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1 Introduction

A new right-handed gauge symmetry U(1)R [1–7] is one of the promising candidates nat-

urally to accommodate the three right-handed neutrinos to achieve the anomaly cancella-

tions, whose nature is the same as a theory of B−L gauge symmetry [8]. In addition, it is

a verifiable and characteristic candidate to be tested by phenomena at current and future

collider experiments such as international linear collider (ILC) [9] by measuring several dif-

ferential cross sections for purely polarized initial states as well as the large hadron collider

(LHC). In particular, the new gauge interaction of U(1)R can be distinguished from that

of U(1)B−L models [6]. This arises from the chiral asymmetry between right-handed and

left-handed fermions in the new gauge interactions of a theory. However one might think

why only the U(1)R gauge symmetry is there, and/or what about the left-handed type

gauge symmetry U(1)L under which only left-handed fermions are charged. Actually the

minimal U(1)R model requires its rather large breaking scale ∼ O(20) TeV, due to a few

number of parameters in the gauge sector [6, 7], which can be relaxed considering U(1)L
gauge symmetry. It is thus interesting to consider U(1)L gauge symmetry together with

the U(1)R symmetry and discuss how to distinguish the two types of gauge interactions at

the collider experiments.

Multiple new massive neutral gauge bosons often appear in models extending gauge

symmetries from the SM one. For example, models with left-right symmetry provide two

extra neutral gauge bosons which come from SU(2)R × U(1)B−L gauge sector [10–15].

Gauge interactions from SU(2)R are associated with right-handed fermions in the SM and

those from U(1)B−L are vector-like for the SM fermions. We then have non-trivial chiral

structure of neutral gauge boson interactions with the SM fermions taking into account

mixing among neutral gauge bosons. Also models with SU(2)L×SU(2)R×U(1)YL×U(1)YR
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QaL uaR daR LaL eaR νaR Q′aL Q′aR L′aL L′aR

SU(3)C 3 3 3 1 1 1 3 3 1 1

SU(2)L 2 1 1 2 1 1 2 2 2 2

U(1)Y
1
6

2
3 −1

3 −1
2 −1 0 1

6
1
6 −1

2 −1
2

U(1)L ` 0 0 ` 0 0 0 ` 0 `

U(1)R 0 r −r 0 −r r 0 0 0 0

Z2 + + + + + + − − − −

Table 1. Charge assignments of the our fields under SU(3)C × SU(2)L × U(1)Y × U(1)L × U(1)R
with r, ` 6= 0, where their upper indices a are the number of family that run over 1 − 3.

gauge extension give two extra neutral gauge bosons in which right-handed partner of the

SM fermions are introduced [16–18]; similar structure is also found in a model in ref. [19]

. In these models the SM fermions are not charged under SU(2)R × U(1)YR but exotic

neutral gauge bosons can interact with the SM fermions with non-trivial chiral structure

from neutral gauge boson mixing. It is therefore important to investigate how to test chiral

structure of the gauge interactions associated with extra neural gauge bosons to distinguish

models at the collider experiments. Then investigation of U(1)L×U(1)R gauge interactions

can show a specific example where the left-handed and right-handed SM fermions interact

with neutral gauge bosons from U(1)L and U(1)R respectively.

In this paper, we extend the minimal U(1)R gauge symmetry into the U(1)L × U(1)R
and construct a consistent model in a minimal way. Then we need exotic quarks and leptons

in order to cancel the new gauge anomalies, two Higgs doublet fields to induce nonzero SM

fermion masses, and two SM singlet scalar fields with new U(1) charges to break the new

gauge symmetries and to provide masses of exotic fermions. As a result, breaking scale of

U(1)L×U(1)R can be lower than the case with only U(1)R due to additional parameters and

degrees of freedom in the gauge boson sector. Then we formulate each of fermion sector,

Higgs boson sector, vector gauged boson sector, as well as neutrino sector. We show that

the Yukawa interaction among two Higgs doublets and SM fermions is that of the type-II

two Higgs doublet model (THDM) due to the new gauge symmetry. In addition we discuss

the possibility of testing the new gauge interactions at current and future collider such as

LHC and ILC and of distinguishing differences between our model and the others.

This letter is organized as follows. In section II, we introduce our model, and formulate

Higgs sector, neutral gauge sector, neutrino sector, and interacting terms. In section III,

we discuss phenomenologies of new neutral gauge boson at colliders. Finally we devote the

summary of our results and the conclusion in section IV.

2 Model setup and constraints

In this section we review our model based on U(1)L×U(1)R symmetry where the left- and

right-handed SM fermions are charged under U(1)L and U(1)R respectively. In the fermion
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Bosons Hu Hd ϕL ϕR

SU(3)C 1 1 1 1

SU(2)L 2 2 1 1

U(1)Y
1
2

1
2 0 0

U(1)L −` ` ` 0

U(1)R r r 0 2r

Z2 + + + +

Table 2. Charge assignments in scalar sector.

sector, we add three families of right-handed Majorana fermions νaR(a = 1 − 3) to cancel

the U(1)R anomalies among SM fermions, which are the same assignments as refs. [6, 7]

due to their zero charges for the other exotic fermions; Q′ and L′. Three Q′ and L′ are

also introduced to cancel the U(1)L anomalies among SM fermions, whose assignments

are similar to the one of ref. [20]. The other nontrivial anomalies between U(1)L and

U(1)R arise from [U(1)R]2U(1)L, U(1)R[U(1)L]2, and U(1)Y U(1)RU(1)L, but these are

automatically anomaly free because all the fermions have zero charge under either U(1)L
or U(1)R. All the fermion contents and their assignments are summarized in table 1. In

the scalar sector, we have to extend Higgs sector as THDM in order to provide the SM

fermion masses for up- and down-type quark sector, which is a direct consequence of the

extension to U(1)L gauge symmetry. In addition, we introduce two isospin singlet scalar

fields ϕL and ϕR to induce the spontaneously symmetry breaking of U(1)L and U(1)R,

respectively. These singlet scalar fields also play a role in providing the masses for Q′ and

L′. All the scalar contents and their assignments are summarized in table 2.Note that

Z2 symmetry is assigned in order to evade mixing mass terms between the SM fermions

and exotic fermions such as Q̄LQ
′
R and L̄LL

′
R just for simplicity.1 The relevant Yukawa

interactions under these symmetries are given by

−LY = (yu)abQ̄
a
LH̃uu

b
R + (yd)abQ̄

a
LHdd

b
R + (y`)abL̄

a
LHde

b
R + (yD)abL̄

a
LH̃uν

b
R

+ (yν)aaν̄
aC
R νaRϕ

∗
R + (y′Q)aaQ̄

′a
LQ
′a
Rϕ
∗
L + (y′L)aaL̄

′a
LL
′a
Rϕ
∗
L + h.c., (2.1)

where H̃ ≡ iσ2H, and upper indices (a, b) = 1-3 are the number of families, and yν , y′Q,

and y′L can be diagonal matrix without loss of generality due to the phase redefinitions

of corresponding fermions. Notice that our Yukawa interactions for the SM fermions are

the same as that in the Type-II THDM. In addition, the scalar potential in our model is

written as

V = m2
1|Hu|2 +m2

2|Hd|2 +m2
ϕL
|ϕL|2 +m2

ϕR
|ϕR|2

+
λ1

2
|Hu|4 +

λ2

2
|Hd|4 + λ3|Hu|2|Hd|2 + λ4|H†uHd|2 + λL|ϕL|4 + λR|ϕR|4

1In this sense, Z2 is not so important, and one can remove this symmetry without conflict of crucial

experimental constraints.
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+ λHuϕL
|Hu|2|ϕL|2 + λHuϕR

|Hu|2|ϕR|2 + λHdϕL
|Hd|2|ϕL|2 + λHdϕR

|Hd|2|ϕR|2

+ λLR|ϕL|2|ϕR|2 + λ0

[
(H†uHd)ϕ

∗2
L + c.c.

]
, (2.2)

where the last term is non-trivial in the potential and we assume all the couplings are real.

Here we note that H†uHd and (H†uHd)
2 terms are absent in the THD sector due to the

exotic U(1)L gauge symmetry.

2.1 Scalar sector

The scalar fields are parameterized as

Hu =

 w+
u

vu+ru+izu√
2

 , Hd =

 w+
d

vd+rd+izd√
2

 , ϕL =
vL + rL + izL√

2
, ϕR =

vR + rR + izR√
2

,

(2.3)

where the singly charged sector w±u,d can be considered as the same manner in the

THDM [21]. In the singly charged boson sector, we have two by two mass matrix squared

M2
C , and diagonalized by orthogonal mixing matrix OC as (Mdiagonal

C )2 ≡ OCM2
CO

T
C , there-

fore [w±, H±]T = OTC [w±u , w
±
d ]T , where w± is absorbed by charged gauge boson W±. These

analytical forms are also found to be as follows:

M2
C =

−vd(λ0v2L+λ4vuvd)
2vu

λ0v2L+λ4vuvd
2

λ0v2L+λ4vuvd
2 −vu(λ0v2L+λ4vuvd)

2vd

 , (2.4)

OC =

[
cβ sβ
−sβ cβ

]
, tanβ ≡ vu

vd
, (2.5)

(Mdiagonal
C )2 = Diag

[
0,−

λ0v
2
L

2sβcβ
− v2

2
λ4

]
, (2.6)

where cβ(sβ) = cosβ(sinβ) and v ≡
√
v2
u + v2

d.

As for the CP-even sector in the basis of [ru, rd, rL, rR]t, we have four by four mass ma-

trix squared M2
R, and diagonalized by orthogonal mixing matrix OR as D[h1, h2, h3, h4] ≡

ORM
2
RO

T
R, therefore [ru, rd, rL, rR]t = OTR[h1, h2, h3, h4]t. Here we identify h1 ≡ hSM.

In the similar way for the CP-even sector, we have four by four mass matrix squared

M2
I . Since we do not have H†uHd and (H†uHd)

2 terms in the THD sector, the non-zero

physical CP-odd mass term comes from (H†uHd)ϕ
∗2
L + c.c., associated with coupling λ0.

Then the mass matrix is diagonalized by orthogonal mixing matrix OI as D[z1, z2, z3, z4] ≡
OIM

2
IO

T
I , therefore [zu, zd, zL, zR]t = OTR[z1, z2, z3, z4]t, where z1, z2, z3 are massless bosons.

These are analytically found to be as follows:

M2
I = λ0


−vdv

2
L

2vu

v2L
2 −vdvL

v2L
2 −vuv2L

2vd
vuvL

−vdvL vuvL −2vuvd

 , (2.7)
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OI =


−2vu

v′ 0 vL
v′

vuv2L√
v′2(v2uv

2
L+v2dv

′2)

vdv
′√

v2uv
2
L+v2dv

′2)

2v2uvL√
v′2(v2uv

2
L+v2dv

′2)

vdvL√
4v2uv

2
d+v2Lv

2

vuvL√
4v2uv

2
d+v2Lv

2

2vuvd√
4v2uv

2
d+v2Lv

2

 , (2.8)

Diag[m2
z1 ,m

2
z2 ,m

2
z3 ,m

2
z4 ] = Diag

[
0, 0, 0,−λ0

v2
uv

2
L + v2

dv
′2

2vdvu

]
, (2.9)

where v′ ≡
√
v2
L + 4v2

u. Then they are respectively absorbed by neutral gauge bosons;

ZSM, ZL, ZR. In this model, the nature of THD sector is similar to that of type-II THDM.

We thus omit detailed analysis of phenomenology in the scalar sector and focus on gauge

sector in our analysis below.

2.2 Neutral gauge boson sector

ZSM-ZL-ZR mixing: since Hu,d has nonzero U(1)R and U(1)L charges, there is mixing

among ZSM, ZL, ZR. The resulting mass matrix in basis of (ZSM, ZL, ZR) is given by

m2
ZSM,ZL,ZR

=


g2v2

4 − `ggL(v2d−v
2
u)

2 − rggRv
2

2

− `ggL(v2d−v
2
u)

2 `2g2
L(v2 + v2

L) r`gLgR(v2
d − v2

u)

− rggRv
2

2 r`gLgR(v2
d − v2

u) r2g2
R(v2 + 4v2

R)

 , (2.10)

where g2 ≡ g2
1 + g2

2, mZSM
≡
√
g21+g22v

2 ≈ 91.18 GeV, g1, g2, gL, and gR are gauge coupling

of U(1)Y , SU(2)L, U(1)L, and U(1)R, respectively. Then its mass matrix is diagonalized

by the three by three mixing matrix V as V m2
ZSM,ZL,ZR

V T ≡ Diag(m2
Z1
,m2

Z2
,m2

Z3
), where

m2
Z1

is identified as the measured neutral gauge boson. Here we find that ZL does not mix

with the others when vu = vd. Note that mixing between ZSM and the other neutral gauge

bosons are strongly constrained. We thus assume the mixings are negligibly small. This

can be realized when mZ1 � mZ2,3 . On the other hand mixing between ZL and ZR can be

sizable if their masses are same order and we take the mixings

V11 ∼ 1, {V1a′ , Va′1} � 1, V22 = V33 = cosA, V23 = −V32 = sinA, (2.11)

where a′ = 2, 3 and we have introduced mixing angle A. For the case of mZ1(' mZSM
)�

mZ2,3 the mixing angle A is roughly given by

sin 2A ∼
r`gLgR(v2

d − v2
u)

m2
Z2
−m2

Z3

. (2.12)

Thus mixing is typically small unless mZ2 ∼ mZ3 . In addition, precise measurement of

Z boson mass would give strong constraint. Since the ambiguity of the Z boson mass is

around 0.0021 [23], one has to require

|mZSM
−mZ1 | . 0.0021 GeV. (2.13)
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Therefore stringent constraint in terms of mass parameters would be induced by mass

eigenvalue of mZ1 and (2.13). Note that we can tune parameters in the model to satisfy

the condition in contrast to the case with only U(1)R [6] and the constraint on the new

gauge boson masses is less stringent. In this paper, we thus just assume mZ1 ' mZSM

for simplicity.

2.3 Fermion sector

Fermion masses: after spontaneous symmetry breaking, we find fermion masses as mu =

vu(yu)ab/
√

2, md = vd(yd)ab/
√

2, and m` = vd(y`)ab/
√

2. The exotic fermions are also found

to be mQ′(= mu′ = md′) ≡ yQ′vL/
√

2 and mL′(= mn′ = me′) ≡ yL′vL/
√

2, where we define

Q′ ≡ [u′, d′]t and L′ ≡ [n′, e′]t respectively.

In the neutral sector, we have the six by six mass mass matrix in basis of (νL, νR) as

given by

MN =

[
0 mD

mT
D MN

]
, (2.14)

and MN is diagonalized by (Dνl , DνH ) ≡ ONMNO
T
N , where mD ≡ yDv/

√
2, MN ≡

yνvR/
√

2, and ON is six by six unitary matrix. Assuming mD �M , one finds the following

mass eigenvalues and their mixing ON [22]:

Dνl ≡ VMNSmνV
T

MNS ≈ −2VMNSmDM
−1mT

DV
T

MNS, (2.15)

DνH ≈MN , ON ≈

[
VMNS 0

0 1

][
−1 θ

θT 1

]
, (2.16)

where θ ≡ mDM
−1, VMNS and Dνl are observable and fixed by the current neutrino oscil-

lation data [23]. One also finds the following relation between flavor- and mass-eigenstate:

νL ≈ −V T
MNSνl + θνH , νR ≈ −θ†V †MNSνl + νH . (2.17)

Gauge interactions for neutral fermions: now that we formulate the masses and

their mixings for the fermions, one can write down the interactions from the kinetic term

in Lagrangian under SU(2)L × U(1)Y × U(1)L × U(1)R gauge symmetry. First of all, let

us focus on neutral fermion sector. Then one can write down their interactions in terms of

mass eigenstate as

Lν ∼
g2√

2

[
W−µ

¯̀γµPL(−V T
MNSνl + θνH) + h.c.

]
(2.18)

+
3∑

a=1

Zµa

[(
g

2
V T

1a + `gLV
T

2a

)
(ν̄lV

∗
MNSγµθPLνH + h.c.)

+
(
rgRV

T
3a

)
(ν̄lVMNSθγµPRνH + h.c.)

]
,

where we do not consider the neutral component of L′, since it does not mix each other.
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The Za interactions with charged fermions in the SM: the interactions associated

with neutral gauge bosons and charged fermions in the SM are given by

−LZaff̄ =

3∑
a=1

f̄γµ

[(
− g2

cW
(T 3 − s2

WQf )V T
1a +QLf

gLV
T

2a

)
PL

+

(
g2

cW
(s2
WQf )V T

1a +QRf
gRV

T
3a

)
PR

]
fZµa

' f̄γµ
[(
− g2

cW
(T 3 − s2

WQf )

)
PL +

(
g2

cW
(s2
WQf )

)
PR

]
fZµ1 (2.19)

+ f̄γµ
[
QLf

gLV
T

22PL +QRf
gRV

T
32PR

]
fZµ2

+ f̄γµ
[
QLf

gLV
T

23PL +QRf
gRV

T
33PR

]
fZµ3 ,

where f indicates charged leptons and quarks in the SM, Qf is the electric charge of f ,

QLf (Rf ) is the U(1)L(R) charge of f , sW (cW ) = sin θW (cos θW ) with Weinberg angle θW
and we have applied the approximation V11 ∼ 1(V12,13,21,31 � 1) in the second equality.

The Za interactions with exotic fermions: furthermore, the interactions associated

with the exotic fermions are respectively given by

LL′ =

3∑
a=1

[
n̄′γµ

(
g2

cW
V T

1a + `gLV
T

2aPR

)
n′+¯̀′γµ

(
− g2

cW

(
1

2
−s2

W

)
V T

1a + `gLV
T

2aPR

)
`′
]
Zµa ,

LQ′ =
3∑

a=1

[
ū′γµ

(
g2

cW

(
1

2
− 2

3
s2
W

)
V T

1a + `gLV
T

2aPR

)
u′

− d̄′γµ
(
g2

cW

(
1

2
+

1

3
s2
W

)
V T

1a + `gLV
T

2aPR

)
d′
]
Zµa . (2.20)

In addition, electromagnetic interactions are the same structure as the SM one; Lγf ′f̄ ′ =

−e¯̀′γµ`′Aµ + 2e
3 ū
′γµu′Aµ − e

3 d̄
′γµd′Aµ.

3 Z′ bosons at colliders

In this section, we discuss collider physics of Z ′ bosons focusing on interactions with the

SM fermions.

3.1 Z′ boson productions in proton-proton collider

Our exotic neutral gauge bosons Z2,3 can be produced at the LHC through the q̄q → Z2,3

process, since they couple to the SM quarks. The gauge interactions among Z2,3 and SM

quarks are given by

−L ⊃ ūaγµ [`gL cosAPL + rgR sinAPR]uaZµ2 − ū
aγµ [`gL sinAPL + rgR cosAPR]uaZµ3

+ d̄aγµ [`gL cosAPL − rgR sinAPR] daZµ2 − d̄
aγµ [`gL sinAPL − rgR cosAPR] daZµ3 ,

(3.1)

– 7 –



J
H
E
P
0
1
(
2
0
1
8
)
0
9
9

where we have used eq. (2.11) for mixing matrix V . We note that interaction for SM

charged leptons is the same form as that of d-quarks. The Z2,3 decay into quarks and

leptons with BRs as BR(Z2,3 → q̄q) ' 3BR(Z2,3 → `+`−) due to universal couplings to

quark and lepton sectors.2 The strongest constraint on the Z2,3 masses and couplings is

derived by searching for pp → Z2,3 → `+`−(`± = e±, µ±) processes. Estimating the cross

section with CalcHEP [24] implementing relevant interactions and using the CTEQ6 parton

distribution functions (PDFs) [25], we obtain the cross section of the processes as ∼ 0.06 fb

with mZ2(3)
= 4 TeV, gL(R) = 0.1 and sinA � 1. This cross section is marginal to the

current constraint and the masses of Z2,3 should be TeV scale or larger when gL,R ≥ O(0.1).

Note that chiral structure of the gauge interactions could be investigated by measuring

angular distributions of lepton plus jets final states coming from tt̄ pair via Z2,3 [26].

Here we also note that exotic fermions Q′, L′ as well as νR can be produced through

interaction with Z2,3. In this paper we just assume these particles are sufficiently heavy

and further discussion is left in future work since we focus on signal of Z2,3 bosons.

3.2 Test of Z2,3 interaction at e+e− collider

At the e+e− collider, on-shell Z2,3 bosons will not be directly produced if the mass of Z2,3

are few TeV scale or heavier. However we can test the interactions among Z2,3 and charged

leptons by measuring deviation from the SM prediction in the scattering processes e+e− →
`+`−. These scattering processes can be considered using effective operator approach for

s� m2
Z2,3

. In our model, effective operators can be written by

Leff =
∑

`′=e,µ,τ

∑
X=L,R

∑
X′=L,R

4π

1 + δe`′

[
1

(Λ`
′
XX′)

2
(ēγµPXe)(¯̀′γµPX′`

′)

]
,

(Λ`
′
LL)−1 ≡ gL`

√√√√ 1

2π(1 + δe`′)

(
cos2A

m2
Z2

+
sin2A

m2
Z3

)
,

(Λ`
′
RR)−1 ≡ gRr

√√√√ 1

2π(1 + δe`′)

(
sin2A

m2
Z2

+
cos2A

m2
Z3

)
,

(Λ`
′
LR)−1 = (Λ`

′
RL)−1 ≡

√√√√ 1

2π(1 + δe`′)

∣∣∣∣∣r`gLgR cosA sinA

(
1

m2
Z2

− 1

m2
Z3

)∣∣∣∣∣, (3.2)

where δe`′ is the Kronecker delta, and we have applied interactions in eq. (2.20) and

used eq. (2.11) for mixing matrix V . Here we note that (Λ`
′
LR)−1 is suppressed by√

r`gLgR(v2
d − v2

u)/mZ2,3 compared to Λ`
′

LL(RR) due to the mixing angle A given by

eq. (2.12); either | sinA| or |1/m2
Z2
− 1/m2

Z3
| factor is small in the square root. Thus

we ignore Λ`
′

LR(RL) in the following analysis as an approximation. Furthermore we take

` = r = 1 to reduce the number of free parameter.

2Here we assume exotic fermions are heavier than mZ2,3/2 to forbid Z2,3 from decaying into them for

simplicity.
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We can test dependence of scattering processes on left-handed and right-handed types

of interactions by an analysis with polarized initial state at the ILC. To apply the method

discussed in ref. [27], we consider the processes

e−(k1, σ1)e+(k2, σ2)→ `−(k3, σ3)`+(k4, σ4), (3.3)

where ki indicates 4-momentum of each particle and we explicitly show the helicities of

initial- and final-state leptons σi = ±. Combining the SM and Z2,3 contributions, helicity

amplitudes Mσi = M(σ1σ2σ3σ4) for the process of e−(σ1)e+(σ2) → e−(σ3)e+(σ4) are

given by

M(+−+−) = −e2 (1 + cos θ)

[
1 +

s

t
+ c2

R

(
s

sZ
+

s

tZ

)
+

2s

α(ΛeRR)2

]
, (3.4)

M(−+−+) = −e2 (1 + cos θ)

[
1 +

s

t
+ c2

L

(
s

sZ
+

s

tZ

)
+

2s

α(ΛeLL)2

]
, (3.5)

M(+−−+) =M(−+ +−) = e2 (1− cos θ)

[
1 + cRcL

s

sZ

]
, (3.6)

M(+ + ++) =M(−−−−) = 2e2 s

t

[
1 + cRcL

t

tZ

]
, (3.7)

where t = (k1 − k3)2 = (k2 − k4)2 = −s(1 − cos θ)/2, s = (k1 + k2)2 = (k3 + k4)2,

sZ = s−m2
Z + imZΓZ , tZ = t−m2

Z + imZΓZ , e2 = 4πα with α being the QED coupling

constant, cR = tan θW , cL = − cot 2θW , and cos θ is the scattering polar angle. The helicity

amplitudes for e+e− → µ+µ−(τ+τ−) are obtained by removing terms with 1/t and 1/tZ
and replacing ΛeL,R by

√
2Λ

µ(τ)
L,R . Note also that, in the following analysis, we omit the case

of τ+τ− final state since it is less sensitive compared to the others.

Applying the amplitudes, the differential cross-section for purely-polarized initial-state

σ1,2 = ±1, is obtained as

dσσ1σ2
d cos θ

=
1

32πs

∑
σ3,σ4

∣∣M{σi}∣∣2 . (3.8)

Then we define partially-polarized differential cross section such that

dσ(Pe− , Pe+)

d cos θ
=

∑
σe− ,σe+=±

1 + σe−Pe−

2

1 + σe+Pe−

2

dσσe−σe+
d cos θ

, (3.9)

where Pe−(e+) is the degree of polarization for the electron(positron) beam and the helicity

of final states is summed up. Polarized cross sections σL,R are also defined by the following

two cases as realistic values at the ILC [28]:

dσR
d cos θ

=
dσ(0.8,−0.3)

d cos θ
,

dσL
d cos θ

=
dσ(−0.8, 0.3)

d cos θ
. (3.10)

We apply the polarized cross sections to study the sensitivity to Z2,3 bosons in e+e− → `+`−

scattering via the measurement of a forward-backward asymmetry at the ILC, which is

– 9 –
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Figure 1. The contours of ∆AFB defined as eq. (3.12) on the mZ2
/gL-mZ3

/gR plane for e+e− →
e+e− process where we have assumed sinA � 1 and applied the polarized cross section σR and

σL for (a) and (b). The statistical error in the SM, δSMAFB
given by eq. (3.13), is estimated to be

3.67× 10−3 and 3.58× 10−3 for σR and σL respectively.

given by

AFB =
NF −NB

NF +NB
,

NF (B) = εL

∫ cmax(0)

0(−cmax)
d cos θ

dσ

d cos θ
, (3.11)

where L is an integrated luminosity, a kinematical cut cmax is chosen to maximize the

sensitivity, and ε is an efficiency depending on the final states. In our analysis we assume

ε = 1 for electron and muon final states, and cmax = 0.5(0.95) is taken for electron(muon)

final state [30]. Then the forward-backward asymmetry is estimated for cases with only

the SM gauge boson contributions, and with both SM and Z2,3 boson contributions, in

order to investigate the sensitivity to Z2,3. Therefore the former case gives NSM
F (B) and ASM

FB

while the latter case NSM+Z2+Z3

F (B) and ASM+Z2+Z3
FB . The sensitivity to Z2,3 interaction is thus

estimated by

∆AFB(σL,R) =
∣∣∣ASM+Z2+Z3

FB (σL,R)−ASM
FB(σL,R)

∣∣∣. (3.12)

We compare this quantity with a statistical error of the asymmetry, assuming only SM

contribution

δSM
AFB

=

√
1− (ASM

FB)2

NSM
F +NSM

B

, (3.13)

where both σL and σR cases are considered separately.

Figure 1(a) and 1(b) show the contours of ∆AFB(σL) and ∆AFB(σR) for the e+e− →
e+e− process applying sinA � 1,

√
s = 250 GeV and integrated luminosity of 1000 fb−1.
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Figure 2. The contours of ∆AFB for the process e+e− → µ+µ− where the other settings are

the same as figure 1. The statistical error in the SM, δSMAFB
given by eq. (3.13), is estimated to be

6.53× 10−3 and 5.73× 10−3 for σR and σL respectively.

The contours show the values 5δSM
AFB

, 2δSM
AFB

and δSM
AFB

' 3.67(3.58) × 10−3 for σR(σL).

From the contour plots we clearly see that mZ2/gL and mZ3/gR are respectively sensitive

to the forward-backward asymmetry obtained from σL and σR. We thus use the analysis

with polarized beam to test the two types of gauge couplings by comparing the results

from σL and σR. Also the effective coupling up to scale of mZ2(3)
/gL(R) ∼ 10 TeV can be

tested with 2σ level by data from sufficient integrated luminosity. Remarkably if the gauge

couplings are not so small we can even test Z2,3 masses heavier than the mass which can

be directly produced at the LHC. In addition, we show the case of e+e− → µ+µ− process

in figure 2 where δSM
AFB

' 6.23(5.73) × 10−3 for σR(σL) is estimated in this case. These

plots indicate the sensitivity that is stronger than the case of e+e− → e+e− scattering and

the scale of mZ2(3)
/gL(R) ∼ 20 TeV can be tested with 2σ level. Here we also consider the

case of large mixing sinA ∼ 1/
√

2 with mZ2 = mZ3 . In such a case, we obtain the same

figure as figures 1 and 2 by taking mZ2 = mZ3 ≡M . In any cases, gauge couplings gL and

gR are respectively sensitive to analysis with σL and σR.

4 Summary and conclusions

We have proposed a model with the left-handed and right-handed continuous Abelian gauge

symmetry U(1)L×U(1)R introducing several exotic field contents as a minimal construction

of such gauge theory. Then we have introduced exotic quarks and leptons in order to cancel

the new gauge anomalies, two Higgs doublet fields to induce nonzero SM fermion masses

and two SM singlet scalar fields with new U(1) charges to break the additional U(1) gauge

symmetries and to provide masses of exotic fermions. Then we have formulated each of

fermion sector, Higgs boson sector, vector gauged boson sector, as well as neutrino sector.

– 11 –
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We have found the Yukawa interaction among two Higgs doublets and the SM fermions

is that of type-II two Higgs doublet model. Also active neutrino masses can be obtained

after spontaneous gauge symmetry breaking as the same way as type-I seesaw mechanism.

As a direct result of two gauge symmetries, their breaking scales can be within several

TeV which is lower than the case of only U(1)R symmetry; this is due to additional pa-

rameters and degrees of freedom in the gauge boson sector. In addition we have discussed

the possibility of testing the new gauge interactions associated with new gauge bosons,

Z2,3, at current and future collider such as the LHC and the ILC and of distinguishing

differences between our model and the others. The exotic neutral gauge bosons can be

directly produced at the LHC, since they couple to the SM quarks. Then the strongest

constraint is obtained from the mode in which produced Z2,3 decays into SM charged lep-

tons, and Z2,3 should be heavier than ∼ 4 TeV when the new gauge coupling is more than

O(0.1). In particular, we have shown that the chiral structure of gauge interactions can

be investigated by the analysis of forward-backward asymmetry based on polarized elec-

tron(positron) beam at the ILC. It is found that ∼ 10 − 20 TeV scale of mZ2,3/gL,R can

be tested with the ILC data from
√
s = 250 GeV and integrated luminosity of 1000 fb−1.

Furthermore since sensitivity to left- and right-handed types of gauge interactions depends

on type of polarized beam, we can distinguish which types of interaction is stronger than

the others.
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[14] R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys.

Rev. Lett. 44 (1980) 912 [INSPIRE].
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