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1 Introduction

In a recent paper [1] there was proposed the gauged matrix model of SU(2|1) supersym-

metric mechanics. It describes a new N = 4 extension of the Calogero-Moser multi-particle

system,1 such that the particle massm is identified with the parameter of deformation of the

flat N = 4, d = 1 supersymmetry into curved SU(2|1) supersymmetry. Models of SU(2|1)

supersymmetric mechanics pioneered in [2–4] play the role of one-dimensional analog of

higher-dimensional systems with a rigid curved supersymmetry [5–8]. The one-dimensional

models possessing such a deformed supersymmetry and built on different worldline SU(2|1)

supermultiplets were further studied in [9–11]. All these systems dealt with single SU(2|1)

multiplets of the fixed type. There were also studied SU(2|1), d = 1 supersymmetric mod-

els [12] simultaneously involving chiral (2,4,2) and vector (3,4,1) supermultiplets. The

common feature of this class of the SU(2|1) mechanics models is that the Lagrangians for

the relevant physical bosonic d = 1 fields contain the standard kinetic terms of the second

order in the time derivative.

The off-shell construction of [1] was based upon a new SU(2|1) harmonic superspace

with two sets of harmonic variables, as a generalization of SU(2|1) harmonic superspace of

ref. [11] defined according to the standard lines of [13–15].2 This bi-harmonic superspace

approach provided the proper generalization of the gauging procedure of [17, 18] and en-

abled to define SU(2|1) analog of the semi-dynamical spin variables of ref. [19], as well as

to construct the interaction of dynamical and semi-dynamical supermultiplets.

1We use the definition “multi-particle” instead of “multi-dimensional”, in order to avoid a possible

confusion with the space-time dimensionality.
2The bi-harmonic formalism of the similar kind was firstly used in [16] in a different context.
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An evident next problem was to quantize the new kind of N = 4 superextended

Calogero-Moser systems and inquire whether it inherits the remarkable quantum properties

of its bosonic prototypes.

In the present paper, as the first step towards this goal, we perform quantization of

the simplest one-particle case of the multi-particle models constructed in [1]. In this case,

the original off-shell formulation involves the superfields describing the SU(2|1) multiplets

(1,4,3) and (4,4,0) , as well as the “topological” gauge multiplet which accomplishes

the U(1)-gauging. After eliminating the auxiliary fields, as the dynamical variables there

remain the d = 1 bosonic scalar field x(t) and the fermionic SU(2)-doublet fields ψi(t),

(ψi)†(t) = ψ̄i . They come from the multiplet (1,4,3) . The bosonic SU(2)-doublet fields

zi, (zi)† = z̄i coming from the multiplet (4,4,0) describe the semi-dynamical degrees of

freedom. The corresponding on-shell component action of the model is written as

S =

∫
dtL ,

L =
1

2
ẋ2 +

i

2

(
˙̄zkz

k − z̄kż
k
)
−

1

2
m2x2 −

(
zkz̄k

)2

8x2
+A

(
zkz̄k − c

)

+
i

2

(
ψ̄kψ̇

k − ˙̄ψkψ
k
)
−mψkψ̄k −

ψ(iψ̄j)z(iz̄j)

x2
. (1.1)

This action respects local U(1) invariance. The U(1) gauge field A originates from the

topological gauge supermultiplet and plays the role of Lagrange multiplier for the first class

constraint, as we will see in the next section. Note that only at c 6= 0 the Lagrangian (1.1)

defines a non-trivial spin-variable generalization of the original model of [2, 9]: for c = 0

the constraint effected by A becomes zkz̄k = 0 that implies zi = 0 . At c 6= 0 the kinetic

term of the bosonic variables zi, z̄i in the Lagrangian (1.1) is of the first-order in the time

derivatives, in contrast to the dynamical variable x with the second-order kinetic term.

Just for this reason we call zi, z̄i semi-dynamical variables.3 In the Hamiltonian these

variables appear only through the SU(2) current z(iz̄j) and in the interaction terms.

The odd SU(2|1) transformations of the component fields leaving the action (1.1)

invariant read

δx = − ǫkψ
k + ǭkψ̄k ,

δψi = ǭi (iẋ−mx) +
ǭkz

(izk)

x
, δψ̄j = − ǫj (iẋ+mx) +

ǫkz(jzk)

x
,

δzi =
zk
x

[
ǫ(iψk) + ǭ(iψ̄k)

]
, δz̄j = −

z̄k

x

[
ǫ(jψk) + ǭ(jψ̄k)

]
. (1.2)

Their characteristic feature is the presence of the parameter m which can be viewed either

as a mass of d = 1 component fields or as a frequency of the one-dimensional oscillators.

It plays the role of the parameter of deformation of the supersymmetry algebra. While for

m 6= 0 the transformations (1.2) generate SU(2|1) supersymmetry, in the contraction limit

m = 0 they become those of the flat N = 4, d = 1 supersymmetry.

3As opposed, e.g., to the multiplets exploited in [12], which all are dynamical, with the standard kinetic

terms for bosonic and fermionic fields.
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The system (1.1) is a generalization of the N=4 superconformally invariant models of

refs. [19–22] to the case of non-zero mass. On the other hand, in the papers [23–26] (see

also [27, 28]) there were found different realizations of N = 4, d = 1 superconformal groups

and established some relations between the deformed supersymmetries and superconfor-

mal symmetries. One of the purposes of our paper is to clarify the role of the deformed

SU(2|1) supersymmetry and its superconformal extension in the quantum spectrum of the

systems with semi-dynamical variables. In particular, we find out the presence of hidden

superconformal symmetry in the model (1.1), on both the classical and the quantum levels.

We start in section 2 with presenting the Hamiltonian formulation of the system (1.1).

We find the Noether charges of the SU(2|1) transformations of the component fields. In

section 3, the quantization of the model is performed. The energy spectrum and stationary

wave functions are defined. The latter are characterized by an external SU(2) spin q ∈
(
Z>0,

1/2+Z>0

)
, and involve a non-trivial holomorphic dependence on the semi-dynamical spin

variables. All energies also depend on q . The states on each energy level belong to an

irreducible representation of the supergroup SU(2|1) (and of its central extension ŜU(2|1) ,

with the canonical Hamiltonian as the “central charge”). The sets of these representations

are defined from the dependence of the wave function on the semi-dynamical variables.

Section 4 is devoted to the analysis of hidden N=4, d = 1 superconformal symmetry of the

model under consideration. We identify it as the OSp(4|2) superconformal symmetry in the

“trigonometric” realization and present the explicit form of its generators. We also compute

the quantum OSp(4|2) Casimir operator and show that the physical states with different

energy levels and fixed spin q are combined into an irreducible OSp(4|2) supermultiplet.

Section 5 collects the concluding remarks and some problems for the further study.

2 Hamiltonian analysis and Noether charges

Performing the Legendre transformation for the Lagrangian (1.1), we obtain the canonical

Hamiltonian

HC = H −A (T − c) ,

H =
1

2

(
p2 +m2x2

)
+mψkψ̄k −

S(ij)S(ij)

4x2
+

ψ(iψ̄j)S(ij)

x2
, (2.1)

where S(ij) are bilinear combinations of zi and z̄j with external SU(2) indices,

S(ij) := z(iz̄j) , (2.2)

while T is the SU(2)-scalar

T := zkz̄k . (2.3)

The action (1.1) produces also the primary constraints

p zk +
i

2
z̄k ≈ 0 , p z̄

k −
i

2
zk ≈ 0 , (2.4)

pψk −
i

2
ψ̄k ≈ 0 , p ψ̄

k −
i

2
ψk ≈ 0 , (2.5)

pA ≈ 0 . (2.6)
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The constraints (2.4), (2.5) are second class and we are led to introduce Dirac brackets

for them. As a result, we eliminate the momenta p zk, pψk and c.c.. The residual variables

possess the following Dirac brackets

{x, p}∗ = 1 ,
{
zi, z̄j

}∗
= iδij ,

{
ψi, ψ̄j

}∗
= − iδij . (2.7)

So, the bosonic variables zi, z̄j describing spin degrees of freedom are self-conjugated

phase variables. The triplet of the quantities (2.2) form su(2) algebra with respect to the

brackets (2.7): {
S(ij), S(kl)

}∗

= − i
[
ǫikS(jl) + ǫjlS(ik)

]
. (2.8)

Requiring the constraint (2.6) to be preserved by the Hamiltonian (2.1) results in a

secondary constraint

T − c = zkz̄k − c ≈ 0 . (2.9)

The field A is the Lagrange multiplier for this constraint, as is seen from the

Lagrangian (1.1) and the Hamiltonian (2.1). So in what follows we can omit the con-

straint (2.6) and exclude the variables A, pA from the set of phase variables.

Applying Noether procedure to the transformations (1.2) we obtain the following ex-

pressions for the SU(2|1) supercharges:

Qi = (p− imx)ψi +
i

x
S(ik)ψk , Q̄j = (p+ imx) ψ̄j −

i

x
S(jk)ψ̄

k. (2.10)

The supercharges (2.10) generate the centrally-extended superalgebra ŝu(2|1) with respect

to the Dirac brackets (2.7):

{
Qi, Q̄j

}∗
= − 2iδijH − 2im

(
Iij − δijF

)
,

{
F,Qi

}∗
= −

i

2
Qi,

{
F, Q̄j

}∗
=

i

2
Q̄j ,

{
Iij , Q

k
}∗

= −
i

2

(
δkjQ

i + ǫikQj

)
,

{
I ij , Q̄k

}∗
=

i

2

(
δikQ̄j + ǫjkQ̄

i
)
,

{
Iik, I

j
l

}∗

= i
(
δilI

j
k − δjkI

i
l

)
. (2.11)

Here, the SU(2) and U(1) generators are defined as

Iik = ǫkj

[
S(ij) + ψ(iψ̄j)

]
, F =

1

2
ψkψ̄k . (2.12)

The Hamiltonian H commutes with all other generators and so can be treated as a central

charge operator. As was shown in [10], ŝu(2|1) can be represented as a semi-direct sum

ŝu(2|1) ≃ su(2|1)+⊃ u(1) of the standard su(2|1) superalgebra and an extra R-symmetry

generator F .

Let us compare the model defined above with the model of refs. [9, 10]. As opposed

to these papers, here we consider the system with the spin degrees of freedom added. As

a result, the supercharges (2.10) acquire additional terms with the su(2) generators S(ij) ,

which produce extra conformal potential-like terms in the Hamiltonian (2.1). Moreover,

the generators S(ij) make an additional contribution to the su(2) generators I(ij) of the

ŝu(2|1) superalgebra (2.11).
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3 Quantization

At the quantum level, the system (1.1) is described by the operators x, p; ψi, ψ̄i; z
i, z̄i

which obey the algebra

[x,p] = i ,
[
zk, z̄j

]
= −δkj ,

{
ψk, ψ̄j

}
= δkj . (3.1)

The quantum counterpart of the first class constraint (2.9) is the condition that, on the

physical wave functions,

T− 2q ≡ zkz̄k − 2q ≈ 0 . (3.2)

The constant 2q in (3.2) is a counterpart of the classical constant c in (2.9); the difference

between c and 2q can be attributed to the operator ordering ambiguity.

The quantum supercharges generalizing the classical ones (2.10) are uniquely deter-

mined as

Qk = (p− imx) ψk +
iS(kj)ψj

x
, Q̄k = (p+ imx) ψ̄k −

iS(kj) ψ̄
j

x
. (3.3)

Their closure is a quantum counterpart of the classical superalgebra (2.11):

{
Qi, Q̄k

}
= 2δikH+ 2m

(
Iik − δikF

)
,

[
F,Qk

]
=

1

2
Qk,

[
F, Q̄k

]
= −

1

2
Q̄k ,

[
Iik,Q

j
]
=

1

2

(
δjkQ

i + ǫijQk

)
,

[
Iik, Q̄j

]
= −

1

2

(
δijQ̄k + ǫkjQ̄

i
)
,

[
Iik, I

j
l

]
= δjkI

i
l − δilI

j
k . (3.4)

The quantum Weyl-ordered Hamiltonian appearing in (3.4) and generalizing (2.1) reads

H =
1

2

(
p2 +m2x2

)
−

S(ik)S(ik)

4x2
+

m

2

[
ψk, ψ̄k

]
+

ψ(iψ̄k)S(ik)

x2
. (3.5)

Here, S(ik) = z(iz̄k) = z̄(izk) satisfies
[
S(ij),S(kl)

]
= ǫikS(jl) + ǫjlS(ik). The remaining even

generators in (3.4) are defined by

Iik = ǫkj

(
S(ij) +ψ(iψ̄j)

)
, F =

1

4

[
ψk, ψ̄k

]
. (3.6)

Taking into account that

−
1

2
S(ik)S(ik) =

1

2
T

(
1

2
T+ 1

)
, T ≡ zkz̄k , (3.7)

and also the first class constraint (3.2), we observe that the bosonic Hamiltonian, when

applied to the wave functions, can be cast in the form

Hbose =
1

2

[
p2 +m2x2 +

q (q + 1)

x2

]
. (3.8)

It involves the potential which is a sum of the oscillator potential and the inverse-square

(d = 1 conformal) one.

– 5 –
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3.1 Casimir operators

The second- and third-order Casimir operators of su(2|1) are constructed as [11]

C2 =

(
1

m
H− F

)2

−
1

2
IikI

k
i +

1

4m

[
Qi, Q̄i

]
, (3.9)

C3 =

(
C2 +

1

2

)(
1

m
H− F

)
+

1

8m

{
δji

(
1

m
H− F

)
− Iji

}[
Qi, Q̄j

]
. (3.10)

Here the combination
1

m
H− F plays the role of the full internal U(1) generator. Both

su(2|1) Casimirs involve just this combination, not H and F separately. For the specific

realization of ŝu(2|1) generators given by (3.3), (3.5) and (3.6) the Casimir operators (3.9)

and (3.10) take the form

C2 =
1

m2

(
H+

m

2

)(
H−

m

2

)
+

1

2
S(ik)S(ik)

=
1

m2

(
H+

m

2

)(
H−

m

2

)
− q (q + 1) , (3.11)

C3 =
1

m
HC2 . (3.12)

Their eigenvalues on a wave function characterize the irreducible representation of the

supergroup SU(2|1) to which this wave function belongs. So we come to the important

conclusion that states on a fixed energy level form irreducible multiplets of SU(2|1). Such

SU(2|1) multiplets can equally be treated as irreducible multiplets of the extended super-

group ŜU(2|1) , with H as an additional Casimir taking the same value on all states of the

given SU(2|1) multiplet.

3.2 Wave functions and energy spectrum

To define the wave functions, we use the following realization of the basic operators (3.1):

x = x , p = −i
∂

∂x
, zk = zk , z̄k =

∂

∂zk
, ψk = ψk , ψ̄k =

∂

∂ψk
. (3.13)

Here x and zk are real and complex bosonic commuting variables, respectively, whereas

ψk are complex fermionic ones. Then the wave function Φ can be defined as a superfield

depending on x, zk and ψk, i.e., as Φ(x, zk, ψk) .

The quantum constraint (3.2) amounts to the following condition on the physical wave

functions

zk
∂

∂zk
Φ(2q) = 2qΦ(2q), (3.14)

whence the superscript (2q) for the wave functions of physical states.

The solution of the constraint (3.14) is a monomial of the degree 2q with respect to zk.

Thus the constant q is quantized as:

2q ∈ Z>0 . (3.15)

– 6 –
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On the other hand, this constant defines the conformal potential [see (3.8)]. Hence, the

strength of the conformal potential is quantized in our model. The constant q has the

meaning of the external SU(2) spin. In what follows we will restrict our study to the

option q > 0 only, since quantization in the simplest case q = 0 was earlier considered in [2]

and, in more detail, in [9].4 No tracks of the spin variables remain at q = 0 .

Let us find the energy spectrum of the model, that is, the allowed energy levels Eℓ and

the corresponding wave functions Φ(2q,ℓ) determined by the eigenvalue problem

HΦ(2q,ℓ) = EℓΦ
(2q,ℓ) . (3.16)

To this end, we start with the general expression of the wave function Φ(2q,ℓ) for q > 0

Φ(2q,ℓ) = A
(2q,ℓ)
+ + ψiB

(2q,ℓ)
i + ψiC

(2q,ℓ)
i + ψiψiA

(2q,ℓ)
− , (3.17)

A
(2q,ℓ)
± = A

(ℓ)
±(k1...k2q)

zk1 . . . zk2q ,

B
(2q,ℓ)
i = B

(ℓ)
(k1...k2q−1)

ziz
k1 . . . zk2q−1 ,

C
(2q,ℓ)
i = C

(ℓ)
(ik1...k2q)

zk1 . . . zk2q .

Here, A
(2q,ℓ)
+ , A

(2q,ℓ)
− stand for the bosonic states with the SU(2) spin q and B

(2q,ℓ)
i , C

(2q,ℓ)
i

for fermionic states with the SU(2) spins q∓ 1/2 , respectively.

For the component wave functions in (3.17), the eigenvalue problem (3.16) amounts to

the following set of equations

1

2

[
p2 +m2x2 +

q (q + 1)

x2

]
A

(ℓ)
±(k1...k2q)

= (Eℓ ±m)A
(ℓ)
±(k1...k2q)

, (3.18)

1

2

[
p2 +m2x2 +

(q + 1) (q + 2)

x2

]
B

(ℓ)
(k1...k2q−1)

= EℓB
(ℓ)
(k1...k2q−1)

, (3.19)

1

2

[
p2 +m2x2 +

q (q − 1)

x2

]
C

(ℓ)
(ik1...k2q)

= EℓC
(ℓ)
(ik1...k2q)

. (3.20)

Now we should take into account (see, e.g., [29–32]) that the solution of the stationary

Schrödinger equation,

1

2

[
p2 +m2x2 +

γ (γ − 1)

x2

]
|ℓ, γ 〉 = Eℓ |ℓ, γ 〉 , (3.21)

where γ is a constant, is given by

|ℓ, γ 〉 = xγ L
(γ−1/2)
ℓ (mx2) exp(−mx2/2) , ℓ = 0, 1, 2, . . . , (3.22)

Eℓ = m

(
2ℓ+ γ +

1

2

)
, (3.23)

where L
(γ−1/2)
ℓ is a generalized Laguerre polynomial. The parameter γ takes the values

q + 1, q + 2 and q for the equations (3.18), (3.19) and (3.20), respectively.

4The quantum Hamiltonian given in ref. [9] coincides with the quantum Hamiltonian (3.5) for q = 0 up

to a constant shift by m/2.
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It is worth noting that there exists another solution of (3.21) given by

|̃ℓ, γ 〉 = x1−γ L
(1/2−γ)
ℓ (mx2) exp(−mx2/2) , ℓ = 0, 1, 2, . . . , (3.24)

E
∗
ℓ = m

(
2ℓ− γ +

3

2

)
. (3.25)

It is singular at x = 0 for γ > 1. For γ = 1 and γ = 0, this solution spans, together

with (3.22), the total set of solutions of the harmonic oscillator [29–32]. For example, at

γ = 0 the solution (3.22) yields the harmonic oscillator spectrum for even levels ℓ, while

the second solution (3.24) corresponds to odd levels. The choice of γ = 1 gives rise to

the equivalent spectrum. When γ = 1/2, the solutions (3.24) and (3.22) coincide. In

order to avoid singularities at x = 0 for the case of q > 0 we are interested in here (and

thereby ensure the relevant wave functions to be normalizable), we are led to throw away

the solution (3.24). Although for q = 1 this type of solution of eq. (3.20) contains no

singularity at x = 0, the result of action of the supercharges on the relevant state still

produces singular solutions. So, the solution (3.24) suits only for the case of q = 0, which

corresponds to supersymmetric harmonic oscillator without spin variables [2, 9]. Note that

for q = 0, the equation (3.19) is absent, since B(ℓ) ≡ 0 in this case.

Applying (3.22) to eqs. (3.18)–(3.20), we solve them as

A
(ℓ)
+(k1...k2q)

= A+(k1...k2q) |ℓ, q + 1 〉 , C
(ℓ)
(ik1...k2q)

= C(ik1...k2q) |ℓ, q 〉 , (3.26)

A
(ℓ)
−(k1...k2q)

= A−(k1...k2q) |ℓ− 1, q + 1 〉 , B
(ℓ)
(k1...k2q−1)

= B(k1...k2q−1) |ℓ− 1, q + 2 〉 , (3.27)

and determine the relevant energy spectrum

Eℓ = m

(
2ℓ+ q +

1

2

)
, ℓ = 0, 1, 2, . . . (3.28)

Note that the solutions (3.26) for A
(2q,ℓ)
+ and C

(2q,ℓ)
i exist for ℓ> 0, while the solutions (3.27)

for A
(2q,ℓ)
− and B

(2q,ℓ)
i exist for ℓ> 1 only.

We see that the energy spectrum is discrete. Thus the total wave function at fixed

spin q is a superposition of the wave functions at all energy levels:

Φ(2q) =

∞∑

ℓ=0

Φ(2q,ℓ) . (3.29)

According to eq. (3.28), at the fixed parameter q to each value of ℓ there corresponds the

definite energy Eℓ . Taking into account this property, the expressions (3.11) and (3.12) for

SU(2|1) Casimirs, and also the expression (3.6) for the generator F, we observe that the

states Φ(2q,ℓ) form irreducible multiplets of the supergroup SU(2|1), such that the internal

U(1) generator
1

m
H− F has a non-trivial action on the states within each fixed multiplet.

The central charge H takes the same value on all states of the given SU(2|1) multiplet and

distinguishes different such multiplets by ascribing to them different level numbers ℓ. In

this way, the space of all quantum states splits into irreducible multiplets of the extended

supergroup ŜU(2|1) (see also the remark in the end of section 3.1).

As the last topic of this section, we will analyze the precise SU(2|1) representation

contents of the wave functions for q > 0. A brief description of SU(2|1) representations [33]

can be found in appendix C of [11].
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The ground state, ℓ = 0, corresponds to the lowest energy

E0 = m

(
q +

1

2

)
. (3.30)

This energy value is non-vanishing for q > 0. The relevant eigenvalues of the Casimir

operators defined in (3.11) and (3.12) can be shown to vanish, i.e.,

C2Φ
(2q,0) = 0 , C3Φ

(2q,0) = 0 . (3.31)

Thus the ground state corresponds to an atypical SU(2|1) representation containing unequal

numbers of bosonic and fermionic states, with the total dimension 4q+3. Its wave function

Ω(2q,0) involves, in its component expansion, only two terms

Φ(2q,0) = A
(2q,0)
+ + ψiC

(2q,0)
i . (3.32)

Indeed, this expansion encompasses 2q+1 bosonic and 2q+2 fermionic states. These

states can not be simultaneously annihilated by the supercharges (3.6). Hence, SU(2|1)

supersymmetry is spontaneously broken for q > 0, as opposed to the case of q = 0 [2, 9].

For the excited states with ℓ> 0, Casimirs (3.9) and (3.10) take the values

C2Φ
(2q,ℓ>0) =

(
β2 − λ2

)
Φ(2q,ℓ>0), C3Φ

(2q,ℓ>0) = β
(
β2 − λ2

)
Φ(2q,ℓ>0), (3.33)

where

β = 2ℓ+ q +
1

2
, λ = q +

1

2
. (3.34)

Thus these states comprise typical representations, with the total dimension 8λ = 4 (2q + 1)

and equal numbers of bosonic and fermionic states. The wave functions Φ(2q,ℓ>0) shows

up the full component expansions (3.17) involving equal numbers of the bosonic and

fermionic states.

As an instructive example, let us consider the structure of wave functions for q = 1/2.

In this case, the bosonic states A±i are doublets, while the fermionic states B and C(ij)

form singlets and triplets. The relevant degeneracy is depicted in figure 1.

The degeneracy picture for q > 0 drastically differs from that for q = 0 found in [2, 9].

Here we encounter the vacuum (3.32) comprising 4q+3 states which belong to an atypical

representation of SU(2|1), while for q = 0 the unique ground state is SU(2|1) singlet

annihilated by both supercharges. The states at first excited level for q = 0 form an

atypical fundamental representation of SU(2|1) spanned by one bosonic and two fermionic

states. For q > 0 the states at all excited levels belong to typical SU(2|1) representations

with equal numbers [2(2q+1)+2(2q+1)] of bosonic and fermionic components. Also, the

spectrum (3.28) has the level spacing 2m, while the spectrum found in [9] displays the level

spacing m . This distinction is due to discarding the additional solution (3.24) for q > 0,

while for q = 0 both the solutions (3.24) and (3.22) should be taken into account, which

results in doubling of energy levels in the latter case.

The coefficient in the expansion of the full wave function (3.17) over spin variables zi

for ℓ> 0 (i.e. for typical representations) can be interpreted as a chiral superfield “living” on
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③ ③

③ ③

m

3m

5m

H

A+i B C(ik) A−i

Figure 1. The degeneracy of energy levels for q = 1/2. Circles and crosses indicate bosonic and

fermionic states, respectively.

SU(2|1) quantum superspace, such that it carries 2q external symmetrized doublet indices

of SU(2) ⊂ SU(2|1) . Such chiral SU(2|1) superfields with 2s external symmetrized SU(2)

indices were considered in [34]. They describe d = 1 models obtained by a dimensional

reduction from supersymmetric d = 4 models defined on curved spaces [35].

In conclusion, let us point out once more that in our model SU(2|1) supersymmetry is

spontaneously broken and the vacuum energy (3.30) depends on the spin q. In the SU(2|1)

mechanics model considered in [35], the vacuum energy (Casimir energy) depends on some

U(1) charge, such that the sum of U(1) charge and vacuum energy is zero. This feature

is related to the fact that there the vacuum state is SU(2|1) singlet and so does not break

supersymmetry. In our case we encounter a spontaneously broken vacuum described by

a non-trivial atypical representation of SU(2|1), with the spin q as an intrinsic parameter

of this vacuum. For example, in the case q = 1/2 depicted in figure 1 the vacuum states

are represented by the fields A+i and C(ik) which are the doublet and the triplet of the

internal SU(2) group with the generators Iik. So, the vacuum is not invariant under the

action of the subgroup SU(2) ⊂ SU(2|1), and this SU(2) is spontaneously broken too. It is

instructive to give explicitly how the supercharges act on the vacuum states in this case.

In accord with (3.26), the vacuum state Φ(1,0) is written as

Φ(1,0) = zkA+ k |0, 3/2 〉+ ψ(jzk)C(jk) |0, 1/2 〉. (3.35)

It is straightforward to find the action of supercharges on these functions

QizkA+ k |0, 3/2 〉 = −iψ(jzk)A+ k|0, 1/2 〉 , Q̄izkA+ k |0, 3/2 〉 = 0 ,

Q̄iψ
(jzk)C(jk) |0, 1/2 〉 = 2imδji z

kC(jk)|0, 3/2 〉 , Qiψ
(jzk)C(jk) |0, 1/2 〉 = 0 . (3.36)

The action of the bosonic generators can also be directly found, using the explicit expres-

sions for them.
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4 Hidden superconformal symmetry

In this section we show that the action (1.1) is invariant under N = 4 superconformal

symmetry OSp(4|2) . Part of it appears as a hidden symmetry of the model. This property

is somewhat unexpected, since the system (1.1) includes the mass parameter m .

This additional symmetry can be easily revealed after passing from the original

fermionic fields to the new ones

χi := ψie−imt, χ̄j := ψ̄je
imt . (4.1)

In terms of these new variables the Lagrangian (1.1) takes the form

L =
ẋ2

2
+

i

2

(
˙̄zkz

k − z̄kż
k
)
+

i

2

(
χ̄kχ̇

k − ˙̄χkχ
k
)
−

(
zkz̄k

)2

8x2
−

χ(iχ̄j)z(iz̄j)

x2

−
m2x2

2
+A

(
zkz̄k − c

)
. (4.2)

In contrast to the Lagrangian (1.1), the Lagrangian (4.2) does not contain mass terms for

the fermionic fields.

Obviously, the Lagrangian (4.2) remains invariant under the SU(2|1) transforma-

tions (1.2), which, after the redefinition (4.1), acquire the following t-dependent form

δx = − ǫ+ kχ
keimt + ǭk+χ̄ke

−imt,

δχi =

[
ǭi+ (iẋ−mx) +

ǭ+ kz
(izk)

x

]
e−imt,

δχ̄j =

[
− ǫ+ j (iẋ+mx) +

ǫk+z(jzk)

x

]
eimt,

δzi =
zk
x

[
ǫ
(i
+χ

k)eimt + ǭ
(i
+ kχ̄

k)e−imt
]
,

δz̄j = −
z̄k

x

[
ǫ+(jχk)e

imt + ǭ+(jχ̄k)e
−imt

]
, (4.3)

where

ǫ+ k := ǫk , ǭk+ := ǭk. (4.4)

We see that the Lagrangian is an even function of m, it depends only on m2. Hence, it is

also invariant under the new type of ǫ− k and ǭk− transformations

δx = − ǫ− kχ
ke−imt + ǭk−χ̄ke

imt,

δχi =

[
ǭi− (iẋ+mx) +

ǭ− kz
(izk)

x

]
eimt,

δχ̄j =

[
− ǫ+ j (iẋ−mx) +

ǫk+z(jzk)

x

]
e−imt,

δzi =
zk
x

[
ǫ
(i
−χ

k)e−imt + ǭ
(i
− kχ̄

k)eimt
]
,

δz̄j = −
z̄k

x

[
ǫ− (jχk)e

−imt + ǭ− (jχ̄k)e
imt

]
, (4.5)
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which are obtained from (4.3) just through the substitution m → −m. This feature

is typical for the trigonometric type of superconformal symmetry [25]. As we will see

below, the closure of these two types of transformations gives the superconformal group

D(2, 1;−1/2) ∼= OSp(4|2), where the superconformal Hamiltonian is defined as

H := H − 2mF. (4.6)

Such a redefinition of the Hamiltonian, together with passing to the fermionic fields (4.1),

ensure a proper embedding of the extended superalgebra ŝu(2|1) = su(2|1)+⊃ u(1) into the

superconformal algebra osp(4|2).

4.1 Hamiltonian analysis and extended superalgebra

The Lagrangian (4.2) yields, modulo the constraint-generating term A
(
zkz̄k − c

)
, just the

conformal Hamiltonian (4.6) as the canonical one:

H =
1

2

(
p2 +m2x2

)
−

S(ij)S(ij)

4x2
+

χ(iχ̄j)S(ij)

x2
. (4.7)

Like the Lagrangian (4.2), the Hamiltonian (4.7), as opposed to (2.1), does not contain

mass terms for the fermionic fields.

The canonical Dirac brackets of the variables entering the system (4.2) are given by

{x, p}∗ = 1 ,
{
zi, z̄j

}∗
= iδij ,

{
χi, χ̄j

}∗
= − iδij . (4.8)

The transformations (4.3) and (4.5) are generated by the Noether supercharges

Qi
+=

[
(p−imx)χi+

i

x
S(ik)χk

]
eimt , Q̄+j =

[
(p+imx) χ̄j−

i

x
S(jk)χ̄

k

]
e−imt , (4.9)

Qi
−=

[
(p+imx)χi+

i

x
S(ik)χk

]
e−imt , Q̄−j =

[
(p−imx) χ̄j−

i

x
S(jk)χ̄

k

]
eimt . (4.10)

Computing the closure of these supercharges

{
Qi

±, Q̄±j

}∗
= − 2iδij H∓ 2im

(
Iij + δijF

)
,

{
Qi

−, Q̄+j

}∗
= − 2iδij N ,

{
Qi

+, Q̄−j

}∗
= − 2iδij N̄ ,

{
Qi

+, Q
k
−

}∗

= 2imǫik G ,
{
Q̄+j , Q̄−k

}∗
= − 2imǫjk Ḡ , (4.11)

we recover the bosonic generators H, I ij , F defined in (4.7), (2.12), along with the new

bosonic generators

G =
1

2
χkχk , Ḡ =

1

2
χ̄kχ̄

k,

N = e−2imt

[
1

2
(p+ imx)2 −

S(ij)S(ij)

4x2
+

χ(iχ̄j)S(ij)

x2

]
,

N̄ = e2imt

[
1

2
(p− imx)2 −

S(ij)S(ij)

4x2
+

χ(iχ̄j)S(ij)

x2

]
. (4.12)
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The bosonic generators (2.12), (4.7) and (4.12) satisfy the following Dirac bracket algebra

{
Iik, I

j
l

}∗

= i
(
δilI

j
k − δjkI

i
l

)
,

{
G, Ḡ

}∗
= − 2iF, {F,G}∗ = − iG,

{
F, Ḡ

}∗
= iḠ,

{
N , N̄

}∗
= 4imH, {H,N}∗ = − 2imN ,

{
H, N̄

}∗
= 2imN̄ . (4.13)

It is a direct sum of three mutually commuting algebras

I ij ⊕
(
G, Ḡ, F

)
⊕
(
H,N , N̄

)
= suR(2)⊕ suL(2)⊕ so(2, 1). (4.14)

The algebra so(2, 1) with the generators H, N , N̄ is just d = 1 conformal algebra. The

supercharges (4.9) and (4.10) transform under the generators (4.14) as

{
I ij , Q

k
±

}∗

= − i

(
δkjQ

i
± −

δij
2
Qk

±

)
,

{
I ij , Q̄±k

}∗
= i

(
δikQ̄±j −

δij
2
Q̄±k

)
,

{
F,Qi

±

}∗
= −

i

2
Qi

± ,
{
F, Q̄±j

}∗
=

i

2
Q̄±j ,

{
Ḡ,Qi

±

}∗
= iǫikQ̄±k ,

{
G, Q̄±j

}∗
= iǫjkQ

k
∓ ,

{
H, Qi

±

}∗
= ± imQi

± ,
{
H, Q̄±j

}∗
= ∓ imQ̄±j ,{

N , Qi
+

}∗
= 2imQi

− ,
{
N̄ , Q̄+j

}∗
= − 2imQ̄−j ,{

N̄ , Qi
−

}∗
= − 2imQi

+ ,
{
N , Q̄−j

}∗
= 2imQ̄+j . (4.15)

All the remaining commutators between the supercharges (4.9), (4.10) and the genera-

tors (4.14) are vanishing.

The superalgebra defined by (anti)commutators (4.11), (4.13), and (4.15) is the su-

perconformal algebra osp(4|2) in “AdS basis”. The parameter m appearing in r.h.s.

of (4.11), (4.13), (4.15) plays the role of the inverse radius of AdS2 ∼ O(2, 1)/O(1, 1) .

The standard form of the osp(4|2) superalgebra [20–22] is recovered after passing to

the new basis

Qi := −
1

2

(
Qi

+ +Qi
−

)
, Q̄j := −

1

2

(
Q̄+j + Q̄−j

)
,

Si :=
i

2m

(
Qi

+ −Qi
−

)
, S̄j := −

i

2m

(
Q̄+j − Q̄−j

)
,

K̃ :=
1

2m2

[
H−

1

2

(
N + N̄

)]
, H̃ :=

1

2

[
H+

1

2

(
N + N̄

)]
,

D̃ :=
i

4m

(
N − N̄

)
, m 6= 0 . (4.16)

In terms of the redefined generators, the Dirac bracket algebra (4.11), (4.13) and (4.15) is
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rewritten as

{
Qi,Q̄j

}∗
=−2iδijH̃ ,

{
Si, S̄j

}∗
=−2iδijK̃ ,

{
Qi, S̄j

}∗
=−2iδijD̃+Iij+δijF ,

{
Si,Q̄j

}∗
=−2iδijD̃−Iij−δijF ,

{
Qi,Sk

}∗

=−ǫikG,
{
Q̄j , S̄k

}∗
=−ǫjkḠ , (4.17)

{
Iik, I

j
l

}∗

= i
(
δilI

j
k−δjkI

i
l

)
,

{
G,Ḡ

}∗
=−2iF, {F,G}∗=− iG,

{
F,Ḡ

}∗
= iḠ ,

{
H̃,K̃

}∗

=2D̃ ,
{
D̃,H̃

}∗

=−H̃ ,
{
D̃,K̃

}∗

= K̃ , (4.18)

{
Iij ,Q

k
}∗

=− i

(
δkjQ

i−
1

2
δijQ

k

)
,

{
I ij ,Q̄k

}∗
= i

(
δikQ̄j−

1

2
δijQ̄k

)
,

{
Iij ,S

k
}∗

=− i

(
δkj S

i−
1

2
δijS

k

)
,

{
Iij , S̄k

}∗
= i

(
δikS̄j−

1

2
δijS̄k

)
, (4.19)

{
F,Qi

}∗
=−

i

2
Qi,

{
F,Q̄j

}∗
=

i

2
Q̄j ,

{
F,Si

}∗
=−

i

2
Si,

{
F, S̄j

}∗
=

i

2
S̄j ,

{
Ḡ,Qi

}∗
= iQ̄i ,

{
G,Q̄j

}∗
= iQj ,

{
Ḡ,Si

}∗
= iS̄i ,

{
G, S̄j

}∗
= iSj ,

{
D̃,Qi

}∗

=−
1

2
Qi ,

{
D̃,Q̄j

}∗

=−
1

2
Q̄j ,

{
D̃,Si

}∗

=
1

2
Si ,

{
D̃, S̄j

}∗

=
1

2
S̄j ,

{
H̃,Si

}∗

=Qi ,
{
H̃, S̄j

}∗

= Q̄j ,
{
K̃,Qi

}∗

=−Si ,
{
K̃,Q̄j

}∗

=−S̄j .

(4.20)

This is the standard form of the superalgebra osp(4|2) .

In contradistinction to the relations in the basis (4.11), (4.13) and (4.15), the rela-

tions (4.17), (4.18) and (4.20) do not involve the parameter m , though it is still present in

the expressions for almost all generators [see (4.7), (4.9), (4.10) and (4.12)]. Now it is easy

to check that the new generators defined in (4.16) are non-singular at m = 0 and so one

can consider the “pure conformal” limit m→ 0 in these expressions without affecting the

(anti)commutation relations (4.17)–(4.20). In this limit, the generators (2.12), (4.16), (4.12)

coincide with those given in [20]. In particular, the conformal generators acquire the

“parabolic” form

H̃ =
p2

2
−

S(ij)S(ij)

4x2
+

χ(iχ̄j)S(ij)

x2
, D̃ = −

1

2
xp+ tH̃, K̃ =

x2

2
− txp+ t2H̃.

(4.21)

The parabolic realization of OSp(4|2) leaves invariant the m = 0 limit of the action (1.1).

It is just the action considered in [20].

4.2 Superconformal symmetry of the spectrum

Here we consider the implications of the hidden superconformal symmetry for the spectrum

derived in section 3.2.

– 14 –



J
H
E
P
0
1
(
2
0
1
8
)
1
3
2

Quantum counterparts of the superconformal odd generators (4.9), (4.10) and (4.16)

are uniquely determined:

Qi = −
1

2

(
Qi

+ +Qi
−

)
, Q̄j = −

1

2

(
Q̄+j + Q̄−j

)
,

Si =
i

2m

(
Qi

+ −Qi
−

)
, S̄j = −

i

2m

(
Q̄+j − Q̄−j

)
, (4.22)

where

Qi
+= eimt

[
(p−imx)χi+

i

x
S(ik)χk

]
, Q̄+j = e−imt

[
(p+imx) χ̄j−

i

x
S(jk)χ̄

k

]
, (4.23)

Qi
−= e−imt

[
(p+imx)χi+

i

x
S(ik)χk

]
, Q̄−j = eimt

[
(p−imx) χ̄j−

i

x
S(jk)χ̄

k

]
. (4.24)

Their anticommutators,

{
Qi, Q̄j

}
= 2δij H̃ ,

{
Si, S̄j

}
= 2δij K̃ ,

{
Qi, S̄j

}
= 2δij D̃+ i Iij + iδij F ,

{
Si, Q̄j

}
= 2δij D̃− i Iij − iδij F ,

{
Qi, Sk

}
= − iǫik G ,

{
Q̄j , S̄k

}
= − iǫjk Ḡ , (4.25)

give the expressions for the quantum even generators

F =
1

4

[
χk, χ̄k

]
, G =

1

2
χkχk , Ḡ =

1

2
χ̄kχ̄

k , (4.26)

Iik = ǫkj

(
S(ij) + χ(iχ̄j)

)
, (4.27)

H̃ =
1

2

[
H +

1

2

(
N + N̄

)]
,

K̃ =
1

2m2

[
H −

1

2

(
N + N̄

)]
,

D̃ =
i

4m

(
N − N̄

)
. (4.28)

Here

H =
1

2

(
p2 +m2x2

)
−

S(ij)Sij

4x2
+

χ(iχ̄j)Sij

x2
, (4.29)

N = e−2imt

[
1

2
(p+ imx)2 −

S(ij)Sij

4x2
+

χ(iχ̄j)Sij

x2

]
,

N̄ = e2imt

[
1

2
(p− imx)2 −

S(ij)Sij

4x2
+

χ(iχ̄j)Sij

x2

]
(4.30)

are the quantum counterparts of the classical quantities (4.7) and (4.12). The genera-

tors (4.23) and (4.24) will go over to the trigonometric realization of the OSp(4|2) gener-

ators given in [26], if we pass to the case without spin degrees of freedom. Note that the

spectrum and the energy of the vacuum states in the models of the D(2, 1;α) supercon-

formal mechanics is known to exhibit an explicit dependence on α [21, 26]. The vacuum
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energy of the “conformal” Hamiltonian (4.29) including the case of q = 0 is also defined by

the expression (3.30). This vacuum energy for the spinless system (i.e. for q = 0) coincides

with the one given in [26] (for α = −1/2), if we choose m = 1/2 .

The second-order Casimir operator of OSp(4|2) = D(2, 1;−1
2) is defined by the follow-

ing expression [20, 22, 36]5

C ′
2 =

1

2

{
H̃, K̃

}
− D̃2 −

1

4

{
G, Ḡ

}
−

1

2
F2 +

1

4
IikIik −

i

4
[Qi, S̄i]−

i

4
[Q̄i, S

i] . (4.31)

Here 1
2

{
H̃, K̃

}
− D̃2 is the Casimir operator of o(2, 1), whereas 1

2

{
G, Ḡ

}
+F2 and 1

2 I
ikIik

are the Casimirs of suR(2) and suL(2). Substituting the explicit expressions (4.23), (4.24),

(4.26)–(4.30) for the generators, we obtain

1

2

{
H̃, K̃

}
− D̃2 = −

1

8
S(ij)Sij +

1

2
χ(iχ̄j)Sij −

3

16
,

1

2

{
G, Ḡ

}
+F2 =

3

8

(
χiχi χ̄kχ̄

k − 2χiχ̄i

)
+

3

4
,

1

2
IikIik =

1

2
S(ij)Sij + χ(iχ̄j)Sij +

3

8

(
χiχi χ̄kχ̄

k − 2χiχ̄i

)

and

i

4
[Qi, S̄i] +

i

4
[Q̄i, S

i] = −
1

8m
[Qi

+, Q̄+i] +
1

8m
[Qi

−, Q̄−i] = χ(iχ̄j)Sij −
1

2
. (4.32)

Then the OSp(4|2) Casimir operator (4.31) for the specific system we are considering is

equal to

C ′
2 =

1

8

[
S(ij)Sij −

1

2

]
. (4.33)

Taking into account eq. (3.7) and the constraint (3.14) for the physical states, we find

that the Casimir operator of the superconformal group OSp(4|2) on these states takes the

fixed value

C ′
2 = −

(2q + 1)2

16
. (4.34)

Thus we come to the following important result: all physical states of the model with

SU(2|1) supersymmetry, obtained in the section 3.2, belong to an irreducible representation

of the N=4 superconformal group OSp(4|2) . The states with a fixed eigenvalue of the

Hamiltonian of the deformed mechanics H presented in section 3.2, form an irreducible

multiplet of the supergroup ŜU(2|1) ⊂ OSp(4|2) . The operators Qi
− and Q̄−i, defined

in (4.24), mix physical states associated with different energy levels, i.e. mix different

SU(2|1) (or ŜU(2|1)) multiplets of the wave functions. It is straightforward to check that

no any smaller subspace invariant under this action can be singled out in the Hilbert space

spanned by all physical states.

This mixing of states under the action of the supercharges Qi
±, Q̄±i can be made more

explicit and transparent, if we consider the eigenstates of the operator H = H − 2mF

5The OSp(4|2) generators in our notation are related to those quoted in the papers [20, 22], through the

substitutions I → iI, Q → Q̄, S → S̄.

– 16 –



J
H
E
P
0
1
(
2
0
1
8
)
1
3
2

✻

③ ③

③ ③

③ ③

×

×

× × ×

× × ×

× × ×

③ ③

③ ③

③ ③

PPPPPPqQi
+PPPPPP✐

Q̄+j

PPPPPPqQi
+PPPPPP✐

Q̄+j

PPPPPPqQi
+PPPPPP✐

Q̄+j

✏ ✏ ✏ ✏✶
Q̄

−j ✏ ✏ ✏

✏✮
Qi

−

✏ ✏ ✏ ✏✶
Q̄

−j ✏ ✏ ✏

✏✮
Qi

−

✏ ✏ ✏ ✏✶
Q̄

−j ✏ ✏ ✏

✏✮
Qi

−

PPPPPPq
Qi

+

PPPPPP✐
Q̄+j

PPPPPPq
Qi

+

PPPPPP✐
Q̄+j

PPPPPPq
Qi

+

PPPPPP✐
Q̄+j

✏✏✏✏✮
Q̄

−j

✏ ✏ ✏ ✏✶
Qi

−

✏✏✏✏✮
Q̄

−j

✏ ✏ ✏ ✏✶
Qi

−

✏✏✏✏✮
Q̄

−j

✏ ✏ ✏ ✏✶
Qi

−

m

2m

3m

4m

5m

6m

H

A+i B C(ik) A−i

Figure 2. The degeneracy of energy levels with respect to H = H − 2mF for q = 1/2. Circles

and crosses denote bosonic and fermionic states, respectively. Solid lines correspond to the action

of Qi
+ and Q̄+j , while dashed lines correspond to the action of Qi

−

and Q̄
−j .

[a quantum counterpart of (4.6)]. Each energy level of the operator H (see figure 1) is

properly split after passing to the energy levels of the operator H : bosonic states A±

acquire the additions ±m to their energy and so give rise to additional (intermediate)

levels in the spectrum of H ; the levels of the fermionic states remain unchanged. The

origin of such a splitting lies in the fact that the eigenstates of H do not form irreducible

SU(2|1) multiplets, because H does not commute even with the SU(2|1) supercharges Qi
+,

Q̄+i . The operators Qi
±, Q̄±i mix adjacent bosonic and fermionic levels. This picture for

q = 1/2 is given in figure 2.

5 Concluding remarks and outlook

In this paper, we presented the quantum version of the one-particle model of the multi-

particle SU(2|1) supersymmetric mechanics with additional semi-dynamical degrees of free-

dom which has been formulated in [1]. Using the semi-dynamical variables leads to the con-

siderable enrichment of the physical spectrum. The relevant physical states are the SU(2)

multi-spinors due to their dependence on spin variables. We found that the states residing

on a fixed energy level possess the fixed external SU(2) spin q ∈
(
Z>0, 1/2 + Z>0

)
and

form an irreducible SU(2|1) multiplet. On the other hand, the states belonging to different

energy levels with a fixed value of q are naturally combined into an infinite-dimensional

irreducible multiplet of the more general N = 4 conformal supergroup OSp(4|2). So this

OSp(4|2) can be interpreted as a spectrum-generating supergroup for our model.

In the future we plan to consider the quantum version of a more general model of

SU(2|1) supersymmetric mechanics defined by the superfield action displaying an arbitrary
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dependence on dynamical (1,4,3) superfield [1]. We hope that the corresponding quantum

system with deformed supersymmetry will possess the hidden D(2, 1;α) supersymmetry

for an arbitrary α. Also, it is interesting to explore the quantum structure of the generic

matrix model of ref. [1], which is a multi-particle generalization of the model considered

here, and thus obtain a quantum realization of this novel N=4 supersymmetric Calogero-

Moser system.
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