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1 Introduction

Strong correlated systems in condensed matter have found in non-relativistic holography

a new technique to understand their behaviour, see for example [1, 2]. The reason is that

holography is a strong-weak duality mapping. If, in the screen we have a strong coupled

quantum field theory, in the bulk we have a weak description of string theory. If we are

in a situation where the curvature of the space time is small, we can use classical gravity

instead of full string theory. In the case of non-relativistic holography in the bulk one can

use an Einstein metric with non-relativistic isometries [3–6] or non-relativistic gravities in

the bulk [7–10], like Newton-Cartan gravity [11] or Horava gravity [12]. Having in mind this

picture, it is interesting to study matter coupled to non-relativistic gravity. For example

particles [13], and extended objects [14] and Galilean field theories [15, 16] coupled to a

Newton-Cartan background.

In this paper we construct the action of a non-relativistic spinning particle moving in a

general torsionless Newton-Cartan background. The particle does not follow the geodesic

equations, instead the motion is governed by the non-relativistic analog of the Papapetrou

equation [17]. The spinning particle is described in terms of Grassmann variables. In

the flat case the action is invariant under the non-relativistic analog of space-time vector

supersymmetry, called VSUSY [18]. This model is obtained from the relativistic spinning

particle [19] with variables ξµ, ξ5.

In the flat case, the limit is done at the level of the coordinates of the particle, the form

of the limit being suggested by the contraction of the algebra of VSUSY to a non-relativistic

version, that we will call NR-VSUSY. The model is invariant under this non-relativistic
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symmetry and also invariant under diffeomorphisms and the non-relativistic VSUSY version

of kappa-symmetry [20–22]. The associated two first class constraints give rise to the non-

relativistic mass-shell constraint and to a Levy-Leblond type of constraint [23, 24].

In order to get the non-relativistic spinning particle in a torsionless Newton-Cartan

background, our starting point is a relativistic spinning particle coupled to a general Ein-

stein background [25] and to a U(1) gauge field with vanishing field strength [26, 27]. In

this case the non-relativistic limit is done on the background fields and not on the coordi-

nates. We find that the first class character of the constraints imposes the condition that

the U(1) connection surviving in the non-relativistic limit must have zero field strength.

The paper is organized as follows: in section II we perform a contraction of the VSUSY

algebra leading to its non-relativistic version. In section III we introduce the action of the

VSUSY particle [18]. Then, we define the non-relativistic limit of this model by performing

a transformation of the dynamical variables in agreement with the results of section II. In

section IV we study the equations of motion of the non-relativistic model showing the

presence of two first-class constraints that are associated to the diffeomorphism invariance

of the model, and to the non-relativistic version of the kappa-symmetry owned by the

relativistic model. This world-line symmetry is investigated in section V. In section VI we

start again from the relativistic model coupled to a general four-dimensional background

metric [25] and define the limit to a torsionless Newton-Cartan metric, using the group

contraction defined in section II. In section VII we derive the equations of motion, showing

that, as in the relativistic case, the geodesic equations are corrected by a term proportional

to the spin of the particle coupled to a Newton-Cartan curvature. In section VIII our

conclusions and an outlook.

2 Algebra contraction

Many dynamical models can be obtained as non-linear realizations of a space-time sym-

metry group, G. Examples are the relativistic point particle [28], the relativistic spinning

particle [18], the D-branes [29] etc. An interesting question is what happens to these mod-

els if we consider a contraction of the Lie algebra of G, Lie-G. Another related question

arises if one couples the original model to a gravitational field. Precisely one can ask what

happens to the gravitational field after the contraction. This last question will be discussed

later on. To be more explicit let us define the contraction of a given algebra. Suppose that

our starting algebra (or a superalgebra) satisfies the commutation relations

[Xα, Xβ ] = fγ
αβXγ (2.1)

and let us define an invertible linear transformation depending on a parameter ω

Yα =
∑

β

Aβ
α(ω)Xβ . (2.2)

The Lie algebra satisfied by the new generators will be

[Yα, Yβ] = f̄ γ
αβ(ω)Yγ , (2.3)

– 2 –
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with

f̄ γ
αβ(ω) = Aσ

α(ω)A
τ
β(ω)(A

−1)γδ (ω)f
δ
στ . (2.4)

Then, consider the limit ω → ∞ and suppose that the limit of the new structure constants

f̄ γ
αβ(ω) is finite. When the limit is non-singular, we say that the algebra of the Yα’s is

a “contraction” of the algebra of the Xα’s. Notice that the contracted algebra is not

equivalent to the original one. We will now define a non-relativistic contraction of the

relativistic VSUSY algebra to the non-relativistic version, NR-SUSY.

The VSUSY algebra is a graded extension of the Poincaré algebra, with odd generators

Gµ and G5, the relevant brackets being (see [18])

[Mµν ,Mρσ] = −iηνρMµσ − iηµσMνρ + iηνσMµρ + iηµρMνσ, (2.5)

[Mµν , Pρ] = iηµρPν − iηνρPµ, [Mµν , Gρ] = iηµρGν − iηνρGµ, (2.6)

[Gµ, Gν ]+ = ηµνZ, [G5, G5]+ = Z5, (2.7)

[Gµ, G5]+ = −Pµ, (2.8)

where the bracket [·, ·]+ defines, as usual, the anticommutator. This algebra involves also

two scalar central charges Z and Z5 Here we make use of the flat metric

ηµν = (−,+,+,+). (2.9)

As we will see, it is useful to introduce the following combination of the central charges

Z± = Z ± Z5. (2.10)

In order to define the contraction we introduce a dimensionless parameter ω to be sent

to infinity. . Then, we relate the relativistic generators to the non-relativistic ones, by the

following equations

P0 =
α

ω
H − ωZ̃−, Z− = −2(1 + α)

ω
H + 2ωZ̃−, Z+ = 2ωZ̃+,

G0 =
1√
2ω

Q+ +

√

ω3

2
Q−, G5 =

1√
2ω

Q+ −
√

ω3

2
Q−, Gi =

√

ω

2
Qi,

M0i = ωBi, (2.11)

whereas all the other variables are left unchanged and α is a dimensionless parameter. We

will need also the inverse relations.

H =
ω

2
(−2P0 − Z−) , Z̃− = − 1

2ω
(αZ− + 2(1 + α)P0) , Z̃+ =

1

2ω
Z+,

Q+ =

√

ω

2
(G0 +G5) , Q− =

√

1

2ω3
(G0 −G5) , Qi =

√

2

ω
Gi,

Bi =
1

ω
M0i. (2.12)
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The relevant commutators and anticommutators, in the limit ω → ∞, are

[Bi, H] = iPi, [Bi, Pj ] = iδijZ̃−, (2.13)

[Q+, Q+]+ = H, [Q−, Q−]+ = 0, [Q+, Q−]+ = −Z̃+,

[Qi, Qj ]+ = 2δij(Z̃+ + Z̃−), [Q+, Qi]+ = −Pi, (2.14)

[Bi, Q+] = − i

2
Qi, [Bi, Qj ] = −iδijQ−, [Bi, Q−] = 0. (2.15)

If we put Q− = 0, Z̃+ = 0, the previous algebra collapses to the algebra found

in [30]. To complete the analysis of the NR-VSUSY algebra we will consider the rela-

tivistic quadratic Casimir [31, 32]: P 2−ZZ5. We use Z = (Z++Z−)/2, Z5 = (Z+−Z−)/2

(see eq. (2.10)). Expanding in powers of ω we find:

P 2 − ZZ5 = −
(α

ω
H − ωZ̃−

)2
+ ~P 2 − 1

4

(

4ω2Z̃2
+ −

(

−2(1 + α)

ω
H + 2ωZ̃−

)2
)

=
1 + 2α

ω2
H2 + ~P 2 − 2HZ̃− − ω2Z̃2

+. (2.16)

In the limit ω → ∞ we have a divergent term proportional to Z̃2
+. Since Z̃+ is a central

charge, it is clear that the Z̃2
+ is a Casimir of the NR-VSUSY algebra. In this situation also

the finite part is a Casimir and coincides with the Casimir of the Bargmann algebra [33]

CE = ~P 2 − 2HZ̃−. (2.17)

In the relativistic case, if the bosonic Casimir vanishes, that is P 2 − ZZ5 = 0, an odd

Casimir: GµP
µ + ZG5 [31, 32] is also present. . Using the definitions given in eq. (2.11)

and expanding in powers of ω, we find (we have assumed Z+ = 0)

GµP
µ + ZG5 =

ω1/2

√
2

(

~Q · ~P + 2Z̃−Q+ +Q−H
)

− ω−3/2

√
2

(1 + 2α)Q+H. (2.18)

Let us consider the coefficient of
√

ω/2

CO = ~Q · ~P + 2Z̃−Q+ +HQ−. (2.19)

It is easily checked that this is a Casimir of the NR-VSUSY if CE = 0 (remember that we

have assumed Z̃+ = 0). Notice also, that

[CO, CO]+ = −2Z̃−CE . (2.20)

As we will see in the next section, the existence of the odd Casimir will imply that the

NR-VSUSY spinning particle shows a kappa-invariance [18].

Notice that the parameter α, appearing in the definition of the generators of the

contracted algebra in eq. (2.11), does not affect the NR-VSUSY algebra. As a consequence,

although we do not have a formal proof, we expect that all the expressions depending only

on the algebra itself do not depend on the choice of α. In the following we will show that

the non relativistic limit of the relativistic Lagrangian describing the spinning particle does

not depend on α.
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3 Non relativistic limit of the VSUSY particle

In the context of non-linear realization of a group symmetry G, the dynamical variables

defining the model are nothing but the coset parameters. This allows us to transfer the

contraction from the algebra to the dynamical variables, xα, assuming

∑

α

xαXα =
∑

α,β

xαAβ
α(ω)Yβ ≡

∑

α

x̃α(ω)Yα, (3.1)

where we have defined the “contracted” variables

x̃α =
∑

β

xβAα
β(ω). (3.2)

The original dynamical model is defined in terms of a lagrangian depending on the dynam-

ical variables xα. As a consequence we define the lagrangian of the “contracted” dynamical

model as

Lcontracted(x̃) = lim
ω→∞

L(x(x̃(ω)). (3.3)

The simplest example of this procedure is the non-relativistic limit of the relativistic point

particle. One starts from the Poincaré symmetry, IO(1, 3), in a four-dimensional space-

time. The model can be obtained by considering the coset IO(1, 3)/O(1, 3). The dynamical

variables are the coordinates xµ, the coset parameters. By performing the contraction to

the Galilei group, one obtains the non-relativistic point particle, except for a divergent

total derivative. The divergent term can be eliminated by introducing the coupling to a

U(1) gauge field with vanishing field strength [27]. In the case of the model considered in

this paper, this U(1) gauge field is obtained by the gauging of one of the central charges

of the VSUSY algebra.

In this paper we will apply the previous idea to the spinning particle [19]. This model

is based on the invariance with respect to the VSUSY algebra. The construction of the

dynamical model as a non-linear realization of V-SUSY has been considered in [18]. Here

we will consider the contraction of the relativistic model to its non-relativistic version,

invariant under NR-VSUSY. In order to get the non-relativistic version, we will make use

of the contraction defined in the previous section.

The action for the VSUSY particle, introduced in [18, 19] is given by

S [x(τ), ξ(τ)] =

∫

dτ

(

−µ

√

−
(

ẋµ − iξµξ̇5
)2

− β

(

ċ+
i

2
ξµξ̇µ

)

− γ

(

ċ5 +
i

2
ξ5ξ̇5

)

)

,

(3.4)

where xµ are the space-time coordinates, ξµ is a Grassmann pseudo-vector, ξ5 a Grassmann

pseudo-scalar, c and c5 are the bosonic coordinates associated to the two central charges

of the VSUSY algebra , τ parametrizes the trajectory and the parameters β and γ satisfy

βγ = −µ2, (3.5)

in order the system is invariant under a gauge world-line supersymmetry, i.e., kappa sym-

metry [18]. We will make the choice β = −γ = −µ. The choice β = µ would give rise to
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divergent terms that are not total derivatives in the NR limit. The action (3.4) is Poincaré

invariant and it has a vector supersymmetry defined by the following variations of the

coordinates:

δxµ = iǫµξ5, δξµ = ǫµ, δc =
i

2
ξµǫ

µ (3.6)

and

δξ5 = ǫ5, δc5 =
i

2
ξ5ǫ5, (3.7)

where the ǫµ, ǫ5 are the supersymmetric parameters. As discussed before, we define the

non-relativistic variables starting from the contracted algebra and requiring the following

relation (for analogous relations in the bosonic case see [26]):

xµPµ+cZ+c5Z5+ξµGµ+ξ5G5 = −tH+~x· ~P+
1

2
(c̃+Z̃++c̃−Z̃−)+ξ̃0Q−+ξ̃5Q++ξ̃iQi. (3.8)

Here we have omitted the Lorentz group generators, because the related parameters do not

enter into the action. From eq. (3.8) we obtain the following relations

x0 = ωt− 1 + α

2ω
c̃−, c− = − α

2ω
c̃− + ωt, c+ =

1

2ω
c̃, c± = c± c5,

ξ0 =

√

ω

2
ξ̃5 +

√

1

2ω3
ξ̃0, ξ5 =

√

ω

2
ξ̃5 −

√

1

2ω3
ξ̃0, ~ξ =

√

2

ω
~̃
ξ. (3.9)

The inverse relations are:

t = − 1

ω
(αx0 − (1 + α)c−), c̃− = −2ω(x0 − c−), c̃+ = 2ωc+,

ξ̃0 =

√

ω3

2
(ξ0 − ξ5), ξ̃5 =

1√
2ω

(ξ0 + ξ5), ξ̃i =

√

ω

2
ξi. (3.10)

Then, performing the limit, the result is

SNR =

∫

dτLNR =

∫

dτ

[

1

2
M

(~̇x− i
~̃
ξ
˙̃
ξ5)2

ṫ− iξ̃5
˙̃
ξ5/2

+ iM
~̃
ξ · ~̇̃ξ + M

2

d

dτ
(c̃− + iξ̃0ξ̃5)

]

, (3.11)

where

M =
µ

ω
(3.12)

is assumed to be finite. Notice that there is no divergent term in the non-relativistic

expansion. This is due to the presence of the variables c±, associated to the central charges

Z±, related to two U(1) curl-free gauge fields. In fact, we can re-express the total derivative

terms ċ and ċ5 appearing in (3.4) in the forme ∂µMiẋ
µ, i = 1, 2.

In order to get the NR-VSUSY transformations, we notice that the transformations

of the NR variables, are obtained, through the eqs. (3.10) from the corresponding trans-

formation laws of the relativistic variables, given in eqs. (3.6) and (3.7). For infinitesimal

transformations, the NR parameters are given by the same combinations defining ξµ and

ξ5 in terms of their NR correspondent (see eq. (3.9)):

ǫ0 =

√

ω

2
ǫ̃5 +

√

1

2ω3
ǫ̃0, ǫ5 =

√

ω

2
ǫ̃5 −

√

1

2ω3
ǫ̃0, ~ǫ =

√

2

ω
~̃ǫ. (3.13)
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The NR variables transform as follows:

δt =
i

2
ǫ̃5ξ̃5, δ~x = i~̃ǫ ξ̃5 δξ̃5 = ǫ̃5, δ

~̃
ξ = ~̃ǫ,

δc̃+ = 0, δc̃− = −i(ǫ̃0ξ̃5 − ǫ̃5ξ̃0), δξ̃0 = ǫ̃0, (3.14)

and it is easily seen that LNR is invariant under the transformations (3.14). Eliminating

the total derivative term from LNR , this would be quasi-invariant.

Let us now consider the canonical momenta associated to the non relativistic action.

We have

~p =
∂LNR

∂~̇x
= M

(~̇x− i
~̃
ξ
˙̃
ξ5)

ṫ− iξ̃5
˙̃
ξ5/2

, (3.15)

E = −∂LNR

∂ṫ
=

1

2
M

(~̇x− i
~̃
ξ
˙̃
ξ5)2

(

ṫ− iξ̃5
˙̃
ξ5/2

)2 , (3.16)

π̃5 =
∂lLNR

∂
˙̃
ξ5

= iM
(~̇x− i

~̃
ξ
˙̃
ξ5)

ṫ− iξ̃5
˙̃
ξ5/2

· ~̃ξ − i

4
M

(~̇x− i
~̃
ξ
˙̃
ξ5)2

(

ṫ− iξ̃5
˙̃
ξ5/2

)2 ξ̃
5

= i~p · ~̃ξ − i

2
Eξ̃5, (3.17)

~̃π =
∂lLNR

∂
~̇̃
ξ

= −iM
~̃
ξ. (3.18)

Here the derivatives with respect to the Grassmann variables are defined as left derivatives.

These relations imply two first class constraints

φ = 2ME − ~p 2 = 0, χ = π̃5 +
i

2
Eξ̃5 − i~p · ~̃ξ = 0, (3.19)

and the second class ones

χi = π̃i + iMξ̃i = 0. (3.20)

In fact,

{χi, χj} = −2iMδij , (3.21)

where we have made use of the following canonical Poisson brackets for the odd variables:

{ξ̃i, π̃j} = −δij , {ξ̃5, π̃5} = −1. (3.22)

The second class constraints can be eliminated using the Dirac brackets,

{ξ̃i, ξ̃j}∗ = −i
δij
2M

, {ξ̃5, π̃5}∗ = −1. (3.23)

For the first class constraints we have

{χ, χ}∗ = −iE + i
~p 2

2M
= − i

2M
φ, (3.24)

– 7 –
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and

{χ, φ}∗ = 0, (3.25)

showing that φ and χ are indeed first-class constraints.

The symplectic action of the NR spinning particle is given by

Sc =

∫

dτ

[

−Eṫ+ ~p~̇x+ iM
~̃
ξ · ~̇̃ξ + π̃5 ˙̃ξ5 − e

2
(2ME − ~p 2)− ρ

(

π̃5 +
i

2
Eξ̃5 − i~p · ~̃ξ

)]

,

(3.26)

where the Lagrange multipliers e, ρ multiply the first class constraints.

The Noether generators of VSUSY are easily found

Q+ = π̃5 − i

2
Hξ̃5, Q− = 0, Qi = π̃i + ipiξ̃

5 − iMξ̃i. (3.27)

Their Dirac brackets are

{Q+, Q+}∗ = iH, {Q+, Qi}∗ = −ipi, {Qi, Qj}∗ = 2iMδij . (3.28)

After quantization one can check that these Dirac brackets are consistent with the abstract

algebra of eq. (2.14), except for the opposite sign in the right hand side. This is due to

the fact that the infinitesimal variations in the classical case are generated by ǫG rather

than by iǫG as implicitly assumed in the case of the abstract algebra. In fact, the charges

in eq. (3.27) become anti-hermitian after quantization, whereas the abstract charges were

supposed to be hermitian. Notice that in this model Z− = M and Z+ = 0 and, as a

consequence, the NR-VSUSY algebra admits two Casimirs with zero value, corresponding

to the two constraints φ and χ.

4 Equations of motion

Since LNR is translationally invariant in time and space, the equations of motion for the

bosonic coordinates are simply (we will use indifferently E or H):

~̇p = Ė = 0. (4.1)

For the fermionic variables we get

∂LNR

∂
~̇̃
ξ

= −iM
~̃
ξ,

∂LNR

∂
~̃
ξ

= iM
~̇̃
ξ − i~p

˙̃
ξ5, (4.2)

from which
~̇̃
ξ =

~p

2M
˙̃
ξ5. (4.3)

Recalling the expression (3.18) for π̃5 we obtain

d

dτ

∂LNR

∂
˙̃
ξ5

= − i

2
E

˙̃
ξ5 + i~p · ~̇̃ξ, ∂LNR

∂ξ̃5
=

i

2
E

˙̃
ξ5, (4.4)

– 8 –
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implying

˙̃
ξ5 =

~p · ~̇̃ξ
E

. (4.5)

Notice that multiplying (4.3) by ~p we get

~p · ~̇̃ξ =
~p2

2M
˙̃
ξ5. (4.6)

This equation is the same as eq. (4.5), after using the constraint φ = 0. We see that the

equations of motion for the odd variables are not independent, in fact one is a consequence

of the others. The fact that the equations of motions are not independent implies that

a local (gauge) symmetry is present in the model. In other words, this implies that a

Noether identity is present. This will be shown explicitly in the next section. Also the

even constraint generates a relation among the equations of motion. In fact, differentiating

the even constraint ~p 2 − 2EM = 0 we get the identity

~p · ~̇p− 2ĖM = 0, (4.7)

implying that the four bosonic equations, ~̇p = Ė = 0, are not independent. The local

symmetry induced by the even constraint is the invariance under reparametrization in the

time parameter.

5 kappa-symmetry

As we know, the φ-constraint is related to the reparametrization invariance of LNR. Fur-

thermore, the existence of the constraint χ, and the fact that the equations of motion for

the fermionic variables are not independent, suggest the existence of a local (in the time-

parameter τ) symmetry. In this section, we will use the quantum notation, defining the

infinitesimal transformations of a dynamical variable F, as

δF = [iǫG, F ]. (5.1)

In the case of the even constraint the following local transformation is generated

δxi = −2ǫ(τ)pi, δt(τ) = −2ǫM, (5.2)

whereas for the odd case:

δA = [iκ(τ)χ,A]. (5.3)

We get

δ~x = i~ξκ, δt =
i

2
ξ̃5κ, δ

~̃
ξ =

~p

2M
κ, δξ̃5 = κ. (5.4)

Let us now consider the variations of the various terms in LNR

δ(~̇x− i
~̃
ξ
˙̃
ξ5) =

d

dτ

(

i
~̃
ξκ
)

− i
~p

2M
κ
˙̃
ξ5 − i

~̃
ξκ̇ = i

(

~̇̃
ξ +

~p

2M
˙̃
ξ5
)

κ. (5.5)
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Then,

δ

(

ṫ− i

2
ξ̃5

˙̃
ξ5
)

=
d

dτ

(

i

2
ξ̃5κ

)

− i

2
κ
˙̃
ξ5 − i

2
ξ̃5κ̇ = i

˙̃
ξ5κ. (5.6)

Finally we have to consider the variation of the
~̃
ξ kinetic term:

δ(iM
~̃
ξ · ~̇̃ξ) = −iM

~p

2M
· ~̇̃ξ κ+ iM

~̃
ξ · ~p
2M

κ̇. (5.7)

The total variation of LNR can be written as follows

δLNR = ~p · δ(~̇x− i
~̃
ξ
˙̃
ξ5)− Eδ

(

ṫ− i

2
ξ̃5

˙̃
ξ5
)

+ δ(iM
~̃
ξ · ~̇̃ξ)

= i

(

~p · ~̇̃ξ + ~p2

2M
˙̃
ξ5
)

κ− iE
˙̃
ξ5κ− i

~p

2
· ~̇̃ξ κ+ i

~̃
ξ · ~p
2

κ̇. (5.8)

Adding the previous variations we finally get

δLNR =
d

dτ

(

i

2
~p · ~̃ξ κ

)

, (5.9)

where we have used the fact that φ is identically zero, since here both E and ~p should be

considered as functions of the lagrangian variables.

Using the κ-symmetry. we can fix ξ̃5 to zero. In this way the constraint χ becomes

second class. The lagrangian simplifies to:

LNR =
1

2
M

~̇x 2

ṫ
+ iM

~̃
ξ · ~̇̃ξ, (5.10)

where we have omitted the total derivative appearing in (3.11). In this form, the related

action is still invariant under reparametrization of the parameter τ . We can choose the

gauge t = τ , making also the constraint φ second class, obtaining

LNR =
1

2
M~̇x 2 + iM

~̃
ξ · ~̇̃ξ. (5.11)

6 The spinning particle in a Newton-Cartan metric

In this section we will study the non-relativistic limit of the spinning particle in a torsionless

Newton-Cartan background [11]. We will introduce the gravitational interaction of the rel-

ativistic spinning particle by means of a set of vierbein fields, EA
µ , where the index A refers

to the flat target space-time,, A = (0, î), î = 1, 2, 3, whereas the index µ = (0, i), i = 1, 2, 3

refers to the curved target space-time. Then, we define the “contracted” vierbeins in terms

of the same linear transformation Aβ
α(ω) defining the contracted dynamical variables [26].

On the other hand, we leave the dynamical variables unchanged. In this second way of

proceeding we get a dynamical model interacting with a gravitational field appearing as

the contraction of the original one, in such a way to preserve the contraction of the original

symmetry.
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The Newton-Cartan metric is defined in terms of the temporal and spatial vielbeins

(τµ, e
î
µ), where î = 1, 2, 3 is an index in the flat target space, and µ is defined as before [13,

14, 34]. The vielbeins satisfy the following relations

eîµe
µ

ĵ
= δî

ĵ
, eîµe

ν
î
= δνµ − τµτ

ν , τµτ
µ = 1,

τµe
µ

î
= τµeîµ = 0. (6.1)

In order to reduce the generic background metric to the Newton-Cartan one, we will make

use of the contraction of the VSUSY algebra as defined in eq. (2.11). In particular, we

notice that the expression for H in eq. (2.12), implies a mixing between the Poincaré

generators and the central charge Z−

H = −ω

2
(2P0 + Z−). (6.2)

Therefore, besides introducing a gravitational field, we should also introduce a gauge field

associated with the U(1) symmetry generated by Z−. On the other hand, since the Poincaré

group has no central extension (contrarily to the Galilei group), this new field should be

non-dynamical, and therefore with zero curvature [26, 27].

We perform the contraction of the vierbeins assuming the following correspondendence

x0 → E0
µ, c− → Mµ,

t → τµ, c̃− → m̃µ, (6.3)

where Mµ is the U(1) gauge field associated to Z−. Then, using eqs. (3.9) and (3.10), it

follows at once

E0
µ = ωτµ − 1 + α

2ω
m̃µ, Mµ = ωτµ − α

2ω
m̃µ,

τµ = − 1

ω
(αE0

µ − (1 + α)Mµ), m̃µ = 2ω(Mµ − E0
µ). (6.4)

Notice that we do not introduce gauge fields associated to the fermionic generators Gµ, G5

andQ±, Qi. The change in the contraction procedure, going from the flat to the curved case,

does not affect the Grassmann variables. As a consequence we will define the corresponding

contracted variables, exactly as in eqs. (3.9) and (3.10), by taking the non-contracted

variables (ξA, ξ5) in the flat target-space.

The coupling of a background gravitational field with the spinning particle has been

studied in [25]. In the present notations the Lagrangian is given by

L = −µ
√

−ηAB(EA
µ ẋ

µ − iξAξ̇5)(EB
µ ẋµ − iξB ξ̇5)

+
i

2
µ
[

ηABξ
Aξ̇B + ξAωµ[AB]ẋ

µξB
]

− i

2
ξ5ξ̇5 + µMµẋ

µ, (6.5)

where ωµ[AB] is the relativistic spin connection. SinceMµ has zero curvature, the expression

Mµẋ
µ is a total τ -derivative. In fact, Mµẋ

µ can be identified with µ2ċ−(x(τ)).

Except for the part containing the spin connection, the NR limit obtained by sending

ω to infinity, proceeds exactly as in the flat case, with the correspondence ẋ0 → E0
µẋ

µ,
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ẋi → eîµẋ
µ, and ċ− → Mµẋ

µ, and taking into account eq. (6.4). Notice also that the

quadratic divergence arising from µE0
µẋ

µ (remember that µ = Mω), is cancelled by the

first term in the expression of Mµ given in eq. (6.4). The result we find is

LNR − Lconn
NR =

1

2
M

(eîµẋ
µ − iξ̃ î ˙̃ξ5)2

τµẋµ − iξ̃5
˙̃
ξ5/2

+ iM
~̃
ξ · ~̇̃ξ + i

M

2

d

dτ
(ξ̃0ξ̃5) +

1

2
Mm̃µẋ

µ, (6.6)

where Lconn
NR is the NR limit of the part of the Lagrangian relative to the spin connection.

Let us now consider the part of the lagrangian that contains the spin connection. We

define the following one-forms

EA = EA
µ dx

µ, ωA
B = ωA

µBdx
µ, (6.7)

where the one-form defining the spin connection, ωA
B, can be evaluated using the first

Cartan structure equation

dEA − ωA
Bθ

B = 0. (6.8)

The expression for the spin connection is given explicitly in [35]. The result is

ωµ[AB] = ωµ[νρ]E
ν
AE

ρ
B, (6.9)

where Eν
B is the inverse vierbein, defined by

Eµ
AE

B
µ = ηBA (6.10)

and

ωµ[νρ] =
1

2

[

Ω[µν]ρ − Ω[νρ]µ +Ω[ρµ]ν

]

Eν
AE

ρ
B, (6.11)

with

Ω[µν]ρ = (∂µE
C
ν − ∂νE

C
µ )ECρ. (6.12)

It is convenient to define the quantities

αµ[AB] = Ω[µν]ρE
ν
AE

ρ
B,

βµ[AB] = Ω[νρ]µE
ν
AE

ρ
B,

γµ[AB] = Ω[ρµ]νE
ν
AE

ρ
B. (6.13)

It follows

ωµ[AB] =
1

2

[

αµ[AB] − βµ[AB] + γµ[AB]

]

. (6.14)

Let us evaluate the quantities in parenthesis. We begin with the first and the third term

αµ[AB] = (∂µEBν − ∂νEBµ)E
ν
A, (6.15)

γµ[AB] = (∂ρEAµ − ∂µEAρ)E
ρ
B = −αµ[BA], (6.16)

βµ[AB] = (∂νE
C
ρ − ∂ρE

C
ν )ECµE

ν
AE

ρ
B. (6.17)

In order to evaluate the limit of this expression, we make use of the first two eqs. in (6.4).

Recalling that Mµ has zero curvature, we find

(τµ.ν − τν,µ) =
α

2ω2
(m̃µ,ν − m̃ν,µ), (6.18)
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therefore (τµ.ν − τν,µ) goes as 1/ω2 when ω → ∞. This is equivalent to say that in the

NR limit the spinning particle should be coupled to a torsionless NC background. The

expressions for the inverse vierbeins, at the order in 1/ω we are interested in are

Eµ
0 =

1

ω
τµ +

(1 + α)

2ω3
τµτρm̃ρ +

(

O(ω−5)
)

, (6.19)

Eµ

î
= eµ

î
+

(1 + α)

2ω2
τµeρ

î
m̃ρ +

(

O(ω−4)
)

. (6.20)

In the NR limit we have

αµ[0̂i] =
1

ω
τν(∂µeîν − ∂νeîµ) ≡

1

ω
αNC
µ[0̂i]

, (6.21)

αµ[̂i0] =
1

2ω
eν
î
(∂µm̃ν − ∂νm̃µ) ≡

1

ω
αNC
µ[̂i0]

, (6.22)

αµ[̂iĵ] = (∂µeîν − ∂νeîµ)e
ν
ĵ
, (6.23)

βµ[0̂i] =
1

ω
τνeρ

î
eĵµ(∂νe

ĵ
ρ − ∂ρe

ĵ
ν) +O

(

ω−2
)

≡ 1

ω
βNC
µ[0̂i]

, (6.24)

βµ[̂i0] = −βµ[0̂i], (6.25)

βµ[̂iĵ] = eν
î
eρ
ĵ

[

ek̂µ(∂νe
k̂
ρ − ∂ρe

k̂
ν)−

1

2
τµ(∂νm̃ρ − ∂ρm̃ν)

]

. (6.26)

The superscriptNC, that we have introduced here. refers to the Newton-Cartan quantities.

The result for the spin connection is

ωµ[0̂i] = −ωµ[̂i0] =
1

2ω
(αNC

µ[0̂i]
− βNC

µ[0̂i]
− αNC

µ[̂i0]
) ≡ 1

ω
ωNC
µ0̂i]

, (6.27)

ωµ[̂iĵ] =
1

2
(αNC

µ[̂iĵ]
− βNC

µ[̂iĵ]
− αNC

µ[ĵî]
) ≡ ωµ[̂iĵ ]

NC , (6.28)

with

ωNC
µ[0̂i]

=
1

2

[

τν(∂µeîν − ∂νeîµ)− τνeρ
î
eĵµ(∂νe

ĵ
ρ − ∂ρe

ĵ
ν)−

1

2
eν
î
(∂µm̃ν − ∂νm̃µ)

]

, (6.29)

ωNC
µ[̂iĵ]

=
1

2

[

(∂µeîν − ∂νeîµ)e
ν
ĵ
− eν

î
eρ
ĵ

[

ek̂µ(∂νe
k̂
ρ − ∂ρe

k̂
ν)−

1

2
τµ(∂νm̃ρ − ∂ρm̃ν)

]

−(∂µeĵν − ∂νeĵµ)e
ν
î

]

. (6.30)

As anticipated, also for the Newton-Cartan connections we get a result independent of α

and agree with the ones obtained in [34].

Keeping in mind that ωµ[̂i0] is multiplied by µξ îξ0, which is given by

µξ îξ0 = ωM

√

2

ω
ξ̃ î
√

ω

2
ξ̃5 = ωMξ îξ̃5, (6.31)

we see that we get a finite result. The same happens for the rotation part of the connection,

since

µξ îξĵ = 2Mξ̃ îξĵ . (6.32)
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Therefore the result of the NR limit for the spin connection contribution to the Lagrangian

is

Lconn
NR = iMξ̃5ξ̃ îẋµωNC

µ[0̂i]
+ iMξ̃ îξ̃ĵ ẋµωNC

µ[̂iĵ]
. (6.33)

The presence of the spin connection relative to the Galilei boost should not surprise. In

fact, the variable ξ̃5 arising from a linear combination of ξ0 and ξ5 does not transform

trivially under a Galilei boost. Let us define

Aµ = iMξ̃5ξ̃ îωNC
µ[0̂i]

+ iMξ̃ îξ̃ĵωNC
µ[̂iĵ]

+
1

2
Mm̃µ. (6.34)

Then, we have (neglecting the total derivative)

LNR =
1

2
M

(eîµẋ
µ − iξ̃ î ˙̃ξ5)2

τµẋµ − iξ̃5
˙̃
ξ5/2

+ iM
~̃
ξ · ~̇̃ξ +Aµẋ

µ, (6.35)

that is the lagrangian of a non-relativistic spinning particle in Newton-Cartan background.

7 Equations of motion in the Newton-Cartan case

Let us evaluate the momenta:

pµ =
∂LNR

∂ẋµ
= M

(eîν ẋ
ν − iξ̃ î ˙̃ξ5)

τν ẋν − iξ̃5
˙̃
ξ5/2

eîµ − 1

2
M

(eîν ẋ
ν − iξ̃ î ˙̃ξ5)2

(τν ẋν − iξ̃5
˙̃
ξ5/2)2

τµ +Aµ. (7.1)

Defining

Pµ = pµ −Aµ, (7.2)

and projecting along the vielbeins, we get

Pµτ
µ = −1

2
M

(eîν ẋ
ν − iξ̃ î ˙̃ξ5)2

(τν ẋν − iξ̃5
˙̃
ξ5/2)2

(7.3)

and

Pµe
µ

î
= M

(eîν ẋ
ν − iξ̃ î ˙̃ξ5)

τν ẋν − iξ̃5
˙̃
ξ5/2

. (7.4)

From which we get the mass-shell constraint

φ = 2MPµτ
µ + (Pµe

µ

î
)2 = 0 (7.5)

and the odd constraint

χ = π̃5 − iPµe
µ

î
ξ î − i

2
Pµτ

µξ̃5 = 0. (7.6)

These two constraints are the analogs of the constraints we found in the flat case.

It is useful to introduce the “curved NR” Grassmann variables

λµ = ẽµAζ
A, ẽµA = (τµ, eµ

î
), (7.7)
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where

ζA =

(

1

2
ξ̃5, ξ̃ î

)

, A = (0, î). (7.8)

Their Dirac bracket are given by

{ζA, ζB}∗ = − i

2M

∑

i

δAi δ
B
i ,

{λµ, λν}∗ = − i

2M

∑

i

eµi e
ν
i = − i

2M
hµν = − i

2M
(ηµν − τµτν). (7.9)

The odd constraint becomes

χ = π̃5 − iPµλ
µ. (7.10)

In the same notations, we can write

Aµ = iMζAζBωNC
µ[AB] +

1

2
Mm̃µ. (7.11)

Now we should compute the Dirac bracket of the constraints φ, χ; for this it is useful

to compute

{Pµ,Pν}∗ = M

(

(RNC
µν )ABS

AB +
1

2

(

∂m̃µ

∂xν
− ∂m̃ν

∂xµ

))

, (7.12)

where

(RNC
µν )AB =

∂ωNC
ν[AB]

∂xµ
−

∂ωNC
µ[AB]

∂xν
− ωNC

ν[Aî]
ωNC
µ[̂iB]

+ ωNC
µ[Aî]

ωNC
ν [̂iB]

(7.13)

is the curvature tensor for the NC structure and

SAB = iζAζB (7.14)

are the spin generators. Furthermore

{Pµ, λ
ν}∗ = λρΓν

µρ, (7.15)

where Γν
µρ are the Christoffel symbols associated to the NC structure given by

Γν
µρ = −ẽAρ (∂µẽ

ν
A + ωNC

µ[Aî]
ẽν
î
), (7.16)

which agrees with connection obtained in [34]. In this paper it was proved that these

connections are symmetric in the lower indices

Using the previous results we obtain

{χ, χ}∗ =
i

2M
φ+ 2PµΓ

µ
ρνλ

ρλν +
1

4
M(∂µm̃ν − ∂νm̃µ)τ

µeν
î
ξ̃ îξ̃5

−M

2
[(RNC

µν )ABS
AB][(τµeνk − τνeµk)ξ̃

5ξ̃k̂ + (eµke
ν
ℓ − eµℓ e

ν
k)ξ̃

kξ̃ℓ]. (7.17)

To preserve the continuity with the case of a flat background, it is important to require

that the two constraints (φ, χ) are still first class. To this end, let us notice that the
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connection Γµ
ρν is symmetric in the lower indices. Being saturated with the antisymmetric

quantity λρλν gives zero contribution.The term proportional to the curvature is zero due

to the Bianchi identity. However, the third term proportional to the curl of m̃µ does not

vanish. Therefore we must require that the vector field associated to the U(1) symmetry

is curl-free. We will make use of this condition from now on.

Therefore

{χ, χ}∗ = i

2M
φ. (7.18)

Since the constraint χ is odd, the following Jacobi identity

{χ, {χ, χ}∗}∗ + {χ, {χ, χ}∗}∗ + {χ, {χ, χ}∗}∗ = 0 (7.19)

is not trivial. Using eq. (7.18) it follows

{χ, φ}∗ = 0. (7.20)

Therefore the two constraints (φ, χ) are first class not only in the flat case, but also in a tor-

sionless NC background, with a U(1) connection with zero field strength. Correspondingly

the term in the non-relativistic lagrangian containing the gauge field is a total derivative.

Since the constraint χ implies the existence of the kappa-symetry, we see that a require-

ment of kappa-symmetry gives informations about background. In the case of superbranes

in a supergravity background this interplay among the world volume symmetry and a

supergravity background implies the on-shell equations of motion of supergravity [36].

The Dirac hamiltonian can be written as

H = α(2MPµτ
µ + (Pµe

µ

î
)2) + β(π̃5 − iPµe

µ

î
ξ î − i

2
Pµτ

µξ̃5). (7.21)

In order to get the equations of motion for the space-time coordinates, Grassmann and

spin variables it is useful to consider the gauge β = 0. In this case we have

ẋµ = 2α(Mτµ + eµ
î
eν
î
Pν),

˙̃
ξ5 = 0,

˙̃
ξ î + (ωNC

µ[̂iĵ]
ξĵ − 1

2
ωNC
µ[0̂i]

ξ̃5)ẋµ = 0,

Ṗµ −
(

eρ
î

∂eîν
∂xµ

+ τρ
∂τν
∂xµ

)

Pρẋ
ν = M(RNC

µν )ABS
ABẋν . (7.22)

We can also have the equations of motion of the spin variables SAB defined in eq. (7.14).

They are given by

Ṡ î0 + ωµ[̂iĵ]S
ĵ0ẋµ = 0, Ṡ îĵ + ωµ[̂iA]S

Aĵ ẋµ − ωµ[ĵA]S
Aîẋµ = 0. (7.23)

Keeping in mind that in this gauge ζ0 = ξ̃5/2 is a constant of motion, this is equivalent to

say that the covariant derivative of the spin generators vanishes. In order to get the second

order equations for the xµ′s variables we must express Pν in terms of ẋν . The final result is

ẍν + Γν
ρµẋ

ρẋµ − Ṅ

N
ẋν = Mhνρ(RNC

ρµ )ABS
ABẋµ, (7.24)
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where N = τµẋ
µ.1 Choosing the gauge with α = constant it follows, from τµẋ

µ = 2αM ,

that Ṅ vanishes. Notice also that the connection is given by

Γν
ρµ =

1

2

[

hνσ
(

∂hσµ
∂xρ

+
∂hσρ
∂xµ

− ∂hµρ
∂xσ

)

+ τν
(

∂τρ
∂xµ

+
∂τµ
∂xρ

)]

. (7.25)

By putting the Grassmann variables to zero, the equation (7.24) reduces to the geodesic

equation for a scalar particle in a torsionless NC background [13]. It is interesting to notice

that in a generic Newton-Cartan background, the left-hand side of eq. (7.24) would contain

a term with three velocities ẋµ given by:

1

2
hνµhρλ (∂µτσ − ∂στµ) ẋ

ρẋλẋσ (7.26)

However, such a term vanishes in a torsionless Newton-Cartan background as it is in our

case.

8 Conclusions and outlook

In this paper we have constructed the action of a non-relativistic spinning particle moving

in a general torsionless Newton-Cartan background. The spinning particle is described in

terms of Grassmann variables. The model has two gauge symmetries, diffeomorphism and

kappa symmetry. The invariance under kappa symmetry implies that the gauge field associ-

ated to one of the central extensions of the VSUSY algebra [18] has vanishing field strength.

The equations for the space-time coordinates do not follow the geodesic equations, in-

stead the motion is governed by the non-relativistic analog of the Papapetrou equation [17]

with a coupling of the spin to the NC curvature.

One could study the construction of a non-relativistic superparticle in a NC background

by null reduction of the analogous relativistic spinning particle in one dimension more.

Note added in proof. After having completed this work we received the paper [37]

where the behaviour of a scalar particle and of a supersymmetric particle in a 3-dimensional

NC background were examined. Despite of some similarity this approach and ours are very

different, as well as the model considered here.
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