry. There are two types of Chern-Simons

gauge fields, and the matter fields consist of eight scalars and eight fermions, forming

complex representation of the R-symmetry group SO(6) = SU(4). Due to the topological

nature of the Chern-Simons term, the physical degrees of freedom consist of the 4 complex

scalars XA and 4 complex fermions ψAα as well as their complex conjugates X̄A and ψ̄Aα

with A = 1, 2, 3, 4. They transform in the fundamental or anti-fundamental of SU(4), and
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in the bi-fundamental representation under the gauge group U(N) × U(N). The index

α = 1, 2 denote the spinor representation in SL(2,R), the three-dimensional Lorentz group.

The explicit form of the action can be found in [37, 38].

To arrange these states in on-shell superspace, we introduce three anticommuting vari-

ables ηA and write [33],

Φ = X4 + ηA ψ
A − 1

2
εABC ηAηBXC − η1η2η3 ψ

4 ,

Ψ̄ = ψ̄4 + ηAX̄
A − 1

2
εABC ηAηB ψ̄C − η1η2η3 X̄

4 .

(2.1)

We have split the fields asXA → (X4, XA) and ψA → (ψ4, ψA), and similarly for X̄A and ψ̄A.

So only an SU(3) subgroup of the SU(4) is manifest in this on-shell superspace formalism.

The tree-level amplitudes of ABJM can be compactly expressed as:

Atree
n = δ3

(
n∑

i=1

pi

)
δ6

(
n∑

i=1

qi

)
fn(λi, ηi) (2.2)

where pi and qi are the on-shell momentum and supermomentum for each external leg:

(pi)
αβ = λαi λ

β
i , (qi)

αA = λαi η
A
i . (2.3)

Due to the bi-fundamental nature of the physical degrees of freedom, only even-multiplicity

components of the S-matrix are non-trivial, n = 2k. The delta functions in eq. (2.2) are

required by super Poincaré invariance. The function fn is given by a rational function of

Lorentz invariants λαi λjα = 〈ij〉 and contains fermionic variables ηAi with degree 3(k − 2)

as required by superconformal symmetry.1

On-shell states are characterized by their little group and R-symmetry representa-

tion. In three dimensions, the little group is simply Z2, under which the on-shell variables

transform as:

λαi → −λαi , ηAi → −ηAi . (2.4)

For simplicity we group the on-shell variables into a 2|3 spinor Λi = (λαi , η
A
i ). This implies

that there are only two types of particle states from the point of view of the little group,

those that obtain a minus sign under eq. (2.4), fermions, and those that do not, scalars.

This is the usual statement that the physical degrees of freedom for all higher integer-spin

fields are equivalent to scalars in three dimensions.2 From the leading component of the

superfield defined in eq. (2.1), we can deduce that the function must have the following

property under little group transformations of one of its external legs:

i ∈ Φ
eq. (2.4)−−−−−→ fn → fn

i ∈ Ψ̄
eq. (2.4)−−−−−→ fn → −fn

. (2.5)

1Strictly speaking, it is required by the R-symmetry generator embedded in the superconformal algebra.
2This of course does not apply to anyons, which do not have definite sign under eq. (2.4).
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Thus there are two classes of amplitudes:

An(1̄23̄ · · · 2k), An(12̄3 · · · 2̄k) . (2.6)

where we use ī to represent that leg i is part of the Ψ̄ multiplet.

The connection between scattering amplitudes of ABJM and the orthogonal Grass-

mannian was first proposed by Sangmin Lee [35]. As this connection is the focus of this

paper, we present a brief introduction to the orthogonal Grassmannian and its properties.

Consider a (2k)-dimensional space V equipped with a non-degenerate symmetric bi-

linear form Qij . The orthogonal Grassmannian is then the space of k-planes that satisfy

the orthogonal constraint Qijvivj = 0 for v ∈ V . In this paper we will consider Qij = ηij ,

and the Grassmannian, denoted as OG(k, 2k), can be represented as a k × 2k matrix

Cai, where a = 1, · · · , k and i = 1, · · · , 2k. Since any linear recombination of the k,

(2k)-dimensional vectors represent the same k-plane, this description contains a GL(k)

redundancy. Thus the most general orthogonal Grassmannian at a given k is 2k2 − k2 −
k(k+ 1)/2 = k(k− 1)/2-dimensional, where k2 denotes the GL(k) gauge symmetry, where

as k(k+1)/2 correspond to the orthogonal constraint. Thus the most general configuration

of the orthogonal Grassmannian, referred to as the “top-cell”, is k(k − 1)/2-dimensional:

Dim(Top Cell)OG(k,2k) = k(k − 1)/2 . (2.7)

It was proposed by Sangmin Lee [35] that: A tree-level amplitudes of ABJM theory

is given by a sum of the residues of the following integral over a OG(k, 2k) orthogonal

Grassmannian Cai

Lk,2k =

∫
d2k×kCai

Vol(GL(k))

1

MjMj+1, · · ·Mj+k−1
δk(k+1)/2(C · CT )

k∏

a=1

δ2|3(Ca · Λ) , (2.8)

where Ml represent the l-th consecutive minor:

Ml ≡ ε(Cl a1Cl+1 a2 · · ·Cl+k ak) = (l l + 1 · · · , l + k) . (2.9)

Here on we will use OGk as a short hand notation for OG(k, 2k). Note that we have not

yet specified the index j that appears in the minor. This index will be determined by the

multiplet on the external legs.

The orthogonal constraint is imposed by the degree k(k + 1)/2 delta function:

C · CT =

2k∑

i=1

CaiCbi = 0 . (2.10)

Note that the way that this constraint is written implies that the signature of the Grass-

mannian is Euclidean ηij = (+,+, · · · ,+). Later on in section 5, we will find it convenient

to analytically continue to split signature ηij = (+,−,+ · · · ,−). Note that here the sig-

nature refers to that of the Grassmannian, and not of the external data. The orthogonal

constraint implies non-trivial relationships among the minors. For example we have [35]:

MiMi+1 = Mi+kMi+k+1(−1)k−1 . (2.11)

– 6 –
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This identity exposes the cyclic-by-two-cite symmetry of eq. (2.8), up to a definite sign,

required by the amplitude in eq. (2.6). More general identity for non-consecutive minors

will be given, and discussed, in section 3.1. One can count the dimension of the integral in

eq. (2.8), as
k(k − 1)

2
− (2k − 3) =

(k − 3)(k − 2)

2
(2.12)

where (2k−3) are the constraints that arise from
∏k
a=1 δ

2(Ca ·λ) and −3 simply correspond

to the constraints that are imposing momentum conservation on the external data (λi),

not on the Grassmannian. The final (k− 3)(k− 2)/2-dimensional integral is then localized

by the zeroes of the minors.

Here, we will be interested in the configuration of grassmanian manifold which is a

result of this final localization. In other words, we will reverse the previous procedure and

consider the top-cell first being partially localized using the (k − 3)(k − 2)/2 number of

zeroes in the minors. This leaves behind a (2k − 3)-dimensional integral, subject to the

constraints of the bosonic delta function δ(C · λ). Thus the residues of the integral in

eq. (2.8), can be recast as a (2k − 3)-dimensional submanifold of the orthogonal Grass-

mannian, subject to the final (2k − 3) bosonic degrees of freedom. As we will see, this

(2k − 3)-submanifold can be iteratively constructed.

It is convenient to use the GL(k) symmetry to gauge fix the k × 2k matrix such that

the Grassmannian takes the form

Cai = (Ik×k, c), (2.13)

where Ik×k is the k × k identity matrix, and the matrix c parametrizes the remaining k2

degrees of freedom. The orthogonal constraint Q(v, w) = 0 is now

Ik×k + c · cT = 0 (2.14)

and thus ic is simply an orthogonal matrix O(k) which has two branches, SO+(k) and

SO−(k). The two branches can be defined in a GL(k) invariant fashion as:

Mσ

Mσ̄
= ±(i)k . (2.15)

In the above σ represent the set of columns entering the minor, while σ̄ represent its

complement. For example in G(3,6), if σ = (1, 2, 4) then σ̄ = (3, 5, 6). The fact that the

orthogonal Grassmannian has two branches is directly related to the special properties of

three-dimensional kinematics. To expose this connection, we take a closer look at OG2.

2.1 The branches of OG2

Let us study the top-cell of OG2, which according to eq. (2.7) is one-dimensional. We begin

with the following gauge fixed form:

Cαi =

(
1 0 c13 c14

0 1 c23 c24

)
(2.16)

– 7 –
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We will refer to such gauges where the columns that constitute unity are all adjacent as

“canonical gauge”. Explicitly solving the orthogonal condition one finds:

∫
dc13dc14dc23dc24 δ3(CCT ) ?

=

∫
dαdβ δ(1 + α2 + β2)


 ?

∣∣∣∣
C=

(
1 0 α β
0 1 −β α

) + ?

∣∣∣∣
C=

(
1 0 −α β
0 1 β α

)

 (2.17)

where the two solutions correspond to the SO(2)− and SO(2)+ part of the orthogonal

grassmanian.

Two branches of the orthogonal Grassmannian actually reflect the fact that there are

two topologically distinct configurations for the external kinematics. To see this recall that:

〈12〉2 = 〈34〉2 → 〈12〉 = ±〈34〉 . (2.18)

Thus we see that there are two inequivalent kinematic configurations. Now let us consider

the first solution in eq. (2.17), which through δ2(C · λ) enforces:

λ1 = αλ3 + βλ4, λ2 = −βλ3 + αλ4 (2.19)

One immediately sees that this implies

〈12〉 = −〈34〉. (2.20)

It is straightforward to see that the other branch implies that 〈12〉 = 〈34〉. Thus the differ-

ent branches of OG2 corresponds to the two distinct branches of the four-point momentum-

space configurations! More importantly: the amplitude is required to live on both branches

of OG2. Stating the obvious, if the amplitude is only represented on one branch of OG2

it becomes non analytic as the amplitude will vanish in the other kinematic branch. Such

non analyticity cannot be present for tree-level amplitudes.

At higher points, the fact that 3d kinematics has distinct branches can be understood

as follows: in Minkowski space, a light-like vector can be written as pµi = Ei(1, cos θi, sin θi).

This means that projectively, three-dimensional massless kinematics are simply points pop-

ulating the circle S1. From

〈ij〉 =
√
−2pi · pj = i

√
EiEj sin

(
θi − θj

2

)
(2.21)

we see that the sign of 〈ij〉 changes whenever the two points that represent pi and pj cross

each other on the S1:

i

i−1
i+2

i+1

1

n

i

i−1
i+2

i+1

1

n

(2.22)
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Clearly two configurations eq. (2.22) are topologically inequivalent. This can be made

more precise. By judiciously adding 2π to the angles θi, one can arrange the angles such

that a given kinematics configuration has all angles strictly increasing according to their

color ordering, i.e. 0 < θi+1 − θi < 2π. This gives a well-defined “winding number”

w = (θn−θ1)/(2π). Note that the configuration where the angles are strictly decreasing, is

simply a reflection of the circle, and thus do not count as a new configuration. Now as the

momenta of two points are interchanged, the winding number changes by one, indicating

a distinct topological sector.

2.2 The external states

We now address what j should be in eq. (2.8). Unlike in N = 4 SYM, the on-shell degrees

of freedom in ABJM theory are contained in two distinct multiplets, denoted by Φ and Ψ.

The scattering amplitude is then characterized by two distinct configurations: whether Ψ

multiplets sit on even sites or odd sites. In terms of eq. (2.8), this implies the following:

• For k = even: j = 1 if Ψ is on odd sites, while j = 2 if otherwise

• For k = odd: j = 2 if Ψ is on odd sites, while j = 1 if otherwise

For example, at four points we have:

A4(1̄23̄4) =

∫
dC

(1, 2)(2, 3)
δ3(CCT )δ2|3(C · Λ),

A4(2̄34̄1) =

∫
dC

(2, 3)(3, 4)
δ3(CCT )δ2|3(C · Λ) (2.23)

Note use the canonical gauge in eq. (2.15), we see that

(1, 2) = α(3, 4) (2.24)

where α = ± denotes the branch. Thus A4(1̄23̄4) has the same measure as A4(2̄34̄1) does,

except that instead of summing over the two branches, one now has to take the “difference”

of the two branches. To be more concrete, we begin with the canonical gauge whose ordering

are now identified with the external legs. The OG2 Grassmannian simply becomes:

A4(1̄23̄4) =
1

2

∑

α=±

∫
dθ

s
δ2|3(C(θ, α)Λ), A4(2̄34̄1) =

1

2

∑

α=±
α

∫
dθ

s
δ2|3(C(θ, α)Λ) (2.25)

where we use the short hand notation ci ≡ cos θi and si ≡ sin θi and

C(θ, a) =

(
1 0 iαs iαc

0 1 −ic is

)
(2.26)

Thus we see that the two distinct four-point amplitude correspond to the difference or sum

of the two branches in O(2). As another example consider the following “cyclic” gauge:

Cαi =

(
1 iαs 0 iαc

0 −ic 1 is

)
(2.27)

– 9 –



J
H
E
P
0
2
(
2
0
1
4
)
1
0
4

we see that the OG2 integrand takes the form

A4(1̄23̄4) =
1

2

∑

α=±

∫
dθ

cs
δ2|3(C(θ, α)Λ)

A4(2̄34̄1) =
1

2

∑

α=±
α

∫
dθ

cs
δ2|3(C(θ, α)Λ) . (2.28)

Again the difference between the two amplitudes is the relative sign of the two branches.

The above discussion generalizes. At (2k)-point, if the leading singularities of

A2k(1̄ · · · 2k) is given by the sum of a particular orthogonal Grassmannian configuration

living on two branches, then A2k(2̄ · · · 1) is given by the difference, due to eq. (2.15).

2.3 The singularities of OG2

After solving the orthogonal constraint, we see that the OG2 Grassmannian is now a

one dimension integral with an integration measure that has non-trivial poles. A natural

question would be: what do the the singularities in the measure correspond to? For the

canonical gauge in eq. (2.25), the singularity at s = 0 reflects the divergence due to soft

exchanges in the four-point amplitude. This can be seen from the fact that the pole on the

bosonic delta functions enforce (with s = 0, c = 1)

λ1 = −iαλ4, λ2 = iλ3 → p1 = −p4, p2 = −p3 :

12

3 4

(2.29)

where the blue line indicates the soft gluon exchange. Thus we can graphically represent

this as:

∂

1

2 3

4 1 4

2 3

, (2.30)

where the incoming arrows indicate the columns which are unity, and the out going arrows

indicate the non-trivial entries. The operator ∂ denotes the singularity of the measure in

a on-shell diagram.

Let us now look at the cyclic gauge, eq. (2.27). The measure contains two singularities,

c = 0 or s = 0, on which the bosonic delta functions enforce p1 + p4 = p2 + p3 = 0 or

p1 + p2 = p3 + p4 = 0 respectively. This can be represented as:

∂

1

2 3

4

2 3

1 4 1

2 3

4

. (2.31)

Compared with the canonical gauge in eq. (2.29), it appears that the cyclic gauge contains

one more singularity than the canonical gauge does, namely the s-channel soft singularity:

12

3 4

. (2.32)
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This is perplexing since the two are related by a GL(2) gauge transformation. The GL(2)

gauge transformation that is necessary to convert eq. (2.26) to eq. (2.27) is given by:
(

1 is̃ 0 ic̃

0 ic̃ 1 −is̃

)
=

(
1 s/c

0 i/c

)(
1 0 is ic

0 1 −ic is

)
, (2.33)

where one can readily identify s̃ = −is/c and c̃ = 1/c. Now let’s consider the singularity

which was absent in the canonical gauge: p1 + p2 = p3 + p4 = 0. In the cyclic gauge,

this corresponds to when c̃ = 0. However since c̃ = 1/c, the GL(2) gauge transformation

becomes rank 1 if c̃ = 0. Thus on this singularity, the gauge transformation becomes

non-invertible which explains why we did not see the singularity in the canonical gauge.

However, we are not off the hook yet, as the missing singularity must hide in eq. (2.25).

After all, we are supposed to obtain the same four-point amplitude after using the bosonic

delta functions to localize the final one-dimensional integral. The resolution is that the

singularity does not appear as a singularity in the measure, but rather the degenerate limit

of the bosonic delta functions. To see this, note that if λ1 = iλ2, λ3 = iλ4 the bosonic

delta functions become

δ(iλ2 + αi(is+ c)λ4), δ(λ2 + (c+ is)λ4) (2.34)

where for α = 1 the delta functions become degenerate. Thus the missing singularity

appears as the degenerate-limit of the bosonic delta functions.3

The above discussion points out a unique aspect of ABJM amplitudes: the fundamental

four-point amplitude has non-trivial singularities. This is reflected in the fact that the

fundamental vertex, which is the top-cell of OG2, is one-dimensional and the residue of the

poles in the measure is non-trivial. From the Grassmannian point of view, the localization of

the one-dimensional integral indicates that it has been localized to a special configuration.

In the canonical gauge, eq. (2.25), the configuration of Cai on the pole s = 0 (and c = 1) is:
(

1 0 iαs iαc

0 1 −ic is

)
s = 0−−−→

(
1 0 0 iα

0 1 −i 0

)
. (2.35)

One can see that as s = 0, column 2 and 3 becomes linearly dependent, and similarly

for columns 1 and 4. Thus the singularity corresponds to special configurations of OG2

for which linear-dependency develops among the columns. This special configuration can

be thought of as the co-dimension one boundary of the top-cell in OG2. If we restrict

ourselves to the linear dependency of adjacent columns, which for k = 2 is equivalent

to the vanishing of a consecutive minor, then naively there should be 4 such boundaries.

However, due to eq. (2.15) which is implied by the orthogonal constraint, only two are

independent. Thus there are 2 co-dimension one boundary for the top-cell of OG2, and

each correspond to a distinct soft-gluon exchange divergence in the amplitude! For general

OGk, the linear dependency of the columns will encode even more structure that is reflected

in the scattering amplitude. To expose this relation, we proceed to construct higher-point

amplitudes, using the language of gluing together fundamental OG2’s.

3For λ1 = iλ2, λ3 = −iλ4, the degeneracy occurs in the other branch.
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3 OGk as on-shell diagrams

In the work of Arkani-Hamed et al. [3], it was demonstrated that by successively gluing

together fundamental three-point G(2,3) and G(1,3) grassamannians, one builds a sub-

manifold of the Grassmannian which is corresponding to the S-matrix of N = 4 SYM.

Generically, it will be a sub-manifold since the dimension is lower than the dimension of

the top-cell, indicating it correspond to a boundary of the top-cell. That such connection

can be made is due to the identity between the kinematics of the gluing of a G(2,3) and a

G(1,3), with the BCFW [4, 5] deformation of the external legs:

1 n
1 n1

n

1n
z

11 n
)

n 1
(    + z   )

n

, (3.1)

where the arrows indicate the momentum flow, and we’ve explicitly spelled out the kine-

matics of each leg in the diagram implied by the constraint imposed from the bosonic

delta functions in each vertex. From this point of view, the diagrams that are built from

successively attaching such “BCFW” bridges, is equivalent to the iterative construction of

scattering amplitudes using lower-multiplicity, or lower-loop level, on-shell building blocks.

In other words, each term in the BCFW construction to tree [4, 5] and planar loop [2] can

be recast into a particular trivalent, “on-shell” diagram.

Through this gluing procedure, one constructs an (nf − 1)-dimensional G(k, n) Grass-

mannian, where nf is the number of faces in the diagram. This sub manifold is then

subject to (2n − 4) constraints that arise from the bosonic delta functions. Note that

the dimensions of the sub manifold can be greater, equal or less than the number of

constraints, which correspond to multi-dimensional integrals, a rational function, or a ra-

tional function with constraints imposed on the external data beyond that of momentum

conservation, respectively.

Similar proposal was made for ABJM theory, based on the merging of fundamental

OG2 Grassmannians. The kinematics of the BCFW deformation is now mapped to the

constraint imposed by a fundamental four-vertex:

1 n
1 1 n n

1 n
)

1 n
)

1 n
)

1 n
)

, (3.2)

where we’ve used the constraints on the external data imposed in the canonical gauge. Thus

it is expected that each individual term in the BCFW recursion of a ABJM amplitude [17],

can be represented by an on-shell diagram constructed from the gluing of four-vertices.4

In this section we will study these on-shell diagrams in more detail.

4Note because of chirality, Φ must be connected with Ψ̄, so not any gluing is allowed. The “wrong”

diagrams could appear when we consider non-planar diagrams.
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3.1 General amalgamation of OG2s

To illustrate the gluing procedure and the buildup of representative OGks, we begin with

the merging of two OG2s to form an OG3. This gluing procedure is represented graphi-

cally as:

7 8

1

2

3 4

5

6 1

2

3 4

5

6

. (3.3)

What this means is that we take the two OG2s, each of which is a one-dimensional integral

with degree 4 bosonic delta function imposing constraints on the external data, identify

one external leg from each of the two OG2s and integrate away the on-shell data of the

common external leg. More explicitly, in the above diagram, we identify Λ7 = ΛI and

Λ8 = Λ−I , where Λ−I = iΛI due to momentum conservation. First integrating away the

bosonic part of ΛI we find that the degree 8 bosonic constraints collapse to degree 3:5

∫
d2λI

2∏

a=1

δ2(Ca1λ1 + Ca2λ2 + Ca3λ3 + CaIλI)

2∏

b=1

δ2(Cb4λ4 + Cb5λ5 + Cb6λ6 + iCbIλI)

=

3∏

a=1

1

C2
aI

δ2

(
6∑

j=1

C̃ajλj

)
. (3.4)

where C̃αj are the new coefficients in front of the λjs. Thus we see that in the end we’ve

obtained a new G(3,6) Grassmannian. Combining with the fermionic part of the delta

functions, the gluing procedure is written as:

∫
d2|3ΛIδ

4|6(Cv1Λv1)δ4|6(Cv2Λv2) =
3∏

α=1

CaIδ
2|3

(
6∑

j=1

C̃ajΛj

)
, (3.5)

where we’ve used v1 and v2 to label the external legs on each individual vertex. Note that

there will be an extra Jacobian factor CaI , which originated from the mismatch between

bosonic and fermionic delta functions. Thus the merging procedure is nothing but a union

of linear constraints on the external data, when two such external legs are identified.

We can generalize this amalgamation to merge a OGk and OG′k to form OGk+k′−1.

5As usual in the Grassmannian formulation here we treat delta-functions as contour integrals, so there

is no absolute value on the Jacobian.
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Starting by first combining the two Grassmannian into a OGk+k′

Cαi =




c11 · · · c1,2k 0 0 0
...

...
... 0 0 0

ck1 · · · ck,2k 0 0 0

0 0 0 ck+1,2k+1 · · · ck+1,2k+2k′

0 0 0
...

...
...

0 0 0 ck+k′,2k+1 · · · ck+k′,2k+2k′




(3.6)

The non-vanishing minors of OGk+k′ are simply given by the product of a minor in OGk

and a minor in OGk′ . Now we identify the spinors of two external legs, say 2k and 2k+ 1,

integrating away the common spinor one obtains an OGk+k′−1 Grassmannian whose entry

is given by

Cαi =




c21 − c11c2,2k
c1,2k

· · · c2,2k−1 − c1,k−1c2,2k
c1,2k

0 0 0
...

...
... 0 0 0

ck1 − c11ck,2k
c1,2k

· · · ck,2k−1 − c1,2k−1ck,2k
c1,2k

0 0 0

−i c11c1,2k
ck+1,2k+1 · · · −i c1,2k−1

c1,2k
ck+1,2k+1 ck+1,2k+2 · · · ck+1,2k+2k′

...
...

...
...

...
...

−i c11c1,2k
ck+k′,2k+1 · · · −i c1,2k−1

c1,2k
ck+k′,2k+1 ck+k′,2k+2 · · · ck+k′,2k+2k′




(3.7)

As one can straightforwardly verify, the minor of the final OGk+k′−1 Grassmannian is given

by a linear combination of minors in the parent OGk+k′ :

(i1, · · · , ik+k′−1) =
1

c1,2k

(
(i1, · · · , ik+k′−1, A) + i(−1)k+k′−1(i1, · · · , ik+k′−1, B)

)
. (3.8)

where we’ve used A,B to represent the identified columns i2k, i2k+1.

A non-trivial question is whether orthogonality is preserved under amalgamation. As

we combine OGk and OGk′ into OGk+k′ , orthogonality is trivially preserved. The orthog-

onality of the final OGk+k′−1 can be shown by following ref. [3] and rewrite the orthogonal

condition as the following constraint for the minors of a OGk Grassmannian:

∑

a∈col OGk

(i1, · · · , ik−1, a)(j1, · · · , jk−1, a) = 0 , (3.9)

where
∑

a∈col OGk
indicates a sum over all columns in OGk, and {i1, · · · , ik−1} and

{j1, · · · , jk−1} can be arbitrary. A formal proof of this equivalence is given in appendix A.

Using the amalgamation rule in eq. (3.8) it is straightforward to show that

∑

a∈col OGk+k′−1

(i1, · · · , ik+k′−2, a)(j1, · · · , jk+k′−2, a) = 0 ,

where one uses eq. (3.9) to convert
∑

a∈col OGk+k′−1
into the sum of a = i2k and a = i2k+1.

Thus starting with the fundamental four-point vertex, we can successively build up

more complicated on-shell diagrams by gluing multiple four-point vertices. Each vertex
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contains a one-dimensional integral, the degree of freedom in the top-cell of OG2, while

subjecting to a degree 4 bosonic delta function constraint. Each internal line that connects

the two-vertex introduces a two dimensional integral
∫
d2λI . Among the delta functions, 3

of them corresponds to overall momentum conservation, thus the total number of bosonic

delta functions remaining after localizing the
∫
d2λI integrals is given by 4nv − 2nI − 3 =

2k − 3, where nv is the number of vertices nI is the number of internal lines and n = 2k.

Thus a given on-shell diagram is an nv-dimensional integral subject to (2k−3) constraints.

Recall that the top-cell of OGk is k(k − 1)/2-dimensional, in general the dimension of

the on-shell diagrams will be less than that of the top-cell, and thus will correspond to

boundaries of the top-cell.

In practice the final form of Cai can be easily read off from the on-shell diagram. Here

we consider two particular gauge fixing of OG2 that allows one to straightforwardly read off

the final answer. As a bookkeeping device for the gauge choice, one assigns two incoming

and two out-going arrows for each vertex. For each internal line, the arrows must point to

a definite direction. The incoming arrows will indicate the legs which correspond to the

unity columns in OG2. For each vertex, there are two-possible assignments:

(I) (II)

. (3.10)

In the above diagram (I) correspond to the canonical gauge in eq. (2.26) while diagram

(II) correspond to the cyclic gauge in eq. (2.27). As one builds up higher-point diagram

by gluing fundamental four-point vertices, the arrows in the diagram forms paths that

connects points on the boundary through the diagram and back to the boundary:

i

j

. (3.11)

Note that due to eq. (3.10) there will always be k “sources” and k “sinks” on the boundary.

The cij in Cai can then be readily read off by summing over all paths that connect i and j

in the on-shell diagram, with the appropriate ica and isa factors assigned at each vertex,

as well as an extra factor of i each time an internal line is crossed:

cij =
∑

β∈paths

(i)nIβ
∏

nvβ

(cnvβ or snvβ ) (3.12)
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where β labels the paths, nIβ are the number of internal lines along the path, and nvβ labels

the number of the vertices that are present along the path. For the particular gauges in

eq. (2.26) and eq. (2.27), the extra factors that arise from crossing each vertex is:

(I)

(II)

i c

−i s

−i s

i c

, (3.13)

where again α parametrize the branch for each individual vertex. As an example we

consider the six-point factorization diagram:

(I) (II)

a b a b

1 6 1 6

As nv = 2 this diagram represents a two-dimensional integral subject to 2k − 3 = 3

constraints, the system is over constrained and implies non-trivial constraint on the external

data beyond that of momentum conservation. As momentum conservation and on-shellness

is enforced at each vertex, the extra constraint is simply (p1 + p2 + p3)2 = 0. The explicit

form of Cai, both in canonical and cyclic gauge, are given as:

(I) Cαi =



−iαaca 1 0 0 −iαaαbsasb −iαaαbsacb
−isa 0 1 0 iαbcasb iαbcacb

0 0 0 1 icb −isb




(II) Cαi =



−iαaca 1 −iαasa 0 0 0

−iαbsacb 0 iαbcacb 1 −iαbsb 0

−isasb 0 icasb 0 icb 1


 (3.14)

If a given path goes through a closed loop, one simply obtains a geometric sum:

cij = c
(0)
ij +

c
(1)
ij

1− Γij
, (3.15)

where c
(0)
ij are paths that do not go through closed loops while c

(1)
ij correspond to those that

goes through one, and Γij are the product of variables in the given loop. Note that due to
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the mismatch of fermionic and bosonic delta function, the gluing procedure will generate

a Jacobian factor J = (1− Γij).

In conclusion, by gluing the on-shell diagrams in the cyclic gauge, one obtains a nv
dimensional integral:

Lk =
∑

{αa}

∫ [ nv∏

a=1

dθa
2g(αa)saca

]
J

k∏

m=1

δ2|3 (Cm(θa, αa) · Λ)

=
∑

{α}

∫ [ nv∏

a=1

1

2g(αa)
d log (tan θa)

]
J

k∏

m=1

δ2|3 (Cm(θa, αa) · Λ) (3.16)

where we’ve chosen the gauge in eq. (2.27) for all vertices, g(αa) = 1 orαa depending on

the chirality of the legs on the individual vertex, and
∑
{αa} indicates that one is required

to sum over all 2nv distinct configurations of {αa}. In other words, the terms in the ABJM

tree-level BCFW recursion can be written as an nv = 2k − 3-dimensional integral with a

simple canonical d log measure ! The Jacobian factor J may seem to be a breakdown of

the d log form, it’s actually the opposite as we will see later in the discussion of bubble

reductions where the d log form matters more since it is a true integral there. The Jacobian

factor is precisely needed to bring the integration measures after bubble reductions into a

nice d log form.

3.2 On-shell diagram as BCFW representation of tree-level amplitudes

With detailed understanding of the structure of fundamental vertex, we are ready to con-

struct on-shell diagram representation of all tree-level amplitudes in ABJM theory by the

means of BCFW recursion relation. As discussed in [3, 21] the three-dimensional BCFW

deformation is precisely the constraint imposed by the bosonic delta function of the fun-

damental four-vertex in the canonical gauge. Thus the tree-level amplitudes of ABJM can

be given by the following recursion:

An =

2k−3∑

i=3

1 2k

i

(3.17)

Since the four-point amplitude is given by the fundamental OG2 Grassmannian, through

the gluing procedure discussed previously, the recursion formula generates a 2k − 3-

dimensional representation of OGk. Here we would like to analyse the properties of

this representation.
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3.2.1 A six-point amplitude and its singularities

Let us begin with the six-point BCFW on-shell diagram,

1 2

3

45

6

1

23

. (3.18)

It is straightforward to work out the corresponding Grassmannian according to eq. (3.13),

we obtain,

Cai =




1 0 0 −ic1,4 −ic1,5 −ic1,6

0 1 0 −ic2,4 −ic2,5 −ic2,6

0 0 1 −ic3,4 −ic3,5 −ic3,6


 , (3.19)

where

c1,4 = α1s1α2s2, c1,5 = −α1α2s1c2c3 + α1α3c1s3, c1,6 = α1α2s1c2s3 + α1α3c1c3

c2,4 = −α2c1s2, c2,5 = α2c1c2c3 + α3s1s3, c2,6 = −c1α2c2s3 + α3s1c3

c3,4 = −c2, c3,5 = −s2c3, c3,6 = s2s3 . (3.20)

One can straightforwardly test the orthogonality of the above OG3, and that M4/M1 =

−iα1α2α3, as expected from eq. (2.15). Not surprisingly, that the non-trivial part of the

above Grassmannian, eq. (3.19), can be decomposed into a direct product of three two-

dimensional rotations,



c1,4 c1,5 c1,6

c2,4 c2,5 c2,6

c3,4 c3,5 c3,6


 =



α1s1 α1c1 0

−c1 s1 0

0 0 1


 ·



α2s2 α2c2 0

0 0 1

−c2 s2 0


 ·




1 0 0

0 −c3 s3

0 α3s3 α3c3


 . (3.21)

This fact is rather general, one can always decompose higher-point Grassmannian into

direct product of lower-point ones, except for diagrams that involve closed loops.

The diagram in (3.18) can be interpreted as a BCFW shift on legs 1 and 2. Thus we

can identify:

A6(1̄, · · · , 6) =
∑

{αa}

α2

∫ [ 3∏

a=1

dθa
2sa

]
3∏

m=1

δ2|3 (Cm(θa, αa) · Λ)

A6(2̄, · · · , 1) =
∑

{αa}

α1α3

∫ [ 3∏

a=1

dθa
2sa

]
3∏

m=1

δ2|3 (Cm(θa, αa) · Λ) (3.22)

Note that since the branch of the OG3 is determined by iα1α2α3, we see that the integration

measure of A6(2̄, · · · , 1) has an extra minus sign compared to A6(1̄, · · · , 6) depending on

the branch, as promised.
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Before moving on, let us take a brief pause and consider the singularities in the on-

shell form in eq. (3.22). The singularity at s1 = 0 correspond to the opening of the BCFW

vertex, since from eq. (2.29), the residue of this singularity can be represented as:

1 2

3

45

6

1

1 2

s
1
 = 0

(3.23)

which is simply the product of two tree-level amplitudes with one additional constraint on

the external data beyond momentum conservation, (p2 +p3 +p4)2 = 0. On the other hand,

if we instead look at the singularity that correspond to s2 = 0, one finds:

1 2

3

45

6 2

4

3

1
2

6

5

s
2
 = 0

. (3.24)

This result appears to be perplexing on two fronts. First of all, the BCFW factorization

singularity similar to that of s1 = 0 is missing. Second of all, the residue of this singularity

gives a bubble diagram which correspond to a one-dimensional integral, which is rather

peculiar given that this is a singularity of a rational function. The first puzzle is simply a

reflection of the fact that we are using a local chart for the particular OG3. The factoriza-

tion singularity of vertex 2 can be explicitly seen by cyclically permuting the gauge choice

in diagram (3.18).

The second puzzle is more subtle. Compared with the residue in eq. (3.23) which is a

rational function with one extra constraint on the external data, the residue in eq. (3.24)

is a one-dimensional integral, which implies that it must impose 2 extra constraint on the

external data. The degree two constraint is simply

λa3 ± iλa4 = 0 (3.25)

where the ± comes from whether c2 = ±1. This constraint should be familiar to us by

now, it is nothing but the kinematics for a soft gluon exchange in the six-point amplitude!

As we show in appendix B, the residue of this singularity is proportional to a four-point

tree amplitude. This lead us to conclude that the bubble diagram must be proportional

to the four-point tree-level amplitude! Indeed we will show in the next subsection 3.3

that through a change of variables, the bubble diagram is equivalent to a one-dimensional

integral times a OG2.

Finally, note that by considering the singularity that corresponds to the BCFW fac-

torization at each vertex in diagram, we can see the presence of all factorization channels

in diagram (3.18).
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3.2.2 The general 2k-point amplitude

From the above discussion, we’ve seen two subtleties in identifying the singularities of the

on-shell diagram with the physical singularities:

• Only some singularities are manifest in any local chart. The fact that all singularities

of the on-shell diagram are present is equivalent to the GL(k) gauge invariance which

allows us to establish the equivalence of different local charts.

• Not all singularities correspond to one constraint on the external data. Some sin-

gularities impose more than one constraint, and can be identified by simply noting

that the residue is a manifold with one extra degree of freedom compared to the

parent diagram.

These features generalize to higher multiplicity BCFW diagrams.

Following the same process we can construct all tree-level amplitudes in ABJM theory

by attaching BCFW bridges to the factorization channels. It is straightforward to find that

the total number of on-shell diagrams for a (2p+ 4)-point tree-level amplitude is

(2p)!/(p!(p+ 1)!), (3.26)

where p = 0, 1, 2, . . .. For instance when p = 2, namely eight-point tree-level ampli-

tude, there are two diagrams. Here is one possible on-shell diagram representation of

this amplitude,
1 2 1 2

3

45

67

83

45

67

8 + (3.27)

Again one can find all eight factorization channels of the eight-point amplitude manifestly

by opening up four possible BCFW bridges of the on-shell diagrams. As discussed previ-

ously in the example of six-point amplitude, eq. (3.24), there are two ways of opening up

internal vertex I. One leads to a spurious pole,

1 2

3

45

67

8 I ⇒
1

2 3

4

5

67

8

. (3.28)

It is a spurious pole of the tree-level amplitude that’s because both diagrams contain the

same singularities, and thus they cancel out in pair. The other singularity

I , (3.29)
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again corresponds to a soft exchange. Note that since both bubbles are one-dimensional

integrals, this implies that there must be 3 extra conditions aside from momentum conser-

vation. These 3 extra conditions can be readily identified as the momentum conservation

of the four external momenta of any one of the bubbles.

By examining above simple examples, we note some nice and intriguing facts about

the on-shell diagrams of tree-level amplitudes in ABJM theory. Firstly the on-shell dia-

grams only involve triangles, and all the triangles are connected with each other through

shared vertices, not by shared lines. Secondly both the six- and eight-point amplitudes

are manifestly cyclic symmetry under shift by two-site permutation, i→ i+ 2. We like to

emphasize that both properties are rather surprising, in particular comparing from what

we learned in N = 4 SYM: it is certainly impossible to represent all tree-level amplitudes

in N = 4 SYM by boxes only, and cyclic symmetry is revealed only after a series of equiv-

alence moves between on-shell diagrams. Here, we found in ABJM theory there is at least

one representation of BCFW recursion relation which makes the required cyclic by two-site

symmetry manifest, and thus all factorization channels are manifestly present.

The lesson we learned from special examples is actually a generic feature of all on-shell

diagram representations of tree-level amplitudes in ABJM theory. This will be proved

by induction. Let us first assume that all the lower-point amplitudes can be constructed

purely by triangles, which is trivial for the six-point tree-level amplitude. Then judiciously

choosing the tree-level amplitude representations in the factorization diagrams guarantee

that the resulting diagram after adding a BCFW bridge can be represented by triangles

only. Let us consider the following factorization diagram in detail:

ii+ 1
i− 1i+ 2

i+ 1 i

i+ 2 i− 1

⇒

j j + 1 j j + 1

P P

. (3.30)

By induction, the on-shell diagram representation for both left and right amplitudes are

expressed solely in terms of triangles which do not share common sides. We can choose

to express the left amplitude by BCFW recursion with shifts on legs P and i + 1, while

the right amplitude is given by shifting legs i and P . After erecting the BCFW bridge,

we introduce a new triangle that is connected to both the left and right on-shell diagrams

only through shared vertices and not sides. Thus this procedure insures that the final

representation is again given by triangles which share no common sides. Furthermore, the

diagrams will be one-particle irreducible.

It is straightforward to conclude that each BCFW diagram of a (2k)-point tree-level

amplitude consists of (k − 2) triangles. As all triangles only have shared vertices and

not shared sides, all vertices must have either 2 or 0 external legs, there are precisely k

external vertices and (k− 3) internal vertices for a BCFW diagram of (2k)-point tree-level

amplitude. Note that as there will be a total of k + (k − 3) = 2k − 3 vertices, the on-shell

diagram corresponds to a (2k− 3)-dimensional integral. This is exactly the number of the
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constraints, so the on-shell diagrams of tree-level amplitudes are simply rational functions

as expected.

To make this amusing geometric property more transparent it’s convenient to remove

the external legs, but leave triangles only. In this case, to obtain a 2k-point tree-level

amplitude, we simply take k − 2 triangles and connect them through k − 3 vertices in all

possible topologically distinguished ways; then assign k ordered numbers, 1, 2, . . . , k, to k

external points. For instance, eight-point amplitude may be represented as

i

i+ 1 i+ 2

i+ 3

(3.31)

There is only one way to connect two triangles through a vertex, and two distinguishing

ways of assigning external vertices, namely i = 1 or 2 in the above diagram. This is of

course precisely the same as eq. (3.27). Slightly non-trivial example would be 12-point

amplitude, where we have three different ways of putting four triangles together,

. (3.32)

Now we have six different ways of assigning 6 numbers for the first two diagrams of

eq. (3.32), and two different ways for the last diagram. In total we have 14 different

BCFW diagrams for 12-point amplitude, which agrees with the result of eq. (3.26).

So by the construction described above, we see that the two-site cyclic symmetry of the

external legs is manifest in the on-shell diagram. This property implies another remarkable

fact: the on-shell diagram representation of the BCFW result manifest the presence of all

physical factorization channels ! This can be understood as follows: from the outset, the

BCFW recursion will manifest all factorization channels for which two chosen legs sit across

the factorization channel. As the on-shell diagram representation manifests the cyclic by

a two-site symmetry, all factorization channels that are related by this cyclic symmetry

is manifestly present as well. One might worry about the factorization channels that are

related by a cyclic rotation of one-site. Due to the special property that in ABJM only

even multiplicity amplitudes are non-vanishing, the factorization channels that are related

to the original BCFW channel by cyclic rotation of one-site, is in fact equivalent to a

factorization channel that is cyclically rotated by even sites. For example, consider the
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following eight-point factorization:

2
3

=

1
2 5

6

3
2

(3.33)

With legs 1 and 2 to be the chosen leg, one might worry that the factorization channel that

is related by a cyclic by one-site shift, which now becomes a (3, 2) factorization, is absent.

However the would be missing factorization channel is actually equivalent to a channel that

appears in the (6, 5) shift, which is related by the original (2, 1) shift via cyclic by two-site

rotation. Thus one concludes that the cyclic by two-site symmetry of the on-shell diagram

guarantees that all physical poles are manifestly present. Note that spurious poles come

from opening up any internal vertex, which turns two connected triangles into a box, as

shown in the example of eight-point amplitude, eq. (3.28). It’s not too difficult to see they

always appear in pairs and thus cancel out each other. Another nice property regarding this

representation of tree-level amplitudes is that it is manifestly inverse-soft constructible, for

which we discuss in the appendix C. What makes this intriguing representation of tree-level

amplitudes possible is the fact that BCFW bridge and the fundamental vertex is the same

entity in ABJM theory.

3.3 Equivalence moves and reducible diagrams

Just as in N = 4 SYM, various distinct on-shell diagrams can be equivalent through a

change of variables. Diagrammatically the equivalence can be established by a serious of

triangle moves:

1

23

4

5 6

5

6 1

2

34

= , (3.34)

which is nothing but the statement that two BCFW shifts related by cyclic permutation

by one site gives equivalent result, and since there is only one diagram in the recursion,

this implies a equivalence between diagrams. Note that since it is the amplitude that is

equivalent, it is the combination of the two branches that is invariant. This “triangle move”

(or Yang-Baxter move) is the analogue of “square move “ in N = 4 SYM. As an example

for equivalent diagrams, consider the following,

=

1 2

3

4

56

7

8

1 2

3

4

56

7

8

(3.35)
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where we have applied the triangle move on the top triangle of the first diagram. For

more complicated diagrams, we would like to have a way of discerning the equivalency

without actively applying these moves. This invariant information is nicely captured by

the permutations implied by the diagram, which we will discuss in the next section.

The action of the triangle move on the OG3 Grassmannian is rather simple, at

least for certain gauge choices. For instance, for the canonical gauge in eq. (3.18), the

Grassmannians of two diagrams in eq. (3.34), are related to each other by following

similar transformation,




0 0 1

0 1 0

1 0 0


 , (3.36)

and with a trivial replacement si → αisi and ci → −αici.
There are also cases where through a change of variables, some degrees of freedom can

be completely decoupled from the Grassmannian in the bosonic delta function. A trivial

example would be the following tadpole diagram:

=

34

1 2

4 3 4 3

(3.37)

The decoupling of the integration variable in OG2 can be explicitly shown as follows:

starting with

δ2(λ1 + iαcλ2 + iαsλ4), δ2(λ3 − isλ2 + icλ4) , (3.38)

The tadpole diagram is constructed by identifying λ2 = iλ1, and integrating
∫
d2λ1. One

may be absorbed α = ±1 in the definition of spinor λ. Furthermore we find integration

measure is in a d log form,

δ2(λ3 + iαλ4)

∫
dθ

cs
(1 + c) = −δ2(λ3 + iαλ4)

∫
dLog(1/c− 1) , (3.39)

here we have chosen cyclic gauge to be precise, canonical gauge leads to a similar result.

Thus as promised, the Grassmannian variables no longer appear in the bosonic delta func-

tions and completely decouples from the remaining part of the graph. Now consider another

type of bubble,

1̄

2 3̄

4

⇒

1̄

2 3̄

4

1 2 c . (3.40)

Here, to illustrate the subtleties introduced by the presence of closed loops in particular

gauges, we intentionally chosen a gauge such that a closed loop is formed. Reading off from
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the diagram the OG2 Grassmannian is given as,

Cαi =




1 iα1(s1−α2s2)
1−Γ 0 iα1c1α2c2

1−Γ

0 i c1c21−Γ 1 i s2−α2s1
1−Γ


 (3.41)

with Γ = α2s1s2. For performing the reduction, we identify Cαi with the fundamental

OG2 Grassmannian

Cαi :=

(
1 iαs 0 iαc

0 −ic 1 is

)
, (3.42)

namely we have made following identifications on the entries,

−α1α2 := α,
s2 − α2s1

1− Γ
:= s, − c1c2

1− Γ
:= c . (3.43)

From these relations, the measure of the bubble now can be nicely written in terms of c

(and s),

dθ1

c1s1
∧ dθ2

c2s2
(1− Γ) = dLog

(
1− s

s2

)
∧ dθ
cs

= dLog

(
1− αs

α1s1

)
∧ dθ
cs
. (3.44)

Thus we see that through the change of variables in eq. (3.43), the measure is factorized

into a d log form multiplying tensored with the measure of the fundamental vertex. One

may further redefine (1− s
s2

) or (1− s
s2

) as a new valuable, and one again finds that this

extra degree of freedom decouples from the rest of on-shell diagram. Note that the Jacobian

factor (1 − Γ) plays an important role in allowing us to write the factorized measure as a

d log form.

Thus we see that a reducible diagram can be rewritten as a factorized product of d logs

multiplying a reduced diagram, with the latter being independent of the arguments in the

d logs. As shown in ref [24], the known one and two-loop amplitudes in ABJM theory can

invariably be written in terms of integrals with unit leading singularities. This indicates

the loop amplitudes should be written as d logs multiplied by the leading singularity. Later,

in section 6, we will show indeed some loop amplitudes can be explicitly written in such a

suitable form, and thus implying that it can be understood as performing a reduction on

reducible graphs. However one should keep in mind here that actually any one of the d log

forms in eq. (3.44) is only well-defined in a local chart, where the other one is not valid.

In fact the same issue also appears when we re-write one-loop amplitudes in a certain d log

form as we will discuss in section 6.

Unlike in four-dimensions, where the removal and adding of bubbles do not generate

extra corners, in three-dimensions this does. Because of this, when combined with the
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triangle moves, one obtains non-trivial relations. For example:

1 2

34

1 2

34

4

3

1

2

1

24

3

1

2

3

4 14

3

2

2 3

4

1

4

1
2

3

(3.45)

Note that the decoupled bubble in the equivalence cannot be removed. This is because

there is a notion of integration contour for each bubble and a priori there is no reason why

the contour for the two bubbles should be the same.

4 The stratification of the orthogonal Grassmannian

In the previous section, we’ve seen that through BCFW construction, we end up with an

OGk that is 2k− 3-dimensional. Compared with the dimension of the top-cell, k(k− 1)/2,

one sees that beyond k = 2, 3 the on-shell diagrams constructed from the BCFW recursion

will have dimensions less than the top-cell. Furthermore, various distinct diagrams can be

related through equivalence moves. This raises two questions: 1. is there a GL(k) invariant

way to classify these 2k−3 sub manifolds and 2. is there a more efficient way of identifying

diagrams that are equivalent under such classification?

At a given k beginning with the top-cell in OGk, we would like to identity GL(k)

invariant constraints one can impose on the top-cell, such that one lowers the dimension.

Note that while the minors of the Grassmannian are only SL(k) invariant objects, there

is a GL(k) invariant data associated with them: the rank of the minors. Thus a natural

classification of the sub manifolds is the linear interdependence of the columns in the

Grassmannian. We’ve seen this at play in our study of the fundamental OG2, where the

singularities of the measure correspond to linear dependency of the columns in the top-cell,

their co-dimension one boundaries. The classification of all possible linear dependency of

the columns is called “matroid stratification” [39]. As shown in ref. [3], if one specialize

to only linear dependency of consecutive columns, hence the rank of the ordered minors,

the resulting stratification, named “positroid stratification” [6, 7], remarkably characterize

the sub manifolds that are built from the on-shell diagrams in N = 4 SYM. That is,

each on-shell diagram corresponds to a particular stratification, which is characterized

by the rank of all consecutive minors. Furthermore, the stratification is invariant under

equivalence moves, and thus serve as the invariant data that is associated with equivalent

on-shell diagrams.
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The relation between on-shell diagrams in ABJM theory and positroid stratification in

the orthogonal Grassmannian was already discussed in ref. [3]. The reasoning is straight-

forward. Beginning with a G(2,4), whose top-cell is 4-dimensional, orthogonality is simply

a way to reduce the degrees of freedom down to 1 while remaining in the top-cell. Graph-

ically, this is simply the statement that:

=

C C
T

= 0

. (4.1)

As amalgamation preserve orthogonality, in terms of positroid stratification, each ABJM

on-shell diagram is completely equivalent to the stratification that is represented by the

N = 4 SYM diagram which is obtained by blowing up each OG2 into a top-cell in G(2,4):

= . (4.2)

For N = 4 SYM, the corresponding stratification of an on-shell diagram is nicely

encoded in the permutation path associated with the on-shell diagram [3]. More precisely,

starting from any point on the boundary of the graph, taking a left turn whenever one

encounters a black vertex, while a right turn for a white vertex, one eventually reaches the

boundary. Doing the same for each point on the boundary, one obtains a set of permutations

which maps the n-points into each other: a → σ(a). The remarkable property of such

permutation paths is that for reduced diagrams, it encodes the stratification: given the

permutation paths a→ σ(a), the image σ(a) represent the closest column to a, such that

a is spanned by a+ 1, a+ 2, · · ·σ(a). For example the permutation paths for the following

G(2,4) is given as:
1 2

34

:

1→ 3

2→ 4

3→ 1

4→ 2

. (4.3)

As the columns in G(2,4) are two-dimensional vectors, a column i is always spanned by two

distinct generic columns i+1 and i+2. Thus the permutation path tells us that there is no

additional linear dependency beyond that is enforced by the dimension of the vector. This

is nothing but the statement that it is in the top-cell! We refer to ref. [3] for more details.

Now let us consider the stratification for orthogonal Grassmannian. Given the fact

that the fundamental four-point vertex OG2 is still a top-cell in G(2,4), the stratification

is simply given by:

σ2 = [1, 3][2, 4] , (4.4)
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where [i, j] denotes a permutation path going from i to j and back, i ↔ j. Given the

permutation structure of fundamental vertex, it is easy to see that the permutation of

any 2k-point on-shell diagram by gluing vertices together will be in a rather simple two-

cycle form,

σk = [i1, j1][i2, j2] . . . [ik, jk] (4.5)

where we have divided 2k external legs into two sets, {i1, . . . , ik} and {j1, . . . , jk}. As

we’ve previously mentioned, the stratification is the invariant data associated with on-

shell diagrams that are equivalent under triangle moves. Indeed one can find that two

equivalent triangles in eq. (3.34) both have permutation, [1, 4][2, 5][3, 6]. This permutation

tells us that, for example, column 1 is spanned by 2, 3, 4. Since we are now in OG3, any

three-dimensional vector is spanned by 3 generic vectors, and therefore this implies that

the six-point BCFW tree-diagram is in fact in the top-cell of OG3, which is another way

of seeing the Yang-Baxter move must hold.

Note that for reducible diagrams, the permutation will change before and after the

reduction, as shown in the following example:

. (4.6)

Since the reduction simply corresponds to a change of variables, the stratification should

not change. Thus one can conclude that permutation only reflects the stratification for

reduced diagrams. However, it is not always obvious to see that, by the means of “triangle

move”, whether a digram contains bubbles, in that case permutation can be very helpful:

diagrams having two permutation paths forming a loop are reducible. Here is a more

complicated example,

. . . . . .

i l

j k

, (4.7)

where we have permutation paths [i, l][j, k], which forms a loop. One can verify by series

of triangle moves that the above diagram indeed contains a bubble.

Beginning from the top-cell of OGk, the codimension one boundaries are simply the

vanishing of consecutive minors. Due to the identity in eq. (2.15), there are precisely k

such boundaries. As the on-shell diagrams can be characterized by a particular positroid

stratification, it should correspond to higher codimension boundaries of the top-cell. This

immediately leads us to a puzzle: as we increase k, it is easy to see that the number of

inequivalent 2k − 3-dimensional on-shell diagrams quickly out grows k, so how can the

Grassmannian encode such diverse structure? As we will see, as some minors vanish, the

others actually factorizes, revealing more poles than the number of the original minor,

thus allowing for more intricate singularity structures. Before doing so, we first verify that

the stratification implied by the permutations actually respects properties of the orthogo-

nal Grassmannian.
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4.1 Permutation and orthogonality

As have been discussed in great details in reference [3], the linear dependence of the columns

of a Gk;n Grassmannian,

Cαi =



c11 c12 · · · c1,n

...
...

...

ck1 ck2 · · · ck,n


 = (~c1,~c2, · · · ,~cn) , (4.8)

is encoded in the permutation path of its corresponding on-shell diagram. Here we like to

prove that the permutation assignment we had in eq. (4.5) is consistent with the orthogo-

nality of our OGk Grassmannian, namely a k × k matrix and its complement should have

the same rank.

Let us review here briefly how permutation determines the linear dependency of the

columns in Cai. For instance, consider the six-point factorization diagram in eq. (3.23).

The corresponding permutation is given as

σ = [1, 5][2, 4][3, 6]. (4.9)

Now, the two-cycle [2, 4] in σ shows that vector ~c2 is spanned by vectors ~c3 and ~c4, equiv-

alently the 3× 3 matrix

(~c2,~c3,~c4) (4.10)

has rank 2, and the minor (234) vanishes. As for the complementary matrix (~c5,~c6,~c1),

exactly the same conclusion can be drawn based on the two-cycle [1, 5] in σ. This fact is

of course required by orthogonality.

We like to generalize this observation, and thus to prove that stratification implied by

the permutations is consistent with orthogonality. Use the same notation as eq. (4.5), we

denote a general permutation as

σk = [i1, j1][i2, j2] . . . [ik, jk], (4.11)

and two sets of 2k external legs denoted as I = {i1, . . . , ik} and J = {j1, . . . , jk}, such that

I and J are the imagines of each other under the action of σk. Now consider a consecutive

matrix and its complement:

M = (I1 J1) , Mc = (I2 J2) . (4.12)

Here I1(J1) is a subset of I(J), I2(J2) is the complement. The matrix M is built up by

consecutive vectors of ~ci and ~cj with i ∈ I1 and j ∈ J1. Similarly for matrix Mc. Let us

further denote kI1 , kI2 and kJ1 , kJ2 as the numbers of the elements inside the subsets I1, I2

and J1, J2 respectively. We then have following relations,

kI1 + kJ1 = kI2 + kJ2 = kI1 + kI2 = kJ1 + kJ2 = k , (4.13)

which lead to kI1 = kJ2 , kI2 = kJ1 = k − kJ2 .
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Now, we are ready to read off the ranks of matrices M and Mc from permutation.

Assume that there are n elements of I1 are permuted into J1 under σk, namely matrix

M has rank k − n. Then on the other hand there must be kI1 − n elements of J2, which

are permuted into I1 under σk, put it another way, it means there kJ2 − (kI1 − n) = n

elements of J2 is permuted to I2 in Mc under σk. So indeed matrix Mc has the same

rank, k − n, as M does. This ends the proof. Of course, permutation alone can only

determine the fact that M and Mc have the same ranks, the information is not enough

to tell whether the determinant |M | is equal to |Mc| when they have full rank k. As we

will show later in section 4.3 there is a precise and concrete one-to-one map between an

orthogonal Grassmannian and a permutation in the two-cycle from.

4.2 Permutation and integration contour

Armed with the connection between permutation paths and stratification, one can easily

make a connection between the BCFW on-shell diagrams and the contour in the Grass-

mannian integral eq. (2.8). We will devote this subsection to explore this connection. Let

us start with simplest, but already highly non-trivial case: the on-shell diagram represen-

tation for the eight-point tree-level amplitude. For the convenience, we quote the on-shell

diagrams here again,

1 2 1 2

3

45

67

83

45

67

8 + . (4.14)

From the diagram we can read off the permutation paths,

σ1 = [1, 5][2, 7][3, 6][4, 8], σ2 = [1, 4][2, 6][3, 7][5, 8] . (4.15)

From permutation [3, 6] of σ1 we can conclude that the column ~c3 is spanned by ~c4,~c5,~c6,

which means that the rank, denote it as R3, of following 4× 4 matrix

(~c3,~c4,~c5,~c6) (4.16)

is 3, and so the minor M3 = 0. The other two-cycle [2, 7] implies the M7 = 0 which is

expected due to eq. (2.15). Note that the remaining two-cycles [1, 5] and [4, 8] do not imply

any non-trivial linear dependence. Similarly from permutation [1, 4] of σ2, we find R1 = 3

and minor M1 = 0. Since the Grassmannian integral in eq. (2.8) is one-dimensional for

k = 4, we find that the two eight-point on-shell diagrams are associated with contours of

eq. (2.8) which circles the zero locus of M1 = 0 and M3 = 0. Note eq. (4.14) can be viewed

as BCFW recursion of eight-point amplitude with legs 1 and 2 shifted. One can of course

consider diagrams with BCFW shifts on legs 2 and 3, which would be the same diagram

as the one in eq. (4.14) but with one-side cyclic shift on external legs, namely i → i + 1.

So then for this BCFW shift the eight-point tree-level contours are now given by the locus
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of M2 = 0 and M4 = 0, this is the same contour originally given in ref. [17]. Of course two

contours are related to each other by residue theorem.

With the current understanding of the tree-level contours, we can further study the

singularities, in particular the difference between physical poles and spurious poles. As we

discussed in previous section, 3.2, one can find physical (and spurious) poles by opening up

external (and internal) vertices. For example for eq. (4.14) we have the following residues:

1 2

3456

7

8

1 2

3

4

5678

1

2 3

4

5

67

8

, (4.17)

where the first two diagrams correspond to opening the vertices on which legs 1 and 2 are

attached, while the last correspond to the opening of the internal vertex for each diagram.

The first two diagrams correspond to physical factorization poles, whereas the last one

is spurious. Here we like to understand the different nature of the physical and spurious

singularities, from the viewpoint of the contour integral eq. (2.8). Again we can readily

read off the permutations for each diagram,

σ1p = [1, 7][2, 5][3, 6][4, 8], σ2p = [1, 6][2, 4][3, 7][5, 8], σs = [1, 4][2, 7][3, 6][5, 8] ,(4.18)

where subscript p stands for physical poles, and s is for spurious poles. Note that each

diagram in eq. (4.17) has 4 degrees of freedom, which is one less than (2k − 3) = 5. This

implies that it imposes one extra constraint on the external data, which is expected for

the residue of a singularity. Said in another way, as the Cai for the BCFW diagrams are

completely determined by the external data, its boundary correspond to special configura-

tions of the external data that results in the development of new singularity: the vanishing

of an extra minor. Stating the obvious, for generic external data two minors cannot si-

multaneously vanish since there is only on degree of freedom in the original grassmanian

integral, and it is only for special kinematics that two minors can become identical and

vanish simultaneously.

Let us see the above discussion work in details and analyse the behaviour of the

minors for the diagrams in eq. (4.17). For both factorization diagrams we find M2 =

M3 = 0, whereas for the spurious diagram we find M1 = M3 = 0. Thus indeed the
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singularities correspond to configurations where the minors become identical and can vanish

simultaneously. If we denote the zeroes of the minors on the one-dimensional complex

plane, which is determined by the external data, then the above discussion simply implies

that two zeroes become degenerate. Recall that the BCFW contour correspond to the

sum of residues where M1 = 0 and M3 = 0. Denoting the BCFW contour on the one-

dimensional complex plane, one sees that the spurious singularity correspond to zeroes

within the contour becoming degenerate, while physical singularities correspond to one

zero inside the contour becoming degenerate with a zero outside of the contour:

M1 = 0

M3 = 0
M2 = 0

M4 = 0

M1 = 0

M3 = 0
M2 = 0

M4 = 0

Spurious Physical

. (4.19)

This makes it manifest that a spurious pole is not a true singularity of the BCFW result,

they always cancel out in pair. That is because one can always deform the contour with

M1 = 0 and M3 = 0 inside to the other one, where M1 = M3 = 0 singularity is absent.

This is precisely the picture that was revealed in the pioneering paper [1], where BCFW

terms were first identified as the residues of a Grassmannian integral.

With the detailed study of the eight-point example, let us move on to the ten-point

tree-level amplitude. Let us emphasize here that the tree-level contour for the ten-point

amplitude is actually not known in literature, as we will see in a moment that it is rather

simple to obtain the integration contour with the help of permutation paths and on-shell

diagrams. The amplitude is given by a sum of following five BCFW diagrams,

1

34

56

910

12 2

34

56

778 8910

1 2

34

5678

910

1 2

3456

78

910

1 2

3
456789

10

. (4.20)
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Again one can easily read off vanishing minors from permutation paths for each diagram.

For instance, for the first diagram, we have the permutation,

σ1 = [1, 4][2, 7][3, 9][5, 8][6, 10], (4.21)

from which we can find the ranks of the consecutive minors. We find that the vanishing

minors are M4,M5 and M1. We will denote the corresponding contour as {4, 5, 1}, namely

the zero locus at M4 = M5 = M1 = 0. Similarly we can find out the integration contours

for all other diagrams. List all of them in the order of five diagrams, we have,

{4, 5, 1}, {5, 1, 2}, {3, 4, 5}, {2, 3, 4}, {1, 2, 3} , (4.22)

So barely with any calculation we just obtain a totally new result regarding the integration

contours of the ten-point tree-level amplitude, which can be nicely summarized as {i, i +

1, i+ 2} for i = 1, . . . , 5.

Starting from twelve points, something totally new happens. We encounter diagrams

that are identified with “composite residues” [1]. To see this consider one of the fourteen

BCFW diagrams for the twelve-point amplitude,

2 3

4

5

6789

1011

12

1 . (4.23)

To facilitate the analysis, we have chosen a particular gauge, as indicated by the arrows in

the diagram. The permutation path is given by

σ12 = [1, 7][2, 10][3, 12][4, 8][5, 11][6, 9] . (4.24)

Denote the ranks of consecutive minors as Ri ≡ rank (~ci,~ci+1, . . . ,~ci+5), we find,

R1 = 6, R2 = 6, R3 = 5, R4 = 4, R5 = 5, R6 = 5 , (4.25)

where R4 = 4 is because of the fact that we have both [4, 8] and [6, 9] in σ12. So we have

four vanishing minors, M3,M4,M5,M6. Note that while both M4 and M5 vanishes, the

number of constraints involved are different as M5 has rank one less than full rank, while

M4 is two less than full rank. We know that the Grassmannian integral in eq. (2.8) is a

six-dimensional contour integral for k = 6. As the total number of reduced ranks in each

minor is 0+0+1+2+1+1 = 5, one immediately see that this does not enough to account

for all the integration valuables. This reflects the presence of composite residues, originally
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introduced in N = 4 SYM in [1]. With the help of the on-shell diagram, we can study

composite residue rather easily now. The relevant minors for our discussion are:

M3 =

∣∣∣∣∣
c1,7 c1,8

c2,7 c2,8

∣∣∣∣∣ , M4 =

∣∣∣∣∣∣∣

c4,10 c4,11 c4,12

c5,10 c5,11 c5,12

c6,10 c6,11 c6,12

∣∣∣∣∣∣∣
, M5 =

∣∣∣∣∣
c5,11 c5,12

c6,11 c6,12

∣∣∣∣∣ , M6 = c6,12, (4.26)

where the fact that we are in canonical gauge has been used, and for M4,M5,M6 we have

applied orthogonal relations to simplify the result. Without any calculation, one can read

off from the on-shell diagram, eq. (4.23), that c6,12 = 0, that’s simply because there is no

decorated path going from leg 6 to leg 12. Under this condition, M5 factorizes, namely,

M6 = c6,12 = 0 ⇒ M5 = −c5,12 c6,11 . (4.27)

One can further read off from the diagram directly that both c5,12 and c6,11 in M5 vanish.

Stating the above analysis in another way, under the condition M6 = 0, minor M5 factorizes

and reveals two poles instead of one. This is precisely the hallmark of a composite residue.

Now, given c6,12 = c5,12 = c6,11 = 0, we further find that M4 reduces to

M4 = c6,10 c5,11 c4,12 . (4.28)

Again purely from decorated paths of the on-shell diagram, we find that c6,10 as well as c4,12

in above M4 vanish. So, again, the residue of minor M4 = 0 becomes composite after we

set M6 and M5 to be zero. As we have mentioned, this is actually already reflected in the

fact that the rank of the corresponding matrix R4 is 4 instead of 5. In conclusion, although

only four minors vanish, we have identified all 6 conditions that went into localizing the six-

dimensional integral. Use the same notation as that of ref. [1], for the BCFW term denoted

by eq. (4.23), it can be identified with the following contour in the original Grassmannian

integral eq. (2.8) for k = 6,

{3, 42, 52, 6} , (4.29)

where the superscript 2 denotes the position of the composite residues. Similar analysis can

apply to other twelve-point as well as higher-point diagrams, we will not go into details here.

4.3 Permutation and representative

For all reduced diagrams, we have a well-defined permutation which encodes the stratifica-

tion of the corresponding configuration. Not surprisingly, this permutation also gives us a

map of how to start from the trivial permutation, and successively apply adjacent transpo-

sitions to build up the final permutation. We illustrate this procedure in this subsection.

To begin we first define what is a trivial permutation. For a given ordering, the trivial

permutation is that whose two-cycles only involve adjacent points. For example:

2

3

4

5

6

7

8

1

. (4.30)
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where each redline connects two points, say i1, j1, that are in the same two cyclic [i1, j1].

For simplicity, we will order all two cycles such that i1 < j1 for each [i1, j1]. Then the

trivial Grassmannian would be defined as:

2

3

4

5

6

7

8

1

→ Ciα =




1 i 0 0 0 0 0 0

0 0 1 i 0 0 0 0

0 0 0 0 1 i 0 0

0 0 0 0 0 0 1 i


 . (4.31)

We now claim that any non-trivial permutation can be decomposed into successive

steps of adjacent transmutations, that brings it back to the trivial permutation. The

procedure is as follows: Given any permutation, order all two-cycles vertically according to

their first entry, i.e. if i1 < i2 then [i1, j1] comes on top of [i2, j2]. If the permutation is

not a trivial permutation, then start from the top and for the first-pair of i1, i2 separated

only by trivial permutation pairs, such that j1 < j2, perform the following transposition:

[i1, j1]

[i2, j2]
→ [i1, j2]

[i2, j1]
. (4.32)

Repeatedly apply such transposition until trivial permutation is reached. Note that if one

reaches to the bottom of the two-cycle tower and trivial permutation is not reached, then

exchange the two entries of the first top cycle and repeat the process.

Let’s illustrate the process with some examples. First consider the six-point permuta-

tion [1, 4], [2, 5], and [3, 6]. Following the above we have

[1, 4]

[2, 5]

[3, 6]

2

3

4

5

6

1

(1, 2)−−−→

[1, 5]

[2, 4]

[3, 6]

2

3

4

5

6

1

(2, 3)−−−→

[1, 5]

[2, 6]

[3, 4]
2

3

4

5

6

1

→
[5, 1]

[2, 6]

[3, 4]

(5, 2)−−−→

[5, 6]

[1, 2]

[3, 4]
2

3

4

5

6

1

(4.33)

Note on the second line, we have reached the bottom of the tower and trivial permutation

has not been reached yet, so we restart the process by exchanging the two entries in the

top two-cycle and repeat the procedure. As further example, we consider the eight-point

– 35 –



J
H
E
P
0
2
(
2
0
1
4
)
1
0
4

permutation [1, 4], [2, 7], [3, 6], [5, 8]:

[1, 4]

[2, 6]

[3, 7]

[5, 8] 2

3

4

5

6

7

8

1

(1, 2)−−−→

[1, 6]

[2, 4]

[3, 7]

[5, 8]
2

3

4

5
6

7

8

1

(2, 3)−−−→

[1, 6]

[2, 7]

[3, 4]

[5, 8] 2

3

4

5

6

7

8

1

(1, 2)−−−→

[1, 7]

[2, 6]

[3, 4]

[5, 8] 2

3

4

5

6

7

8

1

(2, 5)−−−→

[1, 7]

[2, 8]

[3, 4]

[5, 6] 2

3

4

5

6

7

8

1

(1, 2)−−−→

[1, 8]

[2, 7]

[3, 4]

[5, 6] 2

3

4

5

6

7

8

1

.

→

[8, 1]

[2, 7]

[3, 4]

[5, 6]

(2, 8)−−−→

[8, 7]

[2, 1]

[3, 4]

[5, 6] 2

3

4

5

6

7

8

1

(4.34)

A fascinating fact is that we can reverse the process and build up a representative

for a given permutation starting from the trivial permutation. For example beginning

with the OG2, [1, 3], [2, 4], the previous rules tells us that it is built from applying a (1, 2)

transmutation on the trivial permutation [1, 4], [2, 3]. The transmutation implies that we

perform a SO(2) rotation on the two columns 1 and 2:

(
i 0 0 1

0 i 1 0

)
→

(
ic is 0 1

is −ic 1 0

)
, (4.35)

for simplicity, here and in the following discussion, we only choose one branch, the other

one can be equally considered. This is graphically represented as:

1

2 3

4 1

2 3

4

(1, 4)

. (4.36)

It is straightforward to generalize the above to higher points: for each transmutation

(i1, i2), we rotate the two columns as:

(· · ·~ci1 · · ·~ci2 · · · ) (i1, i2)−−−−→ (· · · (c~ci1 + s~ci2) · · · (s~ci1 − c~ci2) · · · ) . (4.37)

It is easy to see that this process preserves orthogonality. Let us now consider one more

non-trivial example, the build up of [1, 4], [2, 5], [3, 6] by reversing the process in eq. (4.33).
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Starting with [5, 6], [2, 1], [3, 4]



1 i 0 0 0 0

0 0 i 1 0 0

0 0 0 0 i 1


 (5, 2)−−−→




1 ic1 0 0 is1 0

0 0 i 1 0 0

0 is1 0 0 −ic1 1


 (2, 3)−−−→




1 ic1c2 ic1s2 0 is1 0

0 is2 −ic2 1 0 0

0 is1c2 is1s2 0 −ic1 1


 (4.38)

(1, 2)−−−→



c3 + ic1c2s3 s3 − ic1c2c3 ic1s2 0 is1 0

is2s3 −is2c3 −ic2 1 0 0

is1c2s3 −is1c2c3 is1s2 0 −ic1 1


 .

In the above example some entries are complex rather than real or pure imaginary as we

had previously, which may seem to lead some complexity for the minors. Surprisingly, all

the consecutive minors are rather simple in this representation! Explicitly, we have:

(123) = s1, (234) = −is1s2s3, (345) = s2 . (4.39)

We note that they are all simple products of permutation parameters si. As we will prove in

the following section, this nice feature is actually a general fact of the on-shell diagrams (or

permutations) constructed from BCFW recursion relations: all consecutive minors of such

on-shell diagrams are simple products of ci and si’s. What is surprising is that following

the same proof, one can show that representations built from permutations are always

products of only si’s!

4.4 Canonical coordinates

Here we will proceed to prove that the non-vanishing consecutive minors of the OGk rep-

resentations constructed by BCFW recursion relations will be given by a one term product

of vertex parameters of ci and si. Since the vanishing of vertex parameters is correspond-

ing to the singularities (or boundaries) of the on-shell diagram, this result implies that

the boundaries of the on-shell diagrams always correspond to the vanishing of consecutive

minors! This fact is closely related the notion of “positivity” as we will discuss in the

following section.

We will prove this statement by induction. Firstly it is a trivial fact that consecutive

minors of OG2 with canonical or alternating gauge fixing are simple products of BCFW

parameters c and s. With the assumption that the consecutive minors of lower-point

on-shell diagrams constructed by BCFW recursion relation are simple products of ci and

si, in what follows we will prove that higher-point on-shell diagrams by BCFW recursion

recursion have the same property.

Let us start by considering the factorization diagram,

ii+ 1
i+ 2 i− 1

A B

a a+ 1

p q . (4.40)
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Here we are interested in consecutive minors only. Firstly if the minor only involves the

legs from one side of the factorization diagram, according to our assumption for lower-point

on-shell diagrams, then it is a simple product of ci and si. Now, consider the case when legs

of the minor (p, . . . , q) are spread on both sides of factorization diagram, let us denote it as

(p, . . . , a, a+ 1, . . . , q), as shown in eq. (4.40). According to amalgamation rules, we have6

(p, . . . , a, a+ 1, . . . , q)|OGk = (A, p, . . . , q)|OGk+1
+ (B, p, . . . , q)|OGk+1

. (4.41)

From permutation or the explicit form of the Grassmannian,

Cαi =

(
~ci+1 · · · ~ca ~cA ~0 ~0 ~0 ~0
~0 ~0 ~0 ~0 ~cB ~ca+1 · · · ~ci

)
, (4.42)

we see that, for (p, . . . , a, a + 1, . . . , q)|OGk to be non-vanishing, one of two terms in the

sum of eq. (4.41) should vanish, and the other non-vanishing one is factorized into a sim-

ple product of two lower-point consecutive minors. This proves that the minors of all

factorization diagrams are simple products of ci and si.

Next, we add BCFW bridge to legs i and i+ 1 of the factorization diagram,

ii+ 1

i+ 2 i− 1

A B

a a+ 1

p q

C

D E

F

. (4.43)

Firstly, consecutive minors not involving i and i + 1 will of course not be changed after

adding the BCFW bridge. The minors with both i and i+1 is equivalent to the one without

i and i+ 1 by orthogonality condition, so they will not be changed either. So we only need

to consider the case when the minor contains i+1 only, namely minor (i+1, . . . , i+k)|OGk .

Furthermore we can assume that this minor involves all the legs on the left-hand side of

the factorization diagram, if this is not the case, we could relate (i + 1, . . . , i + k)|OGk
to (k + i + 1, . . . , i)|OGk by orthogonal condition, which would involve all the legs on the

right-hand side, and the following proof equally applies to that case.

With this set-up, we first like to prove that for (i+1, . . . , i+k)|OGk to be non-vanishing,

a in the diagram of eq. (4.43) must be i+ 3, namely the amplitude on the left-hand side is

four-point. To see this, note that if the permutation path connects leg i+ 2 into any legs

among i+ 3, . . . , a, then (i+ 1, . . . , i+ k)|OGk vanishes due to reduced rank. It cannot go

into D either, as permutation paths in ABJM theory cannot connect a leg into its adjacent

neighbour if there are no bubbles. So leg i+ 2 must be connected to A. Similarly, leg i+ 3

must permute into D since we already have i+ 2 going to A. Then leg i+ 4 has nowhere

6Here we will ignore possible factors such as ±i since they are irrelevant to our discussion.
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to go for (i + 1, . . . , i + k)|OGk being non-zero. So we indeed find a = i + 3 for this case.

Now, by applying amalgamation rule, we obtain

(i+ 1, i+ 2, . . . , i+ k)|OGk = (C, i+ 1, . . . , i+ k)|OGk+1
+ (D, i+ 1, . . . , i+ k)|OGk+1

= (C, i+ 1)|OG2 × (i+ 2, . . . , i+ k)|OGk−1
+ 0 , (4.44)

where the second in the sum vanishes is precisely because of the fact that a = i + 3,

and the permutation path contains [D, i + 3]. So we have proved that for this case (i +

1, . . . , i + k)|OGk is a simple product of the consecutive minors of lower-point amplitudes,

by induction this completes our proof.7

Furthermore if the BCFW bridge is in the canonical gauge, and is simply corresponding

to BCFW shifts on ~ci and ~ci+1 as the case of the section 4.3, then the effect of adding a

BCFW bridge (or adjacent transmutation) can be simplified to

(i+ 1, i+ 2, . . . , i+ k)|OGk = c(i+ 1, i+ 2 . . . , i+ k)|OGkF − s(i, i+ 2 . . . , i+ k)|OGkF ,

where OGkF denotes the Grassmannian of the factorization diagram, namely before adding

the bridge. From eq. (4.43) with a = i + 3, we find the first term in the above equation

vanishes, while the second term is given by the amalgamation rule

s (i, i+ 2 . . . , i+ k)|OGkF = s
[
(A, i, i+ 2 . . . , i+ k)|OGk+1

+ (B, i, i+ 2 . . . , i+ k)|OGk+1

]

= 0 + s (i+ 2, i+ 3)|OG2 × (i, B, i+ 4 . . . , i+ k)|OGk−1
. (4.45)

So for the diagram constructed from vertices with canonical gauge only, we see that the

minors will be a simple product of si’s only as we observed previously. That’s simply

because of the fact that four-point vertex in the canonical gauge only has one singularity,

namely at si → 0.

5 The positive orthogonal grassmannian

As we have discussed in the previous section, the on-shell diagram constructs a particular

representation of positroid stratification in OGk. Looking at the explicit representation in

eq. (3.16), one might wonder whether the d log singularities of the on-shell diagram involve

the vanishing of non-consecutive minors. An important notion that was realized in the work

of ref. [3], is that if one assumes that the columns of the Grassmannian is real, then there

is well-defined region of the Grassmannian where all ratios of all ordered minors satisfy:

(i1, i2, · · · , ik)
(j1, j2, · · · , jk)

> 0 . (5.1)

This is called the “positive” Grassmannian, denoted by G+(k, n). As discussed in ref. [3],

positivity is a generalization of convexity of a polygon in RP2, which ensures that its

7Note attaching a BCFW bridge may introduce a closed loop, depending on the gauge choice, and since

the amalgamation rules are only correct upto an overall factor ( the Jacobian coming from the closed loop).

So when there are closed loops in the on-shell diagrams, the consecutive minors are simple products of

BCFW parameters upto some overall factors.
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boundary only involves the vanishing of consecutive minors. Remarkably, the on-shell

diagrams indeed always give representation in the positive Grassmannian, as one can show

that amalgamation preserves positivity.

As we proved generally that for on-shell diagrams constructed from the BCFW recur-

sion relations, all non-vanishing consecutive minors are always given by a simple product

of si and ci’s. Furthermore, for the representation constructed by the information of per-

mutation paths, all consecutive minors are given by a simple product of si’s. Thus the d log

singularities of eq. (3.16) always correspond to the vanishing of consecutive minors. Given

this observation, one would expect that for ABJM theory, the on-shell diagrams also give

representations of some “positive” orthogonal Grassmannian.

An immediate obstruction to defining a positive part of the orthogonal Grassmannian

is the fact that even for the fundamental OG2, the consecutive minors alternate between

purely real or purely imaginary.8 There is a simple reason why this is always the case: the

orthogonal condition implies eq. (2.15) and thus if one minor is real, then its complement

can be imaginary. The extra factor of i in eq. (2.15) is present as a consequence of the

fact that the “signature” of the Grassmannian is defined to be all plus. Thus if we are

allowed to analytically continue to split signature, then one can now have all real minors!

In order for such continuation to be well-defined under the operation of amalgamation,

it is natural to define the signature to be alternating along a given cyclic ordering, i.e.

ηij = (+,−,+, · · · ,−). With this signature, the minors can all be real and positivity can

be defined! The analytic continuation can be done by redefining all even columns as:

cα,2i → ic̃α,2i . (5.2)

After this redefinition, the orthogonality condition C̃ · C̃T = 0, where C̃ is the Grassman-

nian whose even columns are simply c̃, now has alternating signature. Note that this is

reminiscent to the four-dimensional spinor-helicity formalism where one defines the spinors

to be in split signature such that the powerful tools of holomorphicity can be utilized.

Another appealing aspect of split signature orthogonal Grassmannian is that the alternat-

ing signature exactly matches with the chirality of the legs. More importantly, on-shell

diagrams which cannot be consistently assigned chirality will not have a representation in

the split signature orthogonal Grassmannian.

Now that we have real minors, before positivity can be defined there are several sub-

tleties to take into account. First, with alternating split-signature, each minor is equivalent

with their complement up to a sign:

Mσ

Mσ̄
= ± . (5.3)

Note that up to now, for a given σ we have not defined the ordering of its complement. Here

we claim that for alternating split signature, focusing on ordered minors, the ratio between

Mσ and its ordered complement Mσ̄ has uniform sign in a given branch. In other words, in

SO+(k) all ordered minors are equivalent to their complement. Second, we have to make

8Interestingly, one can show that in the canonical or cyclic gauge, by choosing all angles to be real, the

minors always satisfy |Mi| ≤ 1.
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sure that positivity of all minors is consistent with relations implied by the orthogonality

constraint. For example, for all consecutive minors, orthogonality implies [35] ,

MiMi+1 = Mi+kMi+1+k(−1)k−1 . (5.4)

Remarkably positivity of ordered minor is consistent with the above identity:

k = 2 : (12)(23) = −(34)(41) = (34)(14), k = 4 : (1234)(2345) = (5678)(1678) . (5.5)

For non-consecutive minors, we have the identities in eq. (3.9). Taking into account the

redefinition in eq. (5.2), we have for example

k = 3 : −(123)(356) + (124)(456) = 0,

k = 4 : −(2345)(5781) + (2346)(6781) = −(2345)(1578) + (2346)(1678) = 0 . (5.6)

Again positivity for all ordered minors is consistent with the above identities. A general

case can be proved as what follows.

We are interested in the case when the identity of eq. (3.9) involves a sum of two terms

only, so let us denote those two integers appeared in the sum as a and b, also assuming

a < b. So we have a list of ordered integers

` := {1, 2, . . . , a, . . . , b, . . . , 2k} , (5.7)

which can further be separated into three smaller lists: `1 := {2, . . . , a − 1}, `2 := {a +

1, . . . , b − 1} and `3 := {b + 1, . . . , 2k − 1}, whose lengths are denoted na, nab and nb
respectively. Here we consider the case when a and b are both even or odd, namely nab
is odd. The other possibility can be proved in the same way. Let us quote the two-term

identity here

(1, . . . , a)(a, . . . , 2k) + (1, . . . , b)(b, . . . , 2k) = 0 , (5.8)

where “. . .” in the minor (1, . . . , a) are ordered integers with n′a of them from `1, n′ab from

`2, and n′b from `3. So to make (1, . . . , a) being ordered, we need move a to the left by

(n′ab + n′b) steps. Similarly, as for the minor (a, . . . , 2k), we need move a to the right by

(na − n′a) steps to make it be in ordered. So in total we find to make the minors (1, . . . , a)

and (a, . . . , 2k) to be in ordered, we introduce a factor of

(−1)(n′ab+n
′
b)+(na−n′a). (5.9)

By a similar analysis we find that to make the minors (1, . . . , b) and (b, . . . , 2k) in order,

we introduce a factor of (−1)n
′
b+(na−n′a)+(nab−n′ab). Because nab is odd, we have

(−1)(n′ab+n
′
b)+(na−n′a) = −(−1)n

′
b+(na−n′a)+(nab−n′ab) , (5.10)

namely an extra minus sign appears in eq. (5.8) to rearrange all the minors in order. This

insures the consistency of positivity and split-signature orthogonality.
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Now we can proceed to show that orthogonality is preserved by amalgamation. For

general amalgamation of OGk and OGk′ to OGk+k′ , the proof is trivial since the ordered

minor of OGk+k′ is simply the product of that of OGk and OGk′ . For amalgamation that

reduces OGk to OGk−1, as in eq. (3.8), due to the analytic continuation, the minor of

OGk−1 is given as:

(i1, · · · , ik−1) = (i1, · · · , ik−1, A) + (i1, · · · , ik−1, B) . (5.11)

where A,B are the columns in OGk whose corresponding spinors are identified and inte-

grated away. For simplicity, we’ve gauge fixed all odd columns to be unity and thus there

are no Jacobian factors.9 Thus if the OGk is positive, so will the amalgamated OGk−1.

In summary, we’ve shown that for split signature orthogonal Grassmannian, start-

ing with the positive OG2, all OGk that are obtained through amalgamation will also

be positive.

6 Conclusion and a peek at loop level

In this paper, we’ve studied in detail the relation between on-shell diagrams and residues

of the orthogonal Grassmannian integral originally proposed in ref. [35]. More precisely,

the on-shell diagrams represents a nv-dimensional sub manifold of the orthogonal Grass-

mannian subject to 2k−3 constraints, where nv is the number of vertices and 2k−3 is the

number of bosonic delta functions enforcing constraints beyond that of momentum con-

servation. Much like in N = 4 SYM, the linear-dependency of consecutive minors, is the

invariant data that is encoded in the on-shell diagrams. This linear-dependency forms a

stratification of the orthogonal Grassmannian: starting from the top-cell in OGk, successive

linear dependencies among consecutive columns of the Grassmannian are the boundaries

of the top-cell. As the top-cell is k(k − 1)/2 dimensional, generic on-shell diagrams have

dimensions fewer than the top-cell and can be shown to be co-dimension k(k − 1)/2 − nv
boundaries of the top-cell. Furthermore, the stratification is encoded in the permutation

paths that is associated with each on-shell diagrams.

Remarkably, using the permutation of an on-shell diagram, one can reconstruct a

representation of OGk that not only reflects the stratification, but most importantly, gives

non-vanishing consecutive minors that are always of the form:

Mi =
∏

n∈nv
sin θn (6.1)

i.e. the consecutive minors are always given as a simple product of the vertex variables.

As the canonical measure is simply dθ/ sin θ, this immediately leads to the conclusion that

the singularities of the on-shell diagrams again correspond to the vanishing of consecutive

minors, i.e. the singularity is precisely the boundary of the stratification.

Such a property was ensured for the on-shell diagrams in N = 4 SYM by the fact

that on-shell diagrams are related to the positive region of the Grassmannian, where all

9These factors are irrelevant since positivity is strictly defined for ratios of minors as indicated in eq. (5.1)

– 42 –



J
H
E
P
0
2
(
2
0
1
4
)
1
0
4

ordered minors are positive. Here we demonstrated that positivity can be defined for

orthogonal Grassmannian by analytically continuing the Grassmannian into split signature.

More importantly, the relations among ordered minors that are implied by the orthogonal

constraint respects positivity. It is then straightforward to show that analytically continued

Grassmannians for the corresponding on-shell diagrams are always positive.

Armed with the stratification of the on-shell diagrams in the BCFW recursion relation,

we can easily determine the tree-level contours in the original Grassmannian integral. It

would be interesting to study the relation between this contour and the contour that

localizes the Grassmannian to an integral over punctures in the Riemann sphere [40] (or

equivalently [41]) which reproduces the tree-level amplitude.

A natural extension of our current work is to consider loop-level amplitudes. A re-

markable property of the on-shell diagram representation of scattering amplitudes is that

it can be written as an integral with canonical d log integration measure, subject to 2k− 3

bosonic constraints. We believe that similar representation can be achieved for loop am-

plitudes of ABJM as well. Here we like to demonstrate explicitly that some of the loop

integrands can be written in a d log form. For example, let’s consider one-loop four-point

amplitude constructed in ref. [22]:

A1−loop
4 = Atree

4

∫
d3X0

ε(01234)

(0 · 1)(0 · 2)(0 · 3)(0 · 4)
(6.2)

where (i · j) = Xi ·Xj and region momenta Xi are the five-dimensional embedding coordi-

nates. To achieve the d log form we parametrize the loop integration region as

X0 = X1 + a2X2 + a3X3 + a4X4 + aεε(∗1234) , (6.3)

where we’ve used the projective invariance of the integrand to scale the coefficient of X1

to be 1. After expressing the projective measure in this parametrization, we then obtain

the integrand in a d log form,10

A1−loop
4 = Atree

4

∫
(1 · 3)2(2 · 4)2da1 ∧ da2 ∧ da4 ∧ daε

(a3(1 · 3) + a2a4(2 · 4) + a2
ε (1 · 3)2(2 · 4)2)

aε
a2a3a4

= Atree
4

∫ 4∏

i=2

d log ai , (6.4)

where we’ve localized the daε integral. Note however, this is only valid in a local patch.

To see this recall that we have set the coefficient in front of X1 to be 1. This implies

that (0 · 3) 6= 0. Thus for configuration where (0 · 3) = 0, the parametrization in eq. (6.3)

is invalid. In fact, there appears to be no universal patches for which the integrand in

eq. (6.2) can be written as a product of three d logs.

10In momentum-space a similar d log form can be obtained, given as

A1−loop
4 = Atree

4

∫
d log

(
(`− p1)2

`2

)
∧ d log

(
(`− p1 − p2)2

`2

)
∧ d log

(
(`+ p4)2

`2

)
,

which immediately integrates to zero, as four-point one-loop amplitude vanishes at 3d.

– 43 –



J
H
E
P
0
2
(
2
0
1
4
)
1
0
4

We now turn to the on-shell recursion relation for obtaining all planar loop amplitudes

in ABJM theory as was proposed in ref. [2]:

A`n =

1 n

1 2

1 n

− 1

1 2+ =

+
. (6.5)

For the four-point amplitude, the recursion relation simplifies since there is no factorization

diagram. We have the following on-shell diagram representation for the recursive result of

four-point one-loop amplitude:

, (6.6)

where the black vertex represents the addition of a BCFW bridge, while the red line in-

dicates taking the forward limit of six-point tree-level amplitude. It is straightforward to

show that, by applying three steps of bubble reduction eq. (3.40), the on-shell diagram of

four-point one-loop amplitude is also given by three d log multiplying the tree-level ampli-

tude. However it has been a difficulty to prove directly two d log forms match with each

other. The difficulty may perhaps be caused by the local chart issue as we have discussed.

As this is outside the scope of this paper, we will address this issue in a future work.
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A The orthogonal constraint

Here we show that the orthogonal constraint, eq. (2.10), is equivalent to the other relation

appeared in the context,
∑

a

(i1, · · · , ik−1, a)(j1, · · · , jk−1, a) = 0 . (A.1)
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Let’s consider gauge fixing the k × 2k matrix to be,




1 0 0 0 c1,k+1 · · · c1,2k

0 1 0 0 c2,k+1 · · · c2,2k

0 0 · · · 0
...

...
...

0 0 0 1 ck,k+1 · · · ck,2k




(A.2)

First consider the case where {i1, · · · , ik−1} = {j1, · · · , jk−1}. Without loss of gener-

ality, from now on one choose {i1, · · · , ik−1} to be the first k − 1 columns in eq. (A.2). In

such case it is easy to see that

∑

a

(i1, · · · , ik−1, a)(i1, · · · , ik−1, a) = 1 +
2k∑

j=k+1

c2
k,j = 0 (A.3)

where the second equality is exactly the orthogonal constraint.

Next, let’s consider {i1, · · · , ik−2} = {j1, · · · , jk−2} while ik−1 6= jk−1. With out lost

of generality, we can set jk−1 to be column k in eq. (A.2). One can see that for this choice,

∑

a

(i1, · · · , ik−1, a)(i1, · · · , ik−2, jk−1, a) =

2k∑

j=k+1

ck,jck−1,j = 0 (A.4)

which is simply the off-diagonal part of the orthogonal constraint. Note eq. (A.3) and (A.4)

prove the fact that one can derive the orthogonal constraint, eq. (2.10), from eq. (A.1).

Now if {i1, · · · , ik−3} = {j1, · · · , jk−3} while {ik−1, ik−2} 6= {jk−1, jk−2}. We again set

jk−2 to be column k and jk−1 to be column k + 1 in eq. (A.2) and one finds:

∑

a

(i1, · · · , ik−1, a)(i1, · · · , ik−3, jk−2, jk−1, a)

=

2k∑

j=k+2

ck,j(ck−1,jck−2,k+1 − ck−2,jck−1,k+1) (A.5)

= −ck,k+1(ck−1,k+1ck−2,k+1 − ck−2,k+1ck−1,k+1) = 0 .

where the off-diagonal part of the orthogonal constraint is used again to arrive at the

last result.

The above analysis generalizes straightforwardly as {i1, · · · , ik−1} and {j1, · · · , jk−1}
differ beyond three entries.

B The soft exchange

Here we show that the soft-gluon singularity of the six-point tree-level amplitude is indeed

proportional to the four-point tree-level amplitude. In terms of Feynman diagrams, there

– 45 –



J
H
E
P
0
2
(
2
0
1
4
)
1
0
4

î̂i+ 1
i+ 2

i− 2

i− 1

i− 3 i− 2 i− 1

i

i+ 1
i+ 2

i− 3

Figure 1. The special BCFW diagram which contributes to the double soft limit of pi−1, pi → 0,

on the right is the corresponding on-shell diagram, which will be called as inverse-soft constructible.

are two types of diagrams contributing:

A
tree

( I ) ( II )

1

6

5

4

3

2

1

6

5

4

3

2

q
q (B.1)

Diagram (I) are ones which the soft gluon connects to one of the matter lines of the four-

point tree-diagram. It’s contribution is given as:

diagram (I) :∼ 2
ε(1 q 5)

q2(q · p5)
Atree . (B.2)

This is to be compared with that of diagram (II) whose contribution is given as:

diagram (II) :∼ 4
ε(4 5 6)ε(q 3 2)− ε(4 5 q)ε(6 3 2)

q2(p4 · p5)(p2 · p3)
. (B.3)

As one can see, as q → 0, the residue of diagram (II) vanishes, where as that of diagram (I)

does not. Thus we see that on the soft pole, the residue is simply the four-point amplitude.

Furthermore, the non-vanishing residue is invariant under the rescaling q → aq. Thus the

integral one dimensional integral of the residue in eq. (3.24), which can be separated via a

change of variables, is precisely this extra scale factor.

C Double soft limit

Here we consider double soft-limit of tree-level amplitudes. To be precise, let us consider

double soft limit of pi−1, pi → 0. It is convenient to represent the tree-level amplitude by

BCFW diagrams with legs pi and pi+1 shifted. The dominated BCFW diagram at this

limit is the one with four-point amplitude A(−P̂ , i − 2, i − 1, î) on one-side as shown in

figure 1, that’s because four-point amplitude has soft singularity as we discussed previously.
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The result of the BCFW diagram is given as

∫
d3ηP̂A(−P̂ , i− 2, i− 1, î)

1

(pi−2 + pi−1 + pi)2
A(î+ 1, . . . , i− 3, P̂ ) (C.1)

=
δ(3)(〈i− 2, P̂ 〉ηi−2 + 〈i− 1, P̂ 〉ηi−1 + 〈i, P̂ 〉ηi)
〈̂i, i− 1〉〈i− 1, i− 2〉(pi−2 + pi−1 + pi)2

A(î+ 1, . . . , i− 3, P̂ ),

where the BCFW shifts are

λî = cλi + sλi+1, λ
î+1

= cλi+1 − sλi. (C.2)

The orthogonal BCFW parameters c (and s) may be determined by on-shell condition,

P̂ 2 = 〈̂i, i− 2〉2 + 〈i− 1, î〉2 + 〈i− 2, i− 1〉2 = 0. (C.3)

When we have pi−1, pi → 0, the on-shell condition simplifies greatly,

P̂ 2 → s2〈i+ 1, i− 2〉2 = 0, (C.4)

which means s = 0 and c2 = 1, and consequently

λî → λi, λ
î+1
→ λi+1, P̂ → pi−2. (C.5)

So under the double soft-limit, this particular BCFW diagram simplifies dramatically and

reduces to

δ(3)(〈i− 1, i− 2〉ηi−1 + 〈i, i− 2〉ηi)
〈i, i− 1〉〈i− 1, i− 2〉

1

2pi−2 · (pi−1 + pi)
A(i+ 1, . . . , i− 3, i− 2), (C.6)

from which we deduce the supersymmetric double soft factor of ABJM theory,

Sd(i− 1, i) =
δ(3)(〈i− 1, i− 2〉ηi−1 + 〈i, i− 2〉ηi)

〈i, i− 1〉〈i− 1, i− 2〉
1

2pi−2 · (pi−1 + pi)
. (C.7)

For the special case when leg i − 1 is scalar Φi−1, and leg i is anti-scalar Φ̄i, the double

soft factor reduces to

〈i− 1, i− 2〉〈i, i− 2〉
〈i, i− 1〉

1

2pi−2 · (pi−1 + pi)
. (C.8)

We have confirmed the this result from an explicit Feynman diagram calculation.

From above discussion, we see that this particular BCFW diagram plays exactly the

same role as its analogue, so-called inverse-soft diagrams, in N = 4 SYM.11 So we will use

the same terminology here by referring the on-shell diagram figure 1 as inverse-soft diagram

in ABJM theory. In N = 4 sYM one has both k-increasing and k-preserving inverse-soft

diagrams, here of course we only have k-increasing case. Note all tree-level amplitudes

in ABJM theory are inverse-soft constructible, since the tree-level on-shell diagrams can

11For detailed discussion on inverse-soft diagrams and their applications in N = 4 SYM, see [3, 42, 43]
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always be represented as triangles only. For instance, six-point tree-level amplitude may

be viewed as adding two legs to a four-point amplitude,

⇒

12

3 4

4

1

2

3
5

6

. (C.9)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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