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1 Introduction

One of the most intriguing features observed in QCD is the strong increase of the gluon

density with the decrease of the parton longitudinal momentum fraction x. This rise,

originally discovered at HERA electron(positron)-proton collider [1–4], manifests itself as

the rise of the cross sections for variety of processes in hadronic collisions when the small

values of longitudinal fractions of the partons participating in the scattering are probed.

The other consequence of this increase in the gluon density is the increase of the probability

of multiparton interactions in hadron-hadron collisions. These are events when in one

encounter of hadrons, more than one elementary partonic scattering occurs. These type

of processes were originally observed by the AFS collaboration at CERN [5], followed by

the measurements at the Tevatron [6–8] and more recently at the Large Hadron Collider

(LHC) [9–11].

The theoretical framework for the description of the multiparton interactions in QCD

relies on the assumption of the factorization of the hard double parton interaction in the

presence of sufficiently large scales, see for example [12, 13], and [14, 15] for a recent

overview. The case of double-parton scattering is usually described within the frame-

work of the standard collinear perturbative QCD by means of the double parton dis-

tribution functions (DPDFs) [13, 16–42]. The DPDF distributions satisfy DGLAP-type

equations [16, 17, 20, 21, 26, 43]. Similar type of equations for double parton correlations

were considered earlier [44, 45] in the context of the multiparton correlation functions

within jets. These equations contain two terms: a homogeneous term describing the in-

dependent evolution of the two chains of partons in the double parton distributions and
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a non-homogeneous term which originates from the perturbative splitting of two partons.

The latter contribution is driven by the single parton distribution functions. In principle,

some part of the splitting contribution can coincide with the higher order contribution to

the single parton interaction, and thus one must perform special subtraction and matching

in order to avoid potential double counting when computing the double parton scattering

cross section with this term [46].

The collinear framework works well for sufficiently inclusive quantities, but can miss

important information about the kinematics, see for example [47]. The more detailed infor-

mation about the kinematics of the process can be incorporated by using the unintegrated

parton distribution functions (UPDFs) or transverse momentum dependent distributions

(TMDs) [48–50]. The unintegrated parton distribution functions in the case of the single

scatterings are widely used in the literature, and naturally occur in the high energy or small

x limit of QCD, see for example [51]. It is thus of great phenomenological and theoretical

interest to develop the formalism which includes the transverse momentum dependence

in the context of the multiparton distributions. There has been recently great theoretical

effort to develop a consistent formalism for the double parton distribution functions which

include transverse momentum dependence, see [52, 53] and [54]. The framework presented

in [52, 53] is based on the extension of the TMD factorization to the double scattering case

for colorless final states.

In the present work we perform detailed numerical analysis of the unintegrated double

gluon distribution within the formalism which was proposed in our earlier work [54]. In

that work, the double parton distributions with the transverse momentum dependence were

constructed from the integrated double parton distributions through the convolution with

the Altarelli-Parisi splitting functions and by including the Sudakov form factors. This is

an extension of the formalism proposed by Kimber, Martin and Ryskin [55–57] for the case

of the single parton distributions, which has been successfully applied to a wide range of

processes which are sensitive to the transverse momentum dependence.

We perform a thorough numerical analysis of the unintegrated double gluon distribu-

tion, in particular the dependence on the transverse momenta and longitudinal momentum

fractions of gluons, and also on hard scales. In addition, we analyze non-perturbative con-

tributions in which at least one parton is almost collinear with the parent hadron with a

low, non-perturbative value of the transverse momentum. We observe that the distribution

in the transverse momentum of the double gluon density shifts towards higher values for

increasing values of hard scales and decreasing values of longitudinal momentum fraction

x. We also investigate the factorization of the unintegrated double gluon distribution into

a product of two unintegrated single gluon distributions. We show that factorization holds

for sufficiently low values of x provided the splitting contribution in the evolution equations

for the integrated double gluon distribution is included and the momentum sum rule for

this distribution holds.

The outline of the paper is the following. In section 2 we recall the evolution equations

for the integrated double parton distribution functions. In section 3 we discuss the choice

of the initial conditions and the issues related to the momentum sum rules. In section 4 we

present numerical results on various aspects of the dependence of the unintegrated double
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gluon distribution on kinematic variables while in section 5 we discuss the factorization

issues. Finally, in section 6 we present summary and outlook of our analysis.

2 Evolution equations for the double gluon distribution

We shall start by recalling the evolution equations for the collinear double parton dis-

tribution functions. These equations have been first proposed in [44, 45] in the context

of jet physics for the perturbative QCD description of the jet structure and later derived

in [16, 17, 20] for the initial state double parton distribution functions. We shall review first

the evolution equations for the integrated double parton distribution functions, following

results of ref. [24]. We note that the DPDFs also depend on the transverse momentum

vector, q⊥, which we set to zero. This means that in the Fourier space one integrates over

the relative position of the two partons b, see [25, 53]. In principle this dependence on

q⊥ could be reinstated in the presented formalism through the inclusion of the appropri-

ate form factor, see for example [27]. Precise description of the transverse distribution of

partons and the ensuing correlations between the partons in transverse plane is an out-

standing and challenging problem [58–61]. For now, we shall postpone this problem to a

further study and consider distributions integrated over b.

For q⊥ = 0, the DPDFs in the lowest order approximation are probabilities to find two

partons with longitudinal momentum fractions x1 and x2, when probed at two different

scales Q1 and Q2 [13]. The integrated double distributions are denoted from now on by

Da1a2 ≡ Da1a2(x1, x2, Q1, Q2,q⊥ = 0) , (2.1)

where a1 and a2 refer either to the quark flavor or gluon g. The solution to the two scale

evolution of the DPDFs can be cast in the following form [24]

Da1a2 =
∑
a′,a′′

{∫ 1−x2

x1

dz1

z1

∫ 1−z1

x2

dz2

z2
Ea1a′

(
x1

z1
, Q1, Q0

)
Ea2a′′

(
x2

z2
, Q2, Q0

)
×Da′a′′(z1, z2, Q0, Q0)

+

∫ Q2
min

Q2
0

dQ2
s

Q2
s

∫ 1−x2

x1

dz1

z1

∫ 1−z1

x2

dz2

z2
Ea1a′

(
x1

z1
, Q1, Qs

)
Ea2a′′

(
x2

z2
, Q2, Qs

)
×D(sp)

a′a′′(z1, z2, Qs)

}
, (2.2)

where Q2
min = min{Q2

1, Q
2
2}, Q0 is an initial scale for the evolution and the integration

limits take into account kinematic constraints x1, x2 > 0 and x1 + x2 ≤ 1.

The functions Eab are parton-to-parton evolution distributions which obey the DGLAP

evolution equation,

∂

∂ lnµ2
Eab(x, µ, µ0) =

∑
a′

∫ 1

x

dz

z
Paa′(z, µ)Ea′b

(
x

z
, µ, µ0

)
−Eab(x, µ, µ0)

∑
a′

∫ 1

0
dzzPa′a(z, µ) , (2.3)
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Figure 1. Schematic illustration of the two contributions to the DPDFs (2.2). Left: homogeneous

term; right: non-homogeneous term. It is understood that all the ladders are cut diagrams. Q0 is

the scale at which initial conditions are set.

with the initial condition Eab(x, µ0, µ0) = δab δ(1−x). The functions Eab have the interpre-

tation of the Green’s functions for the DGLAP evolution, and using them we can construct

the evolved single PDF as follows

Da(x, µ) =
∑
b

∫ 1

x

dz

z
Eab

(
x

z
, µ, µ0

)
Db(z, µ0) . (2.4)

eq. (2.2) is a sum of two contributions which are schematically shown in figure 1

Da1a2 = D(h)
a1a2 +D(nh)

a1a2 . (2.5)

The first, homogenous term, D
(h)
a1a2 , is proportional to the double parton distribution and

corresponds to the independent evolution of two partons from the initial scale Q0 to Q1

and from Q0 to Q2. The second, non-homogeneous term, D
(nh)
a1a2 , contains the distribution

D
(sp)
a′a′′(x1, x2, Qs) =

αs(Qs)

2π

∑
a

Da(x1 + x2, Qs)

x1 + x2
Pa→a′a′′

(
x1

x1 + x2

)
, (2.6)

which describes the splitting of the parton a → a′a′′. Notice on the right hand side of

eq. (2.6) the single PDFs, Da, taken at the splitting scale Qs along with the real emission

leading order (LO) Altarelli-Parisi splitting functions,

Pa→a′a′′(z) = P
(0)
aa′ (z) . (2.7)

In the LO approximation, the flavor of the second parton, a′′, is uniquely determined

from the splitting a → a′. The single distributions Da are evaluated at (x1 + x2) due to

conservation of the parton longitudinal momentum in the evolution.

3 Initial conditions for the evolution equations

Similarly to the case of the DGLAP evolution equations for single PDFs, the evolution

equations for the double parton distributions need to be supplemented by the appropriate

non-perturbative initial conditions at a scale Q0, usually of the order of 1 GeV. The

initial conditions for the single PDFs are usually parametrized by some flexible functional
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forms with many free parameters fixed by fits to the experimental data. There are a few

constraints that need to be obeyed by the initial conditions, and these are momentum and

quark sum rules. For the double distributions, such sum rules relate the integrals of the

DPDFs to the single PDFs, thus placing important constraints on the allowed forms of

the initial conditions. This makes the construction of the initial conditions for the DPDFs

much more complicated, see [62–64] for various proposals.

For the case when Q1 = Q2 = Q, the momentum sum rules for the DPDFs can be

expressed in the following form∑
a1

∫ 1−x2

0
dx1 x1Da1a2(x1, x2, Q,Q) = (1− x2)Da2(x2, Q) , (3.1)

where Da1(x1, Q) is the single parton distribution function, known from global fits to hard

scattering data. The above momentum sum rule can be interpreted in the following way:

the ratio Da1a2/Da1 can be viewed as the conditional probability for finding parton a1

while the longitudinal momentum x2 of the second parton a2 is fixed. Therefore the total

momentum carried by the remaining partons (except parton a2) is equal to (1− x2). The

quark number sum rule is of a similar form, which can be found in e.g. [22].

In this paper we restrict ourselves to the single channel with gluon only, but the

entire analysis could be extended to include quarks as well. In such a case, we are only

concerned about the momentum sum rule (3.1) with a1 = a2 = g. Assuming that the double

gluon distribution is a symmetric function of parton momenta fractions, Dgg(x1, x2) =

Dgg(x2, x1), it can easily be derived that the rule (3.1) is also valid for the second variable.

In the following, we shall use the initial conditions suggested by the construction pro-

posed in [64] which leads to the initial conditions for both the single and double gluon

distribution satisfying the momentum sum rules. The construction is based on the obser-

vation that the appropriate set of functions for the initial conditions can be chosen from

the set of Dirichlet distributions. Taking advantage of a particular form of the single gluon

distribution at the initial scale Q0 = 1 GeV, given in [65],

Dg(x,Q0) =
N∑
k=1

Nk
g x

αk
g (1− x)β

k
g , (3.2)

one can demonstrate that the double gluon distribution

Dgg(x1, x2, Q0, Q0) =

N∑
k=1

Nk
g

Γ(βkg + 2)

Γ(αkg + 2)Γ(βkg − αkg)
(x1x2)α

k
g (1− x1 − x2)β

k
g−αk

g−1, (3.3)

obeys the momentum sum rule (3.1), see [64] for details. Note that, the initial double

gluon distribution (3.3) is completely determined by the parameters of the single gluon

distributions, Nk
g , α

k
g , β

k
g , known from the global fits [65]. It is also worth emphasizing

that the distribution (3.3) is not a product of two single gluon distributions, even for small

values of parton momentum fractions.

The momentum sum rule is preserved by evolution equations for the double parton

distribution [16, 17]. Thus, the rule (3.1) is independent of the hard scale Q ≡ Q1 = Q2 at
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which the double gluon distribution is defined. The distribution (3.3) will be used in the

forthcoming discussion as the initial condition for the evolution equations at some initial

scale Q0 and we shall refer to it as the GBLS3 input. For the comparison, we also use the

distribution proposed in [22] (referred to subsequently as the GS input),

Dgg(x1, x2, Q0, Q0) = Dg(x1, Q0)Dg(x1, Q0)
(1− x1 − x2)2

(1− x1)2 (1− x2)2
. (3.4)

This form is approximately factorizable into product of two single PDFs for small values of

momentum fractions and includes the correlating factor which guarantees smooth vanishing

of the distribution when (x1 + x2) → 1. This ansatz does not satisfy the momentum sum

rule (3.1), although we checked that the violation is relatively small for almost all values

of x, that is below 5% percent for x < 0.5, and only becomes significant, up to 30% level,

for higher values of x.

4 Unintegrated double gluon distribution

In this section we present the construction of the double gluon distribution which is un-

integrated over the transverse momenta. The framework discussed in the current work,

proposed recently in [54], allows to construct the unintegrated double parton distribu-

tions which additionally depend on parton transverse momenta, k1⊥ and k2⊥. In the

following analysis, we are only interested in the unintegrated double gluon distribution,

fgg(x1, x2, k1⊥, k2⊥, Q1, Q2), though similar investigations can be performed for the other

distributions.1

In the proposed construction [54], which follows the original proposal of Kimber-

Martin-Ryskin for the single PDFs [55, 56], the dependence on the transverse momenta

is obtained from unfolding the last step in the DGLAP-like evolution equations (2.2) re-

duced to the gluonic sector. The integrated double gluon distribution is the sum of two

contributions described in the previous section and illustrated in figure 1,

Dgg = D(h)
gg (x1, x2, Q1, Q2) +D(nh)

gg (x1, x2, Q1, Q2) . (4.1)

Similarly, the unintegrated double gluon distribution can also be written as a sum of

the homogenous and non-homogeneous contributions,

fgg = f (h)
gg (x1, x2, k1⊥, k2⊥, Q1, Q2) + f (nh)

gg (x1, x2, k1⊥, k2⊥, Q1, Q2) . (4.2)

4.1 Homogeneous contribution

The form of the homogeneous contribution, f
(h)
gg , in the region where transverse momenta

are perturbative, k1⊥, k2⊥ > Q0, is given by [54]

f (h)
gg (x1, x2, k1⊥, k2⊥, Q1, Q2) = Tg(Q1, k1⊥)Tg(Q2, k2⊥)×

×
∫ 1−∆1

x1
1−x2

dz1

z1
Pgg(z1, k1⊥)

∫ 1−∆2

x2
1−x1/z1

dz2

z2
Pgg(z2, k2⊥)D(h)

gg

(
x1

z1
,
x2

z2
, k1⊥, k2⊥

)
. (4.3)

1In this case though one would need to specify the appropriate initial conditions for the integrated

DPDFs which satisfy the momentum and quark sum rules with known single PDFs, which is a much more

difficult task.
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In the above equation, Tg is the well known Sudakov form factor which sums virtual gluon

emissions,

Tg(Q, k⊥) = exp

{
−
∫ Q2

k2⊥

dp2
⊥

p2
⊥

∫ 1−∆

0
dzzPgg(z, p⊥)

}
, (4.4)

where Pgg is the real part of Altarelli-Parisi gluon-gluon splitting function in the leading

order approximation,

Pgg(z, p⊥) =
αs(p⊥)

2π
2Nc

{
z

1− z
+

1− z
z

+ z(1− z)

}
. (4.5)

The integration limits in eq. (4.3) impose the following condition for the longitudinal mo-

mentum fractions

0 <
x1

1−∆1
+

x2

1−∆2
< 1 , (4.6)

which replaces the condition for the integrated double parton distributions, 0 < x1+x2 < 1.

The parameters ∆ in eqs. (4.3) and (4.4) regularize the integrals at z = 1 and could

depend on transverse momenta of partons, k1⊥ and k2⊥ for real emission and p⊥ for virtual

one, as well as on the hard scales, Q1 and Q2. Thus, eq. (4.6) introduces non-trivial cor-

relations between transverse and longitudinal momenta among both partons. We consider

two options in our numerical studies for the kinematics of parton emissions.

1. Strong Ordering (SO): the strong ordering of transverse momenta of emitted partons,

typical for DGLAP dynamics, leads to

∆i =
ki⊥
Qi

, i = 1, 2 . (4.7)

In this case, the transverse momenta are bounded from the above by the hard scale,

ki⊥ < Qi.

2. Angular Ordering (AO): the angular ordering of parton emissions (AO) due to the

coherence effects in spacelike cascades [66–69] leads to another cutoff [56, 57]

∆i =
ki⊥

ki⊥ +Qi
, (4.8)

In this case the transverse momenta are no longer bounded by the scales Qi.

In figure 2 we show the results for the homogeneous unintegrated double gluon distri-

bution as a function of the transverse momentum k2
⊥ ≡ k2

1⊥ = k2
2⊥ for four pairs of (x1, x2)

and fixed hard scales Q2 = Q2
1 = Q2

2 = 100 GeV2. We compare the evolution which starts

from two discussed initial conditions, given by eqs. (3.3) and (3.4). The calculations were

performed for the cutoffs ∆i which were taken according to the strong ordering (SO) sce-

nario (4.7). We observe that the results for the different inputs are very similar to each

other. This is somewhat surprising since the two inputs are rather different. The largest

discrepancy is observed at the largest values of x1. This is the region where the effects due
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Figure 2. The distribution x1x2f
(h)
gg (x1, x2, k⊥, k⊥, Q,Q) from eq. (4.3) plotted as a function of

the transverse momentum k2⊥ ≡ k21⊥ = k22⊥, for Q2 = 100 GeV2 and the indicated values of (x1, x2),

starting from the GBLS3 (3.3) (blue) and GS (3.4) (red) inputs. The cutoffs ∆i were imposed

according to the strong ordering condition (4.7).

to the constraint from the momentum sum rule are most relevant. But even that difference

is not large, and this is partially due to the fact that the GS input approximately satisfies

the momentum sum rule, up to few percent for the relevant region in x1, x2. We also see

that the unintegrated double gluon distribution vanishes at k⊥ = Q, as expected in the SO

case, and the suppression at the lowest values of kT is due to the Sudakov form factor.

In figure 3 we investigate the effect of different values of Q2 on the unintegrated double

gluon distribution for four fixed values of (x1, x2) in the strong ordering case (4.7). We

observe that the distribution in k⊥ is shifted towards higher transverse momenta with

increasing values of the hard scale Q2, which leads to the greater spread in k⊥. Also

the peak of the distribution at fixed Q2 is shifted towards larger values of transverse

momenta with decreasing (x1, x2). This is due to the fact that as the gluon momentum

fraction x decreases, the probability of the gluon splitting increases. The suppression at

low values of k⊥ is increasing with Q2 due to the Sudakov form factor. The visible sharp

cutoff in transverse momenta at the value of the hard scale is consistent with the strong

ordering cutoff.

In figure 4 we compare the homogeneous unintegrated gluon distributions in the strong

ordering (4.7) and the angular ordering (4.8) cases, plotted as a function of the transverse

momentum k2
⊥ = k2

1⊥ = k2
2⊥ for fixed hard scales Q2 ≡ Q2

1 = Q2
2 = 100 GeV2. We should

stress at this point that the angular ordering is not implemented in the strict sense since
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Figure 3. The distribution x1x2f
(h)
gg (x1, x2, k⊥, k⊥, Q,Q) from eq. (4.3) as a function of the trans-

verse momentum k2⊥ ≡ k21⊥ = k22⊥, for different values of Q2 and the indicated values of (x1, x2),

starting from the GBLS3 input. The cutoffs ∆i are imposed according to the condition (4.7).

this condition is only incorporated in the last step of the evolution rather than in the entire

cascade, like in the original formulation for single gluon distribution [67–69]. Nevertheless,

we compare this model with the strong ordering case to illustrate the potential impact of

the terms beyond the strong ordering scenario. As expected, we see that the solution with

the angular ordering exhibits tails in transverse momentum which extend well beyond the

hard scale Q. The tails are most prominent for very small values of x. This can be easily

understood since one needs to have x < 1 − ∆ which for angular ordering leads to the

condition k⊥ < Q(1/x − 1) as compared to the condition k⊥ < Q(1 − x) for the strong

ordering. Therefore, at low values of x and high k⊥, angular ordering allows for more phase

space for emissions. At low values of k⊥, the calculation with angular ordering is typically

lower than the calculation using strong ordering condition which stems from the fact that

the suppression from the Sudakov form factor is larger for the angular ordering condition.

4.2 Contributions from non-perturbative regions

In ref. [54] we also provided formulae for the unintegrated double parton distributions in

which at least one of the parton transverse momentum is below the initial scale, i.e. for

k1⊥ > Q0 and k2⊥ ≤ Q0,

f (h)
gg (x1, x2, k1⊥, Q1, Q2) = Tg(Q1, k1⊥)Tg(Q2, Q0)×

×
∫ 1−∆1

x1
1−x2

dz1

z1
Pgg(z1, k1⊥)D(h)

gg

(
x1

z1
, x2, k1⊥, Q0

)
. (4.9)
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Figure 4. The distribution x1x2f
(h)
gg (x1, x2, k⊥, k⊥, Q,Q) from eq. (4.3) as a function of the trans-

verse momentum k2⊥ ≡ k21⊥ = k22⊥ in the strong ordering (4.7) (blue curve) and the angular

ordering (4.8) (red curve) cases, for the indicated values of (x1, x2) and the GBLS3 input.

Notice that in such a case f
(h)
gg only depends on perturbative k1⊥ since k2⊥ is integrated

out in the nonperturbative region below Q0. This is reflected in the dependence of D
(h)
gg

on Q0. In the opposite case, k1⊥ ≤ Q0 and k2⊥ > Q0, we have

f (h)
gg (x1, x2, k2⊥, Q1, Q2) = Tg(Q1, Q0)Tg(Q2, k2⊥)×

×
∫ 1−∆2

x2
1−x1

dz2

z2
Pgg(z2, k2⊥)D(h)

gg

(
x1,

x2

z2
, Q0, k2⊥

)
. (4.10)

Finally, for the non-perturbative region, k1⊥ ≤ Q0 and k2⊥ ≤ Q0,

f (h)
gg (x1, x2, Q1, Q2) = Tg(Q1, Q0)Tg(Q2, Q0)D(h)

gg (x1, x2, Q0, Q0) . (4.11)

i.e. there is no transverse momentum dependence, since the transverse momenta have been

integrated out below the initial scale Q0 and the function (4.11) is proportional to the

integrated non-perturbative double parton distribution at the initial scales.

In figure 5, we show the non-perturbative gluon contributions given by eq. (4.9), which

correspond to the configurations in which one gluon has the perturbative transverse mo-

mentum above the cutoff Q0, while the other one is non-perturbative. In such a case, the

double gluon distribution depends only on transverse momentum of the first gluon. We see

that generally the contributions from the non-perturbative regions are numerically much

smaller than the perturbative ones, though they can become important for small scales.
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Figure 5. The non-perturbative distribution x1x2f
(h)
gg (x1, x2, k1⊥, Q,Q) from eq. (4.9) as a function

of k2⊥ = k21⊥ for Q2 = 10, 100 GeV2 and the indicated values of (x1, x2).

4.3 Non-homogeneous (parton splitting) contribution

In ref. [54] we also considered the contribution to the unintegrated double parton distri-

butions originating from a splitting of a single parton into a pair of partons, f
(nh)
f1f2

. This

contribution is generated by the special solution of the non-homogeneous evolution equa-

tions for the integrated double parton distributions, D
(nh)
f1f2

.

In the pure gluon case, the integrated double gluon distribution due to this contribution

is given by

D(nh)
gg (x1, x2, Q1, Q2) =

∫ Q2
min

Q2
0

dQ2
s

Q2
s

D(sp)
gg (x1, x2, Q1, Q2, Qs) , (4.12)

where Q2
min = min{Q2

1, Q
2
2}. The distribution D(sp)

gg under the integral, discussed at length

in [54], corresponds to the perturbative gluon splitting g → gg at the scale Qs,

D(sp)
gg (x1, x2, Q1, Q2, Qs) =

=

∫ 1−x2

x1

dz1

z1

∫ 1−z1

x2

dz2

z2
Egg

(
x1

z1
, Q1, Qs

)
Egg

(
x2

z2
, Q2, Qs

)
D(sp)
gg (z1, z2, Qs) , (4.13)

which evolves with the scales Q1 and Q2 from the initial condition given by eq. (2.6). The

distribution D(sp)
gg is used to define the unintegrated double gluon distribution from the
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Figure 6. The homogeneous (4.3) (blue curves) and non-homogenous (4.15) (red curves) compo-

nents of the distribution x1x2fgg(x1, x2, k⊥, k⊥, Q,Q) in the strong ordering case as a function of

the transverse momentum k2⊥ for Q2 = 10 GeV2 (dashed curves) and Q2 = 100 GeV2 (solid curves).

The values of (x1, x2) are indicated and the GBLS3 input is used.
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Figure 8. The homogeneous (4.3) (upper plots) and non-homogeneous (4.15) (lower plots) distri-

butions in the strong ordering case as a function of (k21⊥, k
2
2⊥) for the indicated values of (x1, x2)

and Q2. Contour projections (with 20 equidistant contours) on the transverse momentum plane

are shown on the right.

gluon splitting,

f (nh)
gg (x1, x2,k1⊥, k2⊥, Q1, Q2) = Tg(Q1, k1⊥)Tg(Q2, k2⊥) ×

×
∫ 1−∆1

x1
1−x2

dz1

z1

∫ 1−∆2

x2
1−x1/z1

dz2

z2
Pgg(z1, k1⊥)Pgg(z2, k2⊥)×

×
∫ Q2

min

Q2
0

dQ2
s

Q2
s

θ(k2
1⊥ −Q2

s) θ(k
2
2⊥ −Q2

s)D(sp)
gg

(
x1

z1
,
x2

z2
, k1⊥, k2⊥, Qs

)
. (4.14)

In the strong ordering case (4.7), the transverse momenta obey the condition ki⊥ < Qi.

Thus, for given k1⊥ and k2⊥, the upper limit in the integral over Q2
s in (4.14) is given

by Q2
min = min{k2

1⊥, k
2
2⊥}. In such a case, the step functions in (4.14) are automatically
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satisfied, which allows to rewrite the above formula with the help of the distribution (4.12),

f (nh)
gg (x1, x2, k1⊥, k2⊥, Q1, Q2) = Tg(Q1, k1⊥)Tg(Q2, k2⊥) ×

×
∫ 1−∆1

x1
1−x2

dz1

z1

∫ 1−∆2

x2
1−x1/z1

dz2

z2
Pgg(z1, k1⊥)Pgg(z2, k2⊥)D(nh)

gg

(
x1

z1
,
x2

z2
, k1, k2

)
. (4.15)

Therefore, f
(nh)
gg is given by the formula analogous to eq. (4.3) in which the homogeneous

double gluon distribution, D
(h)
gg , is replaced by the non-homogeneous one, D

(nh)
gg .

In the angular ordering case (4.8), the transverse momenta are not bounded and we

have to use formula (4.14) together with (4.13) in the numerical analysis. This would

mean that when k1⊥, k2⊥ ≥ Q1, Q2, the splitting could only occur at the scale provided

by Q2
min = min{Q2

1, Q
2
2}, and then the region up to k1⊥, k2⊥ would evolve as two separate

parton ladders. However, the parton splitting which generates two partonic ladders can

occur at any point of the evolution, and therefore such a situation is unphysical. Since the

transverse momentum dependence in the framework considered is anyway generated in the

last splitting by convoluting with the splitting functions, therefore we shall argue that also

in the case of the angular ordering we should also use Q2
min = min{k2

1⊥, k
2
2⊥} in eq. (4.14).

In figure 6, we show the relative size of the homogeneous (4.3) and non-

homogenous (4.15) contributions by showing them as a function of the transverse mo-

mentum k⊥ ≡ k1⊥ = k2⊥ for Q2 = 10, 100 GeV2 and the indicated values of (x1, x2).

We see that the non-homogeneous (splitting) contribution is generally much smaller than

the homogenous one. As expected, the significance of the splitting contribution rises with

increasing Q2.

We also present the unintegrated double gluon distribution for the case with different

transverse momenta, k1⊥ 6= k2⊥. Slices of this distribution for fixed values of k2⊥ are shown

as a function of k1⊥ in figure 7. The full two-dimensional distributions in (k1⊥, k2⊥) are

shown in figure 8 together with the contour plots. From the contour plots, it is evident that

the distribution originating from the non-homogeneous contribution is more perturbative,

i.e. the maximum of the distribution is shifted towards higher transverse momenta and the

region of very low transverse momenta is depleted.

5 Factorization of double gluon distributions

In this subsection we shall investigate to what extent the factorization of the unintegrated

double gluon distribution into a product of two single unintegrated gluon distributions,

fg(x, k⊥, Q) = Tg(Q, k⊥)

∫ 1−∆

x

dz

z
Pgg(z, k⊥)Dg

(
x

z
, k⊥

)
, (5.1)

is satisfied in different kinematic regimes. The integrated single gluon distribution, Dg, on

the r.h.s. of the above equation is evolved using the DGLAP evolution equation reduced

to the gluon sector with the initial condition given by eq. (3.2).

In figures 9 and 10, we compare the sum of the homogeneous and non-homogenous

contributions with the product of two single unintegrated gluon distributions, each given by
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Figure 9. The distribution x1x2fgg(x1, x2, k⊥, k⊥, Q,Q) (dashed black line) against the product

of the single distributions x1fg(x1, k⊥, Q)x2fg(x2, k⊥, Q) (dashed magenta), plotted as a function

of k2⊥ for the indicated small values of (x1, x2) and Q2 = 10, 100 GeV2, starting from the GBLS3

input. The breakdown of fgg into the homogeneous (4.3) (dashed blue) and non-homogenous (4.15)

(dashed red) components shows that the non-homogeneous component is essential for factorization.

eq. (5.1). The results are shown as a function of k⊥ ≡ k1⊥ = k2⊥ for fixed Q2 and (x1, x2).

We observe in figure 9 that for small values of (x1, x2), the sum of the homogeneous and

non-homogeneous contribution is very close to the product of two single gluon distributions.

This shows that the factorization of the solution works very well in the small x regime and

for large value of hard scale, Q2 = 100 GeV2. It has to be stressed that the factorization

works for the sum of the two contributions, fgg = f
(h)
gg +f

(nh)
gg , but not for the homogeneous

term only as might be naively expected. We also observe that the factorization is violated

for large values of x1 or x2, see figure 10. This is also seen in figure 11, where we plot

the ratio

r =
fgg(x1, x2, k1⊥, k2⊥, Q,Q)

fg(x1, k1⊥, Q)fg(x2, k2⊥, Q)
(5.2)

as a function of (x1, x2) for fixed transverse momenta, k2
1⊥ = k2

2⊥ = 10 GeV2 and Q2 =

100 GeV2, in the strong ordering case.

The factorization of the distribution fgg is an interesting fact that deserves some ex-

planation. One could naively expect that since the homogeneous term is equivalent to the

evolution of two disconnected ladder graphs, the factorization would occur with this term
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Figure 10. As in figure 9 but for large values of x1 or x2 when factorization does not hold.
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Figure 11. The ratio (5.2) as a function of the longitudinal momentum fractions (x1, x2) for

fixed values of transverse momenta, k21⊥ = k22⊥ = 10 GeV2, and Q2 = 100 GeV2, in the strong

ordering case.

only. On the contrary, it is the sum of the homogenous and non-homogenous contributions

which is equal to the product of two single gluon distributions, f
(h)
gg + f

(nh)
gg ≈ fg · fg. To

understand this feature, one needs to investigate the factorization of the integrated double

gluon distribution, Dgg(x1, x2, Q1, Q2), since we expect that the factorization at this level

leads to the factorization of the unintegrated double gluon distribution.
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Figure 12. The comparison of the integrated gluon distribution x1x2Dgg(x1, x2, Q,Q) (dashed

black line) with the product of two single gluon distributions, x1Dg(x1, Q)x2Dg(x2, Q), (solid ma-

genta) as a function of Q2 for the indicated values of (x1, x2) and the GBLS3 input. The breakdown

of Dgg(x1, x2, Q,Q) into the homogeneous (dashed blue) and non-homogenous (dashed red) compo-

nents, see eq. (4.1), shows that the non-homogeneous component is essential for the factorization.

In figure 12, we show the integrated double gluon distribution Dgg as a function of the

hard scale Q = Q1 = Q2 for fixed values of (x1, x2). We indeed observe that the sum of

the homogenous and non-homogenous terms nicely factorizes into a product of two single

integrated gluon distributions, provided x1 and x2 are sufficiently small and Q2 is large.

The latter condition is related to the fact that at low Q2, the solution is still close to the

form of the initial condition which does not factorize in the case of the GBLS3 input. So

even though the initial condition does not factorize at small x, after the evolution to large

scales the solution becomes factorized for small x.

In order to further investigate the origin of the factorization, we also performed calcu-

lations for the GS initial conditions. We found that in this case the factorization at large

scales holds to a lesser degree than for the GBLS3 input, though approximately it is still

valid. Finally, we also tested initial conditions which violate the momentum sum rule more

strongly than the GS input [22], and we found that in this case the factorization of the

resulting solution is stronger violated.

The crucial difference between the analyzed inputs is the fact whether or not they

satisfy the momentum sum rule. The best quality factorization at small x occurs for the

GBLS3 input which satisfies the momentum sum rule exactly by construction. On the other
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hand, the GS input does not satisfy the sum rule, but the violation is of the order of a few

percent (for x < 0.5), which translates to a similar in size effect for the factorization. This

suggests that whether or not the factorization at small x and large Q2 holds is related to

the fulfillment of the momentum sum rule for the double PDFs. We stress, that this is true

even if there is no factorization in the initial condition. However, more detailed analytic

studies are necessary to quantify this observation, which we postpone for the future.

6 Summary and outlook

We performed detailed numerical analysis of the unintegrated double gluon distribution

with the transverse momentum dependence. The construction of such distributions, pre-

sented in [54], is based on the extension of a similar formalism for the construction of the

single unintegrated parton distributions [55, 56]. The unintegrated double parton distri-

butions in [54] were obtained as a convolution of the integrated parton distributions with

the Altarelli-Parisi splitting functions and the Sudakov form factors.

As a general conclusion from the presented analysis, the transverse momentum de-

pendent double gluon distribution is shifted towards larger values of transverse momenta

with increasing values of the hard scales Q1,2 and decreasing values of the longitudinal

momentum fractions x1,2. The model with angular ordering in the last step of the evo-

lution leads to a distribution which extends further in transverse momenta than in the

strong ordering scenario in which the transverse momenta are cut off by the hard scales.

The homogeneous contribution dominates over the non-homogeneous one, for all the values

of transverse momenta, at least for the type of initial conditions considered in this work.

We observe that the non-homogeneous contribution, which originates from the splitting, is

more perturbative being shifted towards higher values of transverse momenta than the ho-

mogeneous contribution. The sum of the homogeneous and non-homogeneous contribution

factorizes into the product of two single unintegrated gluon distributions at small values of

x1,2 and high hard scales. We showed that this factorization stems from the factorization

of the underlying integrated parton distributions and is contingent upon the validity of the

momentum sum rule for the initial conditions.

There are number of possible avenues that could be further explored. First of all,

we have only considered the distributions for q⊥ = 0, i.e. integrated over the relative

transverse positions of the two gluons. Full dependence on q⊥ should be included when

one wants to use these distributions for the evaluation of the double parton scattering cross

sections. In the simplest scenario, this could be done by including the appropriate form

factors. However, it is possible that there will be large correlations between the transverse

momenta of the partons and the momentum transfer q⊥, see [15, 46, 53] for recent studies.

Second, the presented analysis was performed for the gluon sector only. The extension to

include quarks can be done, and in principle does not present any new technical difficulties.

The biggest challenge is the appropriate choice of the initial conditions for the evolution

which would satisfy both the momentum and the quark number sum rules simultaneously.

So far this problem has not been fully solved. Finally, it would be also interesting to further

explore the relation between the momentum sum rule and the factorization of the double

distributions for small values of the longitudinal momentum fractions.
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