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1 Introduction

Entanglement entropy is widely used in condensed matter physics, quantum information

theory and, more recently, in high energy physics and black holes. Consider a reduced

density matrix ρA, obtained from tracing out certain degrees of freedom from a quantum

system. The associated entanglement entropy is then the von Neumann entropy:

S = −Tr (ρA ln ρA) . (1.1)

Throughout this paper we will be interested in the case for which a quantum system is

subdivided into two, via partitioning space. In such a case A is a spatial region, with

boundary ∂A.

The entanglement entropy characterizes the nature of the quantum state of a system.

For example, in the ground state of a quantum critical system in D spatial dimensions:

S = c1−D
Area(∂A)

εD−1
+ · · ·+ c0 ln(R/ε) + c̃0, (1.2)
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where c1−D, c0 and c̃0 are dimensionless; R is a characteristic scale of the region A and ε is

an UV cutoff. Logarithmic terms arise when D is odd, and their coefficients are related to

the a anomalies of the stress energy tensor. More generally, the famous area law leading

term characterizes the ground state of a system and can be used to test trial ground state

wavefunctions. Entanglement entropy can also be used to distinguish between different

phases of a system, such as the confining/deconfining phase transition [1].

Continuum quantum field theory (with a cutoff) is often used as a tool to describe

discrete condensed matter systems. In this context, the cutoff appearing in (1.2) is related

to the underlying physical lattice scale in the discrete system and the coefficients of power

law terms such as c1−D capture the leading physical contributions to the entanglement

entropy. From a quantum field theory perspective, the expansion in (1.2) implicitly assumes

the use of a direct energy cutoff as a regulator. Different methods of regularisation result

in different regulated divergences and thus the power law divergences are often called non-

universal. By contrast logarithmic divergences are often denoted as universal as their

coefficients are related to the anomalies of the theory.

In even spatial dimensions, the logarithmic term in (1.2) is absent but the constant term

c̃0 is believed to be related to the number of degrees of freedom of the system. However,

c̃0 is manifestly dependent on the choice of the cutoff. In two spatial dimensions, if

S = c−1
R

ε
+ c̃0 (1.3)

for a spatial region with boundary of length R, then changing the cutoff as

ε→ ε′
(

1 + α
ε′

R
+ · · ·

)
(1.4)

for any choice of the dimensionless constant α gives

S = c−1
R

ε′
+ (c̃0 − αc−1) , (1.5)

so the constant term in the entanglement entropy clearly depends on the choice of regulator.

If one is interested in isolating finite contributions to the entanglement entropy, one

can evade the issue of regulator dependence. For example, if the entangling region is a

strip of width L and regulated length R � L, then the divergent contributions in (1.3)

cannot, by locality of the quantum field theory, depend on the width of slab, so

c(L) =
∂S

∂L
=
∂c̃0

∂L
(1.6)

is finite as ε → 0 [2–4]. However, such an approach has several drawbacks. The reg-

ularisation is specific to the shape of the geometry (a slab) and a modified prescription

is needed for curved entangling region boundaries such as spheres, for which the scale of

the entangling region is related to the local curvature of the entangling region boundary

(see proposals in [5]). Any such prescription depends explicitly on the UV behaviour of

the theory. More generally, extraction of finite terms by differentiation obscures scheme
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dependence: there is no connection with the renormalization scheme used for other QFT

quantities such as the partition function and correlation functions.

From a quantum field theory perspective, as opposed to a condensed matter perspec-

tive, it is very unnatural to work with a regulated rather than a renormalized quantity. In

previous papers [6, 7], we introduced a systematic renormalization procedure for entangle-

ment entropy, in which the counterterms are inherited directly from the partition function

counterterms. As we review in section 2, such renormalization guarantees that the coun-

terterms depend only on the quantum field theory sources (non-normalizable modes in

holographic gravity realisations) and not on the state of the quantum field theory (normal-

izable modes in holographic gravity realisations).

The renormalized entanglement entropy Sren expressed as a function of a characteristic

scale of the entangling region implicitly captures the behaviour of the theory under an RG

flow: small entangling regions probe the UV of the theory, while larger regions probe the

IR. In this paper we will establish how these finite contributions to entanglement entropy

behave in a variety of theories, using holographic models.

The plan of this paper is as follows. In section 2 we review the definition of renormal-

ized entanglement entropy introduced in [6]. In section 3 we calculate the renormalized

entanglement entropy for a slab region in anti-de Sitter (in general dimensions). The latter

is relevant for the non-conformal branes discussed in section 4, as the latter can be viewed

as dimensional reductions of anti-de Sitter theories in general dimensions. In section 4

we also compute the renormalized entanglement entropy for a slab region in the Witten

holographic model for QCD. Section 5 explores renormalized entanglement entropy for op-

erator and driven holographic RG flows, which are UV conformal. In section 6 we consider

renormalized entanglement entropy in holographic Schrödinger geometries. In section 7

we summarise the main features of the renormalized entanglement entropy, using both our

holographic results and earlier perturbative/lattice calculations. We conclude in section 8.

2 Renormalized entanglement entropy

Entanglement entropy is usually calculated using the replica trick. The Rényi entropies

are defined as

Sn =
1

(1− n)
(logZ(n)− n logZ(1)) (2.1)

where Z(1) is the partition function and Z(n) is the partition function on the replica space

obtained by gluing n copies of the geometry together along the boundary of the entangling

region. The entanglement entropy is obtained as the limit

S = lim
n→1

Sn. (2.2)

Note that this limit implicitly assumes that the Rényi entropies are analytic in n.

Both sides of (2.1) are UV divergent. In a local quantum field theory, the UV diver-

gences of logZ(n) cancel with those of n logZ(1) except at the boundary of the entangling

region; therefore the UV divergences of S(n) scale with the area of this boundary.
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We can formally define the renormalized entanglement entropy as [6]

Sren
n =

1

(1− n)
(logZren(n)− n logZren(1)) (2.3)

with Sren = Sren
1 . Here the renormalized partition functions are defined with any suitable

choice of renormalization scheme.

The replica space matches the original space, except at the boundary of the entangling

region where there is a conical singularity. To define the renormalization on the replica

space it is therefore natural to work within a renormalization method that works for generic

curvature backgrounds for the quantum field theory.

2.1 Direct cutoff: field theory

Consider for example a Euclidean free massive scalar field theory on a background geometry

M of dimension d and let Z(1) be the partition function in the ground state. Using locality

of the quantum field theory and dimensional analysis, the UV divergences in the partition

function behave as

logZ(1) = adVdΛ
d + ad−2m

2VdΛ
d−2 + bd−2Λd−2

∫
M
ddx
√
hR+ · · · (2.4)

where Λ is the UV cutoff, Vd is the volume of the background (Euclidean) geometry, m2 is

the mass and R is the Ricci scalar. The coefficients (ad, ad−2, bd−2, · · · ) are dimensionless

and in the above expressions we ignore boundaries of M.

The divergences of the partition function on the replica space Z(n) have exactly the

same structure and coefficients. However, the curvature of the replica space has an addi-

tional term from the conical singularity [8, 9]

Rn = R+ 4π(n− 1)δ(∂Σ) +O(n− 1)2, (2.5)

where δ(∂Σ) is localised on a constant time hypersurface, on the boundary of the entan-

gling region. (Here and in what follows we consider only static situations.) Therefore,

when we use the replica formula (2.2) the leading divergences of the partition functions

(scaling with the volume) cancel so that the leading divergent term in the entanglement

entropy behaves as

Sreg = 4πbd−2Λd−2

∫
∂Σ
dd−2x

√
γ + · · · (2.6)

Such a divergence can clearly be cancelled by the counterterm

Sct = −4πbd−2Λd−2

∫
∂Σ
dd−2x

√
γ, (2.7)

which is covariantly expressed in terms of the geometry of the entangling region.
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2.2 Holographic renormalization

In gauge-gravity duality, the defining relation is [10, 11]

IE = − logZ, (2.8)

where IE is the onshell action for the bulk theory dual to the field theory. In the super-

gravity limit this is given by the onshell Euclidean Einstein-Hilbert action together with

appropriate matter terms i.e.

IE = − 1

16πGd+1

∫
Yn
dd+1x

√
g (R+ · · · )− 1

8πGd+1

∫
∂Yn

ddx
√
h (K + · · · ) , (2.9)

where the latter is the usual Gibbons-Hawking-York boundary term. The volume diver-

gences of the bulk gravity action correspond to UV divergences of the dual quantum field

theory; these divergences can be removed by appropriately covariant counterterms at the

conformal boundary.

For example, in the case of asymptotically locally anti-de Sitter solutions of Einstein

gravity the action counterterms are

Ict =
1

8πGd+1

∫
∂Yn

ddx
√
h

(
(d− 1) +

R
2(d− 2)

+ · · ·
)

(2.10)

where the ellipses denote terms of higher order in the curvature and logarithmic countert-

erms arise for d even.

Applying the replica formula to the bulk terms in the action, as discussed in [12], and

using the analogue of (2.5) for the bulk curvature, namely,

Rn = R+ 4π(n− 1)δ(Σ) (2.11)

gives the Ryu-Takayanagi functional [13] for the entanglement functional:

S =
1

4Gd+1

∫
Σ

√
h. (2.12)

Applying the replica formula to the counterterms gives

Sct = − 1

4(d− 2)Gd+1

∫
∂Σ

√
γ (1 + · · · ) , (2.13)

with the leading counterterm being proportional to the regulated area of the entangling

surface boundary. Analogous expressions for higher derivative gravity and gravity coupled

to scalars can be found in [6].

Using a radial cutoff to regulate is perhaps the most geometrically natural way to

renormalize the area of the minimal surface but it is not the only holographic renormaliza-

tion scheme. Dimensional renormalization for holography was developed in [14] and this

method could also be used to renormalize the holographic entanglement entropy.
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3 AdS entanglement entropy in general dimensions

In this section we review the renormalized entanglement entropy for a slab domain in Anti-

de Sitter in general dimensions. The regulated entanglement entropy for such slab domains

was analysed in [13]; here we extract from their analysis the renormalized entanglement

entropy, in general dimensions. This quantity is relevant to the non-conformal brane back-

grounds discussed in the next section, as the latter can be understood in terms of parent

Anti-de Sitter theories, and also relevant for the Schrödinger backgrounds discussed in

section 6.

Let us parameterise AdSD+2 as

ds2 =
1

ρ2

(
dρ2 − dt2 + dx · dxD

)
. (3.1)

The entangling functional is

S =
1

4GD+2

∫
Σ
dDx
√
h (3.2)

We now consider an entangling region in the boundary of width L in the x direction, on

a constant time hypersurface, longitudinal to the other (D − 1) coordinates yα. The bulk

entangling surface is then specified by the hypersurface x(ρ) minimising

S =
1

4GD+2

∫
dD−1yα

∫
dρ

ρD

√
1 + (x′)2 (3.3)

where x′ = ∂ρx. The equation of motion admits the first integral

(x′)
2

=
ρ2D

(ρ2D
0 − ρ2D)

, (3.4)

where ρ0 is the turning point of the surface, related to L via

L = 2

∫ ρ0

0

ρDdρ√
ρ2D

0 − ρ2D
, (3.5)

or equivalently

L = 2ρ0

∫ 1

0

xDdx√
1− x2D

= ρ0

(
2
√
πΓ
(

1+D
2D

)
Γ
(

1
2D

) )
. (3.6)

The regulated onshell value of the entangling functional is then

Sreg =
Vy

2GD+2

∫ ρ0

ε

dρ

ρD
√

1− ρ2D

ρ2D0

(3.7)

where Vy is the regulated volume of the yα directions. For D > 0 the only contributing

counterterm is the regulated area of the boundary i.e.

Sct = − 1

4(D − 1)GD+2

∫
∂Σ
dD−1

√
h̃ (3.8)
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(where we assume that D 6= 1) and therefore

Sren =
Vy

2GD+2

∫ ρ0

ε

dρ

ρD
√

1− ρ2D

ρ2D0

− 1

(D − 1)εD−1

 , (3.9)

which can be rewritten in terms of dimensionless quantities as

Sren =
Vy

2GD+2ρ
D−1
0

[∫ 1

ε̃

dx

xD
√

1− x2D
− 1

(D − 1)ε̃D−1

]
. (3.10)

This can be evaluated to give

Sren =

√
πVy

4DGD+2ρ
D−1
0

Γ
(

1
2D −

1
2

)
Γ
(

1
2D

) (3.11)

and hence

Sren = − Vy
4(D − 1)GLD−1

(
2
√
πΓ
(

1
2D + 1

2

)
Γ
(

1
2D

) )D
(3.12)

As we discuss later, this quantity is closely related to the entropic c function for slabs in

anti-de Sitter computed in [3]. In the case of D = 1 (AdS3) the entangling functional is

logarithmically divergent, and the renormalized entanglement entropy depends explicitly

on the renormalization scale: for a single interval

Sren =
1

2G3
log

(
2

µ

)
, (3.13)

where µ is the (dimensionless) renormalization scale.

4 Non-conformal branes

In this section we will consider entangling surfaces in Dp-brane and fundamental string

backgrounds. It is convenient to express these backgrounds in the so-called dual frame in

ten dimensions as [15]

I10 = − N2

(2π)7α′4

∫
d10x
√
GNγeγφ

(
R(G) + β(∂φ)2 − 1

2(8− p)!N2
|F8−p|2

)
(4.1)

where the constants (β, γ) are given below for Dp-branes and fundamental strings respec-

tively. (Note that it is convenient to express the field strength magnetically, so for p < 3

we use Fp+2 = ∗F8−p.)

The field equations admit AdSp+2 × S8−p solutions with a linear dilaton. The field

equations following from the action above can be reduced over a sphere, truncating to a

(p+ 2)-dimensional metric and scalar. The resulting action is then

Id+1 = −N
∫
dd+1x

√
geγφ

(
R+ β(∂φ)2 + C

)
(4.2)

– 7 –
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where d = p+ 1 and the constants (N , β, γ, C) depend on the type of brane under consid-

eration.

For Dp-branes

γ =
2(p− 3)

(7− p)
β =

4(p− 1)(p− 4)

(7− p)2 (4.3)

C =
2(9− p)(7− p)

(5− p)2 N = δpN
7−p
5−p g

2(p−3)/(5−p)
d

where

δp =
2

2(p−4)
p−5 (5− p)

9−p
p−5π

p+1
p−5 Γ

(
7−p

2

) p−7
p−5

Γ
(

9−p
2

) (4.4)

and g2
d is the dimensionful coupling of the dual field theory, which is related to the string

coupling as

g2
d = gs(2π)p−2(α′)

p−3
2 . (4.5)

At any length scale l there is an effective dimensionless coupling constant

g2
eff(l) = g2

dNl
3−p (4.6)

For the fundamental string

γ =
2

3
β = C = 0 (4.7)

N =
gsN

3
2 (α′)1/2

6
√

2

and the dimensionful coupling is

g2
f =

1

2πg2
sα
′ (4.8)

so

N =
N

3
2

12
√
πgf

. (4.9)

In all cases, the dual frame is chosen such that the equations of motion admit an

AdSd+1 solution:

ds2 =
1

ρ2

(
dρ2 + dx · dxd

)
(4.10)

eφ = ρ2α

where the constant α again depends on the case of interest: for Dp-branes

α = −(p− 7)(p− 3)

4(p− 5)
(4.11)

– 8 –
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while α = −3/4 for fundamental strings. In general the equations admit an AdS solution

with linear dilaton provided that the parameters are related as

α = − γ

2(γ2 − β)
(4.12)

C =
(d(γ2 − β) + γ2)(d(γ2 − β) + β)

(γ2 − β)2 .

For further discussion of this point, see [16].

The non-conformal branes are formally related to AdS gravity in the following way [17].

Let us define a parameter σ as

σ =
d

2
− αγ. (4.13)

Now we consider (2σ+ 1)-dimensional gravity with cosmological constant Λ = −σ(2σ−1),

so that the action is

I(2σ+1) = −NAdS

∫
d2σ+1x

√
g2σ+1 (R2σ+1 + 2σ(2σ − 1)) . (4.14)

Reducing on a (2σ − d)-dimensional torus with coordinates za via a diagonal reduction

ansatz

ds2 = ds2
d+1(x) + exp

(
2γφ

(2σ − d)

)
dzadza (4.15)

results in the action (4.2) where

N = NAdSV(2σ−d), (4.16)

with V(2σ−d) the volume of the compactification torus.

4.1 Entanglement functional and surfaces

The entanglement functional follows from the replica trick: in the dual frame

S = 4πN
∫

Σ
dd−1x

√
heγφ (4.17)

The equations for the entangling surface can be expressed geometrically as

Km = γ
(
∂mφ− hij∂iXp∂jX

ngmn∂pφ
)

(4.18)

where gmn is the background metric, hij is the induced metric on the entangling surface,

Xm(xi) specifies the embedding of the entangling surface into the background and Km are

the associated traces of the extrinsic curvatures.

The dual frame entanglement functional follows directly from the reduction of the pure

gravity entanglement functional

S = 4πNAdS

∫
Σ2σ−1

d2σ−1x
√
H, (4.19)

– 9 –
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when one again uses the diagonal reduction ansatz (4.15), and assumes that the entangling

surface wraps the torus and that the shape of the surface does not vary along the torus

directions. In the upstairs picture the entangling surface satisfies

KM = 0, (4.20)

where the background metric is now denoted g(2σ+1)MN and KM denotes the traces of

the extrinsic curvatures. Thus, any AdS entangling surface which factorises as Σ2σ−1 =

T (2σ−d) × Σ will give an entangling surface for non-conformal branes; moreover, the non-

conformal brane surface will inherit its renormalized entanglement entropy from the up-

stairs entangling surface.

As an example, let us consider slab entangling regions, characterised by a width ∆x =

L. The bulk entangling surface is specified as x(ρ) and in the background (4.10) the

entangling functional is

S = 4πNVy
∫

dρ

ρ2σ−1

√
1 + (x′)2, (4.21)

which is indeed precisely the functional obtained in (3.3), identifying D = (2σ − 1). The

renormalized entanglement entropy can then be expressed as

Sren = − 2πNVy
(σ − 1)L2(σ−1)

(
2
√
πΓ( 1

2(2σ−1) + 1
2)

Γ( 1
2(2σ−1))

)2σ−1

(4.22)

The renormalized entanglement entropy for a strip in the F1 background can be ex-

pressed as

Sren = −
4π

3
2 (Γ(3

4))
2

3(Γ(1
4))

2

N2

geff(L)
(4.23)

where the effective coupling is expressed as g2
eff(L) = g2

fNL
2. The expression for the

renormalized entanglement entropy of a strip in the D1 background is analogous:

Sren = −
4π

3
2 (Γ(3

4))
2

3
√

2(Γ(1
4))

2

N2

geff(L)
(4.24)

4.2 Witten model

The Witten [18] holographic model for YM4 can be expressed in terms of the following

six-dimensional background:

ds2 =
dρ2

ρ2f(ρ)
+

1

ρ2

(
−dt2 + dx · dx3 + f(ρ)dτ2

)
(4.25)

eφ =
1

ρ
3
2

,

where

f(ρ) =

(
1− ρ6

ρ6
KK

)
. (4.26)

– 10 –
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Regularity of the geometry requires that the circle direction τ must have periodicity

Lτ =
2π

3
ρKK . (4.27)

This model originates from D4-branes wrapping the circle τ with anti-periodic boundary

conditions for the fermions. which breaks the supersymmetry. At low energies the model

resembles a four-dimensional gauge theory, with the gauge coupling being g2 = g2
5/Lτ . The

gravity solution captures the behaviour of this theory in the limit of large ’t Hooft coupling

λ2 = g2N � 1.

One of the main applications of this model is in the context of flavour physics: Sakai

and Sugimoto [19, 20] introduced D8-branes wrapped around the S4 on which the theory

is reduced from ten to six dimensions. These D8-branes model chiral flavours in the dual

gauge theory and the resulting Witten-Sakai-Sugimoto model has been used extensively as

a simple holographic model of a non-supersymmetric gauge theory with flavours.

The operator content of the dual theory captured by the metric and scalar field is

the four-dimensional stress energy tensor Tab, a scalar operator Oτ corresponding to the

component of the five-dimensional stress energy tensor Tττ and the gluon operator O
corresponding to the bulk scalar field. These operators satisfy a Ward identity [16]

〈T aa 〉+ 〈Oτ 〉+
1

g2
〈O〉 = 0 (4.28)

and their expectation values can be extracted from the above geometry. For example, the

condensate of the gluon operator

〈O〉 =
25π2

37

λ2N

L4
τ

(4.29)

and therefore Lτ controls the QCD scale of the theory.

Next we can consider a slab entangling region, wrapping the circle direction τ , charac-

terised by a width ∆x = L. Entanglement entropy in this theory was previously discussed

in [1], with the confinement transition being associated with a discontinuity in the deriva-

tive of the entanglement entropy with respect to L. The bare entanglement functional is

S = 4πNV2Lτ

∫
dρ

ρ5

√
1 + f(ρ)(x′)2 (4.30)

where V2 is the volume of the two-dimensional cross-section of the slab. The entanglement

can then be written as

Sreg = 8πNV2Lτ

∫ ρ∗

ε

dρ

ρ5

√
f(ρ)ρ10

∗√
f(ρ)ρ10

∗ − f(ρ∗)ρ10
(4.31)

where ρ∗ is the turning point of the surface, related to the width of the entangling region as

L = 2

∫ ε

ρ∗

dρ√
f(ρ)

(
ρ10∗ f(ρ)
ρ10f(ρ∗)

− 1
) . (4.32)

– 11 –
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Figure 1. The renormalized entanglement entropy for the Witten model. The solid blue line and

solid orange lines indicate the renormalized entropy for the two possible connected minimal surfaces.

The entanglement entropy can be renormalized as before, with the counterterm contribu-

tions being

Sct = −2πNV2
Lτ
ε4
. (4.33)

For large entangling regions, the only possible entangling surface is the disconnected con-

figuration, for which the renormalized entanglement entropy is

Sren = 8πNV2Lτ

(∫ ρKK

ε

dρ

ρ5
− 1

4ε4

)
(4.34)

= −4π2N
3

V2

ρ3
KK

For small entangling regions the condensate is negligible and the renormalized entanglement

entropy is controlled by the conformal structure

Sren ≈ −πN
(

2
√
πΓ(3/5)

Γ(1/10)

)5
V2Lτ
L4

(4.35)

The renormalized entanglement entropy is plotted in figure 1. As discussed in [1] there

is a discontinuity in the derivative of the entanglement entropy for slab widths around

L ∼ 0.4ρKK . For larger values of L the entanglement entropy saturates at a constant value.

– 12 –



J
H
E
P
0
1
(
2
0
1
8
)
0
0
4

5 Renormalized entanglement entropy for RG flows

In this section we will consider holographic entanglement entropy in geometries dual to RG

flows. We work in Euclidean signature with a bulk action

I = − 1

16πG

∫
dd+1x

√
g

(
R− 1

2
(∂φ)2 + V (φ)

)
. (5.1)

Holographic RG flows with flat radial slices can be expressed as

ds2 = dr2 + exp(2A(r))dxidxi, (5.2)

where the warp factor A(r) is related to a radial scalar field profile φ(r) via the equations

of motion

d2φ

dr2
+ d

(
dA

dr

)(
dφ

dr

)
= −dV

dφ

d2A

dr2
= − 1

2(d− 1)

(
dφ

dr

)2

. (5.3)

These equations can always be expressed as first order equations [21]

dA

dr
= W

dφ

dr
= −2(d− 1)

dW

dφ
(5.4)

where the (fake) superpotential W (φ) is related to the potential as

V = −(d− 1)2

(
2

(
dW

dφ

)2

− d

d− 1
W 2

)
. (5.5)

Near the conformal boundary the potential can be expanded in powers of the scalar field as

V = d(d− 1)− 1

2
m2φ2 + · · · (5.6)

and hence the superpotential can be written as

W = 1 +
(d−∆)

4(d− 1)
φ2 + · · · (5.7)

where ∆ = d/2 +
√
d2 + 4m2/2. The higher order terms in the superpotential are not

unique, as different choices are associated with different RG flows.

Note that for flat domain walls, a single counterterm (in addition to the usual Gibbons-

Hawking term) is sufficient

Ict = −(d− 1)

8πG4

∫
ddx
√
γW, (5.8)

although the derivation of the entanglement entropy counterterms requires knowledge of

the counterterms for a curved background (since the replica space is curved).

The entanglement entropy for a slab region ∆x = L in the RG flow geometry is

S =
Vy
4G

∫
dre(D−1)A(r)

√
1 + e2A(r)(x′)2, (5.9)
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where D is the number of spatial directions in the dual theory, Vy is the regulated volume

of the longitudinal directions and x(r) defines the entangling surface. Then

L = 2

∫ ∞
r0

eDA0dr

eA(r)
√
e2DA(r) − e2DA0

, (5.10)

where at the turning point r0 of the surface A(r) = A0. The regulated onshell action is

Sreg =
Vy
2G

∫ Λ

r0

dr
e(2D−1)A(r)√
e2DA(r) − e2DA0

, (5.11)

with the cutoff being r = Λ.

The entanglement entropy counterterms for RG flows driven by relevant deformations

were discussed in [6], working perturbatively in the deformation. Here we will analyse both

spontaneous and explicit symmetry breaking, using exact supergravity solutions.

5.1 Spontaneous symmetry breaking: Coulomb branch of N = 4 SYM

In this section we consider the case of VEV driven flow, i.e. spontaneous symmetry breaking.

In such a situation, the scalar field has only normalizable modes and thus asymptotically

the scalar field behaves as

φ→ φ(0)e
−∆r + · · · (5.12)

where φ(0) is related to the operator expectation value as

〈O〉 = −(2∆− d)φ(0). (5.13)

From (5.4) and (5.7), one can immediately read off the asymptotic form of the warp factor:

A(r) = r − (d−∆)

4∆(d− 1)
φ2

(0)e
−2∆r + · · · (5.14)

Substituting into the regulated action, we then obtain

Sreg =
Vy
2G

(
e(d−2)Λ

(d− 2)
− (d−∆)

4∆(d− 1)(d− 2− 2∆)
e(d−2−2∆)Λ + · · ·

)
(5.15)

The second term vanishes as Λ→∞ for ∆ > (d−2)/2, and is logarithmically divergent for

∆ = (d− 2)/2. (The latter case does not however arise holographically, as when the lower

bound on the conformal dimension is saturated the operator automatically obeys free field

equations.) Therefore, for VEV driven flows the only counterterm required is the regulated

area of the boundary of the entangling surface:

Sct = − 1

4(d− 2)G

∫
∂Σ
dd−2x

√
h. (5.16)

Note that one can derive the same result from the bulk action counterterms, using the

replica trick; see below for the case of the Coulomb branch of N = 4 SYM. Thus the

renormalized entanglement entropy for slabs in VEV driven flows is

Sren =
Vy
2G

(∫ Λ

r0

dr
e(2D−1)A(r)√
e2DA(r) − e2DA0

− e(d−2)Λ

(d− 2)

)
. (5.17)
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Now let us consider the general structure of the renormalized entropy. In the vacuum of

the conformal field theory, the renormalized entropy must behave as

Sren = c0
Vy

GLD−1
(5.18)

with c0 a dimensionless constant on dimensional grounds: the entropy scales with the lon-

gitudinal volume Vy and the width of the entangling region L is the only other dimensionful

scale in the problem. The value of c0 in holographic theories is given in (3.12).

Now working perturbatively in the operator expectation value 〈O〉 the renormalized

entropy must behave as

Sren =
Vy

GLD−1

(
c0 + c1〈O〉2L2∆ + · · ·

)
(5.19)

where c1 is dimensionless and we work in a limit in which

〈O〉 � 1

L∆
(5.20)

i.e. the width of the entangling region is much smaller than the length scale set by the

condensate.

5.1.1 Coulomb branch disk distribution

We now analyse a specific example: the renormalized entanglement entropy of slab domains

on the Coulomb branch of N = 4 SYM.

We consider the case of a disk distribution of branes preserving SO(4)×SO(2) symme-

try, for which the equations of motion follow from (5.1), with the superpotential being [22]

W (φ) =
2

3
exp

(
2φ√

6

)
+

1

3
exp

(
− 4φ√

6

)
(5.21)

The metric in five-dimensional gauged supergravity is then

ds2 = λ2w2

(
dw2

λ6w4
+ dx · dx

)
(5.22)

with

λ6 =

(
1 +

σ2

w2

)
. (5.23)

Here the coordinate w →∞ at the conformal boundary and σ characterises the expectation

value of the dual scalar operator. The scalar field can be expressed by the relation

σ2 e
2√
6
φ

1− e
√

6φ
= λ2w2. (5.24)

Using the standard Fefferman-Graham coordinates near the conformal boundary:

ds2 =
1

ρ2
dρ2 +

1

ρ2

(
1− 1

18
σ4ρ4 + · · ·

)
dx · dx (5.25)

φ =
1√
6
σ2ρ2 + · · ·
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We can then read off the expectation values of the dual stress energy tensor and scalar

operator, following [23, 24]:

〈Tij〉 = 0 〈O〉 =
N2

√
6π2

σ2 (5.26)

where we use the standard relation between the Newton constant and the rank of the dual

gauge theory:
1

16πG5
=
N2

2π2
. (5.27)

The vanishing of the dual stress energy tensor is required given the supersymmetry but

careful holographic renormalization is required to derive this answer.

The regulated entanglement entropy of a slab domain in this geometry can be written as

Sreg =
V2

2G5

∫ Λ

w0

dwλ3w3

√
(x′)2 +

1

w4λ6
. (5.28)

Using the first integral of the equations of motion the width of the entangling region can

be expressed in terms of the turning point of the surface w0 as

L = 2

∫ ∞
w0

cdw

w2λ3
√
λ6w6 − c2

(5.29)

where c is an integration constant and w0 satisfies

w4
0(σ2 + w2

0) = c2. (5.30)

The regulated entanglement entropy is then

Sreg =
V2

2G5

∫ Λ

w0

dw
w3
√
w2 + σ2√

w4(w2 + σ2)− c2
(5.31)

and the required counterterm is expressed in terms of the regulated area of the boundary

of the entangling surface i.e. there are counterterm contributions

Sct = − V2

8G5
Λ2

(
1 +

σ2

Λ2

) 1
3

(5.32)

at each side of the slab. (The total contribution is therefore twice this value.) Note that

the counterterms in this case clearly contribute both divergent and finite parts: expanding

in powers of the cutoff Λ

Sct = − V2

8G5
Λ2 − V2

24G5
σ2 + · · · (5.33)

It is then convenient to write the entanglement entropy in terms of dimensionless quantities

as

Sren =
V2σ

2

4G5
lim

Λ̃→∞

(∫ Λ̃

y0

dy
y
√
y + 1√

y2(y + 1)− y2
0(y0 + 1)

− Λ̃− 1

3

)
, (5.34)
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where Λ̃ is a rescaled dimensionless cutoff. Implicitly this expression assumes that σ2 6= 0

and y0 is the turning point of the surface. Then

σL = y0

√
y0 + 1

∫ ∞
y0

dy

y
√

(y + 1)
√
y2(y + 1)− y2

0(y0 + 1)
(5.35)

These integrals can be computed numerically. There is a maximal value of L (for fixed σ)

for which a connected entangling surface exists: the critical value of L is such that

σLcrit ≈ 1.5708. (5.36)

For L > Lcrit there is no connected entangling surface but the disconnected entangling

surface consisting of two components x = −L/2 and x = L/2 still exists. For the latter

one can straightforwardly calculate the renormalized entanglement entropy as

Sren = − V2σ
2

12G5
. (5.37)

The renormalized entanglement entropy is plotted in figure 2: its first derivative is discon-

tinuous at L = Lcrit. For small values of L, the analytic expressions (5.19) is valid:

Sren =
V2

G5

−(2
√
πΓ(2

3)

Γ(1
6)

)2
1

8L2
+ C1σ

4L2 + · · ·

 (5.38)

and the constant C1 can be determined as:

C1 ≈ −0.03137. (5.39)

5.1.2 Coulomb branch spherical distribution

We now consider the renormalized entanglement entropy of slab domains on the Coul-

omb branch of N = 4 SYM for the case of a spherical distribution of branes, preserving

SO(4) × SO(2) symmetry. The equations of motion follow from (5.1), with the superpo-

tential being [22]

W (φ) =
2

3
exp

(
− 2φ√

6

)
+

1

3
exp

(
4φ√

6

)
(5.40)

The metric in five-dimensional gauged supergravity is then

ds2 = λ2w2

(
dw2

λ6w4
+ dx · dx

)
(5.41)

with

λ6 =

(
1− σ2

w2

)
. (5.42)

Here the coordinate w →∞ at the conformal boundary and σ characterises the expectation

value of the dual scalar operator. The scalar field can be expressed by the relation

σ2 e
− 2√

6
φ

1− e−
√

6φ
= −λ2w2. (5.43)
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Figure 2. The renormalized entropy for Coulomb branch disk distribution. The blue line shows

the numerical results for a cut-off of Λ = 1010, the dotted red line shows the small σL fit of

equation (5.38), the dashed yellow line shows the value of the renormalized entropy for disconnected

surfaces.

Using the standard Fefferman-Graham coordinates near the conformal boundary:

ds2 =
1

ρ2
dρ2 +

1

ρ2

(
1− 1

18
σ4ρ4 + · · ·

)
dx · dx (5.44)

φ =
1√
6
σ2ρ2 + · · ·

We can then read off the expectation values of the dual stress energy tensor and scalar

operator, following [23, 24]:

〈Tij〉 = 0 〈O〉 =
N2

√
6π2

σ2 (5.45)

where we use the standard relation between the Newton constant and the rank of the dual

gauge theory:
1

16πG5
=
N2

2π2
. (5.46)

The vanishing of the dual stress energy tensor is required given the supersymmetry but

again careful holographic renormalization is required to derive this answer.

The regulated entanglement entropy is then

Sreg =
V2

2G5

∫ Λ

w0

dw
w3
√
w2 − σ2√

w4(w2 − σ2)− c2
(5.47)

and the required counterterm is expressed in terms of the regulated area of the boundary

of the entangling surface i.e. there are counterterm contributions

Sct = − V2

8G5
Λ2

(
1− σ2

Λ2

) 1
3

(5.48)
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at each side of the slab. (The total contribution is therefore twice this value.) Note that

the counterterms in this case clearly contribute both divergent and finite parts: expanding

in powers of the cutoff Λ

Sct = − V2

8G5
Λ2 +

V2

24G5
σ2 + · · · (5.49)

It is then convenient to write the entanglement entropy in terms of dimensionless quantities

as

Sren =
V2σ

2

4G5
lim

Λ̃→∞

(∫ Λ̃

y0

dy
y
√
y2 − 1√

y2(y − 1)− y2
0(y0 − 1)

− Λ̃ +
1

3

)
, (5.50)

where Λ̃ is a rescaled dimensionless cutoff. Implicitly this expression assumes that σ2 6= 0

and y0 is the turning point of the surface. Then

σL = y0

√
y0 − 1

∫ ∞
y0

dy

y
√

(y − 1)
√
y2(y − 1)− y2

0(y0 − 1)
(5.51)

These integrals can again be computed numerically. As in the previous case, for fixed σ

there is a maximal value of L for which a connected entangling surface exists. The critical

value is

σLcrit ≈ 0.8317 (5.52)

For lengths grater than the critical length, the minimal surface is disconnected and the

renormalized entanglement entropy can be calculated analytically to give

Sren = −V2σ
2

6G5
. (5.53)

For subcritical values, there are two possible surfaces with turning points y0 for each width

L and one must choose the surface for which the renormalized area is minimised.

The renormalized entanglement entropy is plotted in figure 3. There is a phase tran-

sition between the connected and disconnected entangling surfaces at Lc such that

σLc ≈ 0.75 (5.54)

i.e. Lc < Lcrit, and the entanglement entropy is saturated for L ≥ Lc. In the regime of

small L the analytic expressions (5.19) are valid:

Sren =
V2

G5

−(2
√
πΓ(2

3)

Γ(1
6)

)2
1

8L2
+ C1σ

4L2 + · · ·

 (5.55)

where the constant C1 can be determined as:

C1 ≈ −0.03167 (5.56)
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Figure 3. The renormalized entropy for Coulomb branch sphere distribution. The solid blue and

solid orange lines indicate the renormalized entanglement entropy for the two possible connected

minimal surfaces. The dashed orange line indicates the entanglement entropy for the disconnected

surface. The dotted red line shows the small σL fit of equation (5.55).

5.2 Operator driven RG flow

In this section we consider the case of an operator driven RG flow, the GPPZ flow [25].

The equations of motion again follow from (5.1), with the superpotential being

W (φ) =
1

2

(
1 + cosh

(
2φ√

3

))
(5.57)

The metric can be expressed as

ds2 =
dρ2

ρ2
+

1

ρ2
(1− µ2ρ2)dx · dx (5.58)

while the scalar field is given by

φ =

√
3

2
log

(
1 + µρ

1− µρ

)
(5.59)

The scalar φ is dual to a dimension three operator. By expanding near the conformal

boundary and using the holographic renormalization dictionary, [23, 24] showed that the

GPPZ solution is dual to a deformation (proportional to µ) ofN = 4 SYM by the dimension

three scalar operator, with the expectation values of the operators being

〈Tij〉 = 〈O〉 = 0. (5.60)

The vanishing stress energy tensor is again required by supersymmetry while the vanishing

of the scalar VEV reflects the explicit (as opposed to spontaneous) symmetry breaking.
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Now let us consider the renormalized entanglement entropy of a strip region in this

geometry. The entanglement entropy can be expressed as

S =
V2

2G5

∫
dρ

(1− µ2ρ2)

ρ3

√
1 + (1− µ2ρ2)(x′)2 (5.61)

The overall dependence on the deformation µ can be scaled out to give

S =
V2µ

2

2G5

∫
dv

(1− v2)

v3

√
1 + (1− v2)(∂vX)2 (5.62)

where v = µρ and X = µx. Then the entangling surface of width L satisfies

µL = 2λ

∫ v0

0
dv

v3√
(1− v2)4 − v6λ2(1− v2)

(5.63)

where the integration constant λ is related to the turning point of the surface v0 by

λ =
(1− v2

0)
3/2

v3
0

. (5.64)

As in the previous cases there is a phase transition between a connected solution for µL <

µLcrit and a disconnected solution for µL > µLcrit where

µLcrit ≈ 0.3008. (5.65)

The regulated entanglement entropy is then

Sreg =
V2µ

2

2G5

∫ v0

ε
dv

(1− v2)
5/2

v3

√
(1− v2)3 − v6λ2

. (5.66)

The counterterms for the entanglement entropy can be derived from the bulk action coun-

terterms using the replica trick:

Sct = − 1

8G5

∫
∂Σε̃

d2x
√
h̃

(
1 +

2

3
φ2 log(ε)

)
(5.67)

where the cutoff in the ρ coordinates is ε̃ = ε/µ. Evaluating this counterterm gives a

contribution from each endpoint of the strip:

Sct = − V2

8G5

(
1

ε2
− 1 + 2 log ε

)
, (5.68)

which indeed matches the regulated divergences of (5.66). Thus the total renormalized

entropy is

Sren =
V2µ

2

4G5
lim
ε→0

2

∫ v0

ε
dv

(1− v2)
5/2

v3

√
(1− v2)3 − v6λ2

− 1

2ε2
+

1

2
− log ε

 . (5.69)
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Figure 4. The renormalized entropy for the GPPZ flow. The solid blue line and solid orange

lines indicate the renormalized entropy for the two possible connected minimal surfaces. Note that

Sren > 0 near µLcrit for the connected solutions.

These integrals can once again be evaluated numerically, the results of which are plotted

in figure 4. As in the case of the spherical brane distribution, there are two possible turning

points for a given length L < Lcrit, the branch with v0 < v0,crit is favoured for all such L.

Both branches are positive near L = Lcrit, whereas it can be shown analytically that the

renormalized entropy is zero for disconnected surfaces and so there is a transition from the

connected to disconnected surface solutions at around

µLc ≈ 0.27 (5.70)

where the entanglement entropy has a discontinuous derivative.

6 Non-relativistic deformations

Entanglement entropy is a natural computable in non-relativistic quantum field theories

that are used to describe condensed matter systems. As for relativistic systems, entangle-

ment entropy can be used to classify different phases of the system, and the behaviour of the

entanglement entropy as one scales up or down the entangling region size can elucidate the

UV and IR behaviour of the theory. Holography provides a large class of duals to strongly

interacting non-relativistic systems, and it is interesting to explore how entanglement en-

tropy in these systems differs from that in perturbative realisations of non-relativistic quan-

tum field theories. In this section we will explore Schrödinger geometries, which indeed

exhibit an interesting transition from UV to IR behaviour. It would be interesting to

explore renormalized entanglement entropy in Lifshitz geometries also, but non-trivial be-

haviour in this case requires time dependent setups — minimal surfaces at constant time
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in Lifshitz behave precisely as those in AdS. We therefore postpone exploration of (time

dependent) renormalized entanglement entropy in Lifshitz for future work.

Schrödinger metrics in (p+ 3) dimensions can be written as [26]

ds2 =
b2

r2z
(dx+)2 +

1

r2

(
dr2 + dx+dx− + dxidxi

)
(6.1)

where the index i runs over p directions. The light cone coordinates can be rewritten as

x± = (y ± t) (6.2)

The metric can be supported by (real) massive gauge fields provided that b2 > 0 for z < 1

and b2 < 0 for z > 1.

In both cases the dual field theory can be understood as a deformation of the CFT

by an operator that breaks the relativistic symmetry but respects non-relativistic scaling

invariance i.e. the dual theory has the form [27]

ICFT +

∫
dp+2x |b|O− + · · · (6.3)

where the operator O− is a vector (or tensor) that picks out the x+ direction. The de-

formation is relevant (dimension less than (p + 2)) with respect to the original conformal

symmetry for z < 1 and irrelevant for z > 1.

Let us consider the case of z < 1, so that the theory remains UV conformal; this case

was explored in detail in [28]. We can then specify a spacelike entangling region in the dual

quantum field theory, at constant t, defined by y(xi). (For z > 1, the situation is more

complicated as surfaces of constant t are not spacelike at infinity and we will not discuss

this case further here.)

We can illustrate the behaviour of the entangling surfaces by two cases: a slab of width

L in the y direction and a slab of width L along one of the xi directions. In the latter case

the entangling surface in the bulk is described by w(r) (where w is the direction transverse

to the entangling region) and the entangling functional is

S1 =
RyVp−1

2G

∫
1

r(p+1)

√
1 + b2r2(1−z)

√
1 + w′(r)2dr (6.4)

where Ry is the regulated length of the y direction and Vp−1 is the regulated volume of the

xi directions, excluding w.

In the other case the entangling surface is described by y(r) and the entangling func-

tional is

S2 =
Vp
2G

∫
1

r(p+1)

√
1 + (1 + b2r2(1−z))y′(r)2dr (6.5)

where now Vp is the regulated volume of the xi directions.

Note that both entangling functionals can be expressed in the form

S = N
∫
f(r)

√
1 + g(r)w′(r)2dr (6.6)
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for suitable choices of the overall normalisation N and the functions (f(r), g(r)). Then the

width of the entangling region is given by

L = 2

∫ ∞
ro

dr√
g(r)(g(r)f(r)2 − g(ro)f(ro)2)

(6.7)

where ro is the turning point of the minimal surface and

S = N
∫ ∞
ro

f(r)2
√
g(r)√

g(r)f(r)2 − g(ro)f(ro)2
dr. (6.8)

When f(r) and g(r) are monomials of r, the renormalized entanglement entropy can be

calculated exactly using the AdSD result derived in section 3.

For the slab along the xi directions, the renormalized entanglement entropy interpolates

between the AdSp+3 result (for small slab widths)

(S1)ren = −RyVp−1

4pGLp

2
√
πΓ
(

1
2(p+1) + 1

2

)
Γ
(

1
2(p+1)

)
p+1

(6.9)

and the following result for large slab widths

(S1)ren = − b2RyVp−1

4(p+ z − 1)GLp+z−1

2
√
πΓ
(

1
2(p+z) + 1

2

)
Γ
(

1
2(p+z)

)
p+z

(6.10)

The latter expression applies for bL1−z � 1, in which case the functional is approximated by

S1 =
RyVp−1

2G

∫
b

r(p+z)

√
1 + w′(r)2dr (6.11)

which is precisely the functional analysed in section 3 (taking D = p+ z).

In the other case, the renormalized entanglement entropy is also given by the AdSp+3

result for small slab widths while at large slab widths bL1−z � 1 the relevant functional is

S2 =
Vp
2G

∫
1

r(p+1)

√
1 + b2r2(1−z)y′(r)2dr. (6.12)

Consider first the special case of z = 0. By a change of variable we can express this

functional as

S2 =
bVp
2G

∫
1

w
p
b

√
1 + ẏ(w)2dw, (6.13)

where ẏ = dy/dw. From the general result (3.12), we can now read off the renormalized

entanglement entropy as

(S2)ren = − bVp

4(pb − 1)GL
p
b
−1

2
√
πΓ
(
b

2p + 1
2

)
Γ
(
b

2p

)


p
b

(6.14)
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For 0 < z < 1, the functional (6.12) can be expressed as

S2 =
bVp
2G

(
1

zb

) p
z

+1 ∫ dw

w
p
z

+1

√
1 + ẏ(w)2dw (6.15)

and thus from (3.12)

(S2)ren = − bVp

4(pz )GL
p
z

(
1

zb

) p
z

+1
2
√
πΓ
(

1
2( p
z

+1)
+ 1

2

)
Γ
(

1
2( p
z

+1)

)


p
z

+1

(6.16)

which is manifestly consistent with (6.9) for b = z = 1.

Thus the renormalized entanglement entropy scales differently for large slab widths

(such that bL1−z � 1), depending on the orientation of the slab with respect to the

y direction along which the theory is deformed away from conformality. In this case the

explicit symmetry breaking is associated with a breaking of the relativistic symmetry, while

preserving non-relativistic scale invariance, and the renormalized entanglement entropy

does not have a discontinuity in its derivative and does not saturate in the deep IR. (Note

however that the Schrödinger geometry has a null curvature singularity and thus quantum

corrections to the geometry may change the deep IR behaviour.)

7 Interpretation and comparison to QFT results

In the previous sections we have explored the renormalized entanglement entropy for slab

domains in a variety of holographic models. While the general method of area renormal-

ization is applicable to entangling domains of any shape, it is particularly convenient to

use slab domains for several reasons. Firstly, the equations of motion admit first integrals,

thus simplifying the analysis. Secondly, slab entangling domains have been analysed for a

variety of quantum field theories in the literature. Note that the previous literature does

not compute the renormalized entanglement entropy, but typically extracts instead

c(L) =
∂S

∂L
. (7.1)

As we discussed in the introduction, in any local quantum field theory the divergences in

the entanglement entropy are necessarily independent of the width of the slab, L, and thus

c(L) is manifestly UV finite.

Consider now the renormalized entanglement entropy. The counterterms include fi-

nite contributions, as illustrated in the previous section, but these finite contributions are

independent of the width of the slab, as the counterterms are expressed in terms of local

quantities at the boundaries of the entangling region. Therefore

∂Sren

∂L
=
∂Sreg

∂L
= c(L), (7.2)

and thus the slope of our renormalized quantity matches the c function defined in earlier

literature. This statement can be expressed as

Sren =

∫
c(L)dL+ s0 (7.3)
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where s0 is independent of L, but dependent on parameters of the theory. Thus the

renormalized quantity is an integrated version of the c function. (Note that the c(L) is

defined in various different ways in the literature. For example, [3] use a definition of the

entropic c function that incorporates factors of L.)

Next let us consider the UV and IR behaviour of the renormalized entanglement en-

tropy. The renormalized entanglement entropy measures the residual entanglement be-

tween the entangling region and its complement, after subtracting the divergent contribu-

tions arising from entanglement at the boundary. In the ground state of a conformal field

theory, correlation functions are characterised by power law behaviour and thus it would

be reasonable to expect that the residual entanglement scales inversely with the width of

the slab entangling region (and extensively with the length of the slab region).

This heuristic argument is in agreement with the explicit holographic result (3.12). For

a slab region in the ground state of a conformal field theory, the L independent contribution

s0 in (7.3) is necessarily zero, as there is no dimensionless ratio that is independent of L.

The renormalized entanglement entropy is thus determined entirely by the c function, with

the positivity of the latter implying the negativity of the former. For non-conformal branes,

the entanglement entropy is controlled by the conformal structure in (d−2αγ) dimensions,

and therefore similar arguments apply.

Suppose that in the IR of the theory correlation functions fall off exponentially with

characteristic mass scale σ; entanglement is thus significant only on length scales of order

σ−1 from the entangling region boundaries. If the width of the entangling region L is

much greater than this length scale, then we would expect the renormalized entanglement

entropy to saturate to a value that is independent of L. On dimensional grounds this

residual entanglement entropy must then scale for a d-dimensional theory as Vd−2σ
d−2 for

a slab region of area Vd−2. Thus there is a non-vanishing constant term in (7.3) which

would not be seen in the c function (which is in such cases zero for large L).

This behaviour can be seen in a number of explicit QFT calculations. In [29] the

entanglement entropy for massive scalar fields in various dimensions was computed, and

expressed in term of the derivative of the entanglement entropy with respect to the mass

µ. The latter is sensitive to the contributions to the renormalized entanglement entropy

that are independent of L, and hence are lost from the c function. For example, for d = 3,

it was shown that

Sµ ≡ −µ2 ∂S

∂µ2
=
V1µ

24
(7.4)

with V1 � µ−1 the regulated length of the slab region. Integrating this expression results

in a finite contribution to the renormalized entanglement entropy

Sren = −V1µ

12
, (7.5)

in agreement with the above arguments.

In d = 4 the analogous expression is

Sµ ≡ µ4 ∂2S

∂(µ2)2
=
V2µ

2

48π
. (7.6)
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These terms arise from logarithmic divergences in the regulated entanglement entropy

S = · · ·+ V2

48π

(
µ2 log(µ2ε2)− µ2

)
. (7.7)

Whenever there is a logarithmic divergence, the renormalized entanglement entropy has

scheme dependence, corresponding to the choice of finite counterterms [6].

Such logarithmic divergences occur in particular for CFTs in d dimensions deformed

by operators of dimension ∆ = d/2 + 1 [30, 31]. The logarithmic divergences are removed

by counterterms of the form ∫
∂Σ
dd−2x

√
γφ2 log ε (7.8)

in holographic realisations, where φ is the scalar field dual to the deforming operator. By

rescaling ε→ eαε this counterterm will change to∫
∂Σ
dd−2x

√
γφ2(log ε+ α) (7.9)

with the latter term being finite (due to the operator dimension). In particular, using the

leading asymptotic behaviour for the scalar field, the latter term contributes a term

αVd−2φ
2
s (7.10)

to the renormalized entanglement entropy, where φs is the operator source. Therefore, the

renormalized entanglement entropy depends explicitly on the choice of the coefficient of the

finite term α. (More generally, operators of dimension ∆ = d(1−1/2n)+1/n are associated

with logarithmic divergences [6] and hence lead to finite terms in the entanglement entropy

behaving as Vd−2φ
2n
s .)

In supersymmetric theories, the ambiguity can be fixed by requiring that the renor-

malization scheme for the partition function respects supersymmetry and then using the

replica trick to derive the counterterms for the entanglement entropy. The renormalization

scheme for GPPZ, which indeed corresponds to a CFT deformed by a supersymmetric op-

erator of dimension ∆ = d/2 + 1, was constructed to respect supersymmetry [23, 24]. It is

thus perhaps unsurprising that the supersymmetric scheme implies that the renormalized

entanglement entropy in this case vanishes in the deep IR.

The discontinuity in the derivative of the entanglement entropy with respect to L

in a holographic confining theory was first described in [1]. In the examples of explicit

and spontaneous symmetry discussed here the renormalized entanglement entropy always

saturates in the IR, and there is a discontinuity in the derivative of the entanglement

entropy at the critical value of L, at which the dominant entangling surface becomes

disconnected. Note however that the slope of the derivative can be small close to the

transition point, as in one of our Coulomb branch examples, and one thus needs to ensure

that the numerical resolution is sufficient to capture the discontinuity in the derivative.

In addition to calculations of the entanglement entropy in free field theories, various

calculations of the entanglement entropy for slab regions have been carried out in lattice

gauge theories. In [32] the entanglement entropy for a slab of width L in a four-dimensional
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SU(2) gauge theory was studied numerically. The results of this study are in agreement

with the behaviour found here. The derivative of the entanglement entropy with respect

to L has a discontinuity at a critical value, as found in holographic confining theories in [1]

and discussed above, and it was also observed that there are finite contributions to the

entanglement entropy which scale as 1/L2 for small width entangling regions.

While [32] did not extract the renormalized entanglement entropy, their results imply

that the renormalized entanglement entropy would scale as 1/L2 for small width entangling

regions. The SU(2) gauge theory is asymptotically free and thus one would expect the

renormalized entanglement entropy for small regions to be captured by free gluons, which

indeed scales in accordance with the conformal result discussed earlier in the paper. Note

that the residual finite contributions at large L were not computed in [32].

A more recent lattice simulation [33] studied entanglement entropy for slab regions in

SU(3) gauge theory in four dimensions. The generic features are similar to those found

in the SU(2) theory (free at small distances, c(L) goes to zero at finite L), although the

detailed features near the critical length differ between SU(2) and SU(3). In particular, c(L)

seems to go smoothly to zero at the critical length, and therefore there is no discontinuity in

the derivative of the entanglement entropy with respect to L. As in [32], only the vanishing

of the derivative of the renormalized entanglement entropy for large L was shown; the

residual finite entanglement entropy was not computed.

8 Conclusions and outlook

In this paper we have explored renormalized entanglement entropy for slab domains, for

a variety of different holographic theories. We have shown that the renormalized entan-

glement entropy captures not just the features of the previously discussed entangling c

function, but also the deep IR behaviour of symmetry breaking theories (where the c

function vanishes). It would be interesting to analyse the properties of renormalized en-

tanglement entropy for other common entangling regions, such as spheres and hypercubes.

Note however that the latter are considerably more complicated to compute holographi-

cally: the equations of motion for the minimal surfaces do not admit first integrals and the

vertices of hypercubes are generally associated with additional logarithmic counterterms

in the entanglement entropy.

The examples discussed in this paper indicate the existence of general bounds on the

renormalized entanglement entropy: Sren ≤ 0 with Sren → 0 for supersymmetric RG flows

triggered by operator deformations. It would be interesting to develop proofs of these

bounds in future work. Related bounds were discussed in [34], although the functional

analysed in [34] is not identical to the renormalized entanglement entropy considered here.

Note that there are heuristic arguments why Sren ≤ 0. For CFTs in odd dimensions,

following [35], the renormalized entanglement entropy for spherical regions is related to

the partition function on a sphere, and the negativity of the renormalized entanglement

entropy is thus related to the conjectured positivity of the F quantity [36]. (Away from the

fixed points, along the RG flow, the relationship between the F quantity (the free energy

on the sphere) and the renormalized entanglement entropy is more complicated than the
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relation in [35] but nonetheless in all explicit examples positivity of F indeed maps to

negativity of the renormalized entanglement entropy for a disk region.)

More generally, the renormalized entanglement entropy coincides with minus the

(renormalized) Euclidean action for a D(d − 1)-brane with no worldvolume gauge fields

and no Chern-Simons couplings to background fluxes i.e. the latter is also a minimal sur-

face. The (renormalized) Euclidean action is positive semi-definite for stable D-brane em-

beddings, and vanishes for supersymmetric D-brane embeddings. This heuristic argument

suggests that the renormalized entanglement entropy should be negative semi-definite but

does not however explain why the renormalized entanglement entropy is zero in the IR for

supersymmetric operator driven flows but not for supersymmetric VEV driven flows.

Holography allows us to explore entanglement entropy for a wide variety of strongly

coupled quantum field theories. In this work we have extracted from existing perturbative

and lattice results the behaviour of the renormalized entanglement entropy for slabs but it

would clearly be interesting to explore renormalized entanglement entropy directly within

perturbative quantum field theory, using varied renormalization methods. The replica trick

allows us to derive the counterterms for the entanglement entropy but it would be useful to

understand the role of these counterterms in computations of renormalized entanglement

entropy via twist field correlators.

There has been considerable progress in understanding the computation of entangle-

ment entropy in lattice gauge theories, see for example [32, 33, 37–39], and it would be

interesting to explore how the continuum limit of such computations can be matched with

our definition of renormalized entanglement entropy.

More generally, one would hope that it may become possible to calculate entanglement

entropy for certain supersymmetric theories on the lattice in the near future — see for

example [40] for recent progress on simulating N = 4 SYM. We can rewrite the holographic

result (3.12) for the renormalized entanglement entropy for a slab in N = 4 SYM as

Sren ≈ −0.114
N2Vy
L2

. (8.1)

Conformal invariance implies that the renormalized entanglement entropy has a leading

behaviour at large N

Sren = −f(g2
YMN)

N2Vy
L2

(8.2)

where f(g2
YMN) is a positive function of the ’t Hooft coupling; it is this function that one

would like to compute perturbatively using lattice simulations. One can estimate the free

field value of this function by summing contributions from the six real scalars, four Weyl

fermions (equivalent to two Dirac fermions) and the gauge field of N = 4 SYM. Estimating

the gauge field contributions by scaling the recent SU(3) result of [33] and taking the other

contributions from [3, 41] we obtain f ∼ −0.05 at zero coupling. This suggests that the

magnitude of f increases with the ’t Hooft coupling, as one might expect.

Finally, we would like to turn to issues of measurability. Throughout this paper we

have focussed on the definition and calculation of renormalized entanglement entropy in

a UV complete quantum field theory. We believe that this is an important computable:
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our systematic renormalization procedure makes it clear when the renormalized quantity

is scheme independent and thus when finite residual terms are meaningful. The systematic

renormalization also allows us to compare different phases.

One may however be interested in a system for which only a low energy effective theory

description is known; this effective field theory may not be renormalizable. In such a con-

text, one would first calculate the regulated entanglement entropy in terms of the UV cutoff

for the system. If the effective field theory description is associated with a renormalizable

quantum field theory, one could follow the procedures of this paper to define renormalized

entanglement entropy. (This will indeed be the case if the IR theory is a CFT.) If however

the effective field theory is not renormalizable, one will inevitably need to retain the cutoff

dependence in the entanglement entropy and work with the regulated quantity. In the latter

context, one will not be able to extract in a meaningful way finite contributions to the entan-

glement entropy. Thus the renormalized entanglement entropy, as with other renormalized

QFT quantities, is applicable to UV complete renormalizable quantum field theories.
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